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Review

Introduction

One of the central aims of contemporary neuroimaging is 
to unify the models of neural structure and function in 
order to shed light, not just on the evolutionary organiza-
tion of the brain, but also on its output, emergent behavior, 
as well as on its disorders. Intuitively, one would expect 
the etiology of brain disorders to be mainly driven by a 
few dominant anatomical regions. However, evidence 
accumulated in recent years has unraveled a different pic-
ture. In fact, most studies indicate that the functional and 
structural variance in the human brain—during normal 
functioning, development, ageing, and disease—tends to 
be widely distributed and can hardly be attributed to a set 
of specific regions (Ecker and others 2010; Thompson and 
others 2001; Zhuo and others 2019). These findings have 
influenced the paradigms used to interpret neuroimaging 
data, which are gradually evolving from phrenological 
perspectives—that aimed to find associations between the 
variance in the data and parsimonious sets of regions (see 
Donaldson 2004; Uttal 2001, for two contrasting views 
on the subject)—to embrace distributed analyses (Sporns 
2011a) that map the data into regional regulatory net-
works. This latter approach has been borrowed from the 
rich literature of complexity science whose main aim is 
to progress our understanding of the essential features 
of complex systems. These two perspectives currently 

coexist in neuroimaging analyses, and their tools are used, 
sometimes interchangeably, on similar datasets or within 
the same study (Brauchli and others 2019; Hebart and 
Baker 2018; Pillet and others 2019).

In this work, we combine a number of mathematical 
concepts with practical examples and observations from 
the literature to build a case in favor of the use of com-
plexity science analytics to study the brain through neu-
roimaging techniques. We aim to demonstrate that if the 
brain is a complex system, and there is strong evidence 
that it is, then the use of traditional models may not fully 
describe the outcomes of imaging experiments. This 

994784 NROXXX10.1177/1073858421994784The NeuroscientistTurkheimer et al.
review-article2021

1Department of Neuroimaging, Institute of Psychiatry, Psychology and 
Neuroscience, King’s College London, London, UK
2Centre for Psychedelic Research, Department of Brain Sciences, 
Imperial College London, London, UK
3Data Science Institute, Imperial College London, London, UK
4Centre for Complexity Science, Imperial College London, London, 
UK
5Global Digital Health Unit, School of Public Health, Imperial College 
London, London, UK
6School of Medicine, Jagiellonian University, Krakow, Poland

Corresponding Author:
Federico E. Turkheimer, Centre for Neuroimaging Sciences, Institute 
of Psychiatry, Psychology and Neuroscience, King’s College London, 
P089, De Crespigny Park, Denmark Hill, London SE5 9RT, UK. 
Email: federico.turkheimer@kcl.ac.uk

A Complex Systems Perspective on 
Neuroimaging Studies of Behavior  
and Its Disorders

Federico E. Turkheimer1 , Fernando E. Rosas2,3,4, Ottavia Dipasquale1,  
Daniel Martins1, Erik D. Fagerholm1, Paul Expert5, František Váša1,  
Louis-David Lord6, and Robert Leech1

Abstract
The study of complex systems deals with emergent behavior that arises as a result of nonlinear spatiotemporal 
interactions between a large number of components both within the system, as well as between the system and its 
environment. There is a strong case to be made that neural systems as well as their emergent behavior and disorders 
can be studied within the framework of complexity science. In particular, the field of neuroimaging has begun to apply 
both theoretical and experimental procedures originating in complexity science—usually in parallel with traditional 
methodologies. Here, we illustrate the basic properties that characterize complex systems and evaluate how they relate 
to what we have learned about brain structure and function from neuroimaging experiments. We then argue in favor 
of adopting a complex systems-based methodology in the study of neuroimaging, alongside appropriate experimental 
paradigms, and with minimal influences from noncomplex system approaches. Our exposition includes a review of the 
fundamental mathematical concepts, combined with practical examples and a compilation of results from the literature.

Keywords
neuroimaging, complexity science, emergence, multi-scale, self-organization, evolution

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/nro
mailto:federico.turkheimer@kcl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1073858421994784&domain=pdf&date_stamp=2021-02-16


Turkheimer et al. 383

issue, we believe, is one of the key drivers behind the 
lack of robustness, replicability, and, ultimately, poor 
interpretability of a significant portion of contemporary 
neuroimaging studies. As a solution, we suggest that 
when a model of complexity is adopted, the choice of 
concepts and tools should be embraced together with 
appropriate experimental designs

The Brain as a Complex System

While the exact definition of a complex system is still 
under debate (Ladyman and others 2013), there is con-
sensus on four properties that all systems characterized as 
“complex” necessarily share. These properties are as fol-
lows (Jensen 1998):

1. Multiplicity. A complex system is made up of a 
large number of components, each of which inter-
acts with its neighboring components in relatively 
simple ways.

2. Nonlinearity. The interactions between compo-
nents are nonlinear, for example, changes in the 
output are not always proportional to the corre-
sponding changes of the input.

3. Self-organization. The system self-organizes 
spontaneously in the absence of any form of cen-
tralized control.

4. Emergence. The system exhibits emergent behav-
ior, that is, the macroscopic behavior cannot be 

understood purely in terms of the microscopic 
interactions (Turkheimer and others 2019). 
Rather, the emergent behavior may result from (a) 
multiscale1 organization; (b) information process-
ing capability; (c) dynamical spatiotemporal pat-
terns; and (d) evolution.

Of these four properties, multiplicity and nonlinearity 
can be seen as the fundamental enablers that—in the 
right circumstances—allow self-organization and 
emergence to happen.

This article analyses the idea of the brain as a complex 
system, exploring each of these four properties under the 
light of recent evidence provided by contemporary neuro-
science. It is to be noted that these properties have been 
studied in depth in the neuroscience literature (Bassett 
and Gazzaniga 2011; Bullmore and others 2009; Deco 
and others 2011; Friston 2009; Kelso 1995; Sporns 
2011b; Telesford and others 2011); of these references, 
the ones that are of practical use (Bassett and Gazzaniga 
2011; Kelso 1995; Sporns 2011a) do not have general but 
rather specific content, while those with more ambitious 
and general scope (Friston 2009; Tononi and others 1994; 
Wolfram 2002) still have limited practical value. Here we 
wish to present a unified and simplified account that 
looks at the four properties above with their interrelation-
ships and consequences in experimental neuroimaging. 
An introductory brief for each of the four properties is 
presented in Boxes 1 to 4.

A dynamical system that consists of a large number of interacting components can arrange itself in a variety of configura-
tions—so-called “microstates”—and the total number of these microstates is known as its “multiplicity.” We can, for 
instance, consider a simple dynamical system that consists of only three components that can  
each take two states: blue or red. One possible state of this system is shown on the right. 
In general, the multiplicity Ω of any system is given by the following relationship:

Ω = ( )( )no of states
no of components

.
.

or in words: the multiplicity is the number of possible states each element is able to take, to the power of the number  
of components comprising the system. For our three-component toy model, the multiplicity is

Ω = =2 83

  Given the simplicity of this system, we can show all of the possible combinations on the left.  
However, for any real system composed of millions of interacting components this would not  
be feasible, which is when one needs to treat the system in question via statistical tools.  
One of the central quantities in statistical physics is the Boltzmann entropy S:

S log∝ Ω

or in words: the entropy of a system is proportional to the logarithm of its multiplicity. Thanks to the properties  
of logarithms, one can find that the Boltzmann entropy satisfies the following property:

log log states comp log statescompΩ =   = × [ ]

Box 1. Multiplicity.

(continued)
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A good way to describe a nonlinear system is to describe what it is not—that is, linear. Linearity means that whatever  
a system receives as input, it will return in proportional amounts as an output, see top two rows of the figure below.
Linear systems are easy to deal with due to their mathematical simplicity and associated computational expediency  
when used in numerical applications. In contrast, a nonlinear system does not respond in such a simple way, in that it  
will produce an output that is not directly proportional to its input. Using a similar  
example as above, the now nonlinear system in the bottom row of the figure  
below receives the same input as the linear response in the middle row,  
but its output is not proportional to the magnitude of the input anymore.
Most natural phenomena are nonlinear and are therefore better described by similarly  
nonlinear equations. However, we pay the price for the complexity in these expressions  
by the associated increase in computation time.
In the case of neural systems, the couplings between stimuli and measurements are  
generally nonlinear, where these measurements are taken from the small-scale  
electrophysiological recordings to the large-scale functional imaging data. For  
|computational feasibility, linear analytical models are at times used  
as an approximation of the underlying nonlinear dynamics.           

Box 2. Nonlinearity.

It is sometimes possible for a coherent organization to emerge within a dynamical system that is initially in a disordered 
state. This organization manifests itself at large spatial scales by virtue of local interactions among the system’s constituent 
components. This phenomenon is known as self-organization and it relies upon the dynamical system in question possess-
ing four essential attributes:
1.  There must be a balance between exploitation and exploration. This feature of any self-organizing system means that its 

interacting elements are able to strike an equilibrium between their tendency to (a) remain within their current region and 
exchange energy with their environment (exploitation) and (b) venture into new territories within the system (exploration). 

    As seen in the diagram on the left, these two attributes can balance to allow the 
system to form an ordered state.

2.  The system must be nonlinear (see Box 2). Briefly, this means that the strength of an input  
into the system is not proportional to the strength of its output.

3.  There must be a large number of small-scale (local) interactions. The contribution of each of  
these interactions is vanishingly small (right diagram), but together they are able to form a  
large-scale system with the appearance of organization.                

4.  The system must be able to resist the tendency toward disorder (via the second law of  
thermodynamics) by the availability of sufficient energy to maintain self-organization.

Brain tissue is currently thought to present self-organization at every scale from the local cortical unit (A) to the larger inte-
gration of cortical areas (B) and its organization principles are similar at every scale.

Box 3. Self-Organization.

which implies that the entropy of a system grows linearly (see Box 2) with the  
number of its constituent components.
Here we provide evidence that (A) brain activity, even during  
simple functional tasks, is associated with very large and distributed  
networks that (B) dynamically interact and form transient states.   

Box 1. (continued)



Turkheimer et al. 385

During the process of self-organization, the interaction among elements generates an organized system with properties 
referred to as being “emergent.” These properties are unique to complex systems and can be summarized by the following 
three points:
1.  Emergent properties cannot be explained solely by the physical attributes of the components which comprise the system.
2.  Once generated via interactions between constituent components, the emergent properties operate and interact with the 

environment via laws that are not reducible to those of the interacting elements.
3.  The emergent properties supersede previously dominant properties of the system and may become the most important 

factor in determining the behavior of the interacting elements—as indicated by the large downward-pointing arrows on the 
right of the diagram below.

The brain is organized in a hierarchy of spatial scales from the cellular milieu (e.g., blood vessels, neurons, and glia) to brain 
tissues, nuclei, and cortical layers (Box 3), which, ultimately, are then further arranged into cyto-architectonic regions. Within 
this hierarchy, each layer exhibits a function that seems to “emerge” from the function of layers at smaller scales. It follows that 
the top level of this hierarchy, human behavior, emerges from interactions within and between these different spatial scales.

Box 4. Emergence.

From Phrenology to AN Extended 
View of Neuroimaging Models

Let us start by considering the nature of the various parts 
that make the brain, which is related to the first property 
of complex systems. One of the longest-standing chal-
lenges in neuroscience is to decipher how variation in 
neural systems—both structural and functional—maps 
onto variation in behavioral phenotypes. The initial 
approach used in the analysis of imaging data was heavily 
influenced by a highly localized perspective relating 
neural and phenotypic variability (Uttal 2001). Its use 
stemmed from the success of neurology/neuropsychol-
ogy at making differential diagnoses, relating dissociable 
cognitive/perceptual disorders to apparent localized dam-
age. Even though the localized damage was just a partial 
view of the underlying pathology, it facilitated the easy 
intuition that there is a clear mapping between form and 
function. As a consequence, it focused on the use of mass 
univariate testing to map brain correlates of such pheno-
typic variation (Friston and others 1991; Worsley and 
others 1996). This paradigm triggered a long and endur-
ing controversy, facing those with the view that it is para-
mount to protect results from false positives by using 
stringent significance thresholds (Eklund and others 
2016), against those concerned about the loss of informa-
tion due to high rates of false negatives (Lieberman and 
Cunningham 2009). To a large extent, this discussion 
stems from conceptual differences in the a priori expecta-
tion of the distribution of the brain’s signals associated 
with a certain phenotype. Whereas the former position 

assumes that variability is highly concentrated in very 
few brain loci, the latter expects wider associations across 
brain networks.

Interestingly, this debate is reminiscent of a similar 
discussion that took place in the early 1900s among 
geneticists, who were divided between the Mendelians—
those inspired by Mendel’s work on pea genetics and saw 
phenotypes as the result of discrete, monogenic vari-
ants—and the biometricians—who did not accept that the 
inheritance of a continuous distribution of traits (e.g., 
height, intelligence, etc.) could be related to individual 
genes. At the time, R. A. Fisher resolved the issue by pre-
senting his seminal work on the infinitesimal model 
(Fisher 1918), in which the inheritance of continuous 
traits could be explained by large numbers of variants, 
each of infinitesimal effect. In this theoretical work, 
Fisher conjectured that a large number of loci should be 
associated with what, at the time, were termed “complex 
traits.” Only about 50 years have passed since the first 
genetic markers allowed for the detection of variants that 
have major effects, and only 20 years since single-nucle-
otide polymorphism technology provided dense markers 
throughout the genome. The combination of technologi-
cal advancements, cost reductions, and increased sample 
sizes has allowed for the gradual expansion of models 
describing the genetic foundations of complex traits. It is 
now generally accepted that common single-nucleotide 
polymorphisms with small individual effect sizes—gen-
erally below the statistical significance levels of experi-
mental designs—account for most of the variability of 
common genetic traits (Goldstein 2009; Shi and others 
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2016; Yang and others 2010). Equally, complex disorders 
that are defined over a clinical spectrum demonstrate 
similarly broad genomic patterns (Smoller and others 
2019). For example, recent work on the genetic architec-
tures of schizophrenia has revealed that more than 70% of 
1-Mb genomic regions contain variants influencing the 
risk of the disorder (Loh and others 2015). In fact, a more 
general “omnigenic” view of complex traits and their 
heritability and evolution is now driving most of the 
genetic contemporary discourse (Boyle and others 2017; 
Sella and Barton 2019).

Moving from the genotype to the intermediate pheno-
type, there is increasing evidence that some of the 
remarkable computational capabilities of the brain, such 
as object recognition, depend on the ability of neural sys-
tems to encode simple inputs into redundant widespread 
representations (DiCarlo and others 2012) and that this 
distributed architecture supports executive function 
(Steinmetz and others 2019). The conceptual models 
used in neuroimaging studies have evolved in the same 
direction. The field has been gradually shifting its focus 
from the analysis of variance to the analysis of covari-
ance, for example, moving from localized effects to dis-
tributed networks (Bullmore and Sporns 2009; Friston 
and others 1993; Greicius 2008; McIntosh and others 
1996; McKeown and others 1998). However, a con-
scious, argumentative debate between these approaches 
has been lacking, and the two methods still coexist. In 
particular, there remains the unanswered question of 
whether complex behavior is supported by activity con-
centrated in few loci or by widely distributed networks. 
The latter view is supported by substantial evidence: 
Gonzalez-Castillo and colleagues used very large sample 
sizes or very extended single subject designs to reveal 
brain-wide functional support for simple tasks in func-
tional magnetic resonance imaging (fMRI) studies 
(Gonzalez-Castillo and others 2012; Gonzalez-Castillo 
and others 2015). Similarly, Haxby and colleagues 
(Haxby and others 2001) demonstrated that the represen-
tations of faces and objects in ventral temporal cortex are 
widely distributed and overlapping; moreover Chu and 
colleagues (Chu and others 2012), using structural data, 
demonstrated that feature selection (e.g., regional varia-
tion) was as effective as total brain volume at predicting 
the progression from minimally cognitively impaired 
cohorts to Alzheimer’s disease.

A complex system perspective on neural function 
results in predictions for the distribution of measured 
neural activity across the brain, which differs from pre-
dictions due to the localized perspective. For discussing 
some of these predictions, here we consider fMRI data 
from the Individual Brain Charting (IBC) project (Pinho 
and others 2018), which consists of a curated fMRI data-
set, acquired in a fixed environment from a permanent 

cohort of the same 12 participants during the performance 
of a dozen tasks, encompassing a wide range of motor 
and psychological domains. The results are presented in 
Figure 1, following the format in Boyle and others (2017) 
where the z-scores obtained from the testing of each task-
versus-control contrast were sorted in descending order 
and plotted versus the log of their rank (only positive 
z-scores were considered). Figure 1A and B depicts sim-
pler (mostly motor) and higher mental processing tasks, 
respectively.

Figure 1. The panels illustrate the vectors of z-scores 
calculated for each voxel by contrasting the activity of task-
versus-baseline (positive values only). Maps were obtained 
from fMRI studies of simple/motor tasks (A) or more complex 
activities such as calculation, language comprehension and 
social cognition (B). The x-axis represents the logarithm of 
the z-score ranks. The red lines represent the same z-scores 
for the normal null distribution. The blue lines represent the 
James-Stein boundaries, that is, the minimal decay of a z-score 
distribution that would justify the use of statistical thresholds 
for the estimation of the z-scored vector for each contrast 
(see Equation 1). The boundary curve has been arbitrarily 
scaled to the maximum z-score value for the group of tasks 
for which the theory suggests the use of shrinkage estimators 
for all vectors with smoother decays.
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These plots are to be contrasted with the expected null 
distribution (red) and the decay (blue):

z Ckk =
−
1

2 ,  (1)

where zk  represents the z-score of rank k ;C  is an arbi-
trary constant (which in the two plots in Figure 1 was 
fitted to the max z-score in each panel); and the exponent 
−1/2 is a minimum bound on the rate of decay of the 
z-scored vector—the estimation of which warrants the 
use of a statistical threshold, whereas vectors with a 
slower rate of decay require approaches based on 
weighted averages of the whole distribution (Donoho and 
Johnstone 1994; Turkheimer and others 2003).

It may be seen that the curves in Figure 1 decay in a 
smooth manner—even in the simpler tasks, in which one 
would expect the signals to be described by a small num-
ber of coefficients with steeper decay rates—and do not 
satisfy the minimum requirement for the use of threshold-
ing. In other words, the boundary in Equation (1) is a way 
of formally stating that the use of thresholds to separate 
signal from noise in a multivariate vector is unwarranted 
when no such clear separation exists. In fact, any small 
change in experimental setting, imaging technology,  
preprocessing, as well as interindividual variability (both 
neural activation, morphological, or nonneural) could 
easily swap the ranks of the z-scores, thus limiting the 
reproducibility of the results (Turkheimer and others 
2003). Furthermore, these plots confirm that the activity 
supporting the execution of a very large variety of tasks is 
distributed across much if not the entire neural system 
and that the brain therefore satisfies the first requirement 
in being classified as a complex system. Note that, as 
each voxel is itself the numerical reflection of the com-
pounded activity of the unit volume, the observations 
made for the time-space scales of fMRI studies may well 
be valid for measurements at higher resolutions made 
with other technologies.

Interaction and Nonlinearity

Let us consider now nonlinearity, the second key aspect 
of complexity. Nonlinearities within a complex system 
arise as a result of interactions between its elements. 
The brain offers several examples of nonlinear relation-
ships between its physiological parameters. For exam-
ple, there is the way in which V1 neurons respond to 
inputs (Williams and Shapley 2007)—where object rec-
ognition is performed by nonlinear operations on dis-
tributed, largely redundant representations (Williams 
and Shapley 2007), or the response of evoked deep tis-
sue pain (Loggia and others 2012)—where the response 
is linearly related to pain intensity in certain regions, but 
is nonlinear in others.

However, the point we want to make in this section is 
that nonlinearities in any system can be generated by the 
interactions among elements when changes are applied 
to the organic whole. To illustrate this perspective, let  
us start with a simple theoretical illustration which, 
although applied to a small number of elements, is quite 
effective to show how—in biological scenarios—simple 
environmental constraints create nonlinear interactions 
among the elements of a group.2 We will then show how 
these inferences might apply to a real scenario. The  
simple example considers a population of rabbits that 
reproduce regularly with a certain birth-rate R. The  
relationship between the number of rabbits at time  
t, denoted by Nt, and the corresponding quantity at time 
t + 1 can be expressed as

N RNt t+ =1 .  (2)

In particular, if one considers the case R = 2 and runs 
three iterations of the model, starting from one rabbit at  
t = 0 we obtain eight rabbits at t = 3, while if we start 
with two rabbits the final total is 16. This confirms that 
this system is linear and that the totality of the system is 
equal to the sum of the parts, as two rabbits produce twice 
the offspring of a single one.

The linear model above can be readily turned into a 
nonlinear complex system with interacting elements if we 
introduce a constraint wherein offspring need to compete 
for resources. Then, the model in (2) turns into the sim-
ple, but effective Verhulst model (Verhulst 1838):

N R N
N

Pt t
t

max
+ = −









1

2

,  (3)

where Pmax  represents the maximum capacity of the envi-
ronment to keep the offspring alive. Setting Pmax =10, we 
run 3 iterations of this algorithm with an initial state of 
one rabbit to obtain four offspring. Running the same 
model with three iterations and starting with two rabbits 
we obtain five offspring. In this case, the offspring of two 
rabbits is not two-times the off-spring of one rabbit (see 
example illustrated in Fig. 2).

The example in Figure 2 demonstrates three important 
phenomena. First, a simple resource constraint on the 
system introduces a highly nontrivial interaction between 
elements, so that the totality is not anymore equal to the 
sum of the parts. Second, this interaction translates into a 
nonlinear behavior observed within the system. Third, the 
reproduction rate in (3) depends on the initial number of 
rabbits Nt.

The insights developed over the simple example can 
be used to understand more complicated issues related to 
brain development, brain ageing, and their disorders. For 
example, it has proven difficult for neuroimaging studies 
in autism to replicate both structural and functional 
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results (He and others 2020; Lotspeich and others 2004), 
whereas the most consistent finding is the heterogeneity 
of imaging results (Lenroot and Yeung 2013). One par-
ticularly interesting finding is related to brain develop-
ment of subjects within the autistic spectrum: these 
populations exhibit increased brain volumes in young 
children, whereas the rate of growth decreases subse-
quently during adolescence to meet the normal develop-
mental curve between 10 and 15 years of age, with the 
volume of many structures finally declining atypically 
into adulthood (Ha and others 2015; Lange and others 
2015; Wolff and others 2018). These findings are para-
doxical from the perspective of a linear system; however, 
it is likely that a suitable nonlinear model of growth could 
explain why a more numerous initial state would 

experience a strong bias downwards in its developmental 
rate, especially when the whole system is placed under 
exogenous pressure.

More generally, it is often noticeable in neuroimaging 
that individual developmental trajectories seem to pro-
vide much better resolution to categorize psychiatric dis-
orders than cross-sectional data (Liberg and others 2016). 
This phenomenon is known in the literature of complex-
ity science and dynamical systems as nonergodicity, 
which characterizes dynamical systems in which the sta-
tistics computed over single trajectories are not necessar-
ily equal to the statistics across the population (Griffith 
1963). This is equivalent to saying that trajectories that 
start from different initial conditions may exhibit differ-
ent dynamics. Nonergodicity has dramatic consequences 

Figure 2. The panel above illustrates a simple linear growth model whereby the offspring of two rabbits is always twice the 
number of offspring of a single rabbit, whatever the number of iterations. In the logistic model below, a resource constraint 
makes the rabbits compete for resources and, this time, the offspring of two rabbits is not twice the offspring of one.
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in the context of ageing and age-related disorders, where 
imaging studies have shown that cross-sectional analyses 
produce findings that are often in discrepancy with longi-
tudinal analyses on the same subjects (Nyberg and others 
2010). In particular, longitudinal analyses unveil com-
plex nonlinear trajectories of structural and functional 
data of anatomically parcellated regions, which can have 
radically different dynamics challenging most available 
explanatory models (Fjell and others 2013; Fox and 
Schott 2004; Good and others 2001; Vinke and others 
2018). Notably, during normal ageing, some brain areas 
may exhibit little age effects on regional cerebral volume, 
while others show a complex, nonlinear relationship with 
age. This is mirrored by the significant intrasubject vari-
ability of cognitive decline—see, for example, the find-
ings of the Nun Study (Snowdon and Nun 2003), in which 
cognitive domains within the same individual deteriorate 
at very different rates (Salthouse 2019).

When it comes to connecting the intermediate pheno-
type (i.e., the brain) with environmental modifiers on the 
one hand and genetic factors on the other, recent analysis 
of very large datasets have demonstrated that individual 
variability of MRI measures across ageing is spread 
across a large number of regional networks, or modes—
each associated with overlapping environmental factors 
and genes (Smith and others 2020). Interestingly, the bio-
logical and genetic factors involved in ageing accrue over 
three fundamental processes: metabolism, stress (particu-
larly its effects on cellular senescence), and immunity. 
However, each of these processes is in itself a complex 
outcome of interactions among multiple genes and envi-
ronmental factors, such as nutrition, environmental/psy-
chosocial stress, and infections (Kim 2007; Shmookler 
and others 2009).

Motivated by the aforementioned evidence, we pro-
pose here that the complex developmental and neurode-
generative patterns observed in structural and functional 
data are the result of nonlinear interactions generated by 
systemic pressures, which stem from metabolic and 
immune challenges punctuated across time (Amad and 
others 2020; Lord and others 2012; Turkheimer and oth-
ers 2020). For example, metabolism is a fundamental 
determinant of neural function, as the brain accounts for 
~2% of total body mass, yet burns ~20% of its energy, 
which is obtained through oxidative glucose metabo-
lism, thus rendering the brain in constant demand of 
oxygen supply from cerebral blood flow (Clarke and 
Sokoloff 1999). In fact, the human brain is, from a meta-
bolic perspective, a scalable version of a primate brain, 
as the energy budget of the whole brain per neuron is 
approximately fixed across species and brain sizes 
(Herculano-Houzel 2011) and hence its development 
has been strictly controlled by metabolic constraints 
(Fonseca-Azevedo and Herculano-Houzel 2012). Brain 

metabolism is mostly devoted to sustaining synaptic 
activity (Sibson and others 1998) and metabolic rates 
influence neural circuitry and activity patterns by exert-
ing selective pressure toward metabolically efficient 
wiring patterns (Chen and others 2006), gray/white mat-
ter segregation (Wen and Chklovskii 2005), neuronal 
morphology (Wen and Chklovskii 2008), and neural 
codes (Balasubramanian and others 2001; Levy and 
Baxter 1996). The metabolic demands of neural cir-
cuitry render the system highly susceptible to mitochon-
drial impairments, oxidative stress, and deficits in 
glucose metabolism and perfusion. Therefore, the 
resulting global metabolic pressure stemming from nox-
ious metabolic events translates into complex, nonlinear 
interactions among the system’s constituent parts.

Following the same principles, we propose that immu-
nity-based secondary processes, that are recurrently asso-
ciated to either developmental or neurodegenerative 
disorders, may generate system-wide pressures that then 
translate into complex outcomes. In fact, either maternal 
infections during gestation, or activation of the innate or 
adaptive immune system caused by stressful events, 
trauma, or infections across a lifespan, have demonstrated 
to be the cause of psychiatric or degenerative conditions 
(Gate and others 2020; Labzin and others 2018; Meltzer 
and Van de Water 2017; Meyer 2019; Miller and Raison 
2016; Richetto and others 2017).

Self-Organization and Criticality

The third key property of complex systems is self-organi-
zation. Self-organization takes place where some form of 
global order arises as a consequence of the local nonlin-
ear interactions between parts of an initially disordered 
system (Bak 1996). Importantly, the organization should 
emerge in a spontaneous manner, provided energy is 
available, and not as a result of the actions of a central-
ized controller or an external guidance. Therefore, the 
self-structuring events are often triggered by seemingly 
random fluctuations, which are dynamically amplified by 
some form of feedback enabled by the underlying nonlin-
earities. The resulting organization is wholly decentral-
ized, being distributed over all the components of the 
system, making it robust and able to endure (i.e., self-
repair) or recover from substantial perturbations (Kelso 
1995). The process of self-organization of a dynamical 
system such as the brain can be visualized as a trajectory 
in n-dimensional phase space (where n is the number of 
its elements) that moves across states that can be described 
in terms of steady states. The evolution of the system is 
constrained to remain on these states and this constraint 
implies some form of coordination between its constitu-
ent elements (Ashby 1947; Rosas and others 2018). A 
substantial amount of evidence, based on both human and 
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animal experiments, indicates the important role of neu-
ral plasticity in the maturation of perceptual and cogni-
tive processes. In other words, neural structures 
underlying these functions require sensory input for their 
maturation, and genetic instructions are not sufficient to 
specify neuronal connections with significant precision 
(Singer 1986; Tetzlaff and others 2010).

Importantly, the brain (as many natural complex sys-
tems) displays macroscopic patterns of activity with spa-
tial and/or temporal scale invariance. The latter is a 
property which results in dynamical systems, for exam-
ple, those exhibiting turbulent flow (Bohr 1998; Deco 
and Kringelbach 2020), evolving in such a way that 
(except at the spatial or temporal extremes) it is not pos-
sible to distinguish the scale at which the system is being 
observed. This self-similar (or “fractal”) character sug-
gests that the self-organizing process that is ongoing dur-
ing the development of the central nervous system (CNS) 
drives the system toward a state called self-organized 
criticality (SOC; Bak 1996; Jensen 1998). SOC was orig-
inally proposed as an explanatory mechanism for the ori-
gin of complexity; systems displaying SOC possess 
long-range correlations both in time and space (Expert 
and others 2011). The philosophy underlying the SOC 
paradigm can be intuitively summarized as follows: the 
current state of a system is a result of all its past states. 
Per Bak used the sand pile model as an exploration of 
SOC (Bak and Paczuski 1995). A sand pile can be orga-
nized by a simple rule that sees the grains falling ran-
domly on a grid and accumulating until they topple 
sideways once they have reached a certain height 
(Pruessner 2012). Once the grid starts filling up, ava-
lanches of various sizes start cascading with an overall 
size-probability distribution which demonstrates the 
characteristic power law behavior observed in self-simi-
lar dynamical systems (Fig. 3).

Many natural systems tend toward such power law 
distributions, as these distributions allow for maximal 
adaptivity and other functional benefits (Shew and Plenz 
2013). As in the case of the sand pile model, any pertur-
bation to the system can be passed across scales and dis-
sipated quickly—this endows the system with stability 
(Bak 1987). Another example of this phenomenon is the 
energy cascade in turbulent hydrodynamic systems, in 
which kinetic energy is passed between eddies of decreas-
ing size until it is distributed, at the smallest scales, to the 
viscosity of the liquid (Kolmogorov 1941).

One important requirement for self-organization is the 
abundance of available energy. In the same way that the 
sand pile needs a constant supply of grains to sustain 
itself in a critical state, the brain devotes up to 80% of its 
energy budget to maintaining its intrinsic activity (i.e., 
brain activity in the absence of an overt motor, perceptual 
or cognitive task), whereas evoked activity in the brain 

does not use more than 1% of its metabolic reservoir 
(Raichle 2015; Raichle and Mintun 2006). This feature 
has been dubbed the Brain’s Dark Energy (Raichle 2006).

Self-organization rests upon four basic requirements 
(NBonabeau and others 1999): (1) interactions between 
multiple constituent elements; (2) strong nonlinearity, 
possibly involving positive and negative feedback; (3) a 
dynamic behavior striking a balance between exploita-
tion and exploration; and (4) availability of energy, which 
allows to overcome the natural tendency to increase 
entropy (e.g., disorder).

The above-mentioned requirements can be readily 
observed in the organization of cortical structures. As 
summarized in Turkheimer and others (2015), the brain 
(primarily the cortex) is made up of a multitude of ele-
mentary units, each of which consists of two neurons—a 
pyramidal excitatory unit coupled with a gamma amino-
butyric acid (GABA) interneuron that, via a delayed neg-
ative feedback, transforms the firing of the unit into an 
oscillation in the gamma frequency (Borgers and Kopell 
2003), the so-called pyramidal interneuronal network 
gamma (PING) network. These elementary units are 
weakly connected via further GABA interneuron projec-
tions into and across the individual neural columns 
(Helmstaedter and others 2009). Therefore, local oscilla-
tions in the gamma frequency are the binding force that 
generates rapid metastable dynamics, moving between 
synchronization and de-synchronization, which spread 
across the cortex. These elementary computational motifs 
have been observed across various brain regions, as well 
as across scales (Turkheimer and others 2015), reaching 
the long-range synchrony of neural activity (Agrawal and 
others 2019; Fagerholm and others 2020; Meshulam and 
others 2019). This supports the view of the brain as exhib-
iting SOC (Cabral and others 2011; Cabral and others 
2014; Roberts and others 2019; Tognoli and Kelso 2014), 
with a distinctive fractal signature both in its structure 
and function (Expert and others 2011; Squarcina and oth-
ers 2015; Turkheimer and others 2015). The fractal distri-
bution of neural output, also known as the 1/f noise, can 
also be observed in the behavioral repertoire, from the 
motor regions to the higher cognitive areas, capturing the 
range between basic physiological responses and creative 
abilities in the human brain (Levitin and others 2012; 
Palva and others 2013). Conversely, evidence suggests 
that this scale-invariance in brain output may be lost dur-
ing anesthesia-induced loss of consciousness (Scott and 
others 2014). Interestingly, self-organized systems may 
produce top-down control, or at least the illusion of it: for 
example, once started by bottom-up synchronization, the 
oscillation of large neuronal masses may take control of 
the activity of smaller primary cortices and generate those 
phenomena related to attention or vigilance (Turkheimer 
and others 2015); these will be shaped by environmental 
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interactions and, ultimately, by evolution. This is differ-
ent from all those proposals where top-down controls are 
somehow hard-wired in the brain (see Grossi [2017] for a 
general discussion on the topic). These ideas lead straight 
to another fundamental property of complex systems—
that of emergence.

Emergence

The fourth property of complex systems is that they are 
characterized by emergent behaviors. Complex systems, 
that is, organisms or environments made up of very large 
numbers of elementary agents (e.g., ants in colonies, 
birds in a flock, or arrays of molecules or weather ele-
ments), can produce an impressive array of sophisticated 
behaviors that cannot readily be explained solely by the 
physical properties of their constituent components. As a 
matter of fact, emergence—although still lacking a pre-
cise definition—has come to be recognized as a key 
ingredient of any system studied under the umbrella of 
complexity science (Turkheimer and others 2019).

The concept of emergence is credited to the physiolo-
gist and philosopher George H. Lewes in his book 
Problems of Life and Mind (Lewes 1879). At the time, 
Lewes was concerned with reductionism, that is, why all 
science does ultimately reduce to physics. Victorian 
England in times of Lewes saw important advances in 
mechanics; however, chemical reactions (e.g., the pro-
duction of water from oxygen and hydrogen) seemed to 
require explanations that were qualitatively different 

from those that contemporary physics could provide. 
Building on this idea, Lewes drew a difference between 
mechanical effects and chemical effects—which he called 
“emergents.” In his words,

The emergent is unlike its components in so far as these are 
incommensurable, and it cannot be reduced to their sum or 
their difference. (Lewes 1879, p. 413)

The notion of emergence was first brought into the neuro-
sciences by Roger W Perry, the 1981 Nobel laureate for 
physiology and medicine, in the context of the mind-body 
problem. According to Perry, emergence

is the idea, in brief, that conscious phenomena as emergent 
functional properties of brain processing exert an active 
control role as causal detents in shaping the flow patterns of 
cerebral excitation. Once generated from neural events, the 
higher order mental patterns and programs have their own 
subjective qualities and progress, operate and interact by 
their own causal laws and principles which are different 
from and cannot be reduced to those of neurophysiology. 
(Sperry 1980, p. 201)

In other words, the behavior of the whole cannot be 
explained purely by focusing only on local spatiotempo-
ral interactions between its elements in isolation—new 
theories are needed to explain these phenomena. 
Similarly, higher order cognitive function operates via 
laws that cannot be reduced to those of neurophysiol-
ogy—instead they operate in the domain of psychology.

Figure 3. A simple sand-pile experiment simulated on a 20 × 20 grid (left); each pixel represents a column where sand piles up 
and colors indicate the number of grains (blue = 0 to yellow = max number of grains = 4). Sand is dropped randomly on the 
grid, and it topples sideways, as well off the grid, when the set limit for the height of a sand column is reached. The right panel 
shows the total sand in the grid through time, as well as the size of the avalanches falling off it.
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Despite their popularity, strong emergent approaches 
have been the source of numerous controversies. From a 
philosophical perspective, strong emergence has been 
accused of being logically inconsistent (Bedau 2002) and 
sustained on illegitimate metaphysics (Bedau 1997). 
Additionally, diverse concerns with respect to strongly 
emergent approaches in neuroscience have been raised, 
including arguments related to their plausibility in regard 
to empirical evidence (Turner 2019), or to potential limits 
of their falsifiability (Colombo and Wright 2018). Finally, 
the fact that consciousness is usually the only proposed 
example of strong emergence in the natural world (see, 
e.g., Chalmers 2006) presumes an exceptionalism of con-
sciousness that could be hard to justify.

These difficulties are avoided by “weak emergent” 
approaches, which rely on computational models that 
start from biologically plausible elementary units and 
build higher order outputs, using tools and concepts bor-
rowed by complexity science (Turkheimer and others 
2019). These models are defined as “weakly” emergent, 
are not limited by ontological faults, have been proven to 
be scalable, and able to realistically simulate the hierar-
chies of brain output and have now reached a level of 
maturity that enables predictions in the clinical realm 
(Deco and Kringelbach 2014; Fagerholm and others 
2015; Lord and others 2017; Proix and others 2017; 
Turkheimer and others 2015; Turner 2019; Zimmermann 
and others 2018).

More technically, weak emergence can be broadly cat-
egorized into computational irreducible and causal emer-
gence approaches. The former, introduced by Bedau 
(1997) based on ideas from Wolfram (2002), posits that 
emergence relates to limitations that hold in practice but 
not in principle; specifically, emergent properties would 
be generated by elements at microscopic levels in such 
complicated ways that they cannot be derived via explan-
atory shortcuts, but only by exhaustive simulation. While 
theoretically attractive, these approaches currently lack 
ways of operationalizing their definitions, and hence their 
practical value is limited. In contrast, causal emergent 
approaches identify formal methods to assess the causal 
power exerted by macroscopic properties of a system. 
Causal emergence has been operationalized using 
Granger Causality (Seth 2010), Pearl’s do() calculus and 
effective information (Chicharro and Panzeri 2014), and 
most recently by Integrated Information Decomposition 
(Oizumi and others 2014).

The Tools

Having examined neural function in terms of the four 
main properties associated with complex systems, we 
now address the question of how the obtained insights 
can be operationalized through the following scheme.

From the Analysis of Variance to the Analysis 
of Covariance

Realizing the large number of degrees of freedom that 
characterize the brain, one suggested approach is to shift 
the focus from the analysis of variance to the analysis of 
covariance. In other words, inference should be driven by 
the way the elements of the systems interact, and less so 
on how much they vary individually. The statistical litera-
ture provides numerous multivariate methods to study 
data covariance, which have been already been adapted 
for use in neuroimaging. A first approach involves using 
standard linear methods such as principal component 
analysis (PCA; Friston and others 1993), independent 
component analysis (ICA; McKeown and others 1998), 
and partial least squares (McIntosh and others 1996). 
Although not aimed at complexity analysis per se, these 
tools can be used to explore patterns in the data, as well 
as to derive approximate measures of complexity. For 
example, the Morgera Information Complexity is a mea-
sure of the extent to which covariance is distributed 
across principal components (Morgera 1985).

Capturing Covariance through Networks

A further approach is to represent covariance as networks, 
which are a popular tool to capture and explore covari-
ance structures (Sporns 2011a). Networks can be built on 
multiple metrics, ranging from standard correlation coef-
ficients to mutual information or model-based indices 
that are generally better suited to capture nonlinear inter-
actions (Song and others 2012). Nonlinear metrics are 
sometimes preferred, as they may avoid spurious patterns 
that can be caused by unjustified linear assumptions 
(Bright and Murphy 2015).

Exploring the Macro- and Meso-Scale of Brain 
Networks

Once the web of interactions has been modelled as verti-
ces and edges, the topology of the structure can be further 
explored, both at the macro-scale level—using graph 
theoretical measures that summarize the network proper-
ties (Bullmore and Sporns 2009)—and at the meso-scale 
level where the topological stability of the structure can 
be further quantified (Expert and others 2019; Petri and 
others 2014).

Toward High-Order Statistical Properties via 
Multivariate Correlation

A third approach to analyze covariant structures is to 
explore multivariate correlations, which capture high-
order statistical properties that go beyond pairwise 
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phenomena (Baudot and others 2019; Mediano and others 
2019; Rosas and others 2019; Tononi and others 1994). 
High-order interactions can also be used to build hyper-
graphs, which are networks were links can connect more 
than two nodes (Bretto 2013). Hypergraph analysis is an 
active area of ongoing research, which is opening novel 
avenues for neuroimaging research (see, e.g., Gatica and 
others 2020).

Designs: From Cross-Sectional to Longitudinal 
and Life-Trajectories

Importantly, the brain is a nonlinear and nonergodic sys-
tem. The discussions above have clarified the importance 
of experimental designs that move beyond stationary 
cross-sectional data paradigms and instead attempt, 
whenever practical, the acquisition of individual trajecto-
ries. This also enables the analysis of initial conditions; 
we have already shown how the artificial splitting of life-
trajectories in development and ageing may result in 
faulted inferences. The consideration of trajectories is 
also relevant at smaller timescales, including the duration 
of a BOLD MRI study where, for example, higher rest-
ing-state functional activity before a stimulus can result 
in less activation or more deactivation (He 2013).

Using Dynamics to Extract Brain States

It is often useful to characterize dynamics in terms of 
“states” or attractors, that is, regional patterns of activity 
between which the system oscillates (Kelso 1995). The 
number of these states and their stability fully define such 
dynamics and can be quantified using standard analytics 
(Calhoun and others 2014; Gonzalez-Castillo and 
Bandettini 2018; Gu and others 2017; Hutchison and oth-
ers 2013; Lord and others 2019; see Fig. 4), which have 
been used successfully in recent work on a broad spec-
trum of psychiatric disorders (de Lacy and Calhoun 2019; 
de Lacy and others 2017; Jin and others 2017; Kaiser and 
others 2016; Lurie and others 2020; Rabany and others 
2019; Sakoglu and others 2010).

From Euclidean to Fractal Geometry

Furthermore, if one accepts SOC as a model for the brain, 
then the use of fractal geometry can be justified in study-
ing brain structural data (Expert and others 2011; 
Squarcina and others 2015) and its deviations from the 
SOC model. Fractal principles enable parsimonious 
methods to explain rich structures, holding great potential 
to explain brain structure and function. SOC approaches, 
however, face a number of important challenges (Beggs 
and Timme 2012), including the analysis of applicability 
of principles developed to study homogeneous systems 

(made, e.g., by equivalent spins) over heterogeneous sys-
tems such as the brain. Also, there is a need to operation-
alize the beneficial properties of criticality, such as 
efficiency and robustness, so that they can render verifi-
able predictions. It must be clarified that these challenges 
do not put in question the core contribution of SOC into 
neuroscience, namely, that by neglecting the right details, 
neuroscience might be capable of finding general under-
lying principles (Chialvo 2018; Cofré and others 2019).

Diversity and Emergence

Finally, the study of complex systems requires the quan-
tification of two key properties: diversity and emergence. 
The first one can be described by a measure of entropy, 

for example, Shannon’s entropy (e.g., 
i

i ip pΣ log  where 

pi  is the probability of state i), or variations of it includ-
ing the excess entropy (Crutchfield and Feldman 2003; 
Grassberger 1986) and the entropy rate—this being 
closely related to the Lempel-Ziv complexity (Schartner 
and others 2017) and the statistical complexity of epsilon 
machines (Muñoz and others 2020; Shalizi and 
Crutchfield 2001). The second one, emergence, is a 
unique attribution of complex systems; the availability of 
one such measure would be a key tool in understanding 
the information flows between the various hierarchies/
layers of neural models. So far, attempts to operationalize 
the various models of emergence have had limited appli-
cability (Hoel 2017; Hoel and Klein 2020; Hoel and oth-
ers 2013; Seth 2010). This work is, however, fundamental 
to the progress of complexity science in general and its 
application to the neurosciences in particular, and novel 
modelling approaches and effective measures are appear-
ing in the recent literature (Rosas and others 2020). These 
quantitative approaches allow researchers to frame 
hypotheses about emergence in a formal, rigorous man-
ner, and test these hypotheses on fine-grained data-driven 
alternatives to traditional all-or-none classifications, 
opening a broad range of possibilities for applications.

Conclusions

We reviewed neural systems from the perspective of 
complexity science and matched the required properties 
of complex systems with evidence from contemporary 
neuroscience. The use of complexity science is not new 
to studies of the brain. However, its use has often been 
intertwined with standard analytical approaches that 
stem from older conceptual frameworks. What is now 
required is the acceptance of these new frameworks 
both in terms of experimentation and analysis. 
Complexity science is itself experiencing ongoing prog-
ress, and some of the required tools are perhaps yet to be 
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discovered. Nonetheless, the potential insights to be 
gained by this paradigm are sufficiently promising to 
render this a very worthwhile endeavor.
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Notes

1. Also sometimes referred to as hierarchical organization, 
see discussion in Simon (1962).

2. The example is taken from the Complexity Explorer course 
of the Santa Fe Institute (URL: https://www.complexityex-
plorer.org).
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