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Abstract 

   

 

Mountainous regions are a hotspot for water scarcity and anthropogenic pressure on water 

resources. Substantial uncertainty surrounds projections of future climate and water availability. 

Furthermore, quantitative and distributed data on water demand are generally scarce, dispersed, 

and highly heterogeneous. This forms a major bottleneck to study water resources issues and 

develop strategies to improve water resources management. Here we present a methodology to 

produce and evaluate high resolution gridded maps of anthropogenic surface water demand with 

application to the Andean region. These data are disaggregated in the major types of water 

demand: domestic users, irrigated area and hydropower. This dataset has been built by 

homogenizing, integrating and interpolating data obtained from various national institutions in 

charge of water resources management as well as relevant global datasets. The maps can be 

used to research anthropogenic impacts water resources, and to guide regional decision making 

in regions such as the Andes. 
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1. Introduction 

 

1.1. Overview 

 

Water resources management and governance are increasingly affected by systemic changes in 

water availability and socio-economic development (Wada et al., 2016). This renders quantifying 

spatiotemporal patterns of water demand a critical but often challenging task (Nazemi and 

Wheater, 2015). Existing datasets are usually scarce, dispersed, heterogeneous and difficult to 

access. As the population of developing countries is expected to increase by an additional two 

billion over the next forty years, significant supply-demand deficits are expected with estimated 

investments in water infrastructure of over 6.7 trillion USD needed worldwide (Hunt and Watkiss, 

2011; OECD, 2015). Inadequate spatial mapping of anthropogenic surface water demand results 

in a lack of proper water accounting. For instance, partly as a response to this data scarcity, many 

prominent hydrological models do not fully incorporate the impact of anthropogenic activities on 

natural processes, leading to major errors in hydrological outputs (Gleick et al., 2013). Some 

models do characterise anthropogenic surface water demand but at very coarse spatial 

resolutions (Döll and Siebert, 2002; Van Beek et al., 2011; Bierkens, 2015) . Furthermore, water 

footprint studies are often limited to national or international scales, which is incompatible with 

areas of strong local gradients in water availability and demand, as is particularly the case in 

mountain environments (Mekonnen and Hoekstra, 2011).    

These assumptions are particularly problematic in areas with large topographical variability and 

spatial constraints on water sourcing such as mountains (Buytaert et al., 2009; Viviroli et al., 2011, 

2020). In fact, water resources in mountainous regions are under substantial stress both due to 
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climate change as well as increased anthropogenic impacts (Correa et al., 2020). This could have 

substantial effects on the estimated 1.9 billion people that live in or downstream of mountainous 

areas by increasing potential damages due to floods or droughts (Immerzeel et al., 2020). Limited 

spatial understanding of water demand is a key hindrance to conducting comprehensive water-

related risk assessments (Drenkhan et al., 2015, 2019). This can also have negative 

consequences on adequately allocating surface water abstraction rights, leading to an increase 

in water-related conflicts (Nazemi and Wheater, 2015). 

Therefore, the objective of this study is to develop a method that is able to disaggregate spatially 

lumped data of anthropogenic surface water demand using the best available data for various 

sectors. We use the following definition of ‘surface water demand’: human water needs that are 

addressed by means of a direct anthropogenic disruption to natural surface runoff processes 

within a river network –for example, in the form of water withdrawal from a river– or artificially 

altering the flow regime –for example, via a dam–. We consider here demand in terms of end-

purpose, i.e. number of users (inhabitants), irrigated area (hectares), and generated hydropower 

(MW). We do not consider industrial water requirements because of the lack of relevant data and 

the very specific requirements of different types of industries. We also do not quantify actual 

volumetric water abstraction, deviation, or storage, because such estimates depend on a number 

of additional variables (e.g. per capita water requirement; crop water requirements) that are 

methodologically well understood but require further local information.  

 

 

1.2. Case study 

 

The aforementioned challenges are manifest in the Andes, where climate and the ensuing water 

availability are extremely variable and affected by various drivers (Garreaud, 2009). For example, 

the eastern slopes of the tropical Andes display high precipitation frequencies and magnitudes 
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due to moist air influx from the Amazon rain forest (Buytaert and De Bièvre, 2012), whereas the 

Pacific coast of Peru and northern Chile are one of the most arid regions of the world (Clarke, 

2006). Overall, precipitation ranges from above 8000 mm yr-1 on the Pacific coast of Colombia to 

approximately 200 mm yr-1 over the Bolivian Altiplano (Garreaud et al., 2003; Garreaud, 2009), to 

less than 5 mm yr-1 in the Atacama Desert of northern Chile and southern Peru. Many major 

population centres are located in highly seasonal and vulnerable environments prone to water 

scarcity, such as the 12 million inhabitants of the capital of Peru, Lima. Furthermore, the region 

is witnessing rapid demographic growth, with an average annual growth rate of 1.5% until 2050 

under a medium scenario across all four countries considered (United Nations Population 

Division, 2019). 

The method developed here aims to produce spatially disaggregated maps of observed or 

estimated domestic demand and irrigation demand as well as hydropower production at 3 

arcseconds (approximately 90 m at the equator) resolution (Figure 1). The geographical extent 

covers Ecuador, Peru, Bolivia, and Chile down to the 45S latitude, and therefore excludes 

Patagonia, Chile.  

Comprehensive, homogenized datasets of anthropogenic surface water demand are highly 

valuable to provide researchers and decision makers, as an input in analyses such as assess and 

forecast water availability in the context of population growth and climate change. The data can 

also be used for research on the impacts of human pressure on water resources, potential impacts 

of environmental changes on human development, adaptation, or resilience, and to guide regional 

decision making on water resources in regions such as the Andes.  
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Fig. 1 | Surface water demand maps of the four capital city areas of the study region. The colored pixels represent river points coded with the number of people and the irrigated 

area that depend on this pixel for their water supply. In the cases of Quito, Ecuador (a) and La Paz, Bolivia (c), domestic water demand is visualised on top of irrigation demand. In the 

cases of Lima, Peru (b) and Santiago, Chile (d), irrigation demand is visualised on top of domestic water demand. 
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2. Methods 

 

In order to derive the datasets mentioned previously, we first compiled existing national databases 

as well as other globally available datasets on surface water demand across all three sectors. We 

then develop an algorithm to homogenise, combine, infill, and disaggregate these datasets. 

Finally, we validated our results by comparing them to actual data for two major Ecuadorian rivers, 

which are the only systems in our study region for which high-resolution data are available.   

 

 

2.1. National databases 

 

The countries in the study region display varying degrees of data availability, accessibility and 

spatiotemporal completeness. We describe here the available data that were obtained as well as 

how they were incorporated in the dataset for each country (Table 1). 

 

Country Domestic users [number of 
inhabitants] 

Irrigated area [hectares]  Hydropower production [MW] 

Raw data Use Raw data Use Raw data Use 

Ecuador Abstraction 
point 
coordinates 
accounting for 
only 62% of 
population as 
of 2016 
(SENAGUA) 

Abstractions 
on the 
Guayas and 
Esmeraldas 
rivers used 
for 
validation 
only 

Abstraction 
point 
coordinates 
accounting for 
only 79% of 
irrigated area 
according to 

Abstractions 
on the 
Guayas and 
Esmeraldas 
rivers used 
for 
validation 
only 

Major 
hydropower plant 
coordinates and 
peak power 
production 
statistics as of 
2016 
(SENAGUA) 

Used in 
main 
dataset 
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Table 1. Summary of surface water demand data availability and use in dataset elaboration in the countries 

of interest: domestic users served by abstraction point [number of inhabitants], irrigated area served by 

abstraction point [hectares] and hydropower plant locations with associated peak electricity production 

[MW]. 

 

In Ecuador, the National Water Secretariat (SENAGUA) is the highest official authority 

responsible for maintaining an updated registry of all authorized surface water and groundwater 

abstraction allocations as well as granting new requests. It contains limited information on the 

FAO as of 2016 
(SENAGUA) 

Peru Abstraction 
point 
coordinates for 
all major cities 
with 
population 
served 
statistics as of 
2017 (ANA) 

Used in 
main 
dataset 

No spatially 
disaggregated 
data available 

N.A. Major 
hydropower plant 
coordinates and 
peak power 
production 
statistics as of 
2017 (ANA) 

Used in 
main 
dataset 

Bolivia Abstraction 
point 
coordinates for 
La Paz with 
population 
served 
statistics as of 
2014 

Used in 
main 
dataset 

No spatially 
disaggregated 
data available 

N.A. 2010 National 
Dam Inventory 
including major 
hydropower plant 
coordinates and 
peak power 
production 
statistics 

Used in 
main 
dataset 

Chile Abstraction 
point 
coordinates for 
entire country 
as of 2017 
with no 
information on 
population 
served 
(Universidad 
de 
Concepción) 

Not used Abstraction 
point 
coordinates for 
entire country 
as of 2017 with 
no information 
on irrigated area 
(Universidad de 
Concepción) 

Not used Major 
hydropower plant 
coordinates and 
peak power 
production 
statistics as of 
2017 
(Universidad de 
Concepción) 

Used in 
main 
dataset 
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coordinates of given abstraction points accounting for all major sectors, irrigation, domestic and 

hydropower.  

In Peru, hydropower locations and peak power production data were obtained from the Peruvian 

Ministry of Energy and Mines. The National Water Authority (ANA) provided data for domestic 

demand numbers of major cities and irrigated areas. 

Bolivian water demand data are scarce, with only a 2010 national dam inventory available for 

hydropower. Domestic demand data for the city of La Paz were provided by the state-run water 

company (EPSAS).        

Chile has the most comprehensive water demand characterisation within our study region, with 

monthly allocations per officially registered surface abstraction point available for all major sectors 

as of 2015. However, irrigated area and population served per abstraction point are not available.  

 

 

2.2. Disaggregation and combination procedure  

 

We discuss here the process of combining or using available data on anthropogenic surface water 

demand with our estimates. 

In the case of hydropower, it is typically possible to obtain data the relevant authorities or other 

publicly available datasets.  

Direct spatially disaggregated data on domestic and irrigation water demand is often inaccessible, 

unavailable or incomplete. In those cases, we estimated anthropogenic surface water demand 

with an algorithm that estimates the most likely water abstraction point for a certain subset of 

population or irrigated area. Here we use 2015 population maps from the WorldPOP project 
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(Sorichetta et al., 2015) at 3 arcseconds resolution in addition to agricultural land use and land 

cover (LULC) maps from the MapSPAM initiative (International Food Policy Research Institute, 

2019) at 10 km spatial resolution. We combined these data with high-resolution topographical 

data from the USGS Hydrosheds maps at 3 arcseconds resolution (Lehner, B., Verdin, K., Jarvis, 

2008), to identify the most likely abstraction point as follows: 

1. Identification of the river network 

We derived the river network from digital elevation data from USGS Hydrosheds at 3 arcseconds 

resolution using a D8 hillslope flow algorithm 

2. Separation of surface water and groundwater abstraction 

We obtained data on the domestic and irrigation water demand from surface water (SW) and 

groundwater (GW) sources at the finest possible level in each country. We then compile statistics 

on the percentage of surface and groundwater use.   

3. Identification of the location of surface water abstractions 

For surface water abstractions, we assume that water is sourced from the nearest river or water 

body that satisfies the following criteria: 

(a) the size of the associated catchment is above a predetermined threshold 𝑎. 

(b) the abstraction point is not below a threshold elevation difference 𝑑. 

In our application, we used a catchment area a threshold of 40 km2, and an elevation threshold 

of 50 m, which represents the typical elevation difference that can be bridged with small pumping 

infrastructure. These values are based on our field observations and experience in the Andes but 

can be adjusted for specific purposes if needed. 

4. Correction for groundwater use  

In order to correct for groundwater use, we multiply both our obtained population served and 

irrigated area maps by the percentage of surface water use in the relevant administrative unit 

following the approach of Gleeson et al. (2012) (Appendix A). 
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2.3. Application to the Andes 

 

2.3.1. Domestic demand 

We used population maps from the 2015 WorldPOP project (Sorichetta et al., 2015) at 3 

arcseconds resolution, which provide an estimated number of inhabitants per pixel. 

In Ecuador, we implemented the water allocation algorithm described previously using the 2015 

WorldPOP dataset in addition to available data for the city of Quito alone. We used available data 

from two major rivers in the validation process. Provincial-level statistics on groundwater use are 

available from the SENAGUA database. 

In Peru, as domestic water demand data for major cities were available, those were masked out 

and the remaining rural areas were assigned withdrawal points using the water allocation 

algorithm and the 2015 WorldPOP dataset. National-level statistics on groundwater use are 

available from the International Groundwater Resource Assessment Centre (IGRAC). 

For Bolivia, no domestic water demand data were available except for the city of La Paz. 

Therefore, we implemented the water allocation algorithm described above in all four countries 

using the 2015 WorldPOP dataset. National-level statistics on groundwater use are available from 

the International Groundwater Resource Assessment Centre (IGRAC). 

Our data for Chile include coordinates of actual abstraction points but do not provide information 

on the number of people served by these abstractions. Therefore, we simply ran the algorithm for 

the entire country using the WorldPOP dataset as well. Provincial-level statistics on groundwater 

use are available from the Chilean Public Works Ministry. 

 

2.3.2. Irrigation  
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We obtained irrigated area maps by crop type from the MapSPAM initiative (International Food 

Policy Research Institute, 2019) regridded at 3 arcseconds using nearest neighbor resampling. 

We combine all individual crop maps to obtain a total irrigated area per pixel of analysis.  

In Ecuador, we implemented the water allocation algorithm described previously using the 

MapSPAM dataset with available data used in the validation process. Provincial-level statistics 

on groundwater use are available from the SENAGUA database. 

In Peru and Bolivia, we implemented our water allocation algorithm using data from the MapSPAM 

initiative. National-level statistics on groundwater use for both countries are available from the 

International Groundwater Resource Assessment Centre (IGRAC). 

The data for Chile contain irrigation abstraction coordinates, but no information about the area 

that they serve. Therefore, we also ran the algorithm over the entire country using the MapSPAM 

dataset. Provincial-level statistics on groundwater use are also available from the Chilean Public 

Works Ministry. 

 

2.3.3. Hydropower  

Hydropower generation locations as well as peak electricity production statistics are available in 

all four countries as of 2010. 

 

Figure 2 summarises the steps used to develop and validate the final data outputs. 
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Fig. 2 | Computational steps involved in the development and validation of water demand maps of domestic users, irrigated agricultural area, and hydropower. Red: input 

data; orange: intermediate products; green: final products; parallelograms: datasets; squares: processes. 
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2.4. Validation 

 

It is not possible to completely quantify potential errors in the input data because most datasets 

come without the necessary metadata to analyse those errors. Instead, we examined the 

performance of our algorithm by selecting two major Ecuadorian river catchments for which data 

are available and of sufficiently high quality from SENAGUA (Figure 3): the Guayas river, which 

serves the city of Guayaquil, the largest in Ecuador; and the Esmeraldas river, which passes 

through the capital Quito (where it is known locally as the Guayllabamba river).  

We first examined normalised cumulative plots of simulated and observed abstractions over the 

normalised distance along each river transect 𝑥 to assess the performance of our algorithm. To 

do so, we used a discrepancy factor 𝐴𝑑, defined as the extent to which both simulated 𝐴𝑠𝑖𝑚 and 

observed 𝐴𝑜𝑏𝑠 cumulative water demand profiles diverge, i.e. the value of the integral area 

between the two curves defined in Eq. 1 below. A value of zero indicates total a perfect alignment 

whereas a value of one indicates maximum divergence. 

 

       𝐴𝑑 = ∫ 𝑎𝑏𝑠(𝐴𝑠𝑖𝑚 − 𝐴𝑜𝑏𝑠)
1

0
𝑑𝑥                                                                                            

 

                                      

(1) 

We then compared our results with 10,000 random allocations of the MapSPAM and WorldPOP 

irrigated area and population served pixels respectively to river cells without accounting for 

topography or distance, also. We then computed the discrepancy factor between both the 

cumulative curves generated by the algorithm and the average cumulative river profile of all 

random allocations in both river cases.
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Fig. 3 | Map of Ecuadorian catchments used for data validation. Top: Esmeraldas river catchment; bottom: Guayas river catchment. (a) and (c) show domestic demand in the 

catchments whilst (b) and (d) highlight irrigation demand. 
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3. Results and discussion 

 

The data and method presented here produce maps of domestic water demand, irrigated area 

and hydropower production from surface water resources. Table 2 summarizes the main results. 
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Table 2. Summary of results across all four countries. MapSPAM and WorldPOP total irrigated area and population are respectively used as 

reference points. Total population and total irrigated area statistics were obtained from FAO (2016). Groundwater (GW) use is obtained from the 

IGRAC database (Gleeson et al., 2012) (see Appendix A). 

Country Number of 

inhabitants 

allocated by 

algorithm 

Percentage 

of total 

population 

GW 

share of 

domestic 

use 

Total 

population 

allocated after 

GW correction 

Irrigated area 

allocated by 

algorithm (ha) 

Percentage of 

total irrigated 

area 

GW 

share of 

irrigation 

use 

Total irrigated 

area allocated 

after GW 

correction (ha) 

Total 

hydropower 

production 

(MW) 

Ecuador 10551912 68% 31% 9105474 596628 95% 14% 475705 3293 

Peru 26742361 87% 25% 20237483 949345 87% 60% 357473 8184 

Bolivia 9235179 86% 60% 3613803 90911 73% 10% 84270 324.88 

Chile 17558561 100% 52% 8494332 365871 90% 39% 259449 5857.22 
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We make the following observations. First, the proportion of the population that the algorithm is 

unable to allocate ranges between 32% in Ecuador to 0% in Chile. These are populations that 

live in headwater catchments above the highest river pixels in the river map. These highest pixels 

are determined by the catchment size threshold of 40 km2 and represents a trade-off with the 

density of the river network that the D8 algorithm generates. We chose this threshold based on 

field observations that rural communities tend to source water from nearby small streams instead 

of larger rivers because the former tend to have better water quality. However, unallocated 

populations will need to be allocated manually as these are often small upland communities that 

draw water from various small rivers and suffer recurring water scarcity. 

To evaluate the accuracy of the allocation of domestic and irrigation demand allocation, we 

compare our results to a baseline that consists of a random allocation (Figure 4). This visually 

demonstrates the improvement in performance of our algorithm.  

A similar trend can be observed in the normalised cumulative plots of simulated and observed 

abstractions along our selected river profiles (Figure 5). The results display a good agreement 

between our results and observed data but substantial divergence between our results and the 

random allocation, with 𝐴𝑑 decreasing an order of magnitude between the random allocation and 

the allocation algorithm (e.g., 0.37 to 0.04 for domestic users in Esmeraldas, Table 3). This 

provides evidence for the ability of the algorithm to identify the (approximate) location of water 

use. 
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Fig. 4 | Longitudinal profiles of domestic water demand and irrigation demand for the Esmeraldas river: (a) and (c) respectively; Guayas river: (b) and (d) respectively. Blue: data 

estimated using the procedure presented here; green: random allocation of domestic water demand and irrigation demand from WorldPOP and MapSPAM datasets respectively; orange: 

independent data obtained from the Government of Ecuador (SENAGUA). 
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Fig. 5 | Normalised cumulative profiles of domestic water demand and irrigation demand for the Esmeraldas river: (a) and (c) respectively; Guayas river: (b) and (d) respectively. 

Blue: data estimated using the procedure here; orange: independent data obtained from the Government of Ecuador (SENAGUA). The difference between observed and simulated data 

curves (S) is highlighted in grey. A smaller S indicates a better agreement between the datasets. 
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Table 3. Computation of discrepancy factor 𝐴𝑑 between normalised cumulative estimates from our 

algorithm and (a) available observations and (b) the average of 10,000 random allocations.  

 

The algorithm does not account for the existence of advanced infrastructure such as pumping 

and inter-basin transfers nor is it able to represent return flows. This leads to an underestimation 

of demand in certain locations. For example, several major irrigation projects on the Pacific Coast 

of Peru rely on bulk water transfers from the Andean highlands. It would be straightforward to 

implement this in the procedure, conditional on the availability of abstraction and supply points. 

Additionally, the effect of this problem on our domestic demand estimates is limited as we use 

direct data from major cities in the region, where major water supply infrastructure is mainly used 

and water use is generally well documented (McDonald et al., 2014).   

The algorithm is also prone to overestimating the number of abstraction points because it 

allocates each population pixel individually, while in practice larger clusters of users (e.g. a village) 

will be served by infrastructure drawing water from a single location. This results in an 

overestimation of the smoothness of the cumulative abstraction profile compared to the actual 

curve. The actual data shows major spikes as a result of the existence of large water major 

abstraction points. This again relates to the abovementioned lack of integration of large 

infrastructure in the methodology as a result of sparsity of available information. 

River  Domestic users  Irrigated area 
 

Observed Random Observed Random 

Esmeraldas 0.0470 0.3710 0.1226 0.4339 

Guayas 0.0162 0.2096 0.0384 0.3918 
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Lastly, our method to correct for groundwater use is necessarily spatially coarse, because 

groundwater abstraction data are only available at the national level for Peru and Bolivia, limiting 

the accuracy of the correction. For example, in Peru, surface water sources account for 40% of 

total irrigation requirements. However, there is considerable variability within the country with 

several major irrigation projects along the Pacific Coast relying on complex infrastructure 

schemes involving groundwater abstractions whereas certain upland small-scale farmers might 

rely entirely on surface water. Nevertheless, the approach we have taken in such circumstances 

is consistent with previous attempts to quantify water use (e.g. Gleeson et al., 2012). 

Such information is highly valuable in the context of water resources management and regional 

assessment of water stress. Especially in mountain regions, water stress can show strong 

spatiotemporal patterns (Buytaert et al., 2017), which are difficult to identify using population and 

irrigated area maps. Additionally, the methodology allows setting specific surface water 

abstraction rules depending on local management context, including for instance environmental 

flows, and allocation priorities during a hydrological drought. We should note that our analysis 

only focuses on quantifying water demand, irrespective of water availability. As such, we do not 

account for water scarcity or environmental flow requirements, which are beyond the scope of this 

study. In addition, our results are able to better capture rural water demand which is especially 

poorly documented. This can prove particularly useful in studies on rural to urban water 

reallocation (Garrick et al., 2019). 

It is feasible to calculate actual volumetric surface water use (e.g. in m3) from our spatially 

disaggregated surface water demand maps. This will depend on locally specific technical 

characteristics as well as particular management and policy constraints. The most straightforward 

approach to estimating volumetric domestic water use would be to multiply our domestic demand 

maps by per capita water consumption statistics at the relevant spatial scale. Irrigation water use 

can be estimated in a similar way by combining our maps with specific crop distribution and water 

demand information.  
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Future work should focus on developing actual water abstraction datasets for the countries under 

consideration, which will necessarily involve the cooperation of the various agencies responsible 

for maintaining such datasets. There is progress in this regard, as evidenced by the public 

availability of the national databases that we have used in this analysis. However, there 

considerable data scarcity still remains, which must be addressed to promote integrated water 

resources management at both the regional and national levels. Focus should be directed initially 

at regions with substantial demand. Moreover, instead of measuring individual abstraction points, 

decision-makers can set up measurement stations upstream and downstream of a river reach 

with known significant anthropogenic pressures to get an initial estimate of water use. Such efforts 

are crucial to assess actual water stress in a region undergoing major demographic changes with 

population growth rates up to 2050 projected between 37.7% and 62.4% in Ecuador and Bolivia 

respectively (United Nations Population Division, 2008). Such data could then be coupled with 

regional and global hydrological models to determine anthropogenic impacts on water availability. 

Furthermore, more work needs to be done on understanding water use amongst upper Andean 

communities who might rely on various water sources across a hydrological year or use 

unconventional methods such as rainwater collection or fog harvesting. 

 

 

4. Conclusions 

 

This dataset is intended to help both decision-makers and scientists in achieving a better spatial 

understanding of the impact of surface water demand on water security. Whilst we do not estimate 

actual volumetric water use, our datasets and methodology complement past studies which do 

estimate such requirements but fail to allocate them adequately in space, mainly due to their 
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coarse spatial resolution. Therefore, possible specific applications include combining our maps 

with relevant hydrological data to obtain actual water use, developing risk and vulnerability 

analyses considering the cumulative irrigated area located downstream of a given mining project 

for example.  

We do not consider the data, particularly in Peru and Bolivia, to be suitable for localised 

applications due to the uncertainties involved in the allocation algorithm. Specifically, as the 

algorithm assigns a given demand pixel to the nearest river point, it assumes all demand sources 

use gravity as the main water transport mechanism or use a maximum pumping elevation of 50m. 

Engineering solutions such as transport from upstream areas are therefore unaccounted for. 

Various steps limit the uncertainty generated from such structural issues such as correcting the 

obtained datasets for groundwater abstraction. Finally, as hydrological extremes increase in 

frequency and intensity, adequately mapping the full extent of risk will be key towards ensuring 

better societal preparedness. 

 

Data availability 

 

The data are intended to assist in developing more thorough and accurate assessment of water 

resources availability in the Andean region. The surface water demand data also enable more 

rigorous decision-making across all management and governance scales. Any raw data obtained 

from the respective country national databases used in this analysis can be obtained from the 

corresponding author on reasonable request. The datasets are publicly available at 

http://dx.doi.org/10.6084/m9.figshare.9168041 (Zogheib, et al., 2019). 

The scripts used in the analysis are in the form of freely available GRASS GIS scripts located in 

the Figshare repository. Calculations were done using GRASS GIS (version 7.0) and Python 

(version 3.6.5), both of which are available as open source software. 
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The allocation algorithm is available at: https://www.github.com/ICHydro/r.waterdemand 
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Appendices 

 

Appendix A 

 Domestic Irrigation 

Province SW GW SW GW 

Azuay 22% 78% 88% 12% 

Bolivar 97% 3% 87% 13% 

Canar 97% 3% 93% 7% 

Carchi 78% 22% 94% 6% 

Chimborazo 56% 44% 74% 26% 

Cotopaxi 44% 56% 81% 19% 

El Oro 81% 19% 98% 2% 

Esmeraldas 98% 2% 98% 2% 

Guayas 96% 4% 87% 13% 

Imbabura 67% 33% 91% 9% 

Loja 31% 69% 94% 6% 

Los Rios 91% 9% 69% 31% 

Manabi 36% 64% 98% 2% 

Morona 17% 83% 0% 0% 

Napo 98% 2% 100% 0% 

Orellana 90% 10% 17% 83% 

Pastaza 99% 1% 94% 6% 

Pichincha 51% 49% 80% 20% 

Santa Elena 1% 99% 92% 8% 

Santo Domingo de los Tsachilas 83% 17% 94% 6% 

Sucumbios 67% 33% 59% 41% 

Tungurahua 76% 24% 90% 10% 

Zamora-Chinchipe 99% 1% 99% 1% 

AVERAGE 69% 31% 82% 14% 
Table A1. Ecuador domestic and irrigation water demand percentage from surface water (SW) and 

groundwater (GW) sources per province, based on publicly available data from the Ecuadorian National 

Water Secretariat (SENAGUA). 
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 SW GW 

Irrigation 40% 60% 

Domestic 75% 25% 
Table A2. Peru domestic and irrigation water demand percentage from surface water (SW) and 

groundwater (GW) sources at country level, based on publicly available data from the international 

Groundwater Resources Assessment Centre (IGRAC). 

 

 SW GW 

Irrigation 90% 10% 

Domestic 40% 60% 
Table A3. Bolivia domestic and irrigation water demand percentage from surface water (SW) and 

groundwater (GW) sources at country level, based on publicly available data from the international 

Groundwater Resources Assessment Centre (IGRAC). 

 

 Domestic Irrigation 

Province SW % GW % SW % GW % 

Antofagasta 0% 0% 0% 0% 

Arauco 99% 1% 98% 2% 

Arica 60% 40% 58% 42% 

Aysen 100% 0% 100% 0% 

Bio-Bio 27% 73% 99% 1% 

Buble 0% 0% 0% 0% 

Cachapoal 29% 71% 28% 72% 

Capitan Prat 100% 0% 100% 0% 

Cardenal Caro 92% 8% 91% 9% 

Cauquenes 27% 73% 97% 3% 

Cautin 81% 19% 98% 2% 

Chacabuco 3% 97% 4% 96% 

Chacaral 0% 0% 0% 0% 

Chañaral 16% 84% 0% 100% 

Chiloe 94% 6% 98% 2% 

Choapa 82% 18% 95% 5% 

Colchagua 3% 97% 71% 29% 

Concepcion 22% 78% 99% 1% 

Copiapo 0% 100% 23% 77% 
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Cordillera 100% 0% 98% 2% 

Coyhaique 100% 0% 100% 0% 

Curico 9% 91% 91% 9% 

Del Tamarugal 0% 0% 0% 100% 

El Loa 99% 1% 100% 0% 

Elqui 14% 86% 58% 42% 

General Carrera 100% 0% 0% 0% 

Huasco 0% 100% 1% 99% 

Iquique 2% 98% 78% 22% 

Limari 0% 100% 39% 61% 

Linares 5% 95% 96% 4% 

Llanquihue 78% 22% 98% 2% 

Los Andes 100% 0% 21% 79% 

Magallanes 99% 1% 96% 4% 

Maipo 0% 100% 3% 97% 

Malleco 85% 15% 100% 0% 

Marga Marga 0% 0% 17% 83% 

Melipilla 7% 93% 76% 24% 

Ñuble 60% 40% 97% 3% 

Osorno 81% 19% 94% 6% 

Palena 98% 2% 100% 0% 

Parinacota 100% 0% 100% 0% 

Petorca 1% 99% 12% 88% 

Quillota 0% 100% 1% 99% 

Ranco 85% 15% 87% 13% 

San Antonio 99% 1% 62% 38% 

San Felipe 96% 4% 13% 87% 

Santiago 25% 75% 75% 25% 

Talagante 0% 100% 14% 86% 

Talca 14% 86% 88% 12% 

Tierra Del Fuego 99% 1% 92% 8% 

Tocopilla 0% 0% 0% 100% 

Ultima Esperanza 100% 0% 99% 1% 

Valdivia 99% 1% 97% 3% 

Valparaiso 29% 71% 8% 92% 

AVERAGE 48% 52% 61% 39% 
Table A4. Chile domestic and irrigation water demand percentage from surface water (SW) and 

groundwater (GW) sources per province, based on publicly available data from the Chilean Public Works 

Ministry. 
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