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A co-rotational triangular finite element for large deformation 

analysis of smooth, folded and multi-shells 
 

 

Abstract  A six-node co-rotational curved triangular shell finite element with a novel rotation 

treatment for folded and multi-shell structures is presented. Different from other co-rotational 

triangular element formulations, rotations are not represented by axial (pseudo) vectors, but by 

components of polar (proper) vectors, of which additivity and commutativity lead to symmetry of 

the tangent stiffness matrices in both local and global coordinate systems. In the co-rotational local 

coordinate system, the two smallest components of the shell director are defined as the nodal 

rotational variables. Similarly, the two smallest components of each director in the global 

coordinate system are adopted as the global rotational variables for nodes located either on smooth 

shells or away from non-smooth shell intersections. At intersections of folded and multi-shells, 

global rotational variables are defined as three selected components of an orthogonal triad initially 

oriented along the global coordinate system axes. As such, the vectorial rotational variables enable 

simple additive update of all nodal variables in an incremental-iterative procedure, resulting in 

significant enhancement in computational efficiency for large deformation analysis. To alleviate 

membrane and shear locking phenomena, an assumed strain method is employed in obtaining the 

element tangent stiffness matrices and the internal force vector. The effectiveness of the presented 

co-rotational triangular shell element formulation is verified by analyzing several benchmark 

problems of smooth, folded, and multi-shell structures undergoing large displacements and large 

rotations. 
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1 Introduction 

Thin-walled shell structures have been widely used in engineering practice. Most of them 

consist of several regular shell elements interconnected along curvilinear junctions, such as 

pressure vessels, silos, liquid and gas storage tanks, tubular towers, branching and intersecting 

pipelines, etc. In most of such non-smooth shell structures, the adjacent elements are usually 

stiffly connected to each other [1-6]. Solving such shell structures with intersections, the so-called 

drilling rotation about the director field must be incorporated. Otherwise, the absence of a rotation 

component around the shell director will make it difficult to impose continuity at the branching 

points or provide a compatible connection with a beam model [7-9]. Several finite element 

formulations with drilling rotations have been developed [9-17]. However, incorporating the 

drilling rotation DOF at every node can lead to the singularity of the stiffness matrices in global 

coordinate system, as the stiffness due to drilling rotations is very low or nearly zero at nodes 

located away from the shell intersections. Therefore, special treatments must be adopted to cope 

with such numerical issues [18-19]. One way to avoid the difficulties associated with drilling 

DOFs is the adoption of solid-shell elements [20-24], where the nodal DOFs only consist of pure 

translational displacements, thus finite-rotation axial (pseudo) vectors and their complex update 

procedures are avoided by construction. However, solid-shell elements suffer from thickness 

locking which requires proper treatments, and in addition, each solid-shell element contains more 

DOFs than conventional shell elements, which results in higher computational cost.  

To model folded and multi-shell structures, a six-node co-rotational curved triangular shell 

finite element formulation is presented in this paper. Instead of axial (pseudo) vectors used in 

conventional shell elements, the components of polar (proper) vectors are adopted to represent 

rotations, which are vectorial variables and lead to symmetric consistent tangent stiffness matrixes 

in both local and global coordinate systems. Similar to the vectorial rotational variables employed 

in the non-smooth co-rotational curved quadrilateral shell elements [25], the two smallest 

components of the shell director are defined as vectorial rotational variables for both smooth and 
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non-smooth shells in the local coordinate system. In the global coordinate system, the two smallest 

components of the shell director are defined as rotational variables at any node of smooth shells or 

any node away from intersections of non-smooth shells. Furthermore, at the intersection edges of 

non-smooth shells, instead of using axial rotation vectors, we define global rotational variables as 

three selected components of an orthogonal triad, including the two smallest components of one 

orientation vector and the smallest or second smallest component of another orientation vector. 

Such definition of rotational variables is different from the co-rotational curved triangular shell 

elements [26-27] previously developed for elastic and elasto-plastic smooth shell problems, where 

only the two smallest components of the shell director are defined as rotational variables in the 

global coordinate system. An assumed strain formulation based on the modified discrete strain gap 

method [28-29] is employed to alleviate locking in the co-rotational triangular shell element 

formulation. Through solving a number of challenging benchmark problems, the proposed 

six-node triangular shell element demonstrates satisfactory computational accuracy in modeling 

smooth, folded and multi-shell structures undergoing large displacements and large 

rotations[15,30-36]. Compared to other co-rotational shell element formulations[37-41], the 

present triangular shell element owns the following prominent features: (1) Instead of 

multiplicative update of rotational variables in conventional shell elements, all nodal variables of 

the proposed element are additive in a nonlinear incremental solution procedure, and hence the 

update of the element matrices are quite efficient; (2) Consistent tangent stiffness matrices are 

symmetric in both the local and global coordinate systems, which significantly improves 

computational efficiency and saves computer storage; (3) The element tangent stiffness matrix is 

updated using the total values of nodal variables in an incremental solution procedure, which 

potentially benefits dynamic analysis [32-43]. In addition, the present triangular co-rotational shell 

finite element is advantageous over the quadrilateral element shell element [25] when shell 

structures with complex geometries are encountered, which can be easily discretized using fast 

automatic triangular mesh generation techniques. 
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The outline of the paper is as follows. Section 2 presents the co-rotational framework and 

kinematics of the six-node curved triangular shell element, and describes the vectorial rotational 

variable-based finite rotation parameterization. Section 3 provides the local element response. 

Section 4 gives the transformation relationship between the local and global responses. To verify 

the reliability and computational accuracy of the proposed formulation, several benchmark 

examples are analyzed in Section 5, including one smooth semi-cylindrical shell, one perforated 

plate, and five folded-shell and multi-shell problems involving large displacements and large 

rotations. Concluding remarks are presented in Section 6. 

 

2. Co-rotational framework and kinematics of the element 

2.1 Description of the co-rotational framework 

As depicted in Fig. 1, three coordinate systems are adopted for describing the kinematics of 

the curved triangular shell element: 

1. The natural coordinate system, ( ), ,    with the origin coincide with Node 1 of 

the six-node triangular shell element;   and   axes along two element edges 

intersect each other at the origin. 

2. The global Cartesian system, ( ), ,X Y Z  with base vectors expressed as 

 
T

001 ,  
T

010 ,  
T

100 . 

3. The co-rotational local Cartesian system, ( ), ,x y z  with the origin located at Node 

1 of the six-node triangular shell element, and the base vectors xe , ye , ze  are to be 

described later in this section. 



5 

 

 

Fig. 1The co-rotational framework and kinematics of the element 

(Note: The vectors t3, r20 and r2 are associated with the local coordinate system o-x-y-z, whereas 

the vectors d3, p20, p2, v120, v12, v130, v13, ex0, ey0, ez0, ex, ey, ez, e2X0, e2Y0, e2Z0, e’2X, e’2Y, e’2Z, are 

associated with the global coordinate system O-X-Y-Z.) 

In the initial configuration, the base vectors of the local coordinate system are defined as 

follows 

120

120
0

v

v
e =x ,   

000 xzy eee = ,   

130120

130120

0
vv

vv
e




=z   (1a,b,c) 

where the subscript 0 denotes variables in the initial configuration, and the vector 𝐯1𝑖0(𝑖 = 2,3) 

pointing from Node 1 to Node i  is expressed as 

𝐯1𝑖0 = 𝐗𝑖0 − 𝐗10                          (2) 
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in which 0iX  is the initial position vector of Node i in the global coordinate system. Equation (1) 

indicates that, in the initial configuration, the direction of the local x-axis is coincident with the 

vector 120v , whereas the z-axis is orthogonal to the plane defined by the vectors 120v  and 130v , 

and the y-axis is orthogonal to the x-z plane, which forms an orthogonal triad of unit vectors. 

Similarly, the updated base vectors of the local coordinate system in the current configuration 

is defined as 

12

12

v

v
e =x ,   

xzy eee = ,   

1312

1312

vv

vv
e




=z        (3a,b,c) 

where the vectors 𝐯1𝑖 is defined as follows  

𝐯1𝑖 = 𝐯1𝑖0 + 𝐝𝑖 − 𝐝1                             (4) 

in which id  denotes the displacement of Node i, and 1 0iv is defined in (2). 

Since the Mindlin-Reissner kinematics is adopted, both translational and rotational DOFs 

(Degrees of freedom) in the global coordinate system need to be considered at every node i. 

Accordingly, we define the vector 
T

gu  that consists of all global DOFs for each element: 

 T

6

T

6

TTT

1

T

1

T ...... ggiigg ndndndu =                (5) 

where 

 iiii WVU=T
d

                                    
(6) 

which contains the three global translational DOFs associated with node i, and 
T

gin  in Equation 

(5) is a vector of global rotational DOFs associated with node i, which contains two or three 

components depending on the location of node i. Specifically, we consider the following two 

scenarios: 

 Case (I): If the considered node i is located at the intersection of non-smooth shells, such as 

folded and multi-shell structures, then three global rotational DOFs are chosen: 
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 nizmiyniygi eee ,,,

T =n                             (7) 

where miyliy ee ,,  , niyliy ee ,,  , and nizmiz ee ,,  . Evidently, ,iy me  and ,iy ne  are the two 

smallest components of vector iye  at Node i, whereas ,iz ne  is either the smallest or next to the 

smallest component of vector ize  at Node i. These vectorial rotational variables are chosen such 

that the signs of liye ,  and mize , are kept unchanged during the current incremental loading step. It 

is also noted that n, m, and l in {n,m,l} (the circular permutation of {X,Y,Z}) can take different 

values at different nodes, and these values can change at different loading steps in an incremental 

solution procedure. At the current loading step, if niye , , miye , , and nize ,  are known, then the 

other three components of iye and ize can be readily obtained as follows: 

    (8a) 

   (8b) 

2

,

2

,

2

,,2,,,

,

T

2

2

1

1

0

1

1

niy

nizniymiynizniyliy

liz

iziy

iz

iy

e

eeeseee
e

−

−−+−
=












=

=

=

ee

e

e

    (8c) 

where the sign symbol 312 sss −= , and ( 1s , 3s ) have the same signs as those of liye ,  and 

mize , in the previous loading step, respectively, which is equal to either 1 or –1. Finally, the vector 

ixe is simply the cross-product of iye and ize : 

iziyix eee =                                   (9) 

For convenience, we choose to initialize 
ixe , iye , ize in the undeformed configuration to be 

coincident to the base vectors of the global Cartesian system as follows: 

2 2 2 2 2 2

, , , , 1 , ,1 1 ( )iy iy l iy m iy n iy l iy m iy ne e e e s e e  = + + =  = − +e

2 2 2 2 2 2

, , , , 3 , ,1 1 ( )iz iz l iz m iz n iz m iz n iz le e e e s e e  = + + =  = − +e
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 001T

0 =ixe ,    010T

0 =iye ,    100T

0 =ize
   

(10a,b,c) 

It is noteworthy to mention that, the orthogonal triad of unit vectors initialized in the above 

equations (10a,b,c) can have different orientations at each node during the incremental loading 

procedure as indicated in Equations (8-9), whereas the co-rotational local coordinate system’s base 

vectors, which are initialized and updated according to Equation (1) and Equation (3), are 

uniquely defined within each element domain and should be considered as an element-wise 

orthogonal triad.  

Case (II): If a smooth shell is modelled, or if the considered node i is away from intersections 

of non-smooth shells, then there are two global rotational DOFs in gin : 

 minigi pp ,,

T =n                                  (11) 

where ( nip , , mip , ) denote the two smallest global components of the shell director at node i, and 

the remaining third component of the director is defined as 

2

,

2

,4, 1 minili ppsp −−=
    

6,...,2,1=i                 (12) 

where 14 =s  takes the same sign as used for lip ,  in the previous loading step, and {n,m,l} 

denotes the circular permutation of {X,Y,Z}. 

For each six-node shell element, thirty nodal DOFs are considered in the co-rotational local 

coordinate system: 

 T

6

T

6

TTT

1

T

1

T ...... θtθtθtu iiL =               
(13) 

which includes the local translational displacement vector of Node i 

 iiii wu =T
t                              (14) 

and the corresponding local rotational variables: 

 iyixi rr=T
θ                                 (15) 
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where ixr  and iyr  are two components of the nodal shell director along the local x - and y

-axes, respectively. 

An explicit relationship between the local translational displacement it in (14) and the 

global translational displacement id  in (6) is given as: 

0 1 0( )i i i= + −t Rd R R v
                               

(16) 

where 𝐯1𝑖0 = 𝐗𝑖0 − 𝐗10 ( 1,2,...,6i = ), 0R  and R  are rotation matrices defined in the initial 

and current configurations, respectively: 

 000

T

0 zyx eeeR = ,       zyx eeeR =T

              
(17a,b) 

in which the base vectors have been defined previously in Equations (1) and (3). In transforming 

the nodal displacements from the global to local coordinate systems according to Eq.(16), the 

initial local reference system is first rotated to the same orientation of the current local reference 

system, and then the local translations excluding rigid body rotations are measured with reference 

to this rotated configuration, as illustrated in Fig. 1. 

If node i is away from non-smooth shell intersections, the relationship between the local and 

global components of the shell director is expressed as: 

000 ii pRr = ,         ii Rpr =
                 

(18a,b) 

where the subscript 0 denotes variables in the initial configuration as mentioned in Equation (1), 

i.e., 0ip  and ip  contain the initial and current global components of the shell director at Node i, 

respectively; 0ir  and ir  contain the initial and current local components of the shell director at 

Node i, respectively. 

On the other hand, at intersections of non-smooth shells, the relationship between the local 

and global components of the shell director at node i is as follows 
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000 ii pRr = ,     00

T

iiii pRRRr =
                   

(19a,b)
 

where the rotation matrices 0iR  and iR  in the initial and current configurations are defined as  

 000

T

0 iziyixi eeeR = ,   iziyixi eeeR =T
    

(20a,b) 

where the orthogonal triad of unit vectors 
0ixe , 0iye , 0ize  follows the definition in Equation 

(10a,b,c), and ixe , iye , ize  follow the Equations (8-9). 

 

2.2 Kinematics of the curved triangular shell element 

To describe the geometry and deformation of the six-node triangular shell element, the 

following quadratic Lagrangian interpolation functions are adopted: 

)221)(1(1  −−−−=N ,   )12(2 −= N ,  )12(3 −= N      (21a,b,c) 

)1(44  −−=N ,   45 =N ,  )1(46  −−=N
     

(21d,e,f) 

where ( , )   are the natural coordinates, as depicted in Fig.1. Based on the iso-parametric 

approximation approach, the same set of shape functions defined in (21) are adopted to 

approximate the local coordinates  zyx=T
x  and global coordinates 

T X Y Z=   X  of any point on the shell element mid-surface, as follows 

6

1

( , )i i

i

N  
=

=x x ,   ( )
6

1

,i i

i

N  
=

=X X                 (22a,b) 

In addition, the local displacement fields  wvu=T
t , and the local rotation fields 

 yx rr=T

hr  as approximated as follows 
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
=

=
6

1

),(
i

iiN tt                     (23) 


=

=
6

1

h ),(
i

iiN θr                   (24) 

where it  and iθ  are the nodal translational and rotational variables defined in (14) and (15), 

respectively; ix  and iX  are the local and global nodal coordinate of node i on the shell 

mid-surface. 

The global components of the initial shell director at node i is obtained as the cross-product 

of the tangent lines along two natural coordinate axes: 

( )

0 0
0

,i i

e

i

 
 

 
= 

 

X X
p                           (25) 

where ),( ii   takes the natural coordinates of Node i (referred to Fig. 1), the subscript 0 refers 

to variables in the initial configuration as mentioned previously, and the superscript e  denotes 

the element index, i.e., 1,2,...,e NE= , NE  is the total number of shell elements in the 

discretized model.  

Spurious slope discontinuities can appear at nodal positions between adjacent elements in 

smooth shells, which is due to the piecewise polynomial interpolation within each element domain. 

To address this issue, the mean value of the shell directors from surrounding elements of node i is 

adopted: 

0

0

0

0

0

i

i

e

i
e

e S i

i
e

i
e

e S i





=





p

p
p

p

p
                                   

(26) 

where the element set iS  contains all shell elements connected with Node i. 
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To model non-smooth shell intersections in folded and multi-shell structures, however, the 

directors of multiple elements evaluated at the shared node i should be considered independent to 

each other. Hence, three global nodal rotational DOFs are then required at the intersections where 

physical slope discontinuities exist. Furthermore, the director at node i in the current configuration 

is updated as: 
 

00

T

iiii pRRp =
                                  

(27)
 

where the rotation matrices 0iR  and iR  are defined in Equation (20), which consist of 

orthogonal triad of unit vectors in the initial and current configurations, respectively. 

 

3 Local element formulation 

The total potential energy functional of a curved shell element is defined as  

e

T WdV
2

1
dV

2

1

V
2

V
1

T −+=  γDγεDε                   (28) 

where ε  is the in-plane strain, γ  is the transverse shear strain, V  is the element volume, 

eW  is the work done by external forces, 1D  and 2D  are the elastic-moduli matrices: 



















+−
=

2

μ1
00

01μ

0μ1

μ1

E
21D ,   









+
=

10

01

μ)1(2

E
12 kD          (29a,b) 

where 1k  is the shear factor, 
6

5
1 =k  or 

12

2

1


=k , E is Young’s modulus, and μ  is the 

Poisson’s ratio. 

For convenience, the in-plane strain vector ε  is split into two parts, including a membrane 

strain vector mε  and a bending strain vector χlz , where lz  is defined as  
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azl 
2

1
=

                                

(30) 

in which a denotes the shell thickness. 

As a result of the strain splitting operation, Equation (28) can be rewritten as 

( ) ( ) e

T

lmlm zz WdV
2

1
dV

2

1

V
2

V
1

T
−+++=  γDγχεDχε          (31) 

where  

    











+












==

xy

u

yx

u
xyyyxxm


T

ε         (32a) 

( ) ( ) ( ) ( )











−
+



−



−



−
=

x

rr

y

rr

y

rr

x

rr yyxxyyxx 0000T
χ          (32b) 

  







−+




−+




== 00

T

yyxxyzxz rr
y

w
rr

x

w
γ               (32c) 

In the above equations, all the spatial derivatives with respect to the local coordinates can be 

calculated from 







































=








































−







1
J

z

y

x

,       

























































=







zyx

zyx

zyx

J

                    

(33a,b) 

Taking the variation of the potential energy functional   with respect to the local nodal 

variables Lu  and enforcing it to be zero yields the following equation: 

( ) ( ) 0]dVdV[
V

2

T

V
1

T
=−+++=  ufuBDγBBDχε   extLblmlm zz

   
(34) 

where the gradient matrices mB , blz B , and B  are associated with the first-order derivatives of 
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the membrane strain mε , bending strain χlz , and the out-of-plane shear strain γ , respectively. 

Detailed expressions of these matrices are given in Appendix A. 

The internal force vector in the local coordinate system is given by 

 ( ) ( )  +++==
V

2
T

V
1

T
γdVdV DBχεDBBff lmblmext zz  

( )  ++=
V

2
T

V
1

T2
1

T dVdV γDBχDBεDB blmm z
                       

(35) 

By differentiating the internal force vector f  with respect to the local nodal variables Lu , the 

consistent tangent stiffness matrix of the 6-node curved triangular shell element is obtained 

 ++=
V

21

2

1 dV][  BDBBDBBDBk
TTT

bblmmT z

                    

(36) 

Equations (35) and (36) represent the conforming formulation for the six-node curved 

triangular shell element in the local coordinate system. Due to the commutativity of the local 

nodal variables in calculating the second-order derivatives of the energy functional  , the 

resulting consistent element tangent stiffness matrix Tk  is symmetric. 

The conforming element formulations in equations(35) and (36) suffer from membrane and 

shear locking and thus cannot provide satisfactory performance in solving thin shell problems. 

enlightened by the discrete strain gap method proposed by Koschnick et al.[28] and Bletzinger et 

al.[29], a new assumed strain method is proposed to alleviate the membrane and shear locking in 

calculating the internal force and element tangent stiffness matrix herein: 

( )  ++=
V

2
T

V
1

T2
1

T dV~~
dV~~

γDBχDBεDBf blmm z              (37) 

( ) ++=
V

2

T

1

T2

1

T dV
~~~~
 BDBBDBBDBk bblmmT z

            
 (38) 

where mB
~

and B
~

are respectively the first-order derivatives of the assumed membrane strains mε
~

 

and the assumed transverse shear strain vector γ~ with respect to the local nodal variable vector 



15 

 

Lu ,the detailed expressions of them are given in Appendix A. It is noteworthy to mention that, 

after introducing the assumed strains, the consistent local element tangent stiffness matrix in (38) 

remains symmetric. 

The discrete membrane gaps are evaluated by integrating the membrane strains over the 

element domain, 

𝛥𝑢̄𝑚𝑥𝑖 = ∫ 𝜀𝑥𝑥𝐽1,1𝑑𝜉
𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫ 𝜀𝑥𝑥𝐽2,1𝑑𝜂
𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

     
(39a)

 

𝛥𝜐̄𝑚𝑦𝑖 = ∫ 𝜀𝑦𝑦𝐽1,2𝑑𝜉
𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫ 𝜀𝑦𝑦𝐽2,2𝑑𝜂
𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

     
(39b) 

𝛥𝑢̄𝑚𝑥𝑦𝑖 = ∫
𝜕𝑢

𝜕𝑦
𝐽1,2𝑑𝜉

𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫
𝜕𝑢

𝜕𝑦
𝐽2,2𝑑𝜂

𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

     
(39c) 

𝛥𝜐̄𝑚𝑥𝑦𝑖 = ∫
𝜕𝜐

𝜕𝑥
𝐽1,1𝑑𝜉

𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫
𝜕𝜐

𝜕𝑥
𝐽2,1𝑑𝜂

𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

       
(39d)

 

and the assumed membrane strains are calculated as 

(40a)
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Similarly, the discrete shear gaps are evaluated by integrating the shear strains over the element 

domain, 

𝑤̄𝑥𝑧𝑖 = ∫ 𝛾𝑥𝑧𝐽1,1𝑑𝜉
𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫ 𝛾𝑥𝑧𝐽2,1𝑑𝜂
𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

            

(41a) 

𝑤̄𝑦𝑧𝑖 = ∫ 𝛾𝑦𝑧𝐽1,2𝑑𝜉
𝜉𝑖

𝜉1
|
𝜂=𝜂𝑖

+ ∫ 𝛾𝑦𝑧𝐽2,2𝑑𝜂
𝜂𝑖

𝜂1
|
𝜉=𝜉𝑖

            

(41b) 
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and the assumed shear strains are calculated as 

𝛾̄𝑥𝑧 =
𝜕(𝑁𝑗𝑤̄𝑥𝑧𝑗)

𝜕𝑥
= 𝑁𝑗,𝑥 {∫ 𝐽1,1 [𝐽1,1

−1𝑁𝑖,𝜉𝑤𝑖 + 𝐽1,2
−1 ∑𝑁𝑖,𝜂𝑤𝑖 + 𝑁𝑖(𝑟𝑖𝑥 − 𝑟𝑖𝑥)] 𝑑𝜉

𝜉𝑗

𝜉1

|
𝜂=𝜂𝑗

 

+∫ 𝐽2,1[𝐽1,1
−1𝑁𝑖,𝜉𝑤𝑖 + 𝐽1,2

−1𝑁𝑖,𝜂𝑤𝑖 + 𝑁𝑖(𝑟𝑖𝑥 − 𝑟𝑖𝑥)]𝑑𝜂
𝜂𝑗

𝜂1
|
𝜉=𝜉𝑗

}
(42a) 

𝛾̄𝑦𝑧 =
𝜕(𝑁𝑗𝑤̄𝑦𝑧𝑗)

𝜕𝑦
= 𝑁𝑗,𝑦 {∫ 𝐽1,2[𝐽2,1

−1𝑁𝑖,𝜉𝑤𝑖 + 𝐽2,2
−1𝑁𝑖,𝜂𝑤𝑖 + 𝑁𝑖(𝑟𝑖𝑦 − 𝑟𝑖𝑦0)]𝑑𝜉

𝜉𝑗

𝜉1

|
𝜂=𝜂𝑗

 

+∫ 𝐽2,2[𝐽2,1
−1𝑁𝑖,𝜉𝑤𝑖 + 𝐽2,2

−1𝑁𝑖,𝜂𝑤𝑖 + 𝑁𝑖(𝑟𝑖𝑦 − 𝑟𝑖𝑦0)]𝑑𝜂
𝜂𝑗

𝜂1
|
𝜉=𝜉𝑗

}
  

(42b)

 

 

 

4 Transformation from local to global response 

The internal force vector gf of the curved quadrilateral shell element in the global coordinate 

system can be calculated from the internal force vector f  in the local coordinate system: 

fTf
T=g                                 (43) 

where the transformation matrix T  can be calculated based upon the relationship between the 

local and global nodal variables 

𝐓 =

[
 
 
 
 
 
 
 
∂t1

∂𝐝1
T 𝟎

∂𝛉1

∂𝐝1
T

∂𝛉1

∂𝐧g1
T

⋯

∂t1

∂𝐝6
T 𝟎

∂𝛉1

∂𝐝6
T

∂𝛉1

∂𝐧g6
T

⋮ ⋱ ⋮
∂𝐭6

∂𝐝1
T 𝟎

∂𝛉6

∂𝐝1
T

∂𝛉𝟔

∂𝐧g1
T

⋯

∂𝐭6

∂𝐝6
T 𝟎

∂𝛉6

∂𝐝6
T

∂𝛉𝟔

∂𝐧g6
T ]

 
 
 
 
 
 
 

                                (44) 

The expressions of each sub-matrix in T  is given in Appendix B. 

The consistent element tangent stiffness matrix Tgk  in the global coordinate system is 

calculated by differentiating gf  with respect to the global nodal variable vector gu : 
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where 

∂𝐓

∂𝐮g
T = [

∂
2
u𝐿𝑖

∂ug𝑗 ∂ug𝑘
] =

[
 
 
 
 
 
 
 
 
 

∂
2
𝐭1

∂𝐝1
T
∂𝐮g

T 𝟎

∂
2
𝛉1

∂𝐝1
T
∂𝐮g

T

∂
2
𝛉1

∂𝐧g1
T

∂𝐮g
T

⋯

∂
2
𝐭1

∂𝐝6
T
∂𝐮g

T 𝟎

∂
2
𝛉1

∂𝐝6
T
∂𝐮g

T

∂
2
𝛉1

∂𝐧g6
T

∂𝐮g
T

⋮ ⋱ ⋮
∂
2
𝐭6

∂𝐝1
T
∂𝐮g

T 𝟎

∂
2
𝛉6

∂𝐝1
T
∂𝐮g

T

∂
2
𝛉6

∂𝐧g1
T

∂𝐮g
T

⋯

∂
2
𝐭6

∂𝐝6
T
∂𝐮g

T 𝟎

∂
2
𝛉6

∂𝐝6
T
∂𝐮g

T

∂
2
𝛉6

∂𝐧g6
T

∂𝐮g
T
]
 
 
 
 
 
 
 
 
 

            (46) 

The detailed expressions of the sub-matrices in 
T

gu

T




 are given in Appendix B. In Equation (45), 

the term 
T

TT k T  is obviously symmetric. In addition, owing to the commutativity of the global 

nodal variables in the differentiation of Equation (46), the other term f
u

T
T

T

g


 in Equation (45) is 

also symmetric. Hence, the global consistent element tangent stiffness matrix shown in Equation 

(45) is symmetric. 

 

5 Numerical Examples 

To demonstrate the computational performance of the present six-node co-rotational 

triangular shell element (denoted as TRIA6), one smooth semi-cylindrical shell, one perforated 

plate, and five folded/multi-shell problems involving large displacements and large rotations are 

analyzed. An incremental-iterative procedure with generalized displacement control [44] is 

employed in the analysis, and numerical results are compared to published reference solutions or 
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those obtained using engineering simulation software ANSYS [15,30-36] in order to verify the 

accuracy of the proposed TRIA6 element. 

5.1 Pinching of a clamped semi-cylindrical shell 

A semi-cylindrical shell is subjected to a vertical radial force at the middle point of the free 

circumferential edge, while the other circumferential edge is fully clamped. Along its two straight 

edges, the vertical translation and rotation around the corresponding straight edge are restrained. 

The material properties are 
7100685.2E = , 3.0μ = . The length and radius of the half 

cylinder are L=3.048 and R=1.016, respectively, and the thickness is a=0.03.  

 
Fig. 2 A clamped semi-cylindrical shell subject to a point load at free end 

 

The maximum load level is set to P=2000. Owing to symmetry, only a half of the 

semi-cylindrical shell (the colored zone in Figure 2) is analyzed using TRIA6 elements with two 

meshes of 33×33 and 65×65 nodes, respectively. Converged solution is obtained with 25 loading 

steps, and there are 5~6 iterations in each loading step with a tolerance of err=1×10-6(referred to 

[25], Eq.67).The load-deflection curves at the loading point are depicted in Fig.3. For comparison, 

Fig. 3 also provides the results from Brank et. al [30] and Parisch [31] using four-node 

quadrilateral degenerated solid shell elements with a mesh of 17×17 nodes, Sze et. al [32] using 

S4R (four-node quadrilateral) elements of the finite element program ABAQUS with a mesh of 

33×33 nodes, and Xiong et. al [33] using seven-node triangular solid-shell elements with a mesh 
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of 65×65 nodes. It is shown that the results from TRIA6 elements with 33×33 and 65×65 meshes 

agree very well with the reference solutions. 

 

Fig. 3 Load deflection curves at the loading point of 

 clamped semi-cylindrical shell 

Fig. 4 shows the deformed shape of the clamped semi-cylindrical shell using TRIA6 elements 

with the mesh of 33×33 nodes at the maximum load level P=2000. As can be seen, TRIA6 

effectively captures the large displacement and large rotation of the smooth shell structure. 
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Fig. 4 Deformed shape of the clamped semi-cylindrical shell at the load level P=2000 

5.2 A clamped perforated plate under distributed pressure 

A plate with 7 holes is clamped along its left edge, and the plate surface is subjected to 

uniform pressure q=0.1N/mm2. The material properties are Young’s modulus E=210,000MPa and 

Poisson ratio µ=0.3, respectively. The plate thickness is 0.1mm, and the radius of each hole is 

1mm, and other geometrical parameters are presented in Fig.5a, where finite element meshes with 

116, 280, 406 and 706 TRIA6 elements are also depicted, respectively. For complex shell 

geometries, it is non-trivial to generate high-quality meshes using quadrilateral finite elements 

(e.g., the co-rotational element in [25]). On the other hand, the present triangular co-rotational 

finite element allows the employment of efficient automatic mesh generation techniques, making 

it advantageous in modeling shell structures with complex geometries.  
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(a) Geometry of the clamped perforated plate 

 
(b) Mesh with 116 elements and 286 nodes   (c) Mesh with 280 elements and 658 nodes 

 
(d) Mesh with 406 elements and 922 nodes  (e) Mesh with 706 elements and 1570 nodes 

 

Fig.5 Geometry and finite element meshes for the clamped perforated plate 

 



22 

 

The load-deflection curves for the corner point A are obtained by using TRIA6 elements, and 

the results are plotted in Fig. 6, where, for comparison, we have also plotted the results obtained 

by using Shell 281 elements of ANSYS [34] based on the same six-node triangular element 

discretization. As can be seen, the results of TRIA6 element agree quite well with the Shell 281 

element of ANSYS, and very accurate solution is obtained by using 280 TRIA6 elements with 18 

loading steps, and 3~5 iterations in each loading step, the tolerance is err=1×10-6 (referred to [25], 

Eq.67). Figure 7 depicts the total vertical displacement at Point A versus different levels of mesh 

discretization, which clearly shows that TRIA6 achieves good convergence in the nonlinear large 

deformation analysis. 

 

Fig.6 Load-deflection curves at Point A of the clamped perforated plate 
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Fig.7 Convergence plot of Tria6 element 

Table 1 presents the values of the total vertical displacement at Point A of the clamped 

perforated plate under distributed pressure q=0.1N/mm2, they are obtained respectively by using 4 

kinds of element meshes of TRIA6 and Shell 281 elements. In calculating the relative errors, the 

vertical displacement solution 9.79mm obtained from a highly refined mesh (1518 elements and 

3262 nodes) of ANSYS’s Shell 281 elements is taken as the reference solution. As shown in this 

table, the proposed TRIA6 element converges well upon mesh refinement for the nonlinear shell 

structural analysis involving large rotations. 

Table 1. Vertical displacement at Point A of the perforated plate 

Element type TRIA6 element Shell 281 element 

Element number 116 280 406 706 116 280 406 706 

Node number 286 658 922 1570 286 658 922 1570 

vertical 

displacement (mm) 

8.95 9.67 9.74 9.75 9.11 9.67 9.72 9.79 

Relative errors -8.60% -1.26% -0.60% -0.44% -6.98% -1.28% -0.80% -0.08% 

In Figure 8, the initial and the final deformed shapes of the clamped perforated plate modeled 

by 280 TRIA6 elements are plotted. It is shown that large displacements and large rotations occur 
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in the structural deformation process. 

 

Fig.8 Deformed shape of the clamped plate with 7 holes subject to distributed load 0.1N/mm2 

 

5.3 A Right-Angled Cantilever Plate subject to Distributed Tip Forces/Moments 

Chroscielewski et al. [35] analyzed a right-angled cantilever plate, which is clamped at one 

end and subjected to distributed forces or distributed moments at the other end Figs.9a,b. The 

adopted material and geometric properties include Young’s modulus 
7103E = , Poisson’s 

ratio μ=0.0, length L=12, width b=3, and thickness a=0.03. 
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a) Distributed tip force                b) Distributed tip moment 

Fig.9 A right-angled cantilever plate structure subject to distributed tip forces/moments 

In the present study, two loading cases of distributed forces and moments are analyzed using 

49×5 node meshes of TRIA6 elements. The obtained load-displacement curves are depicted in 

Fig. 10 and Fig. 11, respectively. For comparison, the results using 25×3 node meshes of   

“Shell 181” elements from the finite element program ANSYS 18.0 [36] are also plotted as 

reference solutions, where Shell 181 refers to a four-node quadrilateral shell element with six 

DOFs per node, including a drilling rotation. As can be seen, the results of the present TRIA6 

element formulation agree quite well with the reference solutions. 

 



26 

 

 

Fig. 10 Load-displacement curves of right-angled cantilever plate subject to distributed tip force 
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Fig.11 Load-displacement curves of right-angle cantilever plate subject to distributed tip moment 

The deformed shapes of the cantilever plate subject to distributed tip forces and tip moments 

are plotted in Figs. 12a and 12b, respectively, where large displacements and large rotations can be 

clearly observed. 

 

a)                                       b) 

Fig.12 Deformed shapes of right-angle cantilever under different magnitudes of  

distributed tip force and moment 

5.4 Cantilever Sickle Shell subject to a Lateral Tip Force 

A cantilever sickle shell is subjected to a lateral force at the free end (Fig. 13). The sickle 

shell has a radius R=5, length L=10, width B=1,and thickness a=0.01. The adopted material 

parameters are Young’s modulus 
7103E = and Poisson’s ratio 3.0μ = . 
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Fig.13 A cantileversickle shell subject to a lateral tip force 

The sickle shell is discretized using 81×5 node meshes of TRIA6 elements, and the obtained 

load-deflection curves at the midpoint of the free end edge are plotted in Fig. 14. The results from 

Chroscielewski et al. [35] using 41× 5 node meshes of SEMe9 elements (nine-node 

stress-resultant semi-mixed shell element) and 41×5 node meshes of SELe9 elements (nine-node 

degenerated shell element with six DOFs per node), including a drilling rotation are also given in 

this figure. The resultsusing 81×5 TRIA6 elements compare favourably with those using 41×5 

node meshes of SELe9 elements. 

 

Fig.14 Load-displacement curves of cantilever sickle shell subject to a lateral tip force 

The deformed shapes of the sickle shell at different lateral tip force levels are shown in Fig. 15. 
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Fig.15 Deformed shapes of cantilever sickle shell at different levels of the tip force 

5.5A cantilever I-beam subjected to a transverse tip force 

Fig. 16 depicts a cantilever I-beam subjected to a transverse tip force lying in the X-Z plane. 

The concentrated force is applied at the center point on the cross section of the free end. The beam 

geometry is characterized by length L=4800mm, flange width b=300mm, web height hw=300mm, 

thickness for both flange and web a=25mm. The adopted material properties are Young’s modulus 

5 2E 2 10 N mm=  , and Poison’s ratio 3.0μ = .  
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Fig. 16 Cantilever I-beam subjected to a transverse tip force 

 

A mesh of 25×33 node meshes of TRIA6 elements is used to model this I-beam. To 

determine the critical load, a perturbation tip force with magnitude l/1000th of the transverse tip 

force is applied at the centre of the free end in the Y-Z plane until the beam reaches a critical state. 

Once instability occurs, i.e., when the beam begins to bend sideways, this perturbation load is 

removed. The load-displacement curves at the centre of the I-beam are plotted in Fig. 17. For 

comparison, the results from Chroscielewski et al. [35] using 13×17 node meshes of CAMe9 

elements (Lagrange family of nine-node shell elements with drilling rotations), 7×9 and 13×17 

node meshes of SEMe4 elements, and 13×17 SEMe9 elements and Li et al.[25] using 13×17 

node meshes of QUAD9 elements are also presented in this figure. The solutions using 25×33 

TRIA6 elements agree very well with those using13×17 node meshes of SEMe9 elements and 

QUAD9 elements, respectively. 
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Fig. 17 Load-displacement curves of cantilever I-beam subject to a transverse tip force 

The deformed shape of the I-beam under the force of magnitude refPP =  with 𝜆 = 3297 

and NPref 1000= , are plotted in Fig. 18 together with its undeformed shape. As can be seen, the 

large displacement and large rotation of the non-smooth shell structure are effectively captured by 

the proposed TRIA6 element. 
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Fig. 18 Deformed shapes of cantilever I-beam subject to transverse tip force 

5.6 Intersecting-Plate Structure 

A structure consisting of three intersecting flat plates is subjected to six concentrated forces at 

six different points, as shown in Fig. 19.The boundary conditions and external loads are selected 

to bend the front plate and induce torsional deflection of the middle plate. Consequently, the 

induced torque must be supported by the clamped plate. The geometric dimensions of the 

intersecting plates are presented in Fig. 19. All three plates have the same thickness 02.0=a . 

The material properties are Young’s modulus
7102E =  and Poisson’s ratio 25.0μ = . All 

external loads are controlled by the same loading factor with a reference load 2P =ref  in a 

nonlinear incremental-iterative solution procedure. 
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Fig.19 Intersecting plates subject to six concentrated forces 

317×49 node meshes of TRIA6 elements are used to model the intersecting-plate structure. 

The obtained load-displacement curves at Point A are plotted in Fig. 20. The results obtained using 

respectively 317×49 node meshes of QUAD9 elements [25], 313×37 and 337×73 node meshes of 

EANS4 elements (4-node shell element with drilling rotations) [12] are also reported in this figure 

for comparison. The results using 317×49 node meshes of TRIA6 elements agree well with those 

using 317×49 node meshes of QUAD9 elements [25] and 337×73 node meshes of EANS4 

elements [12]. 
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Fig. 20 Load-displacement curves at Point A of intersecting-plate structure subject to six 

concentrated forces 

The initial and deformed shapes of the intersecting-plate structure at the loading magnitude

7= are given in Fig. 21. The large deformation of the intersecting-plate structure is effectively 

captured by the proposed TRIA6 element. 
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Fig. 21 Initial and deformed shapes of intersecting-plate structure 

 

6 Conclusions 

A six-node co-rotational curved triangular shell element formulation for modeling smooth, 

folded and multi-shell structures undergoing large displacements and large rotations is presented. 

Different from other co-rotational shell element formulations, additive and commutative vectorial 

rotational variables are employed, resulting in symmetric consistent tangent stiffness matrices in 

both local and global coordinate systems. These vectorial rotational variables are components of 

the shell directors or orientation vectors, which are additive and commutative polar/proper vectors, 

instead of non-additive and non-commutative rotation axial/pseudo vectors. In addition, the 

membrane strains and out-of-plane shear strains are replaced with assumed strains based upon the 

modified discrete strain gap to achieve a locking-free six-node curved triangular shell element. 

The reliability and computational accuracy of the present shell formulation are demonstrated in 

solving several smooth, folded and multi-shell problems involving large displacements and large 

rotations. We note that, in terms of computational accuracy, the nine-node quadrilateral shell 

element in [25] shows better performance over the present co-rotational six-node triangular 

element. Nevertheless, when shell structures with complex geometries are encountered, such as 
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the perforated plate/shell structures, the present shell finite element in conjunction with automatic 

triangular mesh generation techniques will be very attractive for practical engineering applications. 

In addition, the present study adopts the classical shell model’s zero thickness stress assumption, 

which restricts the element to specific class of material laws. Numerical procedures to incorporate 

thickness strains [45] in the proposed co-rotational shell element will be investigated in order to 

employ finite strain 3D constitutive models in nonlinear shell structural analysis. 

 

APPENDIX A: Various Derivatives of Strains with respect to Local Nodal Variables 

The first-order derivatives of membrane strains with respect to local nodal variables lead to the 

following gradient matrix 

 0B0BB 61 ... mmm =
             

(A-1a) 

in which the sub-matrix is expressed as  

















=

0

00

00

,,

,

,

xiyi

yi

xi

mi

NN

N

N

B i=1,2,…,6           (A-1b) 

Following the Equation (33a,b), the shape function derivatives can be expressed as follows 

 ,
1

12,
1

11, iixi NJNJN −− +=
                   

(A-2a) 

 ,
1

22,
1

21, iiyi NJNJN −− +=
                    

(A-2b) 

where ( )2,1,1 =− kjJ jk  is the component of inverse Jacobian matrix at jth row and kth column;

,iN and
,iN are respectively the first-order derivative of the shape function Ni with respect to

and  . 

The first-order derivatives of shear strains with respect to local nodal variables lead to the 

following gradient matrix: 

𝑩𝛾 = [𝑩𝑟1 𝑩𝛾2 . . . 𝑩𝑟11 𝑩𝑟12]                    (A-3a) 
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The first-order derivatives of bending strains with respect to local nodal variables lead to the 

following gradient matrix: 

 61 ... bbb B0B0B =
                       

(A-4a) 

in which 

















=

xiyi

yi

xi

bi

NN

N

N

,,

,

,

0

0

B

     

i=1,2,…,6                   (A-4b) 

The first-order derivatives of assumed membrane strains with respect to local nodal variables lead 

to the following gradient matrix 

 0B0BB 61 ... mmm =
                        

(A-5a) 

in which the sub-matrix is expressed as  

𝑩̄𝑚𝑖 =

[
 
 
 
 
 
 𝑁𝑗,𝑥 (∫ 𝐽1,1𝑁𝑖,𝑥𝑑𝜉

𝜉𝑗

𝜉1
|
𝜂=𝜂𝑗

+ ∫ 𝐽2,1𝑁𝑖,𝑥𝑑𝜂
𝜂𝑗

𝜂1
|
𝜉=𝜉𝑗

) 0 0

0 𝑁𝑗,𝑦 (∫ 𝐽1,2𝑁𝑖,𝑦𝑑𝜉
𝜉𝑗

𝜉1
|
𝜂=𝜂𝑗
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|
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) 0
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) 0
]
 
 
 
 
 
 

 

(A-5b)   

The first-order derivatives of assumed shear strains with respect to local nodal variables lead to the 

following gradient matrix 

 121121 ... rrr BBBBB  =                          
(A-6a) 

in which the sub-matrices are expressed as  
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𝑩̄𝛾(2𝑖−1) =

[
 
 
 
 0 0 𝑁𝑗,𝑥 (∫ 𝐽1,1𝑁𝑖,𝑥𝑑𝜉

𝜉𝑗
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)
]
 
 
 
 

(A-6b)
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APPENDIX B: Sub-matrices of Transformation Matrix T and Its Derivatives with 

Respect to Global Nodal Variables 

The sub-matrices of the transformation matrix T can be expressed as 
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If Node k is within a piece of smooth shell or away from intersections of non-smooth shells, 

two vectorial rotational variables are employed in the global coordinate system. Hence, the 

corresponding sub-matrices of T are evaluated as follows 
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In Equations (B-4)-(B-5), I
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where Xkp , , Ykp , , Zkp ,  are three components of the shell director ip  along the directions of 

global coordinate axes; mknk pp ,, ,  are two vectorial rotational variables of Node i , which are 

the two smallest components among Xkp , , Ykp , , Zkp , ; 1
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If Node k is located at an intersection of non-smooth shells, three vectorial rotational 

variables are employed in the global coordinate system, which are the two smallest components of 

one vector and the smallest or second smallest component of another vector of an orthogonal triad 

oriented initially to three axes of the global coordinate system, and thus 
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The first-order derivative on the right side of Equation (B-8) is the same as Equations (B-4)-(B-6), 

and the first-order derivatives on the right side of Equation (B-9) are evaluated as follows 
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The components in Equations (B-10)- (B-12) are calculated as follows 

1
,

,
=





niy

niy

e

e
; 1

,

,
=





miy

miy

e

e
;    

liy

niy

niy

liy

e

e

e

e

,

,

,

,
−=




    (B-13a,b,c) 

 
liy

miy

miy

liy

e

e

e

e

,

,

,

,
−=




;   1

,

, =




niz

niz

e

e
                             (B-13d,e) 














+




−−




−

−
=




niyliz

niy

miynizliynizniy

niy

liy

niyniy

liz
ee

e

c
esseeee

e

e

ee

e
,,

,

0
,31,,,,

,

,

2

,,

,
2

1

1
  (B-13f) 














−




−

−
=




031,,

,

,

2

,,

,

1

1
cssee

e

e

ee

e
nizniy

miy

liy

niymiy

liz
        (B-13g) 


















−−

−
=





niz

miyniyliy

niyniz

liz

e

c
essee

ee

e

,

0
,31,,2

,,

,

1

1
         (B-13h) 

niy

liz

miz

liz

niy

miz

e

e

e

e

e

e

,

,

,

,

,

,




−=




;   

miy

liz

miz

liz

miy

miz

e

e

e

e

e

e

,

,

,

,

,

,




−=




         (B-13i,j) 

niz

liz

miz

liz

miz

niz

niz

miz

e

e

e

e

e

e

e

e

,

,

,

,

,

,

,

,




−

−
=




              (B-13k) 

In Equations(B-13f)~(B-13h), 
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The first-order derivatives of the transformation matrix T with respect to global nodal variables 

lead to the following sub-matrices: 
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If Node k is away from intersections of non-smooth shells, or if it is on a smooth shell 

mid-surface, 
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where second-order derivatives of the other two components with respect to the vectorial 

rotational variables are equal to zero.  

If Node k is located at an intersection of non-smooth shells, 

00
T

TT

T2

TT

T2

00
T

TT

2

TT

2

iii

kj

y

kj

x

iii

kj

h

kj

i pRR

dd

e

dd

e

pRR
dd

R

dd

θ





























=



=





               

(B-28) 

The second-order derivatives on the right hand side of Equation (B-28) are the same as Equations 

(B22)-(B24). 

00TTT

T

T

T

T

00T

T

TTT

2

ii

gk

iz

gk

iy

gk

ix
ik

j

y

j

x

ii

gk

i
ik

j

h

gkj

i pR
n

e

n

e

n

e

d

e

d

e

pR
n

R

d

R

nd

θ



















































=







=






   

(B-29) 

00TT

T2

TT

2

ii

gkgj

i
ikijh

gkgj

i pR
nn

R
R

nn

θ




=




  

00TT

2

TT

2

TT

2

ii

gkgj

iz

gkgj

iy

gkgj

ix
ikijh pR

nn

e

nn

e

nn

e
R
























= 

          

(B-30) 

TTTTTT

2

TT

2

TT

2

gi

iz

gk

iy

gk

iz

gj

iy

gkgj

iz
iyiz

gkgj

iy

gkgj

ix

n

e

n

e

n

e

n

e

nn

e
ee

nn

e

nn

e









+









+




+




=





   

(B-31) 

The first-order derivatives in Equations (B-29) and (B-31) are calculated as Equations (B-4)-(B-6), 

and Equations (B-10)-(B-14). The second-order derivatives in Equations (B-30) and (B-31) are 

calculated as follows 
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