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Not-so-adiabatic quantum computation for the shortest vector problem
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Since quantum computers are known to break the vast majority of currently used cryptographic protocols, a
variety of new protocols are being developed that are conjectured, but not proved, to be safe against quantum
attacks. Among the most promising is lattice-based cryptography, where security relies upon problems like the
shortest vector problem. We analyze the potential of adiabatic quantum computation for attacks on lattice-based
cryptography, and give numerical evidence that even outside the adiabatic regime such methods can facilitate the
solution of the shortest vector and similar problems.
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I. INTRODUCTION

The advent of quantum computers heralds an age of new
computational possibilities. Two paradigms of quantum com-
puting are gate model and adiabatic quantum computation
(AQC): the gate model closely resembles current computing
architecture, replacing bits with qubits and retaining con-
trol over the smallest building-blocks of the system, and
in AQC the solution for the problem to be solved is en-
coded into the ground state of a Hamiltonian [1,2]. Typi-
cally one cannot prepare this ground state directly, other-
wise the problem would be straightforward to solve. One
therefore begins with a physical system with a Hamilto-
nian whose ground state one knows how to prepare. The
adiabatic theorem then guarantees that a sufficiently slow
change from this initial Hamiltonian to the problem Hamil-
tonian HP lets the system evolve into the ground state of the
latter.

Both paradigms have been demonstrated to be equivalent
[3], though there is not a general way of mapping from
one paradigm to the other. The most impactful quantum
algorithm discovered thus far is that of Shor for integer fac-
torization and discrete logarithm computation [4]. Quantum
computing is expected to have far reaching consequences,
influencing materials science [5], development of medicines
[6], and many other disciplines. Crucially for information
security though, large-scale quantum computers—through
application of Shor’s algorithm—will make obsolete most
currently operational cryptosystems by solving the underly-
ing mathematical problems that are intractable on classical
hardware.
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A. Cryptography

When two parties (Alice and Bob) want to communicate
securely over an insecure channel they must use public key
cryptography. In this case Alice has a public/private key
pair. Anyone can encrypt messages using the public key, but
only Alice can decrypt these messages as only she knows
the private key. This means Bob can communicate securely
without having to already share a secret with Alice. Generally
speaking, the public key is derived from the secret key in a
manner which is not easily reversible. Public key cryptogra-
phy is not efficient, and so is mostly used for exchanging an
initial secret securely, from which point onwards Alice and
Bob can use more efficient private key cryptography, which is
not relevant to this paper.

Some of today’s most prevalent public key cryptosystems
are RSA, Diffie-Hellman key exchange, and ElGamal, the
security of which rely on the hardness of integer factorization
and discrete logarithm computation [7–9]. These are public
key cryptosystems. Reverse engineering the secret key from
only the public key and other public information amounts to
cracking the cryptosystem, and this is what Shor’s algorithm
allows us to do for the schemes listed above.

These developments have necessitated the creation of en-
tire new families of cryptosystems and the corresponding field
of post-quantum cryptography [9]. The security of each family
is based on the hardness of one of a handful of “contender
problems.” One of these families is lattice-based cryptogra-
phy (or LBC). LBC is the most promising area, accounting
for almost half of the remaining candidate systems in the
NIST Post-Quantum Cryptography Standardization process.
Lattice-based constructions derive their security from the
shortest vector problem (or SVP; more in Sec. II) and other
closely related problems [10]. At present these problems are
only conjectured hard; i.e., there is no proof that quantum
computers cannot solve them in polynomial time (BQP),
there is only an absence of algorithms that can do so either
provably or heuristically. It is therefore essential to analyze
the security of post-quantum cryptosystems, so as to either
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verify or disprove their resilience against attacks that may be
aided by quantum logical elements.

B. Quantum computing in lattice-based cryptography

So far, most efforts towards quantum attacks on crypto-
graphic protocols have concentrated on gate model quantum
algorithms and their applications as subroutines to preexisting
algorithms [11,12] which predominantly fall under either
“sieving” or “enumeration.” Sieving takes a large basket of
vectors and iteratively combines them to obtain smaller and
smaller vectors, whereas enumeration evaluates all vectors
in a ball around the origin. Central to these gate model
algorithms is the quantum Fourier transform (QFT). The
most popular approach has been the use of Grover search
to quadratically speed up search of unsorted lists in these
algorithms. In 2015, however, it was observed that Grover
search could not be applied to enumeration [11], but recently
a quantum tree algorithm [13] was utilized to achieve square-
root speed-up of lattice enumeration with discrete pruning
[14]. QFT is also a key component of quantum hidden sub-
group algorithms which have also been applied to the shortest
vector problem on ideal lattices (these are structured lattices
embedded in algebraic number fields) [15,16].

Solving this lattice problem is in essence backwards engi-
neering a private key from the public key and other public
information (i.e., reversing the trapdoor process previously
mentioned), hence compromising any cryptosystems based on
the hardness of this problem (and other related problems).
The learning-with-errors cryptosystem [17], and many LBC
trapdoor functions [18], for example, can be shown to be at
least as hard as solving various lattice problems. The concept
behind learning with errors is the addition of Gaussian noise to
a lattice equation, which is otherwise easy to solve via systems
of linear equations. An important innovation was the introduc-
tion of the smoothing parameter [19], which describes how
much noise can be added before the structure of the lattice is
lost and the problem becomes meaningless. This technique of
using noise to obfuscate solutions could make LBC a fruitful
field in which to apply optimization algorithms such as those
enabled by AQC. At present the lattice community is still a
long way from breaking these cryptosystems, as they tend to
use lattices in hundreds or even thousands of dimensions, and
the best algorithms at the time of writing scale exponentially
in the dimension parameter.

The appeal of focusing on gate-model quantum algorithms
is the rigorous complexity analyses that can be performed
to give theoretical scaling. So far none of these gate-model
algorithms threaten LBC. There has not yet been any work
done on adiabatic quantum algorithms for LBC. Even though
time complexity is generally difficult to estimate for this class
of algorithms, they seem particularly suitable for attacks on
LBC for two reasons: first, because lattice problems can be
formulated as optimization problems, as we will demonstrate
for a quantum setting; second, while a major drawback of
AQC is the prohibitive time cost of achieving adiabaticity, this
may not be a problem here as, up to a threshold, approximate
solutions are also admissible. This is significant as it means
it is not necessary to achieve adiabaticity, thereby potentially
avoiding the major time constraints associated with AQC. In

this paper, we therefore employ AQC-style algorithms, but
with subadiabatic time parameters.

In this work we demonstrate a mapping from the Euclidean
norm of a vector to the energy of an ultracooled bosonic
gas in a potential trap. To do so we use a generalized Bose-
Hubbard Hamiltonian to describe the energy of the quantum
system. We then present an AQC algorithm for solving one
of the central lattice problems and analyze its performance on
several instances of low dimensional lattices.

C. Structure

Section II introduces lattices and explains the shortest
vector problem for which the algorithm is designed. It then
covers the necessities regarding adiabatic quantum computing
(AQC). Section III outlines the Hamiltonian we will use,
and then we build the mapping from lattice vector norms to
system Hamiltonian, ultimately combining this into one SVP
algorithm. In Section IV we analyze both analytical scaling
and simulation results.

II. PRELIMINARIES

Vectors are denoted by lowercase bold letters, matrices
by upper case bold letters, and Hamiltonians by H . The
length of a vector is defined in terms of a norm. For a vec-
tor x = (x1, . . . , xN )∈RN we write ‖x‖p = (xp

1 + · · · + xp
N )

1
p .

Any value of p � 1 can be taken, but common choices are
p = 2 and the infinity norm with ‖x‖∞ = limp→∞ ‖x‖p =
maxi{‖xi‖}, i.e., the infinity norm l∞. For any choice of p
there are two shortest vectors (as lattices are symmetric about
the origin). One vector is the negative of the other, and so we
refer to “the” and not “a” shortest vector for simplicity. The
length of this vector is denoted λ1(L).

When talking about approximation factors, we say γ =
poly(N ) if γ grows asymptotically as O(Nk ) for some con-
stant k, and γ = exp(N ) if γ grows asymptotically as O(kN )
for some constant k. Similarly, we say an algorithm takes
polynomial time if it requires poly(N ) operations to complete,
and exponential time if it requires exp(N ) polynomial time
operations to complete.

The dot product of two N-dimensional vectors is the
canonical inner product on Euclidean space given by x · y =
x1y1 + · · · + xN yN .

A. Lattices

Lattices simply put are a repeating pattern of points in
space. In two dimensions, this looks similar to Fig. 1, which
shows that the same lattice can be described by multiple
different bases (red arrows and green arrows are just two
different bases; there are infinitely many different bases for
any given lattice, in fact). The volume of a lattice is equal
to the magnitude of the determinant of the basis | det(L)|,
and represents the amount of ambient space inside its fun-
damental parallelepiped [10]. All bases for the same lattice
must therefore have the same determinant, up to sign, but
some contain much longer vectors than others, as can be seen
by comparing the lengths of the red arrows with the lengths
of the green arrows in Fig. 1. A lattice is described by one
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FIG. 1. A good basis (green) has short and nearly orthogonal
vectors while a bad basis (red) is the opposite. The black arrows
represent the x, y axes in R2, and the black dots an arbitrary 2D
lattice.

basis vector for each dimension, and linear combinations of
these basis vectors span the entire lattice; in Fig. 1 both red
and green bases contain two linearly independent vectors.
Mathematically, a lattice is a discrete additive subgroup of Rn.

Definition 1. Lattice L is the set of integer combinations of
k basis vectors bi, 1 � i � k:

L =
{

k∑
i=1

xibi

}
= {x · B : x∈Zk},

where the bi are linearly independent and the lattice is em-
bedded in the ambient space RN for some N � k. The lattice
is said to be full rank if N = k. Cryptographically, full rank
lattices are the most relevant, and also the hardest for a
particular dimension ambient space. Because of this, for the
rest of this paper we will deal only with full rank integer
lattices, i.e., those lattices for which the basis vectors have
integer coordinates bi∈ZN . Throughout the rest of the paper
we will treat B as a row basis,

B =

⎡
⎢⎣

b1
...

bN

⎤
⎥⎦. (1)

There is no standardized convention in the cryptographic
community (column bases vs row bases) and this choice is
generally down to the author’s preference. These lattices are
in fact (a subset of) Euclidean lattices.

The central problem that we set out to address is the
shortest vector problem (SVP) which is simply the task of
finding the shortest nonzero lattice vector.

Definition 2. Shortest vector problem: Let λ1(L) denote
the length of the shortest nonzero vector in a lattice L. Given a
basis B = {b1, . . . , bN } describing L, find the shortest nonzero
vector such that

λ1(L) = min{‖v‖ : v∈L\{0}}.
Given a lattice L determined by a basis B, every vector v in

the lattice can be described as a linear combination of the basis
vectors v = x · B as in Definition 1. We will call this linear

combination x the coefficient vector and denote the coefficient
vector that achieves the shortest vector xmin so that

‖xmin · B‖ = λ1(L). (2)

In the following we will denote the coordinates of a coefficient
vector x as xi and the coordinates of xmin as xi

min to avoid
confusion of subscripts.

A variant of SVP is γ -approximate SVP.
Definition 3. SVPγ : Given a basis B = {b1, . . . , bN } de-

scribing a lattice L, find v such that

‖v‖ � γ · λ1(L),

where γ = poly(N ).
Cracking this problem is also conjectured hard, and solving

it would be considered fatal for LBC. It is this problem that
this work targets, because the quantum algorithm from Sec. III
returns short vectors in the lattice with varying probabilities,
as discussed in Sec. IV. As such, even if a quantum algorithm
for finding the shortest vector is not feasible, finding some-
what short vectors may scale significantly better.

The format of the bases we work with to tackle the shortest
vector problem have an important bearing on the speed with
which we can accomplish the task. With that in mind we will
outline the forms of basis that we utilize in this work.

A note on lattice bases. In LBC there is much talk of
“good” bases and “bad” bases. It is important to distinguish
the two and discuss their significance in solving the central
problems and compromising lattice-based cryptosystems. A
“good” basis is composed of short vectors which are approx-
imately orthogonal to each other. The conditions of shortness
and orthogonality are essentially the same, but they mean that
good bases already contain short vectors. In a lattice-based
cryptosystem one would generate a good basis as a private
key (for example, in NTRU [20] and GGH [21], but not in
LWE [17]), and scramble it (making it “worse” and the vectors
less orthogonal) to create a bad basis, which would serve as a
public key. The instances that are of interest to us are those of
bad bases, from which we hope to derive short vectors.

Two types of bases that are relevant to us are Hermite
normal form bases, which are useful in that they are upper
triangular and allow us to perform some useful manipulation
later in the paper, and the Lenstra-Lenstra-Lovász (LLL) -
reduced bases, which are used as a benchmark and a starting
point for many lattice algorithms.

Definition 4. Hermite normal form (HNF): For any integer
lattice row basis B of rank N there exists a unique upper
triangular basis H which satisfies the following conditions:

(1) Hi j = 0 for i > j.
(2) The first nonzero term from the left (the pivot) is

strictly to the right of the first nonzero term of the row above,
and is positive.

(3) The elements beneath the pivot are zero, and the
elements above the pivot are reduced modulo the pivot.

HNF bases form a good starting point for some of the work
in Appendix B. They are generally quite bad bases but have
some nice properties which we will use.

LLL-reduced bases [22] are better. The LLL algorithm
runs in polynomial time, reducing bad bases to better ones;
it outputs vectors which are exponentially larger than those
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b1 bN 0...

FIG. 2. The energy of the system of particles trapped in a po-
tential landscape depicted above is proportional to the square of the
Euclidean norm of the vector v = (3, . . . , 1, 2) · B′.

which would be considered solutions to SVPγ , but is used as
a benchmark in LBC cryptanalysis.

Definition 5. LLL-reduced basis: Given a basis B =
{b0, . . . , bN }, define its Gram-Schmidt orthogonal basis B∗ =
{b∗

0, . . . , b∗
N } and the Gram-Schmidt coefficients

μi, j = 〈bi, b∗
j 〉

〈b∗
j , b∗

j 〉
.

Then the basis B is LLL-reduced if there exists δ∈(0.25, 1]
such that

(1) Size reduction: For 1 � j < i � N , |μi, j | � 0.5.
(2) Lovász condition: For k = 1, . . . , N , δ‖b∗

k−1‖2 �
‖b∗

k‖2 + μ2
k,k−1‖b∗

k−1‖2.
LLL-reduced bases are not unique: there are potentially

many different bases satisfying these conditions for any given
lattice. In this respect they are different from HNF bases,
which are unique for each lattice.

Definition 6. The Gram matrix G of a row basis B =
{b1, . . . , bN } is given by

G = B · BT .

The Gram matrix will be enough to define HP entirely, as
Gi j is the dot product bi · b j and so will be used regularly in
the following work.

B. Hamiltonian evolution

The model system that we will use in the following for
AQC algorithms is based on the Bose-Hubbard Hamiltonian
describing bosonic particles in potential landscapes with suf-
ficiently well pronounced minima that can be identified as
sites [23–26], and in practice these sites often form a periodic
structure, as depicted in Fig. 2.

The explicit Hamiltonian

Ht = f (t )H0 + g(t )(HI + HS ) (3)

is composed of a tunneling term H0, an interaction term HI ,
and an onsite-energy term HS , where S represents “site.” Here
the sum of the interaction and onsite Hamiltonians give the
problem Hamiltonian, HP = HI + HS . The annihilation (ai),
and creation (a†

i ) operators

ai |ni〉 = √
ni |ni − 1〉 ,

a†
i |ni〉 =

√
ni + 1 |ni + 1〉 ,

a†
i ai = n̂i,

(4)

decrease or increase the particle number at site i by 1. These
operators are used to define the tunneling term

H0 = −
∑

i

(aia
†
i+1 + ai+1a†

i ), (5)

where index i runs over the sites in the potential landscape. It
will later become clear that the number of sites corresponds
directly to the dimension of the lattice in which a short vector
is sought.

The interaction Hamiltonian

HI =
∑

i

viin̂i(n̂i − 1) +
∑
i �= j

vi j n̂in̂ j (6)

and onsite Hamiltonian

HS =
∑

i

μin̂i (7)

together define the problem Hamiltonian, and the interaction
constants vi j and onsite energies μi will be determined by the
underlying Euclidean lattice. In particular, it will be essential
to consider not only onsite interactions

∑
i viin̂i(n̂i − 1) and

interactions between neighboring sites but also long-range
interactions.

With the choice of f (0) = 1 and g(0) = 0, the system
Hamiltonian contains initially only the tunneling term. It has
comparatively simple eigenstates, and the system can thus
be initialized in its ground state. As soon as the values of
f (t ), g(t ) differ from their initial values, the system state will
start to evolve in time, but the system will remain in the
instantaneous ground state of its current Hamiltonian if the
values of f (t ), g(t ) change sufficiently slowly [27]. In general,
f , g need not be continuous, but, to achieve adiabaticity,
continuity is necessary (but not sufficient). Given the validity
of such adiabatic dynamics, the system will thus end up in the
ground state of the problem Hamiltonian HI + HS at the final
point in time with f (T ) = 0 and g(T ) = 1.

Since, besides the requirement of sufficiently slow
changes, there are no further restrictions on f (t ) and g(t ),
there is a continuum of possible sweeps. Knowledge of the
spectrum of the underlying Hamiltonian could be used to find
functions that make the adiabatic approximation particularly
good. Since, however, the AQC should be applicable to the
case in which finding this spectrum is beyond computational
capabilities, we will not assume any suitably chosen func-
tions, but simply a linear sweep

Ht =
(

1 − t

T

)
H0 + t

T
(HI + HS ) (8)

throughout the rest of this paper.

III. QUANTUM ALGORITHM

In this section we formulate the quantum SVP algorithm
and detail the mapping from vector norms to the Hamiltonian
of Eq. (3).

A. Problem Hamiltonian to l2 norm

The interaction term has an explicit distinction between
the interaction viin̂i(n̂i − 1) of particles at the same site and
the interaction vi j n̂in̂ j between particles at different sites. This
distinction is necessary because n̂i particles interact only with
the remaining n̂i − 1 particles at the same site i, whereas n̂i

particles at site i interact with all n̂ j particles at site j. On the
other hand, there is the onsite interaction term, and the onsite
energies can always be chosen such that they compensate for
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the difference between the onsite and offsite interactions, i.e.,
such that

HI + HS =
∑
i, j

ṽi j n̂in̂ j, (9)

which maps to the l2 norm of a vector in a natural fashion.
A vector v∈L\{0} can be written as a unique combination

of the basis vectors bi:

v = x1b1 + · · · + xN bN ,

v = x · B,
(10)

remembering that B is a row basis for L, where bi are the rows.
Expanding the square of the Euclidean norm of this vector
term by term, we have

‖v‖2 = (x1B11 + · · · + xN B1N )2

+ · · ·
+ (x1BN1 + · · · + xN BNN )2. (11)

This can be expressed as

‖v‖2 = (
x2

1b1 · b1 + . . . + x2
N bN · bN

)
+ 2(x1x2b1 · b2 + · · · + xN−1xN bN−1 · bN ). (12)

Referring to (13), this form neatly fits that of the problem
Hamiltonian HP with the identification of ṽi j with the scalar
product bi · b j of two basis vectors, and of n̂i with the integer
expansions coefficients xi. Generally, an experimentally ob-
servable expectation value of particle number at any given site
does not need to be an integer, but at the end of the algorithm,
where the tunneling term is vanishing, any local particle
number is indeed well defined without quantum fluctuations,
so that the identification of n̂i with xi is justified.

In terms of Definition 6, the problem Hamiltonian for the
AQC thus reads

HP =
N∑
i j

Gi j n̂in̂ j, (13)

where there are N sites, with the energy of a single particle
at site i corresponding to the length of basis vector bi. All
the interaction constants Gi j are defined by the basis B, and
any non-negative number of particles can be found at any
site, subject to availability of particles. Running this algorithm
with K particles, they could theoretically occupy the sites in
any non-negative combination summing to K , resulting in a
Hilbert space of D Fock states [28], where D is

D = (K + N − 1)!

K!(N − 1)!
, (14)

and the Fock state with the lowest energy HP has a config-
uration of particles that, when interpreted as the coefficient
vector x, gives the shortest possible vector norm ‖v‖ under
the constraint that xi � 0, ∀ 1 � i � N .

See Appendix C for a worked-though example demonstrat-
ing the theory outlined up to this point.

B. Adaptation to negative coefficients

The mapping so far transforms the Euclidean norm
squared of general lattice points v = x · B into the problem

Hamiltonian energy where the xi is the number of particles
at each site n̂i. The dilemma that this presents is that this
only permits non-negative values for each of the xi. This is
not a problem, however, as we show next how to modify
the physical system such that HP generalizes so as to return
solutions that relate to negative xi values.

The solution that we propose is to add Nm extra particles
to the system (m particles for each site), and then by a
change of variables use these particles as an offset, thereby
permitting negative coefficients xi. The coefficients xi can
now take values as low as −m, which occurs if the particle
number at site i is zero. If there are m particles at site i then
xi = 0 and so on. The new particle number can be written
ni = n̂i + m. Denote this new problem Hamiltonian H ′

P. Upon
substituting this change of variables into Eq. (13) the new
problem Hamiltonian H ′

P becomes

H ′
P =

∑
i j

Gi j (n̂i + m)(n̂ j + m),

H ′
P = HP + 2m

∑
i

n̂i

⎛
⎝∑

j

Gi j

⎞
⎠ + m2

∑
i j

Gi j . (15)

To obtain the desired minimization of the problem Hamil-
tonian HP from H ′

P, the onsite energy needs to be reduced
by a function of the column sum of the interaction matrix.
The final term, being constant, can be corrected at a later
stage so as to return the correct short lattice vectors but would
not affect the energy spectrum of the Hamiltonian (other
than a constant shift) or, consequently, which configuration
of particles minimizes the system energy.

To guarantee that the shortest vector lies in the solution
set, the offset m must be larger than the infinity norm of
the coefficient vector xmin. That is, m � ‖xmin‖∞ where xmin ·
B = λ1(L).

C. Multirun quantum SVP

Above we have defined a mapping from the Euclidean
length of a vector to the energy of an ultracooled bosonic gas
trapped in a potential landscape. But choosing the parameters
for total particle number K and length of time evolution T then
performing the quantum algorithm are not enough, on their
own, to obtain the shortest vector. One run of the algorithm
described above contains K particles, but the Fock states in
the solution space may not correspond to the required linear
combination xmin.

Take for example a two-dimensional (2D) lattice basis for
which the shortest vector is determined by xmin = (3, 0); then
λ1(L) is found by

‖(3, 0) · B‖ = λ1(L). (16)

To obtain the shortest vector using the algorithm detailed
above (assuming no prior knowledge about xmin, and for sim-
plicity setting offset m = 0) one would first run with particle
number K = 1, then with K = 2, K = 3, and then possibly
repeat a few more times to be sure the shortest vector has
indeed been found. In this way, a search for the shortest vector
consists of running the algorithm many times, each time
incrementing K by 1 until confident that there are no shorter

013361-5



JOSEPH, GHIONIS, LING, AND MINTERT PHYSICAL REVIEW RESEARCH 2, 013361 (2020)

FIG. 3. Mean ‖xmin‖∞ with error bars averaged over 80 random
integer lattices in each dimension 3 � N � 45 calculated on the
Hermite normal form basis (upper distribution with red dashed
best fit) and LLL reduced bases (lowest distribution). The mean
absolute coefficient vector sum (k = |∑N

i=1 xi|)—with best fit as the
black dashed line—demonstrates that N (m + 1) particles’ scales are
enough to ensure a good chance of containing λ1 in the solution set,
and also represents the expected number of runs in multirun.

vectors to be found. The output of this algorithm, if performed
adiabatically, will be a collection of coefficient vectors x and
the resulting lattice vectors v = x · B, each of which returns
the shortest lattice vector possible for a particular choice of
K , and among these samples will be the sought after shortest
vector of length λ1(L).

The multirun algorithm ensures that with well chosen m,
Kmax, and sweep times the λ1(L) will definitely be correctly
identified. This is after performing the sweeps for particle
numbers Ki = Nm + i up to Kc = Kmax = Nm + c. The num-
ber of runs required is therefore c, which should approximate
the absolute coefficient vector sum |∑N

i=1 xi|. As can be seen
in black in Fig. 3, this grows linearly in N , meaning O(N )
repetitions would be expected in order execute multirun, with
each repetition having a different number of particles and
being carried out adiabatically.

In the next part we present a more eloquent all-in-one
algorithm where many different runs from this algorithm are
combined into one larger run. It offers an O(N ) improvement
in space but at the cost of λ1(L) no longer corresponding to
the ground state, but instead to the first excited state.

Appendix C illustrates what one of the runs would look like
for a 2D lattice with no offset (m = 0).

D. Single-run quantum SVP

The aim of this algorithm is to generalize multirun into one
overarching algorithm (single run) that encompasses all of the
repetitions executed during the multirun algorithm. Whereas
before the coefficient vectors (in 2D) (1, 0) and (1, 1) could
be obtained only from separate runs, now the aim is to include
all possible coefficient vectors in one solution space. Instead
of repeating sweeps with a different particle number K times,
only one sweep is performed, the solution space of which
includes all possible solutions from the multirun version.

What we propose is to introduce an extra site to the po-
tential landscape, corresponding to the zero vector. Label this

site N + 1. This new site should act as a “particle reservoir”
and not influence the energy of the system directly. For the
Euclidean lattice, one appends the zero vector to the basis
B, as defined in Eq. (18). Denote the particle number for the
single-run version KS . If the process is run with KS � Kmax

total particles, then the set of configurations where no particles
are in site N + 1 correspond to one run of the previous
algorithm with KS particles; the set of configurations with
one particle in site N + 1 correspond to a run of the previous
algorithm but with KS − 1 particles, and so on. It is important
to remember that the ground state is no longer the shortest
vector, but the zero vector (m particles in the first N sites
and all the remaining particles in site N + 1 returns 0 in the
lattice, which has the lowest energy of all solutions). As such,
an adiabatic evolution is no longer desirable, because this
solution is trivial: At least one excitation is required to obtain
a nonzero lattice vector. We analyze the implications of this in
the following sections.

Accordingly, the single-run problem Hamiltonian H ′
P looks

as follows:

H ′
P =

N+1∑
i j

G′
i j (n̂i + m)(n̂ j + m), (17)

where G′
i j is defined as B′B′T , for

B′ =

⎡
⎢⎢⎣

b1
...

bN

0

⎤
⎥⎥⎦. (18)

The problem Hamiltonian in Eq. (17) will be the one used
for the rest of the paper, unless otherwise stated, including all
numerical simulations.

The size of the Hilbert space DS for single-run quantum
SVP (letting KS = Kmax to make the two modes of computa-
tion directly comparable) is, either by use of the hockey-stick
identity or by direct application of Eq. (14),

DS = (KS + N )!

KS!N!
=

Kmax∑
K=0

(K + N − 1)!

K!(N − 1)!
. (19)

Having added an extra “particle reservoir” site and accord-
ingly appended 0 to the basis, the lowest energy state of the
problem Hamiltonian is the unwanted 0 state, but the energy
of the first excited state will correspond to λ1(L).

IV. RESULTS

Little is known analytically about the time scaling for
adiabatic quantum algorithms, beyond a worst case energy
gap dependence of 1/�3 [29]—with � denoting the min-
imum energy gap between ground state and second low-
est eigenstate—whereas with quantum gate algorithms neat
closed form scalings are known for a handful of algorithms,
for example Shor’s exponential speedup for integer factor-
ization and discrete logarithm computation [4] and Grover’s
quadratic speedup for searching unsorted lists [30]. For adia-
batic quantum optimization, it is not yet even known if these
algorithms run faster than classical optimization [31]. Due to
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time dependence on the minimum energy gap between E0 and
E1 it is usually found that

T = O( exp(αNβ )), (20)

though this leaves open the possibility of drastically reducing
run time subject to achieving lower values of α, β than their
classical analogues.

While it is difficult to estimate the time scaling for this
algorithm, or even for which parameter regimes this scaling
would be optimal (near adiabatic versus much faster sweeps,
for example), we can calculate the qubit space requirements
(though we do not directly use qubit-based architecture).

A. Qubit requirements

Let us estimate the required system size. This is a function
of number of sites and number of particles KS . The former is
predetermined (it is N + 1) but one can choose the latter. The
aim is to make the system just large enough (pick KS) so that
xmin is one of the possible configurations of particles in N + 1
sites with high probability.

First m, the offset, must be chosen. We derive this by taking
an estimate for the infinity norm of xmin. This can be seen in
Fig. 3 for HNF bases (to err of the side of safety, as this will
give larger values because HNF bases have long vectors). One
can see that the average of the infinity norms grows linearly
for HNF bases (see the red best fit line), so we approximate m
to be some linear function of N . This means that KS is already
up to m(N + 1) particles, and so KS scales as O(N2).

The only other consideration is the absolute value of the
sum of the coefficient terms k = |∑N

i=1 xi
min|. Heuristically

this grows linearly, as shown by the black best fit line in Fig. 3,
and is less than m so can be ignored from this point on, as in
the instance that all m(N + 1) particles reside in the first N
lattice sites (and none in the particle reservoir corresponding
to the zero vector) the net coefficient sum would be m > k.
This is because Nm particles are acting as offset particles,
leaving the remaining m as the coefficient sum.

By considering the size of the solution space, we have
analytically deduced that the qubit requirements scale as
O(N log N ) as shown in Appendix A, which space-wise ap-
pears acceptable.

B. Empirical results

The required particle number K is determined by
| ∑N

i=1 xi
min|, which must be estimated. This reflects the fact

that on average some coordinates of x will be positive, and
some negative, canceling out, but they will rarely cancel out
entirely. The growth in the mean of |∑N

i=1 xi
min| is linear,

as demonstrated numerically in Fig. 3, and grows below the
estimated offset number m. The significance of this is that
m(N + 1) particles is a generous estimate for KS . This means
that taking KS = m(N + 1) gives a good chance of finding
xmin in the solution set.

To understand this, consider the system with mN particles
in the first N sites and m particles in site N + 1. The potential
solutions are the same as those one would get from performing
the multirun version with mN total particles. Now with one
more particle in the first N sites and one fewer in site N + 1

the solutions are the same as those from multirun with
mN + 1 total particles. To ensure there are enough particles
in the system, one must be confident of achieving up to
mN + |∑N

i=1 xi
min| particles in the first N sites. That Fig. 3

demonstrates that |∑N
i=1 xi| < m in general means that the

total of m(N + 1) particles is sufficient to find λ1(L).
The growth in ‖xmin‖∞ with respect to Hermite normal

form bases appears heuristically linear, as can be seen by the
red dashed best-fit line in Fig. 3.

Another group of cryptographically relevant bases are
LLL-reduced bases. These are much better than HNF bases
and are easy to obtain. They are often used as a first step in
classical SVP routines [12,32]. LLL-reduced bases in low di-
mensions (<30 or so) were so efficient at finding the shortest
vector that there were not enough data points to draw sound
conclusions from, as can be seen in the lower blue scatter plot
in Fig. 3. We can, however, assert that the LLL-reduced case
is upper bounded by the Hermite normal form case and so
can approximate m to be a term linear in N . This is a sound
assertion because any lattice basis can be transformed into an
HNF basis in polynomial time.

C. Numerical analysis

Ideally simulating this quantum SVP algorithm on lattices
in many dimensions would give an empirical idea of scaling.
Regrettably, simulating quantum systems is computationally
very intensive due to the factorial growth of the Hilbert
space and so these simulations were only possible for low
dimensional lattices. Using the QUSPIN Python library we
were able to simulate problems with Hilbert space sizes of
up to ten thousand eigenstates (20 particles in 5 sites).

Nevertheless it is insightful to consider the distribution
over eigenstates (grouped where degenerate) for runs of differ-
ent time length. We simulated the quantum SVP algorithm on
200, 150, and 100 lattices in two, three, and four dimensions
respectively. Using standard “bad” bases from literature does
not work well for small dimensions—both HNF and LLL
reduction tend to return maximally reduced bases—so we
generated our own as follows. For each lattice we generated
a basis (call this the “good” basis) and then scrambled it
by some randomly generated unimodular matrix to obtain a
worse basis. The average increases in basis vector length are
factors of 12.06, 10.08, and 10.07 in dimensions two, three,
and four respectively under the unimodular transformations.
Basis vectors could not be increased by too much otherwise
the problems would have become intractable on our hardware.
Note also that after generating the Hamiltonians in the QUSPIN

package we scaled the Hamiltonians so that they all occupied
roughly the same spectrum of eigenvalues. The reason for this
is that expanding the energy spectrum significantly increases
success probabilities for quantum adiabatic algorithms due
to the dependence on minimum energy gap. Scaling Hamil-
tonians has an effect similar to altering the sweep times
which we want to analyze, and it is reasonable to expect
that implementers of this algorithm would have access to the
same energy spectrum regardless of the problem size. As such,
we in a sense “fixed” the spectrum and varied the sweep
times to isolate the effect of the parameter T . Throughout all
numerical simulations natural units were used, setting h̄ = 1.
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FIG. 4. Probability of returning ith shortest vector averaged over 200 instances of two-dimensional lattices for T = 1, 10, 100 in plots (a),
(b), and (c) respectively, and over 50 instances of three-dimensional lattices for T = 1, 10, 100 in plots (d), (e), and (f) respectively.

Consequently all energies are measured in electronvolts (eV)
and all sweep times in eV−1.

Mean distribution over eigenstates. Figure 4 shows the
averaged results for the single-run quantum SVP algorithm of
Sec. III. Each subplot represents a different choice of parame-
ters, and shows the mean probability of observing the system
in an eigenstate corresponding to the zero vector (index 0),
the shortest vector λ1(L) (index 1, in red), the second, third,
etc. shortest vectors and so on up to the twentieth shortest
vector. What is clear to see is a high likelihood of the system
being found in low-energy states. For slower sweeps (higher
T values) this distribution becomes more concentrated around
the lowest-energy states.

Paying particular attention to the red bars [representing the
preferred solutions corresponding to λ1(L)] one can see that
maximizing the height of the red bar requires some nuance:
sweep too slow and there is too high a chance of attaining
the zero vector at an unacceptable time cost; too fast and the
system will become excited to much higher energy levels with
unacceptably low probabilities of observing the system in very
low energy states.

The top row of Fig. 4 displays the final results for pa-
rameter choices N = 2, m = 3, T = 1, 10, 100. This maps to
a system of nine particles in three sites. Applying Eq. (14),
the total Hilbert space has 55 eigenstates. The bottom row of
Fig. 4 shows the results for parameter choices N = 3, m = 4,
T = 1, 10, 100. This is for a system of sixteen particles in
four sites. The Hilbert space now has 969 eigenstates. In
both N = 2, 3 slower sweeps result in higher probabilities
of the system terminating in the lowest eigenstates, and for
T = 100 there is a very low likelihood of finding the system in
anything but the ground state. It should also be observed that
as the system size increases from N = 2 to N = 3, keeping T
constant, the probability of recording the system in any given
low-energy state decreases.

Time sweep optimization

While reliable time bounds for finding ground states of
quantum adiabatic algorithms with good enough probability
are much sought after, and the general rule of thumb is “longer
is better,” thought is shifting. There are instances, for example,
in the MAX 2-SAT problem, in which slow sweeps perform
much worse than fast ones [33]. Here we instead consider
faster sweeps and how they relate to algorithms where the
exact ground state is not necessarily required.

The problem of observing the ground state of a system
after a quantum annealing algorithm has been the subject
of much research. In the pursuit of “somewhat” low energy
states much less is known. The algorithm outlined in Sec. III
targets the first excited state, and, furthermore, the ground
state (corresponding to the zero vector) is of even less use
than eigenstates of energy just above λ1(L), as at least these
return a short nonzero contender. Bearing this in mind along
with the observations from Fig. 4, we thought to examine how
targeting low-but-not-ground states versus ground state might
differ.

The solid lines in Fig. 5 represent mean probability of
returning 0, λ1(L), λ2(L) in blue, red and green respectively.
The dashed lines reflect 90% confidence.

Looking first at the probability curves, there are a few inter-
esting observations to be made. In two and three dimensions,
exponentially slower sweeps result in higher probabilities of
achieving a final ground state, as might be expected. These
blue curves will continue to level off past the right of the axes
due to maximum probability of any state being 1. But, remark-
ably, targeting the first excited state appears to experience
almost no success penalty for performing faster sweeps. In
fact, the nonmonotonicity of the red dashed line indicates that
there is some “Goldilocks” zone where evolutions are slow
enough to achieve a good distribution over low energy states,
but not slow enough that P(E0) dominates the distribution.
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FIG. 5. For quantum SVP simulations on (a) 200 2D “bad” lattice bases, (b) 150 3D “bad” lattice bases, and (c) 150 4D “bad” lattice
bases, the mean (solid) and 10th percentile (dashed) probabilities of returning the ith shortest vector are depicted. Blue is for ground state (zero
vector), red corresponds to shortest vector [λ1(L)], and green is for the second shortest vector [λ2(L)].

In Fig. 5 this zone appears around T = 2 for 2D lattices and
T = 4 for 3D lattices.

The case for 4D lattices looks quite different. The solid
blue line is overtaken by probabilities for λ1(L) and even
λ2(L). To understand better what is happening let us look at
the probability distributions at a few different points from plot
(c) in Fig. 5, which illustrates results on 4D lattices. To this
end, Fig. 6 presents the same information as that in Fig. 4
but for more samples, and should be looked at closely in
conjunction with plot (c) of Fig. 5. Again, probabilities corre-
sponding to λ1(L) are highlighted in red. While it is apparent
there is some locally different behavior corresponding to the
ground state, Fig. 6 shows that, as sweeps become slower,
probability density continues to accumulate around the

lowest energy states, and, if slow enough (though beyond our
computational capabilities), would concentrate entirely on the
lowest eigenstate. This behavior is particularly promising for
the quantum SVP algorithm in higher dimensions as again one
can see [subplot (f) provides the best example] a significant
concentration of probability around the ten lowest eigenstates
(out of >10 000) without this distribution necessarily being
dominated by the zero vector. Furthermore, the probability of
achieving λ1(L) is considerably high relative to surrounding
eigenstates for slower sweeps, as demonstrated by the series
of red bars in Fig. 6

In order to explain some of the favorable characteristics it
serves to look at a specific instance for the evolution of the
system.

FIG. 6. Mean probability of returning ith shortest vector across 150 instances of four-dimensional lattices for sweep lengths T =
4, 8, 16, 32, 64, 128 in subplots (a), (b), (c), (d), (e), and (f), respectively.
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FIG. 7. Algorithm sweep on a 2D (left; 0.1 of T = 0.25) and 3D
(right; 3 of T = 4) lattice basis showing the probability of measuring
the system in an eigenstate (top) and the corresponding energy
differential (bottom)—both for only the lowest five energy levels—
defined as �Et

i = Et
i − Et

0. Degeneracies should not occur during the
intermediate Hamiltonian, though HP will contain degeneracies, for
example those states corresponding to the two shortest vectors.

Figure 7 shows the energy levels and corresponding mea-
surement probabilities for a typical 2D lattice example, run
with parameters T = 0.25, m = 3. While the ground state
solution relates to the unique zero vector, all other vectors
have two associated eigenstates reflecting the symmetry of the
lattice about zero (for every v∈L, its negative −v also belongs
to L). This is important as it means that while one excitation
is ideal, two excitations still yield xmin and hence the shortest
vector.

A note on the trivial solution. Throughout this piece of
work we have assumed the framework of adiabatic quantum
computation. The presence of the (useless) zero vector in
the solution set means we no longer seek the lowest energy
eigenstate. This does not fit the traditional AQC framework,
but is advantageous in that it permits faster sweeps. Scaling to
larger systems, this could help to circumvent the prohibitive
time cost of AQC algorithms. In subadiabatic regimes it is
foreseeable that shorter sweep times could be employed at the
cost of larger γ approximations for SVPγ and vice versa.

V. DISCUSSION

We have introduced a quantum optimization framework
to the area of computationally hard lattice problems that
may underpin tomorrow’s cryptosystems. By examining some
interesting properties of an AQC-style algorithm when tar-
geting low-but-not-lowest energy states, we have identified
the existence of a “Goldilocks” zone for time sweep opti-
mization. This is particularly exciting for cryptanalysis of
lattice-based cryptosystems as the underlying problems often

come in approximate—and not exact—form, as with SVPγ

analyzed in this work. Among cryptographers it is thought
that the approximate nature of lattice problems strengthens
their post-quantum credentials, as the lack of determinism
means quantum hidden subgroup algorithms cannot be ap-
plied. This “proximity” property, however, may allow suba-
diabatic algorithms for such problems to overcome the costly
time requirements of AQC, while still outputting acceptable
solutions. Outside of cryptography, it should be observed that
for many real-world problems an approximate solution is fine
where exact solutions are intractable, and the ‘Goldilocks”
zone highlighted in this paper indicates that this may be
where AQC-style algorithms will most outperform classical
alternatives.

The numerical analysis presented in Sec. IV offers an en-
couraging insight into how Hamiltonian simulation on higher
dimensional instances may perform. The notion of mapping
Euclidean distances into Hamiltonian energies is one that has
many foreseeable applications in tackling lattice problems:
there are similarities, for example, in the formulation of SVPγ

and the approximate closest vector problem [10]. Many lattice
problems are closely related, meaning there are several areas
one could apply the ideas laid out in this work.

Looking forward, there are many interesting challenges
to surmount. A major one is the issue of achieving better
theoretical bounds on scaling complexity. One advantage
of AQC is that time dependence relies on only one factor
(minimum energy gap �), meaning the source of time cost
is easy to understand. In a subadiabatic regime, however,
modeling eigenstate transitions probabilistically could be a
natural progression for theoretical analysis of AQC-style al-
gorithms. The development of quantum hardware that can
realize this generalized Bose-Hubbard Hamiltonian and as-
sume particle-particle offsite interactions is a target for exper-
imental physicists, and generalizing AQC-style algorithms to
run on different hardware—such as coherent Ising machines
[34,35]—will become increasingly investigated as progress
continues towards a post-quantum world.
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APPENDIX A: QUBIT SCALING

With these heuristic scaling assumptions we can derive
the following analysis for the single-run algorithm (results
for multirun are similar). Using m = cN for linear constant
c, there are m(N + 1) particles in the system. Therefore the
total particle number for single run (denoted KS) is KS =
cN2 + cN .

The Hilbert space size with P particles distributed among
Q sites is

D = (P + Q − 1)!

(P)!(Q − 1)!
. (A1)
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The qubit scaling equivalent is obtained by simply taking the
base-2 logarithm of the above expression, with values for P, Q
substituted in:

D = (KS + N )!

KS!N!
= (cN2 + cN + N )!

(cN2 + cN )!N!
. (A2)

By Stirling’s approximation this is very close to

1√
2πN

( e

N

)N
(

(cN2 + cN + N )!

(cN2 + cN )!

)
, (A3)

which can be written

1√
2πN

( e

N

)N N∏
i=1

(cN2 + cN + i). (A4)

Bounding the product term, this is much less than

1√
2πN

( e

N

)N
[cN2 + (c + 1)N]N

= 1√
2πN

[e(cN + (c + 1)]N , (A5)

leaving a system size in qubit terms of log2 D bounded above
by O(N log N ). There are no analytical time bounds; this is
an active research area in the community. What we can do is
provide some analysis for a Grover search algorithm over the
same solution space, giving us some post-quantum context
for the complexity to be expected. Given that the solution
space scales as NN = 2N log N , search using Grover’s algorithm
scales as 2

1
2 N log N .

APPENDIX B: BASIS BAND DIAGONALIZATION

In order to guarantee that offsite interaction terms γi j in the
problem Hamiltonian are nonzero only for small |i − j|, the
basis must be altered to take a banded structure, but using only
operations that preserve the basis. To demonstrate, consider
the following example: The row span of the matrix⎡

⎣a
b
c

⎤
⎦ =

⎡
⎣a11 a12 0

0 b22 b23

0 0 c33

⎤
⎦

returns vectors v = n1a + n2b + n3c of norms

|v| = (n1a11)2 + (n1a12 + n2b22)2 + (n2b23 + n3c33)2.

(B1)
Expanding this vector norm and grouping into onsite terms
and offsite terms gives

|v| = n2
1

(
a2

11 + a2
12

) + n2
2

(
b2

22 + b2
23

) + n2
3

(
c2

33

)
+ 2n1n2a12b22 + 2n2n3b23c33, (B2)

and one can see that while there exist nearest-neighbor inter-
action terms (γ12, γ23) there is no γ13 term and so one can see
how the banding structure is necessary to eliminate far away
offsite particle-particle interactions.

Our solution is to iteratively eliminate elements far away
from the leading diagonal using an argument that relies on tak-
ing the greatest common divisor (gcd) of as many elements as
needed to help us eliminate elements using Bezout’s lemma.

Take a simple example as a taste of what this algorithm
is tapping into. Consider a prime determinant integer lattice,

here taking the determinant to be some large p. Let us pick
p so that the lattice is in fact the row span of the following
matrix. Every prime determinant integer lattice can be repre-
sented by a basis very similar in form to the one shown [36];
the pivot p is not necessarily in the bottom right, but this does
not affect the reduction:⎡

⎢⎢⎣
b1

b2
...

bN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1

. . .
...

1 xN−1

p

⎤
⎥⎥⎦. (B3)

For this simple case assume that the gcd of xi+1, xi+2

divides xi. Then by Bezout’s lemma there exist some u, v, δ

such that

δ(uxi+1 + vxi+2) = xi. (B4)

Now perform the lattice preserving row operations

bi → b∗
i = bi − δubi+1 − δvbi+2. (B5)

This should be performed iteratively from i = 1 to N − 2.
After the first such iteration the above matrix looks as follows:

⎡
⎢⎢⎢⎢⎣

b∗
1

b2

b3
...

bn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −δu −δv 0
1 x2

1 x3

. . .
...

1 xn−1

p

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B6)

If gcd(xi+1, xi+2) does not divide xi, then extend consider-
ation to xi+3, and so on until finding a group of numbers with
gcd dividing xi. Each extra number means adding an extra
band to the matrix so it is ideal to find a set of coprime (or
with gcd dividing xi) entries xi+1, . . . , xi+ j for some small j.
Fortunately, for k randomly selected numbers the probability
of them being coprime (a stronger condition than is needed)
is 1/ζ (k) which fast approaches 1 as k increases. This means
that even for high dimensional lattices one can be confident of
tight bandings.

There are circumstances where xi is odd, and several of the
entries below it are even. These are the only problematic cases
where sticking strictly to the algorithm yields poor results. In
these cases it is optimal to instead multiply bi by 2 so that
xi can be eliminated efficiently. This is not ideal as it does
not preserve the lattice, but instead increases the volume by a
factor of 2 (or p if this is extended to some other small primes).
What results is a basis for a sublattice. Fortunately these cases
are rare enough that the mean volume increase on performing
this algorithm over many lattices is very small.

To generalize this to any given HNF basis, this procedure
simply needs to be repeated for all dense columns, which will
appear only above pivots that are not equal to 1. While tech-
nically HNF bases can be dense in the upper triangle, this is
not typical. Furthermore, HNF bases are particularly relevant
cryptographically [37] as they afford a way of representing
a bad basis that can be communicated with O(N ) key size [if
dense this would be O(N2)]. Thus the property that makes this
basis a good candidate for band-diagonalization also makes it
a good choice in terms of cryptographic efficiency. Figure 8
shows the average results for the tight banding algorithm on
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FIG. 8. Banding algorithm performance over 100 instances of
30-dimensional lattices (a) and 60-dimensional lattices (b). The color
of each coordinate represents the average relative entry size.

HNF bases for 100 lattices in 30 and 60 dimensions, with
the heat indicating the relative size of coefficients. The size
of these coefficients reduces farther away from the leading
diagonal. The dark blue squares represent zeros and so it is
clear to see both the upper-triangular form of the row bases
and also how the magnitude of the coordinates fades quickly
to zeros above the leading diagonal. Moreover, increasing
the dimension does not adversely affect the ability of the
algorithm to produce a tightly banded lattice basis. The mean
volume increase in 30 dimensions was 2.98 and in 60 dimen-
sions it was 7.99, meaning that while the algorithm tends
not to preserve the lattice exactly, the volume of the basis
is increased by a small factor. This is acceptable for solving
SVPγ . The effect of this band-diagonalization algorithm is
that in realizing the quantum SVP algorithms described in
this paper it is not necessary to consider particle-particle
interaction terms for particles at sites which are far away from
each other.

APPENDIX C: EXAMPLE RUN

Consider a very simple example to aid intuition in follow-
ing the algorithm from lattice basis to final result and look at
all the steps in between. The system comprises two particles
in two lattice sites, with no offset (m = 0). The Hilbert space
is three dimensional and the Fock states are

|02〉 , |11〉 , |20〉 . (C1)

Take a good basis BG, and a slightly longer bad basis BB. De-
rive from BB the Gram matrix GB which defines coefficients
for the problem Hamiltonian HP:

BG =
(

1 0
0 2

)
, BB =

(
1 2
0 −2

)
, GB =

(
5 −4

−4 4

)
.

(C2)

FIG. 9. Each line represents the probability of finding the system
in the corresponding Fock state as outlined in Eq. (C1) as time
progresses in the evolution.

Calculating coefficients for H0 from Eq. (5) and HP from
Eq. (13) gives initial and final Hamiltonians of

H0 =
⎛
⎝ 0 −√

2 0
−√

2 0 −√
2

0 −√
2 0

⎞
⎠, HP =

⎛
⎝16 0 0

0 −8 0
0 0 20

⎞
⎠,

(C3)

and the time-dependent Hamiltonian matrix, using linear time
evolution as per Eq. (8), is therefore

H (t ) =

⎛
⎜⎝

16 t
T −√

2
(
1 − t

T

)
0

−√
2
(
1 − t

T

) −8 t
T −√

2
(
1 − t

T

)
0 −√

2
(
1 − t

T

)
20 t

T

⎞
⎟⎠.

(C4)

The Hamiltonian ground state for t = 0 is

|ψ0〉 = 1
2 (|02〉 +

√
2 |11〉 + |20〉). (C5)

Initialize the system in this state and let it evolve. The proba-
bilities of measuring the system to be in each of the Fock states
during the evolution are shown in Fig. 9. The Hamiltonian
ground state for t = T = 2 is

|ψT 〉 = |11〉 , (C6)

which is easy to see because

(1 1)

(
1 2
0 −2

)
= (1 0), (C7)

and (1, 0) is the shortest vector in the lattice. This can be seen
by looking at BG. This example would be one of many runs,
each with a different number of particles, that together would
constitute a multirun algorithm to solve SVP for the lattice
described by BB (and also BG, though one would not have any
prior knowledge of BG).
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