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Abstract

During the last few decades, bed-elevation profiles from radar sounders have been used to quan-
tify bed roughness. Various methods have been employed, such as the ‘two-parameter’ technique
that considers vertical and slope irregularities in topography, but they struggle to incorporate
roughness at multiple spatial scales leading to a breakdown in their depiction of bed roughness
where the relief is most complex. In this article, we describe a new algorithm, analogous to wave-
let transformations, to quantify the bed roughness at multiple scales. The ‘Self-Adaptive Two-
Parameter’ system calculates the roughness of a bed profile using a frequency-domain method,
allowing the extraction of three characteristic factors: (1) slope, (2) skewness and (3) coefficient
of variation. The multi-scale roughness is derived by weighted-summing of these frequency-
related factors. We use idealized bed elevations to initially validate the algorithm, and then actual
bed-elevation data are used to compare the new roughness index with other methods. We show
the new technique is an effective tool for quantifying bed roughness from radar data, paving the
way for improved continental-wide depictions of bed roughness and incorporation of this infor-
mation into ice flow models.

1. Introduction

The mechanical flow of ice is a product of the balance between the gravitational driving force
that acts to move ice downstream and the resistive forces that counter this motion (Paterson,
1994). This counter force is influenced by the nature of the bed, such as thermal regime,
material properties of the bed and roughness of the ice-bed interface. The quantitative descrip-
tion of subglacial topography is therefore important to understanding glacial dynamics
(Hubbard and Hubbard, 1998; Taylor and others, 2004; Rippin and others, 2006), which is
in meter scale roughness that relates to the basal sliding. Theories suggest that ice dynamics
(particularly basal flow) are directly related to bed roughness at a range of spatial scales
(Paterson, 1994; Joughin and others, 1998; Schoof, 2002), and this is increasingly regarded
as an important research area in glaciology (Cooper and others, 2019). Li and others (2010)
showed that bed roughness derived from a frequency domain method applied to ice-penetrat-
ing radar data can be used to deduce the formation (marine or continental) and erosion his-
tory of a variety of end-case landscapes. Recently, bed roughness has also been used to simulate
realistic digital elevation models and to locate subglacial lakes (e.g. Mackie and others, 2020;
Goff and others, 2014). Clearly, a method that allows bed roughness to be extracted from radar
data accurately and efficiently, with maximum information incorporated within the results,
would allow it to become better assimilated into assessments of ice dynamics, glacial history
and basal conditions (Eisen and others, 2020).

The main methods of quantifying bed roughness from radar data can be divided into two
categories: the electromagnetic scattering properties of the bed-echo waveform; and the statis-
tical properties of the along-track topography (Cooper and others, 2019; Eisen and others,
2020).

Analysis of electromagnetic scattering properties involves (1) waveform analysis (e.g.
Cooper and others, 2019), (2) analysis of distribution of peak bed-echo power due to scattering
loss (e.g. Grima and others, 2014), and (3) specularity analysis using different synthetic aper-
ture sizes (e.g. Schroeder and others, 2013). Both theoretical predictions and observations
demonstrate that specular reflections are suppressed in rougher regions (Jordan and others,
2017).

Methods that use statistical properties can be divided into those utilizing the ‘space domain’
and ‘frequency domain’. Space domain methods include some form of functional parameter-
ization, such as the extraction of root-mean-square (rms) height, rms deviation, rms slope and
autocorrelation length (Shepard and others, 2001; MacGregor and others, 2013), from which
variograms (rms height versus profile length) and deviograms (rms deviation versus horizontal
lag) can be constructed, which have been well applied to glacier beds (MacGregor and others,
2013; Jordan and others, 2017). In these methods, bed-roughness results vary with the lengths
of the quantified profile or the spatial lag, often following a power-law trend with these lengths
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(Shepard and others, 2001). In the frequency domain, Hubbard
and others (2000) and Taylor and others (2004) defined a single-
parameter roughness index as the integral of the spectrum within
a specified interval, which can be used to extract the so-called
‘Hurst exponent’ (Martinez and others, 2013) and the corner
wavenumber. This single-parameter roughness index has two
flaws, however: (1) it cannot be used directly to quantify slope
bed irregularities, which leads to topography with different
slope irregularities having similar roughness indices; and (2) it
requires a fixed-size moving window (MW), which limits the
scale of roughness quantified. Addressing the first issue, Li and
others (2010) designed a two-parameter roughness quantization
method, which we call ‘the previous two-parameter method’ in
this paper, that incorporates both vertical change and slope
changes. However, this method is still problematic as it requires
a fixed-size MW. The outcome is that large-scale roughness
results do not incorporate small-scale terrain undulations, and
vice versa. To solve this problem, the ‘wavelet transform’ method
was developed. This technique uses different scales of MW, which
means a variable-size MW, to divide the roughness signal at each
position into components related to scale; the wavelet coefficients
are the weight of each component (Boggess and Narcowich,
2015). Our method uses a range of scales like the wavelet trans-
form method rather than a single-scale like the previous fast
Fourier transform (FFT) methods.

Self-affine roughness (Jordan and others, 2017) is represented
by the ‘Hurst exponent’ as a multi-scale roughness parameter that
can accommodate a span of scales to a certain extent. In this
method, problems occur in relation to ‘breakpoints’,
however, where a power law appears to ‘break over’ and obey a
different power law. This requires the investigator to subjectively
choose where the beginning and endpoints of each trend occur
when a breakpoint is evident (Shepard and others, 2001).
Besides that, the ‘Hurst exponent’ results show rapid local fluctua-
tions on maps (Jordan and others, 2017; Eisen and others, 2020),
which make it difficult to quantify the large span of terrains.

In this article, we describe a new algorithm to quantify bed
roughness, improving the previous two-parameter method (Li
and others, 2010) by accounting for different scales of roughness
through a self-adaptive approach. In addition, the ‘scale’ we use in
this paper is the horizontal length of the bed elevation profile
which is quantified as roughness. In other words, the ‘scale’ in
our method means the horizontal length of the FFT MW and
the ‘scale’ in rms height method means the horizontal length of
the quantified profile.

2 Methods

2.1 Outline and flowchart of the method

To solve the scale problem of the previous two-parameter
method, we propose a self-adaptive two-parameter roughness
quantization technique in four steps, as described in Figure 1.

2.2 Step 1: selecting the range of scale

Our two-parameter roughness method, and the extraction of the
characteristic factors, requires a bed elevation profile with a fixed
sampling interval. It is therefore necessary to interpolate and
resample bed data to ensure the method can work. The roughness,
and the characteristic factors, of each position on the bed is cal-
culated within the variable-size MW at multiple scales. The
total number of along-track sample points in the MW is M =
2N, where N is the window-length exponent. Low-frequency fluc-
tuations are observed on a large scale, and high-frequency fluctua-
tions are observed in the small scale. We therefore calculate the

roughness and the characteristic factors at multiple scales, which
is analogous to the multi-scale decomposition of the wavelet trans-
form. The scale range we need is equivalent to 102− 104 m as it
includes a variety of glacial bedforms that appear within this inter-
val (e.g. drumlins, U-shaped valleys, crag and tails, etc.) (Ó Cofaigh
and others, 2002; Stokes and Clark, 2003).

2.3 Step 2: calculating the two-parameter roughness of
different scales

The first parameter ξN(xi) of the two-parameter roughness index,
whose unit is m2 (Li and others, 2010), describes the magnitude of
vertical deviations in the bed slope, and is calculated by:

Z0(xi) = Z(xi)− �Z (1)

SN (k) = 1
M

FFT(Z0(xi))| |2
M/2

(2)

jN (xi) =
∫k2
k1

SN (k) dk (3)

where x corresponds to the location in the bedrock; xi is the pos-
ition of the point in the variable-size MW (1≤ i≤M); Z(xi)
denotes the bed elevation; �Z is the mean of Z(xi) in the variable-
size MW; Z0(xi) is the mean-detrended profile; SN(k) is the spec-
tral power density of Z0(xi); k is the angular frequency; and k1 is
zero and k2 is infinity.

The second parameter ηN(xi), whose unit is m
2 (Li and others,

2010), quantifies the slope frequency of these deviations, and is
obtained using the ratio of the first parameter defined in equation
(1) to the slope index. The slope index is calculated using the FFT
to convert the slope of the bed elevation profile into the average
power. We obtain the slope index hNsl

(xi), by:

SNsl (k) =
1
M

FFT
(
∂ Z0(xi)( )

)
∂xi

∣∣∣∣
∣∣∣∣
2

M/2
(4)

hNsl
(xi) =

∫k2
k1
SNsl (k) dk (5)

where SNsl (k) is the spectral power density of the slope profile
∂(Z0(xi))

∂xi
. Finally, we obtain ηN(xi) as follows,

hN (xi) =
1
M

jN (xi)
hNsl

(xi)
. (6)

2.4 Step 3: calculating the weights

Three characteristic factors are used to estimate the shape of the
bed elevation profile: (1) the slopes, (2) the skewness and (3)
the coefficient of variation. They are calculated simultaneously
with the variable-size MW.

The slopes are usually used to indicate how inclined a curve is,
which include the leading and trailing edge steepness. The
leading-edge steepness SLlN (xi) of the bed elevation Z(xi) within
the variable-size MW is estimated by:

SLlN (xi) =
Zl(xi)
xi

(7)

where Z l(xi) is the leading edge of the bed elevation.
Similarly, the trailing edge steepness, denoted as SLtN (xi), is
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calculated by:

SLtN (xi) =
Zt(xi)
xi

(8)

where Zt(xi) is the trailing edge. The visualized examples of
SLlN (xi) and SLtN (xi) are shown in Figure 2. The SLlN (xi) and
SLtN (xi) quantify the leading and trailing edge steepness,
respectively.

In general, skewness, which quantifies the degree of asymmetry
of a curve (i.e. the larger the value, the greater the asymmetry)
(Moore and Kirkland, 2007), is a measure of the direction and
degree of deviation of the bed elevation profile from its center.
Firstly, we calculate the expectation value, EN(xi), and the variance,
DN(xi), of the bed elevation profile as follows:

EN (xi) =
∑M
i=1

Z(xi)∑M
i=1 Z(xi)

xi

[ ]
(9)

DN (xi) =
∑M
i=1

x2i
Z(xi)∑M
i=1 Z(xi)

[ ]
− EN (x0)

2 (10)

where x0 denotes the center of the variable-size MW. Next, we
calculate the skewness by:

SKN (xi) =
∑M
i=1

xi − EN (x0)








DN (x0)

√
( )3 Z(xi)∑M

i=1 Z(xi)

[ ]∣∣∣∣∣
∣∣∣∣∣. (11)

The coefficient of variation is a measure of the relative disper-
sion (Yadolah, 2008), and is calculated by:

CVN (xi) =









DN (x0)

√
EN (x0)| | . (12)

The visualized examples of SKN(xi) and CVN(xi) are shown in
Figure 2. As we can see in Figure 2, we chose a mountain, two slopes
and a valley as examples. The mountain is symmetrical, leading to
low values of both SKN(xi) and CVN(xi). The slopes are asymmetrical
and so SKN(xi) and CVN(xi) will both be high or high SKN(xi) and
low CVN(xi). The valley can lead to low SKN(xi) and high CVN(xi).

By evaluating the value of SLlN (xi), SLtN (xi), SKN(xi) and
CVN(xi) from Eqn (7–12), we can quantify the shape of terrain
(Khan and others, 2011; Ilisei and others, 2018), from which we
obtain the weight, WN(xi), of each scale. More detail about how
to obtain the weights and how the weights change with the

Fig. 1. Flowchart of the self-adaptive two-parameter roughness quantization method. The ‘scale’ we use in here refers to the horizontal length of the bed that is
quantified as roughness. MW is moving window.
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three characteristic factors can be found in Appendix A and
Appendix B, respectively.

2.5 Step 4: calculating the self-adaptive two-parameter
roughness index

Finally, the self-adaptive first and second parameter roughness
index, ξMS(xi) and ηMS(xi), are calculated by weighting and sum-
ming the roughness of the different scales in Eqn (1) and (3):

jMS(xi) =
∑Nmax

N=Nmin

WN (xi)jN (xi)
[ ] (13)

hMS(xi) =
∑Nmax

N=Nmin

WN (xi)hN (xi)
[ ] (14)

where Nmin and Nmax are the range of N. ξMS(xi) and ηMS(xi) are
then the self-adaptive two-parameter roughness index.

3. Experiments

3.1 Simulated bed elevations

Since the sampling interval of bed elevations that we use later is
∼19 m (Cui and others, 2018), and the variable-size MW should

Fig. 2. The leading and trailing edge steepness SLlN(xi ) and SLtN(xi ), the skewness
SKN(xi) and the coefficient of variation CVN(xi) for N = 10 of four parts of bed elevation
profile of TT’ in Figure 4. The red line represents SLlN(xi ) and the green line represents
SLtN(xi ). (a) From 136 to 156 km of TT’. (b) From 278 to 298 km of TT’. (c) From 26 to
46 km of TT’. (d) From 145 to 165 km of TT’.

Fig. 3. Random simulated bed elevation profiles with four different roughness. (a)
Our self-adaptive first and second parameter roughness index, whose unit is m2,
ξMS(xi) = 0.34, ηMS(xi) = 1906.1. (b) ξMS(xi) = 1.35, ηMS(xi) = 1906.1. (c) ξMS(xi) = 1.35,
ηMS(xi) = 455.0. (d) ξMS(xi) = 1.35, ηMS(xi) = 7347.3.
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be in the range of 102− 104 m as mentioned above, we use 5≤
N≤ 10 and M = 25− 210(608− 19456 m) to process the real bed
elevation dataset. Hence, the simulated bed elevation that we
used here has 1024 sample points.

To prove the effectiveness of the algorithm in quantifying
roughness, we compare the quantization results of the simulated
beds’ roughness with a variety of irregularities, described in
Figure 3. The simulated bed profiles are generated using a self-
correlation function (Thomas, 1999; Li and others, 2010). Two
controllable inputs, which are standard deviation and autocorrel-
ation length, are used to control the vertical and slope irregular-
ities of the bed, respectively. As we increase the standard
deviation but keep the autocorrelation length unchanged, the
bed elevation profile transforms from that in Figures 3a to b.
Accordingly, our self-adaptive first parameter roughness index
ξMS(xi) increases and our self-adaptive second parameter rough-
ness index ηMS(xi) is unchanged. On the other hand, if the stand-
ard deviation is unchanged but autocorrelation length is
increased, the bed elevation profile changes from that in Figures
3b to c. In this case, ξMS(xi) is unchanged and ηMS(xi) reduces.
Similarly, when the standard deviation is unchanged and autocor-
relation length is reduced, which means the bed changes from that

in Figures 3b to d, ξMS(xi) is unchanged and ηMS(xi) increases.
Theoretically, higher values of the first roughness parameter relate
to higher vertical roughnesses; whereas lower values of the second
parameter roughness correspond with higher slope roughnesses
(Li and others, 2010). This simple analysis shows that the method
is working as it should, and can now be applied to more complex,
real-world examples. The comparison between the results of our
self-adaptive two-parameter method, the previous two-parameter
method and the Hurst exponent method in a simulated bed ele-
vation profile can be found in Appendix C.

3.2 Real bed elevations

The radar profile used in this study was acquired in CHINARE 33
by the Snow Eagle 601, which is a modified DC-3 aircraft fully
equipped with a suite of geophysical instruments. The apparatus
of relevance to this paper is the airborne ice sounding radar, func-
tionally similar with the High Capability Airborne Radar System
(HiCARS), which uses a double flat-plate dipole antenna with a
peak power of 8 kW and a center frequency of 60MHz. The
radar can penetrate Antarctic ice to a depth of more than 3 km,

Fig. 4. The profiles of LSE_GCX0e_Y75a (TT’). (a) Ice velocity map and location of TT’. Ice velocity map is from the MEaSUREs InSAR-Based Antarctica Ice Velocity
Map, Version 2 (Rignot and others, 2017). Grounding lines are shown in green. (b) Ice-sounding radar profile. (c) Ice-surface elevation and bed elevation. Our self-
adaptive first and second parameter roughness index (d) ξMS(xi) and (e) ηMS(xi).
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and can measure internal reflection horizons with a high detec-
tion resolution (Cui and others, 2018).

The radar data were processed using along-track coherent
stacking, pulse compression and along-track incoherent stacking.
The data resolution in the along-track direction is ∼19 m after the
process of interpolation and resampling, and the depth resolution
is ∼10 m in air and ∼5.6 m in ice (Cui and others, 2018). The
bed-ice interfaces were traced and digitized by a semi-automatic
program, using the manually picked lower and upper boundaries
of the bed interface as a constraint on automatic bed interface
picking (Cui and others, 2020). The program was also used to
process the former ICECAP data from the Aurora and Wilkes
subglacial basins (Blankenship and others, 2016, 2017).

In this paper, we have analyzed the radar profile
‘LSE_GCX0e_Y75a’, which is referred to as TT’ and has a length
of 323.9 km. The radar profile is shown in Figure 4b, and its bed
elevation and ice-surface are shown in Figure 4c. The roughness
results from our algorithm are shown in Figures 4d and e. The
radar profile is located between ∼ 77°E and ∼ 87°E in an approxi-
mate west-east direction, covering a region with low ice-flow speed,
ranging from 0 to 20 m~a−1 (Fig. 4a). The bed elevations are high
between 0 and 60 km, and elsewhere vary closer to the sea level
with a relatively low amplitude of several hundred meters. An obvi-
ous mountain occurs between ∼35 and 55 km, and two relatively
smooth areas appear between ∼190 and ∼230 km and between
∼280 km and the end of the profile.

3.3 Comparison of results

3.3.1 The Hurst exponent
The statistical methods used to calculate the Hurst exponent (H),
and thus to quantify the self-affine scaling behavior, are well
established in the literature (Malinverno, 1990; Shepard and
others, 2001; Kulatilake and others, 1998; Orosei and others,
2003). A feature of terrain with a higher H is that it tends to
appear relatively rough at larger length scales (low frequencies)
and smooth at smaller length scales (high frequencies). A feature
of lower H terrain is that it tends to have similar roughness across
different length scales (Jordan and others, 2017). We used the rms
height, R(L), to extract the Hurst exponent:

R(L) =

























1

P − 1

∑L
i=1

Z(xi)− �Z
[ ]2

√√√√ (15)

where P is the number of sample points within the profile win-
dow; and L is the length of the profile window. We then extract
the Hurst exponent H by the rms height as follows:

R(L) = R(L0)
L
L0

( )H

(16)

where L0 is a reference profile length. As L increases, R(L)
also increases, as they have a linear relationship. Thus, the
Hurst exponent H is the slope of L and R(L). The Hurst
exponent is a multi-scale standardized result that can be com-
pared with the rms height, or slopes of different surfaces, as
measured by different tools at similar scales (Shepard and
others, 2001).

3.3.2 Roughness comparisons
Profile TT’ crosses the Kronshtadtskiy Glacier. The first 50 km is
characterized by high ξMS(xi) and high ηMS(xi), while the other
sections are mainly characterized by low ξMS(xi) and low
ηMS(xi) roughness (Figs 4d and e). We now focus on the

mountain at about 40 km (Fig. 5). Comparing the roughness
results of the profile at this place, we can see that ξMS(xi) and
ξN(xi) each have peaks. But ξN(xi) shows very low values from
39 to 42 km, and ξMS(xi) shows high values representing the
span of the mountain. ηMS(xi) has several very low peaks, indica-
tive of high roughness, in contrast to ηN(xi). The trend of Hurst
exponent, ηMS(xi) and ηN(xi) is roughly the same, as described
in Figure 5c.

Li et al. (2010)’s first and second parameter roughness index
ξN(xi) and ηN(xi) are sensitive to the MW size. To prove this, we
calculate ξN(xi) = 55.1 and ηN(xi) = 32.9 at N = 5 in the central
position of the profile, as shown in Figure 5. We then calculate
ξN(xi) and ηN(xi) in same position while increasing N, revealing
differences in both ξN(xi) and ηN(xi) (i.e. ξN(xi) = 30.1 and
ηN(xi) = 22.9 at N = 6; ξN(xi) = 66.0 and ηN(xi) = 86.3 at N = 7;
ξN(xi) = 431.9 and ηN(xi) = 123.4 at N = 8; ξN(xi) = 800.4 and
ηN(xi) = 195.2 at N = 9; and ξN(xi) = 611.4 and ηN(xi) = 174.0
at N = 10). In contrast, our self-adaptive first and second par-
ameter roughness index ξMS(xi) = 332.5 and ηMS(xi) = 105.8
are stable across the scale range, as shown in Figures 5b and
c. The unit of ξN(xi), ηN(xi), ξMS(xi) and ηMS(xi) is m2 (Li
and others, 2010).

Through the last 76 km of TT’, we can see several mountain
peaks and valleys (Fig. 6). By comparing the ηMS(xi) and H of
the profile in this place, we can see that ηMS(xi) has several very
low peaks, indicative of high roughness, but the Hurst exponent
has too many peaks to resolve (Fig. 6c).

Fig. 5. A part of roughness of profile TT’ (from 32 to 52 km). The marked points locate
in the center of the profile. (a) The bed elevation profile. (b) Our self-adaptive first
parameter roughness index ξMS(xi) and Li’s first parameter roughness index ξN(xi).
(c) Our self-adaptive second parameter roughness index ηMS(xi), Li’s second param-
eter roughness index ηN(xi) and the Hurst exponent H. The ξN(xi) and ηN(xi) are calcu-
lated when N = 5.
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4. Conclusions

We describe a new method to determine subglacial topographic
roughness, called the ‘self-adaptive two-parameter roughness
quantization’ method. The algorithm is based on the two-
parameter roughness quantization method and is analogous to a
wavelet transform. According to the weights calculated from
three characteristic factors, the new algorithm can determine
the scale needed to quantify the roughness at any position. This
eliminates the problem of a fixed-size MW of measurements
being unable to cope with roughness at multiple scales.

We use simulated bed elevations to test the new algorithm,
demonstrating hypothetically the effectiveness of the new algo-
rithm in quantifying roughness. In cases where real bed eleva-
tions are used, we show that the algorithm can achieve a
better characterization of roughness than the previous two-
parameter method. Comparisons between the results of our self-
adaptive two-parameter method, the previous two-parameter
method and the Hurst exponent method show the advantage
of our approach in capturing different scales of terrain span
and demonstrate the effectiveness of the new algorithm in quan-
tifying bed roughness.

This method provides an improved tool for quantifying the
roughness of the subglacial environment from a multi-scale
perspective, especially in the analysis of complex subglacial top-
ography. The new method offers a means by which multi-scale
roughness can be quantified at a continental scale. Such a prod-
uct would have significant glaciological applications, especially
in distinguishing between erosional and depositional

landscapes. The method could be applied to higher along-track
resolution data if it is available in the future for evaluating the
magnitude and distribution of basal sliding at the meter scale.
The method works particularly well over subglacial landscapes
with horizontal lengths greater than the length of a traditional
fixed-size MW (e.g. mountains and valleys), resolving the
roughness in all places. It also works well in landscapes that
have notable roughness at a scale less than a fixed-size MW,
as it is able to incorporate the fine-scale roughness within the
wider terrain.

The code/routines of the self-adaptive two-parameter rough-
ness quantization method will be freely available under requests
from any researchers. We hope the new method can be exten-
sively used by the community to characterize subglacial roughness
in future.
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Appendix A. Calculating the weight

By evaluating the value of SLlN (xi), SL
t
N (xi), SKN(xi) and CVN(xi) from Eqn

(9–12), we can quantify the shape of terrain, from which we obtain the weight,
WN(xi), of each scale as follows,

WN (xi) = sgn SLlN (xi)
( )⊕ sgn SLtN (xi)

( )[ ]
× a(xi)

1SKN (xi)∑Nvalid
N 1SKN (xi)

[

+ 1− a(xi)( ) 1CVN (xi)∑Nvalid
N 1CVN (xi)

] (A.1)

where Nvalid are the scales at [sgn(SLlNvalid
(xi))⊕ sgn(SLtNvalid

(xi))] = 1; sgn( · ) is
the sign function that if · >0 return 1 and if · <0 return -1; ⊕ is the exclusive or
(xor) function. The α(xi) is the parameter for adjusting the influence of
SKN(xi) and CVN(xi) on the weight distribution, which is calculated by:

a(xi) = s SKN (xi)( )
s SKN (xi)( ) + s CVN (xi)( ) (A.2)

where s(SKN (xi)) =

























∑Nvalid

N
[SKN (xi)−SKNvalid

(xi)]
2

count(Nvalid)

√
is the standard deviation of

SKN(xi), which is same for σ(CVN(xi)); count(Nvalid) is the count of the
Nvalid; SKNvalid (xi) is the mean of SKN(xi) at N =Nvalid. The greater the measure
of dispersion of SKN(xi), the greater the α(xi), which is same for CVN(xi) and
1− α(xi).

Appendix B. Three characteristic factors and the associated
weights

The changes in the weight WN(xi) with the skewness SKN(xi) and the coefficient
of variation CVN(xi) at N = 10 are shown in Figure 7. To make it easier to under-
stand, we discard the SKN(xi) and CVN(xi) at [sgn(SLlN (xi))⊕ sgn(SLtN (xi))] = 0.

When other conditions remain unchanged, both low values of SKN(xi)
and CVN(xi) will make the WN(xi) high like the part from 41 to 42 km.
The WN(xi) at N = 10 is also influenced by SKN(xi), CVN(xi) and
[sgn(SLlN (xi))⊕ sgn(SLtN (xi))] at N ≠ 10 like the part from 36 to 37 km that
[sgn(SLlN (xi))⊕ sgn(SLtN (xi))] = 0 at N = 5–9.

Appendix C. Comparison of roughness results in a
simulated bed elevation profile

We compare the results of our self-adaptive two-parameter method with
the results of the previous two-parameter method and the Hurst exponent
method in a simulated bed elevation profile shown in Figure 8, which dem-
onstrate the Li’s first and second parameter roughness index ξN(xi) and
ηN(xi) are sensitive to the scale and the Hurst exponent H has the short-
coming of rapid fluctuations. In contrast, our self-adaptive first and second
parameter roughness index ξMS(xi) and ηMS(xi) are stable across the scale
range.

Fig. 7. The changes in the weight WN(xi) with the skewness SKN(xi) and the coefficient
of variation CVN(xi) at N = 10. The example is located in a part of profile TT’ (from 22
to 62 km).
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Fig. 8. The roughnesses of simulated bed elevation profile. (a) Random simulated bed elevation profile about 40 km long; our self-adaptive first and second
parameter roughness index (b) ξMS(xi), (c) ηMS(xi) and Hurst exponent H; Li’s first and second parameter roughness index (d) ξN(xi), and (e) ηN(xi).
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