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A co-rotational triangular finite element for large deformation
analysis of smooth, folded and multi-shells

Abstract A six-node co-rotational curved triangular shell finite element with a novel rotation
treatment for folded and multi-shell structures is presented. Different from other co-rotational
triangular element formulations, rotations are not represented by axial (pseudo) vectors, but by
components of polar (proper) vectors, of which additivity and commutativity lead to symmetry of
the tangent stiffness matrices in both local and global coordinate systems. In the co-rotational local
coordinate system, the two smallest components of the shell director are defined as the nodal
rotational variables. Similarly, the two smallest components of each director in the global
coordinate system are adopted as the global rotational variables for nodes located either on smooth
shells or away from non-smooth shell intersections. At intersections of folded and multi-shells,
global rotational variables are defined as three selected components of an orthogonal triad initially
oriented along the global coordinate system axes. As such, the vectorial rotational variables enable
simple additive update of all nodal variables in an incremental-iterative procedure, resulting in
significant enhancement in computational efficiency for large deformation analysis. To alleviate
membrane and shear locking phenomena, an assumed strain method is employed in obtaining the
element tangent stiffness matrices and the internal force vector. The effectiveness of the presented
co-rotational triangular shell element formulation is verified by analyzing several benchmark
problems of smooth, folded, and multi-shell structures undergoing large displacements and large

rotations.
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1 Introduction

Thin-walled shell structures have been widely used in engineering practice. Most of them
consist of several regular shell elements interconnected along curvilinear junctions, such as
pressure vessels, silos, liquid and gas storage tanks, tubular towers, branching and intersecting
pipelines, etc. In most of such non-smooth shell structures, the adjacent elements are usually
stiffly connected to each other [1-6]. Solving such shell structures with intersections, the so-called
drilling rotation about the director field must be incorporated. Otherwise, the absence of a rotation
component around the shell director will make it difficult to impose continuity at the branching
points or provide a compatible connection with a beam model [7-9]. Several finite element
formulations with drilling rotations have been developed [9-17]. However, incorporating the
drilling rotation DOF at every node can lead to the singularity of the stiffness matrices in global
coordinate system, as the stiffness due to drilling rotations is very low or nearly zero at nodes
located away from the shell intersections. Therefore, special treatments must be adopted to cope
with such numerical issues [18-19]. One way to avoid the difficulties associated with drilling
DOFs is the adoption of solid-shell elements [20-24], where the nodal DOFs only consist of pure
translational displacements, thus finite-rotation axial (pseudo) vectors and their complex update
procedures are avoided by construction. However, solid-shell elements suffer from thickness
locking which requires proper treatments, and in addition, each solid-shell element contains more
DOFs than conventional shell elements, which results in higher computational cost.

To model folded and multi-shell structures, a six-node co-rotational curved triangular shell
finite element formulation is presented in this paper. Instead of axial (pseudo) vectors used in
conventional shell elements, the components of polar (proper) vectors are adopted to represent
rotations, which are vectorial variables and lead to symmetric consistent tangent stiffness matrixes
in both local and global coordinate systems. Similar to the vectorial rotational variables employed
in the non-smooth co-rotational curved quadrilateral shell elements [25], the two smallest

components of the shell director are defined as vectorial rotational variables for both smooth and
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non-smooth shells in the local coordinate system. In the global coordinate system, the two smallest
components of the shell director are defined as rotational variables at any node of smooth shells or
any node away from intersections of non-smooth shells. Furthermore, at the intersection edges of
non-smooth shells, instead of using axial rotation vectors, we define global rotational variables as
three selected components of an orthogonal triad, including the two smallest components of one
orientation vector and the smallest or second smallest component of another orientation vector.
Such definition of rotational variables is different from the co-rotational curved triangular shell
elements [26-27] previously developed for elastic and elasto-plastic smooth shell problems, where
only the two smallest components of the shell director are defined as rotational variables in the
global coordinate system. An assumed strain formulation based on the modified discrete strain gap
method [28-29] is employed to alleviate locking in the co-rotational triangular shell element
formulation. Through solving a number of challenging benchmark problems, the proposed
six-node triangular shell element demonstrates satisfactory computational accuracy in modeling
smooth, folded and multi-shell structures undergoing large displacements and large
rotations[15,30-36]. Compared to other co-rotational shell element formulations[37-41], the
present triangular shell element owns the following prominent features: (1) Instead of
multiplicative update of rotational variables in conventional shell elements, all nodal variables of
the proposed element are additive in a nonlinear incremental solution procedure, and hence the
update of the element matrices are quite efficient; (2) Consistent tangent stiffness matrices are
symmetric in both the local and global coordinate systems, which significantly improves
computational efficiency and saves computer storage; (3) The element tangent stiffness matrix is
updated using the total values of nodal variables in an incremental solution procedure, which
potentially benefits dynamic analysis [32-43]. In addition, the present triangular co-rotational shell
finite element is advantageous over the quadrilateral element shell element [25] when shell
structures with complex geometries are encountered, which can be easily discretized using fast

automatic triangular mesh generation techniques.
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The outline of the paper is as follows. Section 2 presents the co-rotational framework and
kinematics of the six-node curved triangular shell element, and describes the vectorial rotational
variable-based finite rotation parameterization. Section 3 provides the local element response.
Section 4 gives the transformation relationship between the local and global responses. To verify
the reliability and computational accuracy of the proposed formulation, several benchmark
examples are analyzed in Section 5, including one smooth semi-cylindrical shell, one perforated
plate, and five folded-shell and multi-shell problems involving large displacements and large

rotations. Concluding remarks are presented in Section 6.

2. Co-rotational framework and kinematics of the element
2.1 Description of the co-rotational framework

As depicted in Fig. 1, three coordinate systems are adopted for describing the kinematics of
the curved triangular shell element:

1. The natural coordinate system, (é‘, n, g) with the origin coincide with Node 1 of

the six-node triangular shell element; & and 77 axes along two element edges
intersect each other at the origin.

2. The global Cartesian system, (X, Y, Z) with base vectors expressed as
1 0 of, [0 1 0], |0 01].
3. The co-rotational local Cartesian system, (X, Y, Z) with the origin located at Node

1 of the six-node triangular shell element, and the base vectors €, ,ey,eZ are to be

described later in this section.
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Fig. 1The co-rotational framework and kinematics of the element

(Note: The vectors t3, ryo and r are associated with the local coordinate system 0-x-y-z, whereas
the vectors ds, pao, P2, V120, Vi2, V130, V13, €x0, €y0, €20, €x, €y, €z, €20, €2v0, €220, €'2X, €2v, €27, are
associated with the global coordinate system O-X-Y-Z.)

In the initial configuration, the base vectors of the local coordinate system are defined as

follows

\ V120 X Vigg
€ = 0 By =€,0%X€, €= —— 7 (lab.c)
|V120| Vg0 % V130|

where the subscript 0 denotes variables in the initial configuration, and the vector vy;,(i = 2,3)

pointing from Node 1 to Node i is expressed as

Viio = Xio — X10 2



in which X,, is the initial position vector of Node i in the global coordinate system. Equation (1)
indicates that, in the initial configuration, the direction of the local x-axis is coincident with the
vector V,,,, whereas the z-axis is orthogonal to the plane defined by the vectors V,,, and V3,

and the y-axis is orthogonal to the x-z plane, which forms an orthogonal triad of unit vectors.

Similarly, the updated base vectors of the local coordinate system in the current configuration

is defined as
\/ V., XV
e, =%, e, =e,xe,, € =_12° 13 (3a,b,c)
|V12| |V12 X V13|
where the vectors v;; is defined as follows
Vi = Vy0 +d; — dy 4)

inwhich d; denotes the displacement of Node i, and V,;, is defined in (2).

Since the Mindlin-Reissner kinematics is adopted, both translational and rotational DOFs

(Degrees of freedom) in the global coordinate system need to be considered at every node i.

Accordingly, we define the vector u; that consists of all global DOFs for each element:

ul=|dl nl, .. dl nlo..odlonl] 5)
where
di =[U; v W] (6)

which contains the three global translational DOFs associated with node i, and n;i in Equation

(5) is a vector of global rotational DOFs associated with node i, which contains two or three
components depending on the location of node i. Specifically, we consider the following two
scenarios:

Case (1): If the considered node i is located at the intersection of non-smooth shells, such as

folded and multi-shell structures, then three global rotational DOFs are chosen:



T
r]gizl;eiy,n eiy,m eiz,nJ (7)
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Evidently, &, , and €,  are the two

iy, I‘ = eiz,m iy,m

where ‘em‘ ‘ ,ym‘

iy,n

smallest components of vector €, at Node i, whereas €, is either the smallest or next to the

smallest component of vector €;, at Node i. These vectorial rotational variables are chosen such

that the signs of €, | and €, are kept unchanged during the current incremental loading step. It

is also noted that n, m, and | in {n,m,1} (the circular permutation of {X,Y,Z}) can take different

values at different nodes, and these values can change at different loading steps in an incremental

solution procedure. At the current loading step, if €, .€ ., and €, are known, then the

other three components of €; and €;, can be readily obtained as follows:

”ei ” _elyl+e|ym |yn _1:>e _S’\ll (e|ym |yn) (88.)
”e ” _eIZ|+eIZm |zn _1:>e _S \’1 (elzn |z|) (8b)

He H =1 2 2

”e ” —1l e ely Iely nelz nt S2eiy m 1- eiy,n - eiz,n (8¢)
— O 1 ely n

|y iz

where the sign symbol S, =—S,-S;, and (S, S;) have the same signs as those of €, and
€;, »in the previous loading step, respectively, which is equal to either 1 or —1. Finally, the vector
€. is simply the cross-product of €; and €;;:

ei>< :eiy ><eiz (9)

For convenience, we choose to initialize e, , €, €;in the undeformed configuration to be

coincident to the base vectors of the global Cartesian system as follows:



e&ozl_l 0 OJ' eg,0=|_0 1 OJ’ e£0:|_0 0 lJ (10a,b,c)

It is noteworthy to mention that, the orthogonal triad of unit vectors initialized in the above
equations (10a,b,c) can have different orientations at each node during the incremental loading
procedure as indicated in Equations (8-9), whereas the co-rotational local coordinate system’s base
vectors, which are initialized and updated according to Equation (1) and Equation (3), are
uniquely defined within each element domain and should be considered as an element-wise
orthogonal triad.

Case (I1): If a smooth shell is modelled, or if the considered node i is away from intersections

of non-smooth shells, then there are two global rotational DOFsin N :

N5 =LPn Pin 1)
where ([0; ,, P; ,,) denote the two smallest global components of the shell director at node i, and

the remaining third component of the director is defined as

P =Sy1- P2 —PEy  i=12,..6 (12)

where S, ==1 takes the same sign as used for P;, in the previous loading step, and {n,m,I}

denotes the circular permutation of {X,Y,Z}.
For each six-node shell element, thirty nodal DOFs are considered in the co-rotational local

coordinate system:

ul=[tf e .t e . tl e (13)

which includes the local translational displacement vector of Node i
T
t = \_Ui Y \Nij (14)
and the corresponding local rotational variables:

o =[r, ] (15)



where I, and I, are two components of the nodal shell director along the local X- and 'y
-axes, respectively.

An explicit relationship between the local translational displacement t; in (14) and the

global translational displacement di in (6) is given as:
t, =Rd; +(R-R;)vy, (16)

where vy = X;0 — Xq0 (i=12,...,6), R, and R are rotation matrices defined in the initial

and current configurations, respectively:
T T
R, = e €0 €yl R =[ex e, ez] (17a,b)

in which the base vectors have been defined previously in Equations (1) and (3). In transforming
the nodal displacements from the global to local coordinate systems according to Eq.(16), the
initial local reference system is first rotated to the same orientation of the current local reference
system, and then the local translations excluding rigid body rotations are measured with reference
to this rotated configuration, as illustrated in Fig. 1.

If node i is away from non-smooth shell intersections, the relationship between the local and

global components of the shell director is expressed as:
Fio = RoPio, r=Rp, (18a,b)

where the subscript 0 denotes variables in the initial configuration as mentioned in Equation (1),

i.e.,Pj, and P; contain the initial and current global components of the shell director at Node i,

respectively; I, and I; contain the initial and current local components of the shell director at

Node i, respectively.
On the other hand, at intersections of non-smooth shells, the relationship between the local

and global components of the shell director at node i is as follows
9



Fio = RoPio» = RRiTRiOpiO (19a,b)

where the rotation matrices R;, and R; in the initial and current configurations are defined as

20a,b
RI) :[eixO eiyO eizO ’ R;r :[eix eiy eiz] ( )

where the orthogonal triad of unit vectors €, ,, €,,, €;,, follows the definition in Equation

(10a,b,c),and €;,, €;,, €, follow the Equations (8-9).

iy !
2.2 Kinematics of the curved triangular shell element

To describe the geometry and deformation of the six-node triangular shell element, the

following quadratic Lagrangian interpolation functions are adopted:
N =Q-¢-nmQA-25-27), N,=4(25-1), Ny=7n(2n-1) (21ab,c)

N,=451-¢-n), Ny=4787, N6:477(1_é:_77) (21d.e,f)
where (&,7) are the natural coordinates, as depicted in Fig.1. Based on the iso-parametric

approximation approach, the same set of shape functions defined in (21) are adopted to

approximate  the local  coordinates xT=|_x y zj and global coordinates
XT:LX Y ZJ of any point on the shell element mid-surface, as follows

6

X=ZNi(§,77)Xi , X:ZNi(SE'U)Xi (22a,b)

i=1
In addition, the local displacement fields tT:|_u \ WJ, and the local rotation fields

FhT = \_rx ryj as approximated as follows

10



t=2 Nt (23)

r, =ZNi(§1n)0i (24)

where t, and O, are the nodal translational and rotational variables defined in (14) and (15),

respectively; X, and X, are the local and global nodal coordinate of node i on the shell

mid-surface.
The global components of the initial shell director at node i is obtained as the cross-product

of the tangent lines along two natural coordinate axes:

X, 0X,
Pio = X
05 01 |z )

(25)

where (&,7,) takes the natural coordinates of Node i (referred to Fig. 1), the subscript O refers
to variables in the initial configuration as mentioned previously, and the superscript € denotes
the element index, i.e., e=1,2,..., NE, NE is the total number of shell elements in the
discretized model.

Spurious slope discontinuities can appear at nodal positions between adjacent elements in
smooth shells, which is due to the piecewise polynomial interpolation within each element domain.
To address this issue, the mean value of the shell directors from surrounding elements of node i is
adopted:

z 5.60 .

ee§; piO

B,

where the element set S, contains all shell elements connected with Node i.

Pio = (26)

11



To model non-smooth shell intersections in folded and multi-shell structures, however, the
directors of multiple elements evaluated at the shared node i should be considered independent to
each other. Hence, three global nodal rotational DOFs are then required at the intersections where
physical slope discontinuities exist. Furthermore, the director at node i in the current configuration

is updated as:
p; = RiTRiopio @7)

where the rotation matrices R;, and R, are defined in Equation (20), which consist of

orthogonal triad of unit vectors in the initial and current configurations, respectively.

3 Local element formulation

The total potential energy functional of a curved shell element is defined as
H:lj sTDadV+1j D ydV - W. (28)
ol 1 5 v Py e
where € is the in-plane strain, y is the transverse shear strain, V is the element volume,

W, is the work done by external forces, D, and D, are the elastic-moduli matrices:

E w0 E 10
D,=——lp 1 0 |, D2=kl—{ } (29a,b)
1-p 1+u 21+w|0 1
00 —~

5 . .
where K, is the shear factor, kl:g or kl:E , Eis Young’s modulus, and p is the

Poisson’s ratio.
For convenience, the in-plane strain vector € is split into two parts, including a membrane
strain vector €, and a bending strain vector Z;% , where Z, is defined as

12



N
|
|

1
=—(a
>4

in which a denotes the shell thickness.

As a result of the strain splitting operation, Equation (28) can be rewritten as
1 T 1¢ +
IT= E-[V(Sm +2,7) D, (e, +z)dV + EIVY D,ydV -W,

where

- ou oOv ou oOv
€y :LEXX gyy 7/ny: - ~ ~ t
OX oy oy OoX

X = +
OX oy oy OX

; F(rx—rxo) olr, =10) 0t~ 1) 0(ry—ryo)J

Y =lr 7sz=FW

ow
—+r,—r, —+r,—r,
8X X x0 8y y y0

(30)

@31

(32a)

(32b)

(32¢c)

In the above equations, all the spatial derivatives with respect to the local coordinates can be

calculated from

0 K ox oy oz
ox o¢ o0& o0& o0&
2 =J°¢ i J= % ﬂ ﬂ
oy onl|’ on on on
o 0 ox oy oz
o1 ac o o o |

(33a,b)

Taking the variation of the potential energy functional II with respect to the local nodal

variables U, and enforcing it to be zero yields the following equation:

ext

A1 =[[ (&, +2%) D.(B,+2B,)dV + [ v'D,B, dVldu, ~f

(34)

where the gradient matrices B, ,z,B,, and By are associated with the first-order derivatives of

13



the membrane strain €, , bending strain Z,, and the out-of-plane shear strain 7y, respectively.

Detailed expressions of these matrices are given in Appendix A.

The internal force vector in the local coordinate system is given by

f=f,.=[ (B, +2B,) Dife, +27)dV+ | BID,vdV
= |, (BIDsz, +27B]D;x)dV + | BID,ydV (35)

By differentiating the internal force vector f with respect to the local nodal variables U, , the
consistent tangent stiffness matrix of the 6-node curved triangular shell element is obtained

k: = [[BID,B, +2/B;D,B, +B]D,B,]dV (36)
\Y

Equations (35) and (36) represent the conforming formulation for the six-node curved
triangular shell element in the local coordinate system. Due to the commutativity of the local

nodal variables in calculating the second-order derivatives of the energy functional IT, the
resulting consistent element tangent stiffness matrix K, is symmetric.

The conforming element formulations in equations(35) and (36) suffer from membrane and
shear locking and thus cannot provide satisfactory performance in solving thin shell problems.
enlightened by the discrete strain gap method proposed by Koschnick et al.[28] and Bletzinger et
al.[29], a new assumed strain method is proposed to alleviate the membrane and shear locking in

calculating the internal force and element tangent stiffness matrix herein:

f=[ (BID;z, + 7/B{Dy)av + | BID,ydv @)
k: = [ (BID,B, +2B]D;B, +BID,B, Jav (39)

where B, and By are respectively the first-order derivatives of the assumed membrane strains Em

and the assumed transverse shear strain vector y with respect to the local nodal variable vector

14



U, ,the detailed expressions of them are given in Appendix A. It is noteworthy to mention that,

after introducing the assumed strains, the consistent local element tangent stiffness matrix in (38)
remains symmetric.
The discrete membrane gaps are evaluated by integrating the membrane strains over the

element domain,

i} §i i
umxt f$1 gxle,l €|n=ni + fnl gxx]2.1 T’ Ezfi (39&)
_ . i ni

Abpy; = ;! 3yy]1r2d€| N s Evvlazdn £=¢; (39b)
- $iou

A d F
Umxyi = f ]1 2 E| M1 6y]2 2 £=¢; (39¢)

_ £ 0v i 0V

AVppyy; = fg axll 1d";| UE asz 1 T[| (39d)

and the assumed membrane strains are calculated as

(N Au,,, I
xx:(Jaumxj): IR J‘jj Jll(‘]l_ingul-l-‘]lZNu; |>j§ +J"7]‘]21(‘]1_11N|gu|+‘]12N|r] |b77 ](40&)
X L n=p; M §=6;
g, :W: N, L DN o+ 05N o e+ [ 35, 0N +J2}2Ni,,,ui)dn§ é }(wa)
L L/ =

8(N Aumxyj)+ 8(NjAUmej)
oy OX

77xy:

) .
+I J22J211N|5U|+‘]22Nu7 |)d77 5}

iy |77|

=N, { '3, (95N, U + AN,

S _ U _
+ Nj,x|:.[§1 Jll(‘]liN £Ui +‘]12N|7] | "'J;h JZl(‘JliN Ui +‘]12Nu7 |)d77‘ }(400)

=1
Similarly, the discrete shear gaps are evaluated by integrating the shear strains over the element

domain,

_ §i ¢
Wz = ff1 ylel,ldflnzn‘ + fnnl }/xz]2,1d77|€=f (41&)

§i i
zi = ff1 yyZ]1’2d€|n=m + lel }/yz]Z,ZdnL:gi (41b)
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and the assumed shear strains are calculated as

_ (Njwyy)) G _
Yxz = g—xeJ = Nj, {L J11 []1,11Ni,§’wi +Jis z Nipw; + Ni(1iy — Tix)] a¢
1

n=n;j
nj _ -
+ fmjjz,l[]l,%Ni,fwi +Ji2Nipwi + Ni(riy — Tix)]dTIL: }(42a)

§j
(N,
7ye = % - Nj_y{

§j
L J12[JZiNigw; + J53Nigw; + Ni(1iy — Tiy0) |dE
1 n=n;

+ fnnljjz,z UziNiew; + J23Nigwi + Ni(riy, — riW)]dn'f‘f'} (420)
-5]

4 Transformation from local to global response

The internal force vector fg of the curved quadrilateral shell element in the global coordinate

system can be calculated from the internal force vector f in the local coordinate system:
T
f,=T'f (43)

where the transformation matrix T can be calculated based upon the relationship between the

local and global nodal variables

'61 al -
ar O e O
90, 00, 90; 98,
od]  ong, ddg  Ongg
T= : : (44)
ote ate
ar 0 Gar O
905 00 905 06
[0d]  ong, ddg  Ong,]

The expressions of each sub-matrix in T is given in Appendix B.

The consistent element tangent stiffness matrix kTg in the global coordinate system is

calculated by differentiating fg with respect to the global nodal variable vector U, :

16



of r of o1’ of oT’

Kiy=—2%=T + f=T —T+——=f=
Tg T T T T T
ou, ou, adu, ou, ou,
oT’
_ 7T
Kpg = TR T+ T (45)
9
where
[ 9%ty oty T
T, T 0 T, T O
ad; dug  0dgoug
0%e, a%e, 0%e, %0,
5 9d]dug  Ong dug ddgdug  Onggdug
o _ [ 07wy | _ : . : (46)
aug aug] augk 2 2 :
?°ts 0 9t 0
dd; dug  9dgoug
2%0, a%e, 2%0, 2%0,
9d] dug  Ong; dug 9dgdug  Onggdug

. . .. orT L . .
The detailed expressions of the sub-matrices in a—T are given in Appendix B. In Equation (45),

g

the term TTkTT is obviously symmetric. In addition, owing to the commutativity of the global

T

nodal variables in the differentiation of Equation (46), the other term f in Equation (45) is

T
g

also symmetric. Hence, the global consistent element tangent stiffness matrix shown in Equation

(45) is symmetric.

5 Numerical Examples

To demonstrate the computational performance of the present six-node co-rotational
triangular shell element (denoted as TRIA6), one smooth semi-cylindrical shell, one perforated
plate, and five folded/multi-shell problems involving large displacements and large rotations are
analyzed. An incremental-iterative procedure with generalized displacement control [44] is

employed in the analysis, and numerical results are compared to published reference solutions or

17



those obtained using engineering simulation software ANSYS [15,30-36] in order to verify the
accuracy of the proposed TRIAG6 element.

5.1 Pinching of a clamped semi-cylindrical shell

A semi-cylindrical shell is subjected to a vertical radial force at the middle point of the free
circumferential edge, while the other circumferential edge is fully clamped. Along its two straight

edges, the vertical translation and rotation around the corresponding straight edge are restrained.
The material properties are E =2.0685x10", u=0.3. The length and radius of the half

cylinder are L=3.048 and R=1.016, respectively, and the thickness is a=0.03.

0y o o o o o o i o o o o e VA Ve Ve Vg Vg Vg Vg
02 ] ] Y o o o o o o e O e W e W W W g g g
o o o o o W e W e o

AAAAAAAAAAAAAA 7]

Fig. 2 A clamped semi-cylindrical shell subject to a point load at free end

The maximum load level is set to P=2000. Owing to symmetry, only a half of the
semi-cylindrical shell (the colored zone in Figure 2) is analyzed using TRIAG elements with two
meshes of 33x33 and 65x65 nodes, respectively. Converged solution is obtained with 25 loading
steps, and there are 5~6 iterations in each loading step with a tolerance of err=1x10"%(referred to
[25], Eq.67).The load-deflection curves at the loading point are depicted in Fig.3. For comparison,
Fig. 3 also provides the results from Brank et. al [30] and Parisch [31] using four-node
quadrilateral degenerated solid shell elements with a mesh of 17x17 nodes, Sze et. al [32] using
S4R (four-node quadrilateral) elements of the finite element program ABAQUS with a mesh of

33x33 nodes, and Xiong et. al [33] using seven-node triangular solid-shell elements with a mesh

18



of 65x65 nodes. It is shown that the results from TRIA6 elements with 33x33 and 65x65 meshes

agree very well with the reference solutions.

1.0
—TRIAG6-33x33 A TRIAG6-65%65
0.8 | e Branketal(1995)17x17 * Parisch(1991)-17x17
© Szeet al.(2004)-33x33 A Xiong et al.(2018)-65%65
o QUAD9(2018)-33x33 = QUAD9(2018)-65%65
06
[=]
(=]
[—]
ol
X
A~
0.4
0.2
0.0 | 1 | | |
0.0 0.3 0.6 0.9 1.2 1.5 1.8
w

Fig. 3 Load deflection curves at the loading point of
clamped semi-cylindrical shell

Fig. 4 shows the deformed shape of the clamped semi-cylindrical shell using TRIA6 elements
with the mesh of 33x33 nodes at the maximum load level P=2000. As can be seen, TRIAG6

effectively captures the large displacement and large rotation of the smooth shell structure.
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Fig. 4 Deformed shape of the clamped semi-cylindrical shell at the load level P=2000

5.2 A clamped perforated plate under distributed pressure

A plate with 7 holes is clamped along its left edge, and the plate surface is subjected to
uniform pressure g=0.1N/mm?. The material properties are Young’s modulus E=210,000MPa and
Poisson ratio p=0.3, respectively. The plate thickness is 0.1mm, and the radius of each hole is
1mm, and other geometrical parameters are presented in Fig.5a, where finite element meshes with
116, 280, 406 and 706 TRIA6 elements are also depicted, respectively. For complex shell
geometries, it is non-trivial to generate high-quality meshes using quadrilateral finite elements
(e.g., the co-rotational element in [25]). On the other hand, the present triangular co-rotational
finite element allows the employment of efficient automatic mesh generation techniques, making

it advantageous in modeling shell structures with complex geometries.
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Fig.5 Geometry and finite element meshes for the clamped perforated plate
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The load-deflection curves for the corner point A are obtained by using TRIA6 elements, and
the results are plotted in Fig. 6, where, for comparison, we have also plotted the results obtained
by using Shell 281 elements of ANSYS [34] based on the same six-node triangular element
discretization. As can be seen, the results of TRIA6 element agree quite well with the Shell 281
element of ANSYS, and very accurate solution is obtained by using 280 TRIAG elements with 18
loading steps, and 3~5 iterations in each loading step, the tolerance is err=1x10® (referred to [25],
Eq.67). Figure 7 depicts the total vertical displacement at Point A versus different levels of mesh
discretization, which clearly shows that TRIA6 achieves good convergence in the nonlinear large

deformation analysis.
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Fig.6 Load-deflection curves at Point A of the clamped perforated plate
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Table 1 presents the values of the total vertical displacement at Point A of the clamped

perforated plate under distributed pressure g=0.1N/mm?, they are obtained respectively by using 4

kinds of element meshes of TRIA6 and Shell 281 elements. In calculating the relative errors, the

vertical displacement solution 9.79mm obtained from a highly refined mesh (1518 elements and

3262 nodes) of ANSYS’s Shell 281 elements is taken as the reference solution. As shown in this

table, the proposed TRIA6 element converges well upon mesh refinement for the nonlinear shell

structural analysis involving large rotations.

Table 1. Vertical displacement at Point A of the perforated plate

Element type

TRIAG element

Shell 281 element

Element number 116 280 406 706 116 280 406 706
Node number 286 658 922 1570 286 658 922 1570
vertical 8.95 9.67 9.74 9.75 9.11 9.67 9.72 9.79
displacement (mm)
Relative errors | -8.60% | -1.26% | -0.60% | -0.44% | -6.98% | -1.28% | -0.80% | -0.08%

In Figure 8, the initial and the final deformed shapes of the clamped perforated plate modeled

by 280 TRIAG elements are plotted. It is shown that large displacements and large rotations occur
23




in the structural deformation process.

Fig.8 Deformed shape of the clamped plate with 7 holes subject to distributed load 0.1N/mm?

5.3 A Right-Angled Cantilever Plate subject to Distributed Tip Forces/Moments

Chroscielewski et al. [35] analyzed a right-angled cantilever plate, which is clamped at one
end and subjected to distributed forces or distributed moments at the other end Figs.9a,b. The

adopted material and geometric properties include Young’s modulus E =3x10", Poisson’s

ratio p=0.0, length L=12, width b=3, and thickness a=0.03.

24



Y (v) Y (v)

o
0 X ()

0 X (u)

a) Distributed tip force b) Distributed tip moment

Fig.9 Aright-angled cantilever plate structure subject to distributed tip forces/moments

In the present study, two loading cases of distributed forces and moments are analyzed using
49 X5 node meshes of TRIA6 elements. The obtained load-displacement curves are depicted in
Fig. 10 and Fig. 11, respectively. For comparison, the results using 25X3 node meshes of
“Shell 181~ elements from the finite element program ANSYS 18.0 [36] are also plotted as
reference solutions, where Shell 181 refers to a four-node quadrilateral shell element with six
DOFs per node, including a drilling rotation. As can be seen, the results of the present TRIA6

element formulation agree quite well with the reference solutions.
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Fig. 10 Load-displacement curves of right-angled cantilever plate subject to distributed tip force
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Fig.11 Load-displacement curves of right-angle cantilever plate subject to distributed tip moment
The deformed shapes of the cantilever plate subject to distributed tip forces and tip moments
are plotted in Figs. 12a and 12b, respectively, where large displacements and large rotations can be

clearly observed.
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Fig.12 Deformed shapes of right-angle cantilever under different magnitudes of
distributed tip force and moment

5.4 Cantilever Sickle Shell subject to a Lateral Tip Force

A cantilever sickle shell is subjected to a lateral force at the free end (Fig. 13). The sickle

shell has a radius R=5, length L=10, width B=1,and thickness a=0.01. The adopted material

parameters are Young’s modulus E = 3x107 and Poisson’s ratiopt = 0.3
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Fig.13 A cantileversickle shell subject to a lateral tip force
The sickle shell is discretized using 81 X5 node meshes of TRIA6 elements, and the obtained
load-deflection curves at the midpoint of the free end edge are plotted in Fig. 14. The results from
Chroscielewski et al. [35] using 41 X 5 node meshes of SEMe9 elements (nine-node
stress-resultant semi-mixed shell element) and 41 X5 node meshes of SELe9 elements (nine-node
degenerated shell element with six DOFs per node), including a drilling rotation are also given in
this figure. The resultsusing 81 X5 TRIA6 elements compare favourably with those using 41X5

node meshes of SELe9 elements.
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Fig.14 Load-displacement curves of cantilever sickle shell subject to a lateral tip force

The deformed shapes of the sickle shell at different lateral tip force levels are shown in Fig. 15.
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Fig.15 Deformed shapes of cantilever sickle shell at different levels of the tip force

5.5A cantilever I-beam subjected to a transverse tip force

Fig. 16 depicts a cantilever I-beam subjected to a transverse tip force lying in the X-Z plane.
The concentrated force is applied at the center point on the cross section of the free end. The beam
geometry is characterized by length L=4800mm, flange width b=300mm, web height hy,=300mm,

thickness for both flange and web a=25mm. The adopted material properties are Young’s modulus

E=2x10° N/mm2 , and Poison’s ratio u=0.3.
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Fig. 16 Cantilever I-beam subjected to a transverse tip force

A mesh of 25X33 node meshes of TRIAG6 elements is used to model this I-beam. To
determine the critical load, a perturbation tip force with magnitude 1/1000th of the transverse tip
force is applied at the centre of the free end in the Y-Z plane until the beam reaches a critical state.
Once instability occurs, i.e., when the beam begins to bend sideways, this perturbation load is
removed. The load-displacement curves at the centre of the I-beam are plotted in Fig. 17. For
comparison, the results from Chroscielewski et al. [35] using 13X 17 node meshes of CAMe9
elements (Lagrange family of nine-node shell elements with drilling rotations), 7 X9 and 13X 17
node meshes of SEMe4 elements, and 13X 17 SEMe9 elements and Li et al.[25] using 13X 17
node meshes of QUADS elements are also presented in this figure. The solutions using 2533
TRIAG elements agree very well with those using13X17 node meshes of SEMe9 elements and

QUAD?9 elements, respectively.
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Fig. 17 Load-displacement curves of cantilever I-beam subject to a transverse tip force

The deformed shape of the I-beam under the force of magnitude P = AP, with 1 = 3297

and P, =1000N, are plotted in Fig. 18 together with its undeformed shape. As can be seen, the

large displacement and large rotation of the non-smooth shell structure are effectively captured by

the proposed TRIAG element.
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Fig. 18 Deformed shapes of cantilever I-beam subject to transverse tip force

5.6 Intersecting-Plate Structure

A structure consisting of three intersecting flat plates is subjected to six concentrated forces at
six different points, as shown in Fig. 19.The boundary conditions and external loads are selected
to bend the front plate and induce torsional deflection of the middle plate. Consequently, the
induced torque must be supported by the clamped plate. The geometric dimensions of the

intersecting plates are presented in Fig. 19. All three plates have the same thickness a =0.02.

The material properties are Young’s modulus E =2x10" and Poisson’s ratiop = 0.25. All

external loads are controlled by the same loading factor with a reference load P =2 in a

nonlinear incremental-iterative solution procedure.
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Fig.19 Intersecting plates subject to six concentrated forces
317x49 node meshes of TRIAG elements are used to model the intersecting-plate structure.
The obtained load-displacement curves at Point A are plotted in Fig. 20. The results obtained using
respectively 317x49 node meshes of QUAD9 elements [25], 313x37 and 337x73 node meshes of
EANS4 elements (4-node shell element with drilling rotations) [12] are also reported in this figure
for comparison. The results using 317x49 node meshes of TRIAG elements agree well with those
using 317x49 node meshes of QUADY elements [25] and 337x73 node meshes of EANS4

elements [12].
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Fig. 20 Load-displacement curves at Point A of intersecting-plate structure subject to six

concentrated forces

The initial and deformed shapes of the intersecting-plate structure at the loading magnitude

A =T are given in Fig. 21. The large deformation of the intersecting-plate structure is effectively

captured by the proposed TRIA6 element.

34



S
§§ § LR ] ._,\‘
ek
- ! e e,
A A AR
AL A RGN RRR RN
AN nf‘l. ﬂ"' ‘N\N SRR “‘N
Pt iRy

Fig. 21 Initial and deformed shapes of intersecting-plate structure

6 Conclusions

A six-node co-rotational curved triangular shell element formulation for modeling smooth,
folded and multi-shell structures undergoing large displacements and large rotations is presented.
Different from other co-rotational shell element formulations, additive and commutative vectorial
rotational variables are employed, resulting in symmetric consistent tangent stiffness matrices in
both local and global coordinate systems. These vectorial rotational variables are components of
the shell directors or orientation vectors, which are additive and commutative polar/proper vectors,
instead of non-additive and non-commutative rotation axial/pseudo vectors. In addition, the
membrane strains and out-of-plane shear strains are replaced with assumed strains based upon the
modified discrete strain gap to achieve a locking-free six-node curved triangular shell element.
The reliability and computational accuracy of the present shell formulation are demonstrated in
solving several smooth, folded and multi-shell problems involving large displacements and large
rotations. We note that, in terms of computational accuracy, the nine-node quadrilateral shell
element in [25] shows better performance over the present co-rotational six-node triangular

element. Nevertheless, when shell structures with complex geometries are encountered, such as
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the perforated plate/shell structures, the present shell finite element in conjunction with automatic
triangular mesh generation techniques will be very attractive for practical engineering applications.
In addition, the present study adopts the classical shell model’s zero thickness stress assumption,
which restricts the element to specific class of material laws. Numerical procedures to incorporate
thickness strains [45] in the proposed co-rotational shell element will be investigated in order to

employ finite strain 3D constitutive models in nonlinear shell structural analysis.

APPENDIX A: Various Derivatives of Strains with respect to Local Nodal Variables

The first-order derivatives of membrane strains with respect to local nodal variables lead to the

following gradient matrix

B,=[B, 0 .. B, 0] (A-1a)
in which the sub-matrix is expressed as
N, 0 O
B, =l 0 N;, 0li=1,2,....6 (A-1b)
N,, N, O

Following the Equation (33a,b), the shape function derivatives can be expressed as follows
Nix=JiiNis +IN;, (A-2a)

Niy =JoNi s +35;5N;, (A-2b)

where Jj]}(j,k :1,2) is the component of inverse Jacobian matrix at jth row and kth column;

N; . and N, , are respectively the first-order derivative of the shape function N; with respect to &

and 77.
The first-order derivatives of shear strains with respect to local nodal variables lead to the
following gradient matrix:

B, =[By1 By, ... Br1 By (A-3a)
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in which

0 0 N, _
By(zi—l) = 0 0 N. i=1,2,...,6 (A-3b)
iy
N; 0 :
By(zi)z 0 N, i=1,2,...,6 (A-3c)

The first-order derivatives of bending strains with respect to local nodal variables lead to the

following gradient matrix:

B,=[0 B, .. 0 B,] (A-4a)
in which
Bbl = 0 ley i:1,2,...,6 (A'4b)
Ni,y le

The first-order derivatives of assumed membrane strains with respect to local nodal variables lead

to the following gradient matrix
B,=[B, 0 .. B, 0 (A-52)

in which the sub-matrix is expressed as

& nj
[N (fggh,lzvi,xdf|n=m + L aNusdn|,_ fj) 0 0]|
By =| 0 Niy (fi"h,zwi,ydf|n_n + [ Ja2Niy | ) 0|
=1y J
¢ nj & nj
[Nj,y (ffgh,zlvi,ydf|n=m + Ly oMoy, éj) N <f§; Jl,lNi,xdflnzm + [y Joaliacn|_ §j> OJ
(A-5b)
The first-order derivatives of assumed shear strains with respect to local nodal variables lead to the

following gradient matrix
E;/:[Erl Eyz Er11 §r12] (A'6a)

in which the sub-matrices are expressed as
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. o _
0 0 N, (f& ]l'lNl'deLFnj + fm ]2'1Nl"‘d"|;=e,->

B,zi-1) = (A-6b)

0 0 N; 7], ,N; d + [V],,N; ., d )
% <f§1 1,24V,y E|77=77j f’h 2,24y 77|€=§j |

7
n=1; +.[71 ‘]2,1Nid’7

S
Nj,x[Ll ‘]l,lNid§

r(20) ™

j 0

= (A-6c)
fj Ui

0 NLV[L1 J;,N;d& +J.'z1 Jz,zNidﬂHj]

B

n=nj
APPENDIX B: Sub-matrices of Transformation Matrix T and Its Derivatives with

Respect to Global Nodal Variables

The sub-matrices of the transformation matrix T can be expressed as

eT

ot OR 0 | X
_adkT =0T d, +V,,)+R5,1 = T ey | [([d, + Vo) + RS (B-1)

| | | eT

If Node k is within a piece of smooth shell or away from intersections of non-smooth shells,
two vectorial rotational variables are employed in the global coordinate system. Hence, the

corresponding sub-matrices of T are evaluated as follows

00, OR, D, = o |el o (B-2)
odT —adT ¢ ladr|ey )
0, op, el} o,
=R, 0, = Oy —— (B-3)
hOki ki
any, ong ey | " ong
oe | vV, ®V,, |0V,
A L (B-4)
od/ [|V12| |V12|3 od/
aezT _ I _ (V12 X V13)® (V132 X VlS) (8V1T2 X V3 + Vy, X av_lTsj (B-5)
od, |V12 X V13| |V12 X V13| od, od,
oe, oe oe

=—Lxe, +e,x—= (B-6)
od] od] od/
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In Equations (B-4)-(B-5), N1 =—1, 1=1; N1 =1, 1=2; Ny =0, =345 or 6;
od/ od/ odf
%=—I, | =1; av—lT?’zl, 1=3; %=0, | = 2450r6.
od/ od, odf
_apk,x OPy x |
apk,n apk,m
8ka _ Py OPyy (B-7)
angk 6pk,n 6pk,m
Pz Oy
L 8pk,n apk,m i

where Py, Pcy ., Py z are three components of the shell director P; along the directions of

global coordinate axes; P, . Py, are two vectorial rotational variables of Node i, which are

the two smallest components among P,y . Pey » Piz % = % =1
1 , Y apk,n apk,m
0 0 0 0
pk,n _ pk,m_o; pk,l :_pk,n and pk,l :_pk,m , I;tn;tml,n,me{X,Y,Z}.

Mem  Pen  MBn P Mem  Pey

If Node k is located at an intersection of non-smooth shells, three vectorial rotational
variables are employed in the global coordinate system, which are the two smallest components of
one vector and the smallest or second smallest component of another vector of an orthogonal triad

oriented initially to three axes of the global coordinate system, and thus

90, R, 8 [el:l .
— L= RIRPi =—=| & [RIR;oP; (B-8)
T T i i0Mi0 T T i i0Mi0
od; ad; ad; |e,
0, R/ d
— =6:R, —R,,pi; =0;: R —[e- e, 6 ]R- P (B-9)
T ij' *h T ioMi0 ij' h T L¥ix iy iz 'YioMio
onyg; onyg; onyg;

The first-order derivative on the right side of Equation (B-8) is the same as Equations (B-4)-(B-6),

and the first-order derivatives on the right side of Equation (B-9) are evaluated as follows
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—aeix = oy xe. +e x—aeiz
T — T iz iy T

angi Gngi Ng;

aeiy _{ aeiy aeiy O}
+ =

8ngi 6eiyyn 6eiyym

aeiz _|: aeiz aeiz aeiz :|

L
angi aeiy,n aeiy,m oe, ,

The components in Equations (B-10)- (B-12) are calculated as follows

aeiy,n =1 aeiy,m =1 aeiy,I =_eiy,n
aeiy,n aeiy,m aeiy,n eiy,I
aeiy,I :_eiy,m i aelzn :1
aeiy,m e|y | aeiz,n
0y, 1 ae, ac
, yl 0
= - e e .—e e —SS.e ——+2e &
2 iy,n~iz,n iy,I~iz,n 1¥3%iy,m
ae|yn 1_eiy,n o iy,n 0 iy,n
w1 [, €, 1€, —5,5:C
- 2 iy,n~iz,n 193%0
oe,n l-e,, | &,
P L [ oo g0 S
- 2 ~ Fiy,I%y,n ~ 21°3%y.m
aeiz,n 1- eiy,n aeiz,n
aeiz,m - _ eiz,I aeiz,I ) aeiz,m - _ eiz,I aeiz,I
aeiy,n eiz,m aeiy,n aeiy,m eiz,m aeiy,m
aeiz,m _ _eiz,n eiz,l aeiz,l
aeiz,n elz,m eIZ m aeiz,n
In Equations(B-13f)~(B-13h),
2 2
CO = 1_eiy,n _eiz,n
aco _ _eiy,n . aCo _ _elz,n
aeiy,n CO aeiz n CO
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The first-order derivatives of the transformation matrix T with respect to global nodal variables

lead to the following sub-matrices:

o’t, | o, 0 ot 0 (B-15)
odTouT | adlod] odTed]
0’0, | 0%, 00, 09, 0%0, (B-16)
oadleul | adTad] adlon?, " adlad] adlont,
0°0, 0°0. 0°0. 0°0. 0°0. 617
ongouy |ongod]  ongong, ongodg  ongon g
2 2
a‘rti T = a'|'R'|'(di+vi0)+a_R-ré‘ikI a_R-ré‘ljl
odjod;  adjod; j od;
0%l | el | [ oe] |
odjody od] od;
o%! oe’ oe’
= L d, +v;p)+| =L |6, ) +| =% |51 B-18
ad]—ad;(r ( i |0) 6d]— ik 5d1— ij ( )
0%] oe] oe]
| adTod] | ad7 | [ody

If Node k is away from intersections of non-smooth shells, or if it is on a smooth shell

mid-surface,
o’
odTed] oded] | o)
odTody
oe;
o°e, _OR, o P _ od; . 0p (B-20)
odiony, ad] “onj, | a8, | " ony,
odT
2 2
o, P, (B-21)

AT AT %k T AT
on ;0N g, oNg;oNn g,
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T
8zex __ 1 |ovy, Vi, aV12 RV Vi, V. ® Ny, | OV,
odjody v, ad] T ody Ty adT # | ad] ) odg
3V12 ov ov
v, —2 —12 B-22
v, Cad] T ady (822
o', _ I _ (V12 X V13)® (V12 x V13) AZP) aV13 i Ny, aV13
odjody _|v12 X Vy [V X V| od] adT od, adT
ov (v, x vy, )[ ov ov
_ 12 oy 4y x 218 |@ Wiz ™ Vis 12 o\ 4y x Vs
o] e adyj e (o
( ) [ ov, Lo ! ov, oV,
Vi X Vi3 1
- ® XV, + V. XV, +V,, X
|V12 % V13| [adT 13 12 ad']l’ J (adT 13 12 dT J
vy, LoV (v, x V)| ov ov
2%V, +V @12 13 L2 x v, +V,x —=2
[ dT 13T Vo X ﬁdl ] |V12 N V13| (adJT_ 137 V12 Gd]T ]
+ 3(\/12 . V13)® (Véz - V13) o X Vig+ VX —2 | ® (V12 x Vl3{_12 X Vg + Vi X %J
|V12 x V13| adj j od, od,
(B-23)
aze 2 2
y __ 0% ve, o’e, N ce, ., 08, N ce, ., 08, (B-24)
odTed] — adTad; odTod]  adT ody  ad!  adT
o°p, o°p;
82p- ap|2n apl n; apl m;
i o o CHLm, B-2
onl’ o°p; o°p; (&2
api,mi api,ni apiz,mi
0% P, x %P, x 0% P, x
apiz,ni apiz,mi api,ni api,mi
n. | o%p, 2n. | %p, 2p. o’p;
0 IZO. _ Flu,v 0 f. _ FZ’I,Y P _ Piy (B-26a,b,c)
api,ni api,ni api,mi 6\pi,mi 6pi,ni api,mi api,ni api,mi
82pi,z 82pi,z o Pi z
apiz,ni 6piz,mi api,ni 6pi,mi
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82pi,|i _ 1 piz,ni 82pi,l, 1 piz,m, 82pi,l, _ BinPim
3

ol Py PRk, P P 0PLOPL. P

(B-27a,b,c)

where second-order derivatives of the other two components with respect to the vectorial
rotational variables are equal to zero.

If Node k is located at an intersection of non-smooth shells,

0%’
2’0, Ry 7 odlody |,
= RiRioPio=| 2.7 |RiRioPio (B-28)
odjod;  odjody o,
odjod,

The second-order derivatives on the right hand side of Equation (B-28) are the same as Equations

(B22)-(B24).

oe;
00, 0R, . OR! od] {8& de,  oe, ]
= [ —RioPj = J i T F T [Riob; (B-29)
adiony ad] “ony " Geg ‘| ong,  ony, ony [
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azeix 82eiy azeiz aeiy aeiz aeiy aeiz
X, +8 X TRUAo g B il IV (B-31)

T AT AT AT T AnT T
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T T T
ong,  ong  ony
The first-order derivatives in Equations (B-29) and (B-31) are calculated as Equations (B-4)-(B-6),
and Equations (B-10)-(B-14). The second-order derivatives in Equations (B-30) and (B-31) are

calculated as follows

2 2 2 2 2
0 eiy,I — _eiy,n _ 1 0 eiy,I — _eiy,neiy,m . 0 eiy,I _ _eiy,m _ 1 (B-32&b C)
2 3 ! 3 ! 2 3 gl
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