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• Adaptive spike detection method for autonomous operation.
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ABSTRACT
Background: The progress in microtechnology has enabled an exponential trend in the number of
neurons that can be simultaneously recorded. The data bandwidth requirement is however increasing
with channel count. The vast majority of experimental work involving electrophysiology stores the
raw data and then processes this offline; to detect the underlying spike events. Emerging applications
however require new methods for local, real-time processing. New Methods: We have developed
an adaptive, low complexity spike detection algorithm that combines three novel components for:
(1) removing the local field potentials; (2) enhancing the signal-to-noise ratio; and (3) computing an
adaptive threshold. The proposed algorithm has been optimised for hardware implementation (i.e.
minimising computations, translating to a fixed-point implementation), and demonstrated on low-
power embedded targets. Main results: The algorithm has been validated on both synthetic datasets
and real recordings yielding a detection sensitivity of up to 90%. The initial hardware implementation
using an off-the-shelf embedded platform demonstrated a memory requirement of less than 0.1 kb
ROM and 3 kb program flash, consuming an average power of 130�W. Comparison with Existing
Methods: The method presented has the advantages over other approaches, that it allows spike events
to be robustly detected in real-time from neural activity in a completely autonomous way, without
the need for any calibration, and can be implemented with low hardware resources. Conclusion: The
proposed method can detect spikes effectively and adaptively. It alleviates the need for re-calibration,
which is critical towards achieving a viable BMI, and more so with future ‘high bandwidth’ systems’
targeting 1000s of channels.

1. Introduction
With the advent of high bandwidthBrainMachine Interfaces
(BMIs) [33, 35, 37] and new and emerging research tools for
electrophysiology [22, 10, 1, 40], implantable neural inter-
faces are now capable of recording from 100s to 1000s of
channels. This has been made possible by advances in mi-
crosystems technology that also brings the opportunity of
large scale integration with microelectronics [31]. This in-
crease in channel count however poses a major challenge in
communication power for both wired and wireless systems.
The availability of front-end electronics here allows for neu-
ral signal conditioning and processing that can facilitate fea-
ture extraction. This can lead to massive reductions in com-
munication bandwidth and thus overall power requirements,
but requires the on-node processing to be achievable in low
power. It is also essential that any data reduction or feature
extraction (e.g. [39]) maintains the underlying information
in the neural signal.

A common approach is to select a specific signal band,
for example, 0.1–100Hz for Local Field Potentials (LFPs)
or 300Hz–5 kHz for Extracellular Action Potentials (EAPs)
and optimise the amplifier performance as well as data con-
verter sampling rate and resolution to reduce the output bit
rate [4, 5, 15]. For EAPs further reduction is possible due to
the sparse nature of neural spiking signals. Single Unit Ac-
tivity (SUA), Multi Unit Activity (MUA), or Entire Spiking
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Activity (ESA) are three means of reducing a raw recording
to a spike rate, or event-based output. This can reduce output
bandwidth by to 2-3 orders of magnitude [14, 32, 15]. One
of the simplest such schemes is to do spike detection, and
transmit spike timings (for MUA [20, 30, 11, 15]) or spike
snippets (for subsequent SUA processing, e.g. spike sorting
[19, 24, 39, 32]).

Although the spike detection itself is a relatively simple
operation (i.e. a comparison to a threshold), its overall per-
formance (sensitivity, specificity, selectivity and false posi-
tive rate) [6] can be significantly improved by pre-processing
the signal. This pre-processing includes filtering, to ensure
complete removal of lower frequency LFPs; spike enhance-
ment, to boost the Signal-to-Noise Ratio (SNR); and thresh-
old computation, to ensure a good balance between noise
being incorrectly detected (false positives), and spikes being
missed (false negatives).

The filtering often starts in the analogue domain, with
the front-end providing a high pass operation. This typically
consists of a low order filter with cut-off frequency below
the band of interest, and thus avoid introducing phase distor-
tion (that would change the shape of the spike) [41, 5, 36].
This is typically proceeded with a (causal) digital filter, typ-
ically a finite impulse response (FIR) to remove any remain-
ing lower frequency activity or noise. Then the spike en-
hancement that emphasizes spikes in preference to noise can
be achieved using a wavelet transform [52, 51, 26], template
matching [2, 27, 50, 21, 32] or non-linear function such as
the Non-linear Energy Operator (NEO) also known as the
Teager/Kaiser Energy Operator (TEO) [23] and variations
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[34, 9, 14].
Before comparing this emphasised/enhanced signal to

the threshold it is essential to set its level based on the spe-
cific recording channel. This is because the individual elec-
trode properties, tissue environment (e.g. density of sur-
rounding neurons, proximity to electrode, scar tissue growth),
in addition to electronic properties (e.g. instrumentation noise)
varies for each channel, and over time, resulting in variable
signal and noise levels. The threshold is thus calculated based
on the statistics of the underlying signal, typically using the
mean, median or standard deviation [42]. The cross-correlation
of NEO-processed data is also used in [34], which achieves a
good spike detection performance. However, such a thresh-
old tends to be unstable since the appearance of spikes can
disturb the local statistics, and in [13] a spike elimination
technique has been proposed to reduce such interference.
Additionally, for a real-time system, the threshold needs to
be pre-calculated using training data, or ideally even being
adaptive to track changes in the signal statistics. Adaptive
threshold methods implemented in hardware have used local
minima, maxima or peak detection [7, 28], Sigma-Delta es-
timation on half-normal distribution [17], the wavelet trans-
form [52, 51], or estimations of root mean square (rms) [48]
and/or the standard deviation [20].

This work presents a novel, highly hardware efficient (low
complexity, low computation) adaptive spike detection al-
gorithm for implantable BMI applications. This includes a
mean subtraction filter to first eliminate any lower frequency
components (e.g. LFP) from the signal without introducing
additional phase distortion. We also propose a novel oper-
ator, the Amplitude Slope Operator (ASO) as a hardware-
efficient alternative to NEO for enhancing the SNR of the
EAP signals. The adaptive threshold is calculated periodi-
cally by taking a running mean that excludes any detected
spikes that have been detected, but also runs a concurrent
subthreshold detection to exclude a portion of the undetected
spikes within the background activity. The algorithm has
originally been developed inMatlab using floating point arith-
metic, and has been ported to a C implementation using fixed-
point arithmetic. This has been applied to two embedded
targets (ARM Cortex M0+ and ARM Cortex M4 microcon-
trollers) to demonstrate the real-time capability, spike detec-
tion performance and low power/low complexity implemen-
tation.

The remainder of this paper is organised as follows: Sec-
tion 2 describes themethods, algorithm and implementation;
Section 3 present and discusses both the simulated and mea-
sured results; and Section 4 concludes this work.

2. Material and Methods
The algorithm for adaptive spike detection has been devel-
oped in three phases: (1) initial methods conceived, tested
and optimised usingMATLABwith floating point arithmetic;
(2) then translated to a fixed point representation; and (3) mi-
grated to an embedded target (two different microcontrollers
within the ARM Cortex family) using C programming lan-
guage.

The workflow of the proposed spike detection system is
illustrated in Fig. 1.

Evaluating spike detection algorithms has the challenge
in that real data has no ground truth. One can either use
synthetic or real data to evaluate their algorithms. The great
advantage with using synthetic data, is that the ground truth
is known. The noise level, however, and any drifting/fading
of the signal does not behave in a realistic way. Addition-
ally, noise characteristics across different electrodes and in-
strumentation vary, and also within probes or multielectrode
arrays across recording channels. It is therefore challenging
to utilise established synthetic datasets and achieve results
that are representative of a real recording. Often there can
be some inconsistency between the evaluation results and
practical performance. On the other hand, real data provides
realistic signals but the ground truth is unknown. To balance
the trade-off between these approaches (integrity of a realis-
tic signal vs. integrity in the evaluation), we use both types
of datasets.Synthetic data [42] is first used to quantitatively
evaluate our proposed algorithm, and make a fair compari-
son with different algorithms that have been previously pub-
lished. Experimental recordings (with an annotated ground
truth) [46] is then used for demonstrating the practical per-
formance of the proposed algorithm with realistic noise lev-
els and signal quality.
2.1. Test Datasets
2.1.1. Synthetic dataset

For the initial evaluation, and quantitative comparison,
we used a commonly used dataset with known ground truth
provided by Quian Quiroga et al. [42]. This dataset contains
4 groups of synthetic recordings (easy1, easy2, difficult1,
difficult2), with noise levels ranging between 0.05 to 0.2.
Each synthetic recording is 60 s in duration and sampled at
24,000Hz. Across each synthetic recording, there are three
different single units, each with a mean firing rate of 20Hz,
whose arrival follows a Poisson distribution. Fig.2 shows
one portion of the signal. The validation on such dataset is
included in Section 3 as a baseline comparison.
2.1.2. Experimental data
The neural recordings were collected by Cortex Lab, Uni-
versity College London and made publicly available [46].
These recordings contain 384 channels of neural signals from
the visual cortex, sampled at 30 kHz. We have chosen to de-
velop and validate our algorithm using this real data such
that the signal dynamics and channel-to-channel variability
are as realistic as possible including broadband data (both
local field potential and extracellular action potentials). Pre-
vious work in the literature has used synthetic spike data [34,
42, 52] to ensure the ground truth is known. This is however
not the case for real-world data, i.e. the ground truth is not
certain. We therefore applied an automatic spike labelling
method to estimate the ground truth of spikes in this exper-
imental dataset. We achieved this first by labelling the real
recordingswith a “gold standard” spike detection/sorting tool
"Wave_Clus" [8] treating each channel independently. We
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Figure 1: Overview of the proposed adaptive spike detection algorithm.
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Figure 2: A Snapshot of the synthetic dataset

then use fact that the neuropixels probes provide spatially-
oversampled observations, with spikes events appearing across
adjacent electrodes. By exploiting this cross-channel infor-
mation, any missing spikes can be recovered and isolated
events removed, to achieve good integrity for the ground
truth estimation. Moreover, the detected spikes can either
be genuine spikes or MUA noise. We then merge the differ-
ent spike type clusters into two clusters, i.e. real spikes and
MUAnoise, using the fact that these two clusters should have
themax spike peak difference. This resulted in a dataset with
65 channels of recorded data for 33.3s each, annotated with
ground truth estimations. The variety of the data has also
been assessed in which the spike peak range is varying from
over 300�V to 50�V and the noise ground range is varying
from 50�V to below 20�V , while the SNR is varying from
8 dB to 19dB. A snapshot of some recordings are given in
Fig. 3.
2.1.3. Realistic data with varying noise levels

Although the recordings already contain realistic noise
levels, we add further noise to rigorously evaluate the ro-
bustness of our proposed methods. Specifically, two types
of noise are added (for SNRs between 5 dB to 20 dB) to sim-
ulate different noise environments. Firstly Gaussian noise is
added to represent the variability in thermal noise observed
in recording electrodes, instrumentation and other natural
processes. Secondly, background activity (also referred to
as multi-unit activity (MUA) noise) is added to represent the

Ch.271 | SNR: 24.8 Ch.21 | SNR: 21.3 Ch.259 | SNR: 20.7 Ch.324 | SNR: 19.9

Ch.190 | SNR: 19.7 Ch.11 | SNR: 19.1 Ch.81 | SNR: 18.5 Ch.183 | SNR: 18.4

Ch.79 | SNR: 18.1 Ch.31 | SNR: 17.8 Ch.51 | SNR: 17.4 Ch.16 | SNR: 17

Ch.134 | SNR: 16.8 Ch.184 | SNR: 16.5 Ch.273 | SNR: 15.9 Ch.268 | SNR: 15.8

Figure 3: A sample of 16 channels shown in descending order of
SNR. Each waveform is annotated with channel number and SNR
level.

variability in the ‘undetectable’ signals originating from the
tissue itself. We follow the simulation methods described
in [42, 44] that uses a spike arrival time following a Poisson
Distribution, with average frequency of around 50 spikes/sec.
The arrival interval duration between two spikes, therefore,
follows an exponential distribution with an average interval
length for 20ms/spike. Noise spike samples are extracted
from the recordings different from the ones used for spike
detection to ensure independence. The spike peaks are nor-
malised according to SNR levels before being added to the
recordings.
2.2. Algorithm Development
The algorithm was initially developed using floating point
arithmetic using MATLAB 9.5 (R2018b).

The proposed algorithm has been designed to operate
three phases: (1) mean subtraction, to remove the LFP sig-
nal; (2) signal enhancement, to make the spikes more distin-
guishable compared to the noise, and (3) threshold compar-
ison, to detect the occurrence of a spike. The block diagram
of the proposed algorithm is given in Fig. 4.
2.2.1. Mean Subtraction
The aim of the mean subtraction is to remove the LFP – the
low-frequency ‘background noise’ in signals observed due to
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Figure 4: Block diagram of proposed algorithm.

the aggregated network activity across the tissue. The LFP
mainly lies at frequencies below 100Hz. To remove this,
we propose using a 16-point moving average filter to find
the local mean and subtract this mean from the current value
to align the signal.

Instead of calculating the mean by summing a series of
successive samples, we achieve this by incrementally updat-
ing a weighted average as described in Eq. 1. This approach
both simplifies the required computation and reduces mem-
ory requirements. The result of the LFP removed signal is
obtained by Eq. 2.

�n = �n−1 −
xn−16 − xn

16
(1)

yn = xn − �n−1 (2)
where �n is the ntℎmean of the signal, xn is the ntℎ read valueand yn is the mean-removed xn. With this design, the sum-
ming operation in a filtering operation can then be replaced
with 2 additions (or subtractions). The number of required
operations is therefore reduced by 8×. The complexity is re-
duced from O(N) to O(1), which means that using a longer
filter does not increase computation. The captured mean and
resulting signals are shown in Fig. 5
2.2.2. Spike Enhancement
Inspired by the MNEO [9], described by Eq. 3, we propose
a new operator, the Amplitude Slope Operator (ASO), for-
mulated in Eq. 4

zn = yn2 − yn+kyn−k (3)

zn = yn (yn − yn−k) (4)
where zn is the emphasised data and yn is the LFP-removed
input data. In this equation, yn stands for the amplitude and
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Figure 5: Results of mean subtraction filter; after the mean sub-
traction, the recording is aligned at zero. Shown are: a) Original
recording with the captured Mean value. b) Signal after the LFP
removing.

yn−yn−k stands for the slope at this point. Referring to Fig. 6,a spike is different from noise because it has a higher ampli-
tude and a more significant slope or gradient, i.e. abrupt
changes. Therefore, intuitively the ASO amplifies the signal
intervals that satisfy both these conditions whilst suppress
signal intervals where only one or neither of these conditions
are satisfied.

Each ASO operation requires one multiplication and one
subtraction. The computation is reduced by half, compared
to the widely used non-linear energy operator (NEO) [12, 14,
28], since this requires twomultiplication operations and one
subtraction. Additionally, no future sample is needed in this
operator, which makes it suitable for real-time applications.
The results are shown in Fig. 7.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

-2

0

2

4

6

8

Am
pl

itu
de

 (m
V 

) 2

Noise 
Suppressed

Spikes
Enhanced

2

Figure 7: The ASO emphasised signal, where the noise is sup-
pressed and the spikes are enhanced, comparing to Fig. 5.b

2.2.3. Threshold Comparison
The spike detection step itself is performed by comparing
the emphasised signal to a threshold value. This threshold
should be determined by considering the local statistics, pro-
viding a measure of the local noise level. A spike is detected
when the input signal crosses this threshold value.

There are several challenges in computing this thresh-
old value, particularly for real-time hardware application.
Firstly, the inherent need for statistics in computing the thresh-
old places significantmemory requirements in a low power/low
complexity implementation. Secondly, the fact that each record-
ing electrode observes its own unique SNRmeans each chan-
nel needs to be individually calibrated or trained. Thirdly,
the signal observed at any given electrode itself changes over
time requiring repeated re-calibration. These challengesmo-
tivate the development of an adaptive threshold method that
using an algorithmic approach to avoid the need for statistics.

Developing a iterative function that estimates the noise
level without requiring prior history poses its own challenges.
Samples that contain spikes for example can contribute to er-
roneously raising the threshold value. It is thus essential to
provide blanking to capture a robust noise level.

The overall threshold comparison process is described in
Fig. 4. The block labelled ‘Spike Detected’ reports the de-
tected spike locations, and details of the block labelled ‘Up-
date with Sub-threshold’ are shown in Fig. 8.

The algorithm operates as follows: an initial threshold
value is set by calculating the median value across the first
64 samples. Using the median is essential here because the
buffered values are likely to contain spikes, and this provides
some robustness to outliers. We compute the initial thresh-
old by adapting the method reported in [42], with threshold

Start:
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63 Samples have 
been added? Endμ = μ + Z/64

μ = μ + Z/64
Thr = 40μ
μ = 0

N

N

Y

Y

Wait for Update

Accumulate Mean

Update Threshold

Figure 8: Block diagram of the update algorithm

described by Eq. 5. This has been modified (multiplier in-
creased to ×22) to operate on the enhanced/emphasized sig-
nal (after ASO pre-processor) instead of raw data.

Tℎr = 22�, � = median[
y (n)
0.6745

] (5)
Although the median is essential for initially setting the

threshold, the trade-off between accuracy and complexity
needs to be considered for the operation thereafter (i.e. reg-
ular threshold update). Considering the median, mean and
standard deviation measures, the mean is selected for the
regular threshold update. This is performed by taking an av-
erage across a 64-samplewindow, as described in Eqs. 6 and 7.

�tℎr =
1
64

n−1
∑

i=n−64
zi (6)

Tℎr = 40 ∗ �tℎr (7)
The 40×multiplier has been determined through empiri-

cal test (i.e. an exhaustive search) also considering hardware
implementability. This revealed that although the value se-
lectedwas the optimum, any variability to this provided good
robustness (i.e. low sensitivity to data dependence). The
threshold update is duty cycled to occur every 0.6 s, strik-
ing a trade-off between the ‘attack’ rate and average power
requirements. This duty cycle can potentially be tuned to
be significantly lower (as signals do not generally drift over
seconds, but more on the scale of hours or days).

Since using the signal mean to determine the threshold
value is sensitive to outliers, e.g. the presence of spikes
would add error to the noise estimation, we implement two
techniques to eliminate the effect of spikes on the threshold
computation:

1. Spike Exclusion: This effectively blanks the samples
associated to any detected spikes when calculating the
local mean. More specifically, this is implemented by
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invoking a 1ms ‘refractory period’ whenever a spike
is detected (it is observed that the vast majority of
spikes have a positive phase of approximately 0.7ms).
This disables any updates to the threshold computa-
tion during this period and as such excludes the spike
samples from the mean computation. Implementing
this feature additionally avoids multiple detections of
a single spike (e.g. if the positive phase of the spike is
noisy).

2. Sub-threshold Exclusion: For spikes that are not de-
tected but clearly above the ‘noise’ level, the previ-
ous spike exclusion step does not exclude this from the
mean computation. Therefore, a separate spike detec-
tion is performed using half the threshold value to fur-
ther exclude any distinct spike signals. This has been
adopted in preference to reducing the spike detection
threshold level to maintain a good balance between
overall sensitivity and accuracy

2.3. Fixed-Point Implementation
To improve the efficiency of hardware implementation (i.e.
reducing complexity and power consumption), a fixed point
representation is highly desirable.

To convert the previously described algorithm that is orig-
inally developed inMATLAB, all floating point variables are
replaced with 16-bit integer variables. This furthermore pro-
vides the opportunity to replacemultiplication (and division)
operations to logical bit shifts wherever scaling ratios are ap-
propriate. The reduced precision in the arithmetic however
poses some issues that need to be addressed.
2.3.1. Mean Subtraction
The fixed point conversion first impacts themean subtraction
operation (to filter out LFP signal), where the reduction in
precision leads to the mean value fading to a relatively small
value that can lead to a significant error. This can be resolved
by regularly recalculating the mean such that its precision is
restored before it is allowed to ‘fade’. Given the 16-bit pre-
cision, the recalculation interval is found to be 40ms (deter-
mined empirically).

However, as the moving average filter is based on a 16-
sample sliding window, its implementation can be simplified
by replacing the division operation by a 4-bit logical right
shift operation.
2.3.2. Amplitude Slope Operator
The ASO function can also be simplified in a similar manner
to use a logical shift. The ASO operator is thus modified to:

zn = (yn − yn−1) << '(yn ) (8)
where ' refers to the operator that finds the last power of
2 and << stands for bit left-shifting (A smaller number is
used in preventing bit overflowing.) Therefore, the need for
the multiplication can be altogether eliminated.

2.3.3. Threshold comparison
The computation of the initial threshold is modified to ac-
count for the fixed point representation, described in Eq. 9.

tℎrinit = median[y(n)] << 5 (9)
The threshold value here is rounded down to 32 times of the
localmedian value (22 / 0.6745≈ 32), implementedusinga5−
bitlef t − sℎif toftℎemedian.

The updated threshold value (during detection process)
is then calculated according to Eq. 10.

tℎr = �tℎr << 5 + �tℎr << 3 (10)
For the mean computation required for the sub-threshold

elimination, we reverse the order of operation (i.e. first right
shift by 6-bits and then accumulate) to avoid the possibility
of an overflow given the 16-bit representation.

The algorithm was re-evaluated after all the above men-
tioned changes, demonstrating a negligible degradation to
overall performance.
2.4. Hardware Implementation
A key objective in the hardware implementation of a spike
detection algorithm is to minimise its power requirements.
For an implantable application (e.g. BMI) this is essential
for two reasons: firstly, the energy budget is constrained by
the energy source (e.g. battery) and wireless power trans-
fer efficiency. Secondly, any power consumed is ultimately
dissipated as heat that can lead to damage of neural tissue.
Additionally it is highly desirable to reduce complexity to
allow for a high integration density.
2.4.1. Hardware and Measurement Setting

To assess the hardware efficiency of the proposed al-
gorithm we implement the algorithm on a commercially-
available embedded platform. Here, the power consumption
can provide a relative measure of computational complexity,
whereas the memory requirements can provide a measure of
hardware complexity (i.e. silicon area).

We have implemented the proposed algorithm on two
different microcontroller families (ARM Cortex M0+ and
ARMCortexM4), using appropriate development platforms
(FRDM -KL05Z and FRDM -K64F respectively), for the power
consumption, memory requirement, and run times measure-
ment of the proposed algorithm. The FRDM -KL05Z plat-
form features a 32-bit ARM -M0+CPUoperating at 48MHz
with 32KB flash and 4KB RAM. It has one 12 - bit ADC
and one 12 - bit DAC. This MCU is designed with efficiency
in mind, which is ideal as an ultra-low power demonstra-
tor. The FRDM -K64F platform features a 32 - bit ARM -
M4 CPU operating at 120MHz. It has 1MB flash memory,
256KB ROM, two 16 - bit ADCs and one 12 - bit DAC and
it also supports low power timer. This board is a powerful
MCU with low power consumption.

However, since the development boards only contain one
digitial to analogue converter (DAC), only one signal can
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be directly observed at a time (ASO output and threshold
value). We therefore have additionally implemented a pulse
widthmodulated (PWM) based DAC to enable a second ana-
logue output to be concurrently observed.

Since the typical frequency range of observed spikes (mea-
sured extracellular action potentials) is 300Hz to 3 kHz [36],
the sampling frequency is set to be 7 kHz to avoid aliasing
and keep the power consumption as low as possible. For
spike sorting application however a higher sampling frequency
would be desirable.

The firmware has been programmed inC using theMBED
OS online compiler development environment. All variables
are defined using either unsigned short or short data types
(16-bit integers). The test data has been transferred from
MATLAB to an arbitrary waveform generator, with output
observed using an oscilloscope. The power consumption is
determined by measuring the voltage Vop drop across a 10Ωcurrent sense resistor(R) that is placed in series the MCU
power line.The runtime top is observed using the oscillo-
scope. The incremental power Wop (beyond the idle run-
ning powerWidle) and extra energy Eop for each operation,
average powerWavg across the duty cycle, and total energy
Esample per sample has been calculated based on Equ. 11-
14. The memory utilisation is directly reported within the
MBED development environment.

Wop =
V 2op
R
−Widle (11)

Eop = Wop ∗ top (12)

Wavg =
∑

all ops Eop ∗ Nop
∑

all ops top ∗ Nop
(13)

Etotal =
∑

all ops Eop ∗ Nop

Nsamples
(14)

Where Nop stands for the number of times one operation
should be taken in one duty cycle and Nsamples stands forthe number of samples been taken in one duty cycle.
2.4.2. Algorithm Migration

The algorithm itself has been developed with computa-
tional complexity and hardware efficiency in mind. The pre-
vious section focused on translating this to fixed point arith-
metic to further reduce complexity. One addition consider-
ation however is to achieve an approximately constant com-
putational load (operations per sample) to ensure efficient
hardware utilisation (e.g. clock optimisation).

Although the threshold update itself happens once each
0.6 s, it is essential to spread the processing operations re-
quired throughout this 0.6 s period. The threshold update
process achieves this by interleaving operations during each

sample period. This is implemented by executing one of 3
different branches (shown previously in Fig. 8): ‘Wait for
update’, ‘Accumulate mean’ and ‘Update threshold’. This
approach both alleviates the need for loops and additionally
reduces memory requirements.

The subroutine for detection (mean subtraction, spike
enhancement and threshold comparison) is invoked at the
sampling rate (i.e. 7 kHz), controlled by a timer (low power
timer in K64F). The MCU is set to a low power sleep mode
between samples and woken up on each new sample. The
timing for the threshold comparison duty cycle and spike
elimination are achieved by polling. This is to avoid us-
ing additional timers. The threshold is then updated every
3,500 samples (7,000×18,000 /30,000 = 4,200), and 5 sam-
ples (20×7,000 /30,000 ≈5) will be skipped after a spike is
detected for applying spike elimination.

TheASO implementation is different on each of theMCUs.
This is because the K64F has a dedicated assembly instruc-
tion (Count Leading Zeros, CLZ) that can be leveraged to
determine the last power of 2. This reduces the multipli-
cation and division operations to bit shifting. The KL05Z
however, does not support CLZ so needs to be implemented
in software, therefore requiring more instructions. The mul-
tiplication therefore remains in the KL05Z implementation
with ASO calculated according to Eq. 4.

The threshold comparison is implemented identically to
the MATLAB implementation.

3. Results and Discussion
This section presents results demonstrating the operation of
the algorithm, outright spike detection performance (e.g. sen-
sitivity, accuracy, FDR), and hardware efficiency. The power
consumption, run time, andmemory requirement for the hard-
ware are then measured to demonstrate the suitability for im-
plantable BMI applications.
3.1. Software Evaluation
To show the effectiveness of the proposed algorithms, We
have first tested our proposed algorithm on a synthetic dataset
as a baseline comparison. We then compare the proposed
algorithm with an IIR filter for LFP removal, NEO in spike
emphasising, and different thresholdingmethods using a real
dataset to demonstrate the suitability of the proposed algo-
rithm in practice. The improvement is noticeable. A test
on varying noise levels has also been carried on to show the
adaptiveness of this algorithm.
3.1.1. Evaluation Metrics
The typical evaluationmetrics of spike detection performance
are detection accuracy (Acc), sensitivity (Sens) and false de-
tection rate (FDR), which are calculated according to the
equations below:

Sens = TP
TP + FN

(15)
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FDR = FP
TP + FP

(16)

Acc = TP
TP + FP + FN

(17)

where TP stands for true positive, successfully detected spikes.
FP stands for false positive, the locations where the signal is
wrongly detected as spikes. FN stands for false negative, the
undetected spikes.

A high sensitivity means most of the spikes are detected
while low FDR means only a few of the detected spikes are
incorrect. The accuracy provides an overall measure that
represents the trade-off between sensitivity and FDR. For ap-
plications that further process the data after spike detection,
e.g. spike sorting, a high sensitivity is desirable (at the ex-
pense of FDR) because, any incorrectly detected spikes can
be removed after subsequent classification. For a low sensi-
tivity however, undetected spikes have no way to be recov-
ered.
3.1.2. Testing with synthetic data

Four types of signal named "Easy1", "Easy2", "Diffi-
cult1", "Difficult2" with noise levels 0.05, 0.1, 0.15, 0.2 (16
test signals in total) have been used for performance test-
ing. The results of the floating and fixed-point implemen-
tation are given in Table. 1 (Only Easy1 and Difficult1 are
included for conciseness). We have also compared our re-
sults with [42, 54, 43, 18]. Spike detection performances are
similar (Acc ranging from 90% to 99%). We provide results
for one of these datasets in Table. 1 (other datasets excluded
for conciseness). We however calculate the average scores
for each of the different SNR level across all four dataset,
with results shown in Fig.9. This clearly shows how the pro-
posed algorithm is robust to different noise levels, with only
a minor degradation in performance with increasing noise
levels (for this synthetic data). In [42], the scores could
overfit to some noise levels and behave worse in other cases
(especially in 0.2 noise level). The performance variance is
much smaller in our implementation. From the table, one
can notice that the average performance is similar between
the float-point implementation. and the detection method
in [42]. For the fixed-point implementation, the sensitivity
only degrades for 1% and the FDR is increased for 5%. Such
minor scarification gives us the power reduction of 2/3 as it
will be demonstrated in later section.
3.1.3. Mean Subtraction vs. High-Pass IIR Filters
It has been shown that in [41, 36, 5], causal IIR filters will
cause phase distortion, i.e., the phase response of the IIR
filter is nonlinear in frequency, which can change the shape
of the spikes and reduce the detection accuracy.

However, with the mean subtraction, the phase response
of the corresponding filter is approximately linear. A com-
parison between the phase response of the proposed mean
subtraction filter and a 2-pole causal Butterworth filter used
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Figure 9: A comparison of different algorithms on four noise levels
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Figure 10: Phase response of the proposed mean subtraction filter
and a second order Butterworth filter, where the phase response of
the proposed filter has significantly better linearity than that of the
Butterworth filter.

in [36] is shown in Fig. 10. From the filtered results in Fig. 11,
it can be observed that by using the proposed filter, the spike
shape is preserved in addition to the peak value, which is
highly beneficial to spike detection. A comparison of the
detection performance is shown in Table 2.

The spike detection performance using each filter type
is given in Table 2. Here it can be observed that the pro-
posed LFP removal technique can outperform an IIR filter
implementation, in particular the FDR,which is improved by
some 6%. These results include the averaged performance
across all 65 channels, and also with the 10 ‘worst’ channels
excluded. The 10 channels that are excluded contain less
detectable single unit activities and as such contain mainly
background (i.e. multi-unit) activity, therefore having a sig-
nificantly reduced SNR (below 11 dB) and detection accu-
racy (below 50%).
3.1.4. SNR enhancement
The proposed SNR enhancement function (ASO) is com-
pared to a commonly used energy operator (NEO) to assess
its suitability as a pre-processing step for spike detection. A
sample spike recording is shown in Fig. 12 including both the
ASO and NEO processed signals. It can be observed that the
ASO function produces higher peak values in comparison to
the NEO. The overall performance metrics are provided in
Table 3

It can be observed that a higher sensitivity can be achieved
using ASO, however this is at the cost of also a higher FDR.
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Table 1
Performance of spike detection on synthetic dataset

Dataset Easy1 Difficult1 Average

Noise Level 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 -

Fixed-point
Implementation

Acc 0.87 0.86 0.82 0.87 0.81 0.86 0.92 0.92 0.87
Sens 0.93 0.94 0.89 0.91 0.93 0.92 0.93 0.95 0.92
FDR 0.07 0.09 0.09 0.05 0.14 0.08 0.02 0.03 0.06

Float-point
Implementation

Acc 0.90 0.93 0.89 0.87 0.92 0.91 0.93 0.94 0.92
Sens 0.93 0.93 0.89 0.86 0.93 0.93 0.93 0.95 0.93
FDR 0.03 0.00 0.00 0.01 0.01 0.03 0.00 0.01 0.01

Offline spike detection
(reported in [42]
for comparison)

Acc 0.94 0.95 0.95 0.90 0.82 0.92 0.91 0.77 0.91
Sens 0.95 0.96 0.95 0.90 0.95 0.93 0.92 0.77 0.93
FDR 0.02 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.01
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Figure 11: Effect of two different filter types on a spike waveform.
This illustrates that the proposed filter does not attenuate the spike
peak or distort the spike shape.

Table 2
Performance comparison between mean subtraction and 2nd-
order Butterworth IIR filters for LFP removal

All (65)
Channels

Excluding 10 channels
with very low SNR

Butterworth
Filter

Acc 0.56 0.66
Sens 0.81 0.9
FDR 0.34 0.28

Proposed
Filter

Acc 0.69 0.74
Sens 0.82 0.9
FDR 0.18 0.16

The two operators are then tested across different noise
levels, with results shown in Fig. 13. This shows the spike
detection performance for added Gaussian noise and back-
ground activity for SNRs between 5 dB and 20 dB. From
those plots, it can be observed that the ASO operation con-
sistently outperforms the NEO as noise is added.
3.1.5. Noise estimation
As described previously a basic ‘noise estimation’ is used to
define the adaptive threshold level. This is based on a run-
ning average, excluding any samples referring to detecting
spikes and background activity. This is achieved by apply-
ing two specific techniques: spike exclusion (SE) and sub-
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Figure 12: Comparison between the ASO and NEO pre-processor
functions for SNR enhancement.

Table 3
Performance comparison of the using NEO and ASO for SNR
enhancement

All (65)
channels

Excluding 10 channels
with very low SNR

NEO
Acc 0.68 0.73
Sens 0.75 0.83
FDR 0.16 0.14

ASO
Acc 0.69 0.74
Sens 0.82 0.9
FDR 0.18 0.16

threshold exclusion (STE).
This process is illustrated in Fig. 14 demonstrating the

impact of applying these estimation enhancement techniques.
The upper plot here shows the SNR enhanced signal (after
ASO pre-processing) and samples that are excluded from
the noise estimation by SE and STE. The lower plot shows
the noise estimation based alone on ASO pre-processed sig-
nal, and with SE and both SE/STE techniques. The detected
spike trains are shown below the plot alongside the ground
truth data. This qualitatively demonstrates the effectiveness
of the noise estimation algorithm as implemented. It is clearly
observed that without use of any of the exclusion techniques
(SE/STE) the spike detection performance is poor.
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Figure 13: Spike detection performance (Sens, Acc and FDR) of
the proposed algorithm using either ASO or NEO functions for input
signals with added noise (Gaussian or background activity). Shown
are: (top): Performance using ASO and NEO for SNR enhancement
for background noise added at a SNR in between 5 dB and 20 dB.
a) Acc; b) FDR; c) Sens. (Bottom): Performance using ASO and
NEO functions for SNR enhancement for Gaussian noise added at a
SNR in between 5 dB and 20 dB d) Acc; e) FDR; f) Sens.

Table 4
Spike detection performance using spike exclusion techniques
(SE and STE)

All (65)
Channels

Excluding 10 channels
with very low SNR

SE
Acc 0.65 0.7
Sens 0.78 0.87
FDR 0.2 0.18

SE&ST
Acc 0.69 0.74
Sens 0.82 0.9
FDR 0.18 0.16

The overall performance evaluation is provided in Ta-
ble 4. This again takes the average results across all 65 chan-
nels, and across 55 channels – excluding the noisy data (i.e.
10 channels specifically that not observe any single unit ac-
tivity). It can be observed that all the performance metrics
are improved by applying both SE and STE techniques: 4%
for Acc, 2% for FDR, and 4% for Sens on average. This
was subsequently tested with added background noise (5 dB
SNR), revealing that the sensitivity can remain at around
80% if both SE and STE are enabled, otherwise falling to
60% (using SE alone). Both SE and STE are therefore adopted.

0

1

2

3

4

5

0

1

2

3

4

5

6

7

Threshold with spike exclusion
Threshold with spike and sub-threshold exclusion

ASO processed signal
Spike exclusion
Spike and sub-threshold exclusion 

b)

A
m

pl
itu

de
 (m

V
 )

2
2

A
m

pl
itu

de
 (m

V
 )

2
2

ASO processed signal

Spike
exclusion

Spike
exclusion

Sub-
thresholding

c)

Ground
Truth

SE
Results

SE&STE
Results

0 0.01 0.02 0.03 0.04 0.05 0.1
Time (s)

0.06 0.07 0.08 0.09

c)

a)

Figure 14: Noise estimation process using the SNR enhanced sig-
nal. Shown are: (a) SNR enhanced signal (using ASO function)
with excluded samples annotated (i.e. for noise estimation); (b)
noise level estimation based on averaging samples corresponding to
noise (using different techniques); (c) spike train of detected spikes
(using different techniques) including ground truth.

3.1.6. Adaptivity
A key aim of this work has been to implement an adaptive
threshold. This has mainly been for purposes of avoiding the
need for calibration of each individual channel, but can also
adapt to changing signal dynamics (e.g. a changing SNR due
to fading or new units appearing over time).

The adaptivity to channel specific dynamics has been
evaluated by assessing the average performance across the
65 channels (without any calibration or training). Testing
for transient changes in SNR is however highly dependent on
the experimental method (e.g. electrode type, implantation
technique, etc). We have therefore constructed a synthetic
dataset that varies the noise level (SNR) to visually observe
the adaptation (i.e. qualitatively).

Specifically, we have constructed two test signals that
vary the noise level across a 4 s segment. The first test sig-
nal adds an increasing Gaussian noise level (SNR decreases
from 5dB to -5 dB) whereas the second test signal adds an
increasing background activity level (SNR decreases from
20 dB to 5 dB). The results are shown in Figs. 15 and 16.

These tests reveal that adaptive threshold provides some
robustness to signals of changing dynamics (e.g. SNR). For
the test with added Gaussian noise, the threshold can be seen
to gradually increase, to balance a reducing sensitivity with
increasing FDR. For the worst case tested (-5 dB SNR), the
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Figure 15: Spike detection on signal with varying level of added
Gaussian noise (SNR decreasing from 5 dB to -5 dB). Shown are: a)
The original recording with MUA noise and spike locations; b) ASO
emphasised signal, the threshold and detection results.
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Figure 16: Spike detection on signal with varying level of added
background activity (SNR decreasing from 20 dB to 5 dB). Shown
are: a) The original recording with added increasing noise level; b)
ASO emphasised signal, the threshold and detection results.

sensitivity falls to around 65% with an FDR of below 15%.
For the test with added background activity, the threshold
cannot be observed to changemuch. Consequently, although
the sensitivity remains high at around 88%, the FDR in-
creases to about 25%. This is because the background activ-
ity starts being detected as spikes.

These results also demonstrate that the empirically deter-

Table 5
Comparison in spike detection performance between the float-
ing and fixed point implementations

All (65)
Channels

Excluding 10 channels
with very low SNR

Fixed
Point

Acc 0.67 0.7
Sens 0.8 0.89
FDR 0.2 0.19

Float
Point

Acc 0.69 0.74
Sens 0.82 0.9
FDR 0.18 0.16

mined design parameters do not overfit at certain noise lev-
els, and can generalise well to different noise environments,
provided the noise remains at realistic levels.
3.1.7. Fixed-point Representation
The algorithm has been translated to a fixed-point represen-
tation to improve efficiency of hardware implementation (com-
plexity, power). There is however a trade-off with precision
in the underlying state variables. This sub-section therefore
evaluates the impact of fixed-point representation on spike
detection performance, with results provided in Table 5.

This comparison reveals that the degradation in perfor-
mance due to the fixed-point implementation is relatively
minor, with only a 1% to 4%̇ reduction in each metric. These
results also show that the ASOfixed point implementation as
described in Eq. 8 can still effectively enhance the SNR (i.e.
of spikes over noise) as was originally intended. These re-
sults include all features that have been previously described
(e.g. using 16-bit integers for all variables, reducing multi-
plication/division operations to logical bit shifts, etc).
3.2. Hardware Evaluation
To demonstrate the suitability of the proposed algorithm for
hardware implementation, we have used an embedded target
(microcontroller platform) to measure power consumption,
run time and resource utilisation (memory requirements).
3.2.1. Power Consumption and Run-time
These are two key parameters in assessing the efficiency of
hardware implementation in an implantable application, where
both hardware resource and energy budget and highly con-
strained. The run-time provides a direct measure of compu-
tational complexity, which can be used to estimate the total
capacity of a given hardware target, e.g. how many channels
can be processed on a single microcontroller.

To improve precision in both energy and timing mea-
surements (taken using an oscilloscope), we repeat each func-
tion 500 times, such that an average value for a single oper-
ation can be determined. All tests are initially done on the
K64F platform (ARM Cortex M4 microcontroller) with the
‘final’ optimised algorithm then compared to an equivalent
implementation on the KL05Z platform (ARM Cortex M0).

• NEO vs. ASO: This is first tested for a floating point
implementation - the average power consumption for
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Table 6
Average power, energy per operation and run-time of each function for floating and fixed
point implementations

Operation Floating point, K64F Fixed point, K64F Fixed point, KL05Z
Power Energy Time Power Energy Time Power Energy Time
(mW) (pJ) (ns) (mW) (pJ) (ns) (mW) (pJ) (ns)

Subtract mean 3.20 509 160 1.17 187 160 0.15 87 578

ASO 0.14 8 60 0.14 14 100 0.15 9 60

Threshold
Wait for update 0 0 54 0 0 43 0 0 124

Accumulate mean 0.94 134 143 0.14 19 133 0.04 12 343

Update 1.62 281 174 0.94 147 157 0.21 113 546

Recalculate mean - - - 1.20 759 612 0.08 85 1000

Average/total amount per sample 1.90 519 275 0.75 204 306 0.13 97 769

these functions are 0.87mWand 0.14mWrespectively
(operating at 7 kHz). The run-time for each opera-
tion is 60 ns. This corresponds to an energy per SNR
enhancement operation of 52.2 pJ and 8.4 pJ. As ex-
pected theASO implementation consumes significantly
less power.

• Floating point vs. fixed point: The algorithm is then
tested using both a floating and fixed-point implemen-
tation. The average power, energy per operation and
run-times for each implementation are given in Ta-
ble 6. One key observation is that the power require-
ments for ASO operation does not reduce for the fixed
point implementation, in fact the run-time increases.
This is due to the availability of a hardware multipli-
cation in the ARM Cortex-M4. The average power
consumption of the floating-point implementation is
1.9mW (519pJ per sample), compared to the fixed-
point implementation consuming only 0.75mW(204pJ
per sample). The run-time is slightly increased in go-
ing from floating point to fixed point implementation
from 275 ns to 304 ns (per sample). This would al-
low for over 450 channels to be implementable using
a single microcontroller with 7 kHz sampling rate.

• K64F (ARM Cortex M4) vs. KL05Z (ARM Cortex
M0+): The same algorithm is then implemented in
KL05Z. The average power, energy per operation and
run-times for each operations is also given in Table 6.
The power is highly reduced with KL05Z since the
clock frequency is decreased from 120MHz to 48MHz.
The average power is measured to be 0.13mW, which
is 17% that of the K64F fixed point implementation
and 7% the floating point implementation on K64F.
The run-time however increases to 768 ns. This how-
ever still can support nearly 200 channels sampled at
7 kHz.

3.2.2. Memory Requirements
In total there are 27 variables declared that include the 16-
sample buffer (for mean subtraction). The zero initialised
data is therefore 27× 2 bytes = 54 bytes and 27× 4 bytes = 108 bytes
respectively for KL05Z and K64F, with the program mem-
ory requiring approximately 3 kb flash. It should be noted
that in our implementation the threshold that is calculated
does not require a buffer, thus saving the need for a further
63 variables.
3.2.3. Real-time Implementation
A transient response demonstrating the operation of the hard-
ware implementation is shown in the oscilloscope screenshot
in Fig. 17. The system here is tested with a broadband input
signal (including both LFP and extracellular action potential
recording) with an increasing noise level (added Gaussian
noise with SNR decreasing from 5 dB to -5 dB), then with a
step change (to no added noise). This demonstrates the ef-
fectiveness and ability of the algorithm to adapt to signals
with changing SNR.
3.3. Comparison with the State-of-the-Art
Although there exists a significant amount of previous work
on spike detection [29, 49, 38], the vast majority focuses on
computational methods for offline analysis. Although there
are several examples in the literature of hardware implemen-
tations [55, 25, 52, 28, 16, 51, 30, 13], it is challenging to as-
semble a fair and comprehensive comparison. This is in part
due to the diverse hardware methods available (e.g. ASIC
implementation, embedded processor, reconfigurable logic,
computational emulation). In this section we therefore select
a narrow representative sample to include some qualitative
comparison.
3.3.1. Computational Methods
Five specific algorithms from the literature have been se-
lected for comparisonwith the presented algorithm, provided
in Table 7. These methods achieve a slightly higher sensitiv-
ity to the method described herein (compared to fixed point
implementation), but with a significantly higher computa-
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Figure 17: Real-time implementation of the adaptive spike detection algorithm on the KL05Z microcontroller platform. Shown are: the
original input signal (green trace), SNR enhanced signal (i.e. pre-processed using ASO function) (blue trace) and adaptive threshold (red
trace).

Table 7
Comparison with computational methods for spike detection

Algorithm data Sens Low
complexity

Our work ASO Real data 89% 3

[27] TM Real data 90.50% 7

w/o LPF
[28] NEO Synthetic >90% 3

[34] SNEO Synthetic >90% 3

[45] SNEO Synthetic 90% 3

[17] Sigma&Delta Synthetic 99% 3

[55] PCA Synthetic 99% 7

tional complexity. For example, not to mention the com-
plexity of PCA decomposition in [55], which required offline
training and real-time projection, the complexity of template
matching [27] is at least O(MN), where M stands for the
template length, and N is the signal length. For NEO [28]
and SNEO [45, 34], this is reported to have a complexity of
O(N), which comparable to the proposed method, however,
they are using synthetic data and the LFP are not considered
in some cases.
3.3.2. Hardware methods
The hardware implementation is compared with four differ-
ent works that target embedded processors [3, 16] and an in-
tegrated circuit implementation [25, 53], shown in Table 8,

4. Conclusion
This work has presented a novel spike detection algorithm
and hardware realisation intended for autonomous, calibration-
free high channel count systems. Key features of the algo-
rithm include:

• It includes a mean subtraction filter that can minimise
the phase distortion whilst removing the LFP.

Table 8
Comparison with hardware methods for spike detection

Power Hardware Pre- Adaptive
/mW peocessing Thr

Our work 0.12 KL05Z 3 3

[3] 0.255 KL25Z 7 7

[16] >41.9 MSP430F 3 7

[47] 16.5 MSP430 3 3

[25] 0.11 CMOS 3 3

[53] 5e−5 CMOS 3 3

• A novel pre-processor to enhance SNR with the low-
est reported computational complexity among all pre-
processo

• A novel and robust thresholding schema which can re-
duce the effect of the spikes and multiunit activities on
the stability of the threshold.

The hardware implementation of the algorithm achieved
the following:

• Power consumption is amongst the lowest reported (130�W
average) for a microcontroller implementation includ-
ing pre-filtering, SNR enhancement, adaptive thresh-
old, and spike detection.

• From a hardware portability view, to prolong the bat-
tery life, the power consumption is expected to be scale
down by 1-3 orders of magnitude (depending on tech-
nology) if translating to FPGA or ASIC implementa-
tion.

• Can be implemented using only fixed point arithmetic
with no requirement for any multiplication operations.

• Requires a programmemory of 3 kB and under 0.1 kB
RAM.
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• Low computational complexity allows for over 100
channels to be implemented on a single ARM Cortex-
M0+ device.

With these outcomes, the proposed adaptive neural spike
detection algorithm is suitable for multichannel implants of
BMI applications, and the bit rate is excepted to be reduced
for more than 20 times.
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