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1. Introduction1

Data from 2010 shows that almost 400 million people lived in areas less than 5m above average sea level (CIESIN,2

2013) and this population keeps growing. As sea levels rise and with the potential for storms to increase in strength3

and frequency due to a changing climate, the coastal zone is becoming an ever more critical location for the application4

of advanced modelling techniques. A significant example is the development and application of improved morpho-5

dynamic models to simulate sediment transport accurately. The effects of climate change will cause hydrodynamic6

changes leading to increased erosion risk in coastal zones. The coupled and non-linear nature of this problem makes7

it especially challenging, since models must solve both hydrodynamic and sediment transport processes together with8

their two-way coupled interactions. Furthermore, there are two types of sediment transport processes that should be9

resolved: suspended sediment in the fluid and bedload transport propagating along the bed itself.10

Over the last 40 years, increasingly sophisticated morphodynamic models have been developed to predict sediment11

transport in fluvial and coastal zones. These models can be one-dimensional (1D), two-dimensional (2D) or three-12

dimensional (3D), and are discussed in detail in Amoudry (2008), Amoudry and Souza (2011) and Papanicolaou et al.13

(2008), which we draw upon for a brief review here. 1Dmodels generally use finite differencemethods to solve a simple14

system of equations and are the cheapest computationally. However, they cannot capture velocity in the cross-stream15

and vertical directions. 2D (or 2DH) models adopt the shallow water approximation and can use finite difference (e.g.16

XBeach –Roelvink et al., 2015), finite volume (e.g. Mike 21 –Warren andBach, 1992), or finite element basedmethods17

to solve a more complex system of equations. They capture velocity in both the streamwise and cross-stream directions18

on planview geometries in the horizontal. 3D models are similar to 2D, but solve an even more complex full system19

of equations using finite difference (e.g. ROMS – Warner et al., 2008), finite volume (e.g. Fast3d – Landsberg et al.,20

1998) or finite element basedmethods. They are thus potentially more accurate, but considerablymore computationally21

expensive. Established modelling frameworks offer 2D and 3D options, such as Telemac-Mascaret (Hervouet, 1999)22

and Delft3d (Deltares, 2014), which use finite element/volume and finite difference based methods, respectively. In23

choosing a model, one must balance the simplicity and computational efficiency of a 2D model against the potential24

accuracy of a 3D one.25

Despite this variety of approaches, Syvitski et al. (2010) argue the need for more accurate and faster morpho-26

dynamic models. The aim of this work is to present a novel and flexible 2D depth-averaged coupled hydrodynamic27

and sediment transport model developed within Thetis, a finite element coastal ocean modelling system (Kärnä et al.,28

2018) built using the Firedrake code generation framework (Rathgeber et al., 2017). This framework is versatile and29

ensures the underlying code is robust and optimised, and can be executed efficiently in parallel. Furthermore, it means30

our model is easily extensible and further work could include using an adjoint allowing sensitivity analyses to be31
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conducted (Farrell et al., 2013) or using an adaptive mesh to further decrease computational cost (McManus et al.,32

2017).33

In this work, a 2D model is deemed appropriate because the depth-scale is much smaller than the horizontal for34

the cases discussed. We extend Thetis’ existing capability to model scalar transport to simulate suspended sediment35

transport and introduce a new capability to model bedload transport. For validation purposes, our results are compared36

with experimental data and the widely used Telemac-Mascaret’s 2D model (Hervouet, 1999) (Amoudry and Souza,37

2011; Papanicolaou et al., 2008). We improve on existing state-of-the-art models by using a discontinuous Galerkin38

based finite element discretisation (DG) available in Thetis (Kärnä et al., 2018). DG has several advantages including39

being locally mass conservative, meaning sediment is conserved on an element-by-element level, which is an advantage40

for coupling (Dawson, Sun and Wheeler, 2004); being well-suited to advection-dominated problems (Kärnä et al.,41

2018); being geometrically flexible; and allowing higher order local approximations (Li, 2006). Morphodynamic42

models usingDG have been presented in Kubatko,Westerink andDawson (2006), Michoski et al. (2013) and Tassi et al.43

(2008), but without suspended sediment transport. To the best of our knowledge, our model is the first morphodynamic44

model with both bedload and suspended sediment transport to use DG.45

The remainder of this paper is structured as follows: in Section 2 we describe our coupled hydrodynamic and46

sediment transport model; in Section 3 we outline details of the finite element model Thetis; in Sections 4 and 5, we47

employ the test cases of a migrating trench and a meander to validate our model and in Section 6 we benchmark our48

test cases against Telemac-Mascaret’s 2D model.49

2. Model derivation50

2.1. Hydrodynamic and sediment transport equations51

In this subsection, we describe the general equations for modelling the hydrodynamic and sediment transport flow,52

and follow the presentation and notation ofWu (2007), wheremore details can be found. The hydrodynamic component53

of the sediment-water mixture is governed by the (3D) Navier-Stokes equations for single phase flow. We use the 2D54

version of Thetis assuming the only external force acting on the system is gravity. We also assume any wavelength55

is much longer than the depth of the fluid, hence the vertical flow variation is small enough to be negligible and56

)u1∕)z = )u2∕)z = 0 (for more details, see Segur, 2009).57

The 2D model is derived by depth-averaging from the bed, zb, to the water surface, �, the hydrodynamic equations.
Thus, we apply the kinematic boundary condition at � as a free moving boundary, and we consider zb to be imperme-
able. Since the bed evolution is slow, imposing a no-slip condition at zb means u1 = u2 = 0 here and the simplified
depth-averaged equation for the conservation of mass is

)�
)t
+ )
)x
(ℎu1) +

)
)y
(ℎu2) = 0, (1)

where ℎ = � − zb is the depth, and u1 and u2 are the depth-averaged velocities in the x and y directions, respectively.58

Note that following convention, depth-averaged variables are denoted with an overbar, as ⋅.59

Applying the boundary conditions, combining dispersion and stress effects, and assuming no wind-driving forces
on the water surface, the depth-averaged equation for the conservation of momentum is

)(ℎui)
)t

+
)(ℎu1ui)
)x

+
)(ℎu2ui)
)y

= −gℎ
)�
)xi

+ 1
�
)(ℎ�i1)
)x

+ 1
�
)(ℎ�i2)
)y

−
�bi
�
, (2)

where, following the notation of Wu (2007), � ij = �t

(

)ui
)xj

+ )uj
)xi

)

and �t is the dynamic eddy viscosity. Note that60

i = 1, 2 represents the x, y-direction respectively. Eq. (1) and (2) comprise the hydrodynamic component of our model.61

We take an Eulerian approach for the sediment transport equations, rather than the more computationally expen-62

sive Lagrangian approach, and make a macroscopic assumption. The sediment dynamics are thus represented via an63

advection-diffusion equation for a sediment concentration field, c. Note that in this work only non-cohesive sediment64

is considered.65

If the sediment diameter is finer than 1mm and the sediment concentration, c, is lower than 10% of the fluid volume
then we can assume there is no mixing at the ‘molecular level’. Hence, there is no diffusion and the only significant
relative motion between the flow and the sediment is settling due to gravity. The low concentration and fine sediment
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size means the settling velocity of the sediment particles ws can be approximated by that of a single sediment particle
in clear water. The equation governing the sediment concentration is

)c
)t
+
)(u1c)
)x

+
)(u2c)
)y

+
)(u3c)
)z

= )
)x
(wsc�31) +

)
)y
(wsc�32) +

)
)z
(wsc�33), (3)

where �3j is the Kronecker delta applied to the vertical component. Time-averaging Eq. (3) to filter turbulence intro-
duces a diffusivity term, �s ∇ ⋅ c, and reads

)c
)t
+
)(u1c)
)x

+
)(u2c)
)y

+
)(u3c)
)z

−
)(wsc)
)z

= )
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(
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)

+ )
)z

(

�s
)c
)z

)

, (4)
where �s is the so-called sediment turbulent diffusivity coefficient, which can be chosen to take a larger than physically66

realistic value as an approximation for unresolved turbulence effects.67

As bedload transport occurs along the bed and suspended sediment transport occurs through the fluid water column,
the domain is conceptually divided into bedload and suspended sediment zones with an interface at z = zb+� consistent
with Tassi and Villaret (2014). At this interface, we define a gradient boundary condition of Eb = −�s

)c
)z |z=zb+� =

wscb∗ and Db = wscb, where Eb is the near-bed sediment erosion flux, Db the deposition flux. As � is assumed to be
small, following standard practice, the boundary condition is applied at z = zb. Therefore, depth-averaging Eq. (4),
combining the diffusion and dispersion effects, and recalling we are modelling a long-term sedimentation process, we
obtain the following non-conservative equation

)c
)t
+ )
)x

(

u1c
)

+ )
)y

(

u2c
)

= )
)x

(

�s
)c
)x

)

+ )
)y

(

�s
)c
)y

)

+
Eb −Db

ℎ
, (5)

where we have chosen to implement a non conservative form for the diffusion term, since the discrepancy is small.68

Due to the coupled nature of our model, we cannot calculate uc, but only the product of ū (from the hydrodynamic
component) and c̄ (from the sediment transport component). These two quantities are not equal because the product of
two integrated variables is not equal to the integral of their product. Thus, following Huybrechts, Villaret and Hervouet
(2010), we rewrite Eq. (5) as an advection-diffusion equation for c

)c
)t
+ )
)x

(

uadv1c
)

+ )
)y

(

uadv2c
)

= )
)x

(

�s
)c
)x

)

+ )
)y

(

�s
)c
)y

)

+
Eb −Db

ℎ
, (6)

with advection velocity
uadv =

uc
c
. (7)

We then use a correction factor Fcorr = uadv∕u to convert ū into uadv. Continuing to follow Huybrechts, Villaret and
Hervouet (2010), if we assume u has a logarithmic profile and c has a Rouse concentration profile, we obtain

Fcorr =
I2 − log

(

B
30

)

I1

I1 log
(

eB
30

) , (8)

where

I1 = ∫

1

B−1

(

(1 − a)
a

)R
da, (9a)

I2 = ∫

1

B−1
log a

(

(1 − a)
a

)R
da, (9b)

with a = z∕ℎ, B= ℎ∕k′s, where k′s = 3d50 is the grain roughness coefficient, andR = ws∕�u∗ the Rouse number, where
� the Von Kármán constant (given as 0.4 in Wu, 2007) and u∗ the shear velocity. To avoid numerical integration, the
Rouse concentration profile is simplified, such that Eq. (9) becomes

I1 =

{

1
1−R (1 − B

1−R), R ≠ 1,
− log(B), R = 1,

(10a)
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I2 =

{

I1+log(B)B1−R

R−1 , R ≠ 1,
−0.5(log(B))2, R = 1.

(10b)

Finally, the sediment concentration equation is
)c
)t
+ )
)x
(Fcorru1c) +

)
)y
(Fcorru2c) =

)
)x

(

�s
)c
)x

)

+ )
)y

(

�s
)c
)y

)

+
Eb −Db

ℎ
. (11)

2.2. Suspended Sediment Transport69

To fully describe Eq. (11), we calculate the sediment source term, Eb − Db, where Eb is the erosion flux and Dbthe deposition flux. From the gradient boundary condition, we recall that
Eb −Db = wscb∗ −wscb = wscb∗ −ws�cc, (12)

where ws is the settling velocity of the particles, cb∗ the equilibrium near-bed sediment concentration, cb = �cc theactual near-bed sediment concentration, and �c a coefficient greater than 1 which accounts for the near-bed sediment
concentration value being higher than c due to gravity. We choose to approximate �c using the following formula
derived in Tassi and Villaret (2014),

1
�c
=

⎧

⎪

⎨

⎪

⎩

|

|

|

|

A(1−Ar)
r

|

|

|

|

, |R − 1| > 10−4,

|−A log(A)|, |R − 1| ≤ 10−4,
(13)

where

r =

{

min(R − 1, 3), |R − 1| > 10−4,
0, |R − 1| ≤ 10−4,

(14)

A = max
(

�
ℎ , 1

)

, R the Rouse number, and � the height of the bedload zone. We calculate ws in Eq. (12) as per Van
Rijn (1984), so that

ws =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gΔd250
18� , d50 ≤ 10−4,

10�
d50

(√

1 + 0.01
gΔd350
�2 − 1

)

, 10−4 ≤ d50 ≤ 10−3,

1.1
√

gΔd50, d50 > 10−3,

(15)

where d50 is the median sediment diameter, � the kinematic molecular viscosity, and
Δ =

�s
�f

− 1, (16)

where �s is the sediment density, and �f the water density.70

As discussed in Garcia and Parker (1991), there are alternative formulae for cb∗ in Eq. (12). In this work, the
following formula is used, which is applicable for fine sediments when no waves are present, and is given by Van Rijn
(1984) as

cb∗ = 0.015
d50
�
S3∕20

d3∕10∗

, (17)

where d∗ is the non-dimensional diameter

d∗ = d50

(

gΔ
�2

)1∕3
, (18)
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and S0 the transport stage parameter

S0 =
Ψ�b − �c

�c
. (19)

See Tassi and Villaret (2014) for more detail. In Eq. (19), �c is the critical shear stress
�c = (�s − �f ) gd50 �cr, (20)

where �cr is the critical Shields parameter; �b is the bed shear stress acting against the velocity flow and equal in
magnitude in both directions

�b =
1
2
�f Cℎ (u

2
1 + u

2
2), (21)

where (u1, u2
) is the depth-averaged velocity; and Ψ is the skin friction correction

Ψ =
C ′ℎ
Cℎ

(22)

where Cℎ is the Nikuradse quadratic drag coefficient

Cℎ = 2
�2

log
(

11.036ℎ
ks

)2
, (23)

where ks is the Nikuradse friction height and C ′ℎ is the Nikuradse quadratic drag coefficient using k′s (the grain rough-71

ness coefficient defined after Eq. (9)) instead of ks. C ′ℎ represents the actual skin friction in our model.72

2.3. Bedload transport73

Following Tassi and Villaret (2014), to model bedload transport we define the bedload transport flux, Qb

Qb = �s

√

g
(

�s
�f

− 1
)

d350 (cos �, sin �) , (24)

where cos � = u1
√

u21+u
2
2

and sin � = u2
√

u21+u
2
2

. We choose the Meyer-Peter-Müller formula to define the non-dimensional
sediment rate �s

�s =

{

0, �′ < �cr,
�MPM(�′ − �cr)3∕2, otherwise, (25)

where �cr is the critical Shields parameter, �MPM a coefficient equal to 8, as suggested by Tassi and Villaret (2014),
and �′ the non-dimensional Shields parameter

�′ =
Ψ�b

(�s − �f )gd50
, (26)

with Ψ given by Eq. (19) and �b by Eq. (21).74

2.3.1. Slope effect75

In practice, the magnitude and direction of Qb depends on the gradient of the bed, but this is not reflected in Eq.76

(24). When the bed has a positive gradient in the transport direction, gravity acts against the sediment causing the77

magnitude of Qb to decrease and its direction to alter, and vice versa for a negative gradient.78

(i) Magnitude correction79
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Figure 1: Secondary current in curved channel, adapted from Park and Ahn (2019).

In correcting the magnitude we use

Qb∗ = Qb

(

1 − Υ
)zb
)s

)

, (27)

given in Soulsby (1997), where s is a direction tangential to the current and Υ an empirical coefficient set to 1.3 (Tassi80

and Villaret, 2014).81

(ii) Angle correction82

Following Talmon, Struiksma and Mierlo (1995), we set
T = 1

�2
√

�
, (28)

where �2 is an empirical coefficient (equal to 1.5 for river test cases) and � is given by

� =

(

�f − �s
)

gd50

max
(

1
2�fCℎ‖u‖

2, 10−10
) , (29)

with Cℎ defined as in Eq. (23). Thus

Qb =

(

�s

√

g
(

�s
�f

− 1
)

d350 (cos �, sin �)

)

, (30)

where � is the corrected angle defined by
(

sin �
cos �

)

= 1
‖p‖2

(

p1
p2

)

= 1
‖p‖2

⎛

⎜

⎜

⎝

sin � − T
(

)zb
)y

)

cos � − T
(

)zb
)x

)

⎞

⎟

⎟

⎠

, (31)

where p = (p1, p2).83

2.3.2. Secondary current84

As illustrated in Figure 1, depth-averaged models for curved channels need to account for both the current and
helical flow effects. This affects the magnitude and direction ofQb and in Tassi and Villaret (2014) is implemented on
top of slope effect corrections. Accordingly, we implement a secondary current using

tan & = 7ℎ
r
, (32)

given in Engelund (1974), where & is the angle between the bedload transport and the main flow direction, ℎ the mean
water depth, and r the local radius of curvature of the streamline calculated using

r =
�′(u21 + u

2
2)

g )�)n
, (33)

where � is the elevation, n a direction normal to the current and �′ a coefficient which lies between 0.75 (rough bed)85

and 1 (smooth bed).86
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Using Eq. (32), we construct the term

Ξ =
√

(

�bΥcos � + �bu2 tan &
)2 +

(

�bΥ sin � − �bu1 tan &
)2, (34)

where �b is the bedload shear stress defined by Eq. (21), and � and Υ are the corrected flow angle and magnitude87

factors (Section 2.3.1).88

Hence, we define a new corrected bed transport flow direction �̂ with

cos �̂ =
�bΥcos � + �bu2 tan &

Ξ
, (35a)

sin �̂ =
�bΥ sin � − �bu1 tan &

Ξ
, (35b)

and a new slope magnitude correction factor

Υ̂ = Ξ
�b
. (36)

Note that if a secondary current effect is imposed without slope effect corrections, then Υ = 1 and � = �, i.e. the89

original flow angle.90

2.4. Calculating the new bedlevel91

The new bedlevel, zb, is affected by both the suspended sediment and bedload transport described in Sections 2.2
and 2.3, and is governed by the Exner equation

(1 − p′)
dzb
dt

+ ∇ℎ ⋅Qb = Db − Eb, (37)

where p′ is the bed sediment porosity. This completes the model equations.92

2.5. Practical application within the Thetis framework93

When implementing our model, two common techniques for algorithm stability and efficiency reasons are adopted94

as follows:95

2.5.1. Spinning up the hydrodynamics96

Once the simulation starts, we are forcing a previously motionless flow, and the resulting flow instabilities could97

trigger unrealistic bedlevel changes. Following standard practice (e.g. Gerritsen et al., 2008), we avoid this by first98

running a simulation solving only the hydrodynamic equations. Once the velocity and elevation fields have reached a99

quasi-steady state, we trigger sediment and bedlevel changes.100

2.5.2. Morphological scale factor101

Once running a bed evolution simulation for a long period of time, a morphological scale factor, m, is often used
(e.g. Gerritsen et al., 2008) which amplifies the rate of bedlevel changes to save computational time. This factor means
that eachΔt in the hydrodynamic and sediment concentration equations is equivalent to mΔt for the bed evolution. We
implement this by including the factor m in the Exner equation (37)

(1 − p′)
m

dzb
dt

+ ∇ℎ ⋅Qb = Db − Eb. (38)

This factor is suitable because the hydrodynamics are in an approximate steady state, and we assume throughout that102

changes in the bed are significantly slower than in the hydrodynamics.103

3. Finite element based implementation104

We build on existing elements of Thetis for the implementation of a coupled hydrodynamic and sediment transport105

model. Thetis is a finite element coastal ocean modelling system (built using the code generating framework Firedrake)106
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which is first described in Kärnä et al. (2018) with a 3Dmodel. We use the 2D depth-averaged version of Thetis outlined107

in Vouriot et al. (2019), which solves the shallow water equations and the non-conservative form of a depth-averaged108

sediment concentration equation, as discussed in the previous section.109

We use a discontinuous Galerkin based finite element discretisation (DG) which has several advantages in this110

context, as discussed in Section 1.111

3.1. DG based methods in Thetis112

When using DG based methods, we generate an unstructured mesh of triangular elements tesselating our domain
Ω and define our finite element space on this mesh. Using a discontinuous function space requires the definition of
variables on element edges (including on the domain boundary dΩ), with the union of these edges denoted by Γ. The
average operator {{⋅}} and jump operator [[⋅]] across the interior edges on scalar and vector fields are

{{X}} = 1
2
(X+ + X−), [[�]]n = �+n+ + �−n−,

[[X]]n = X+ ⋅ n+ + X− ⋅ n−,

where n = (nx, ny, 0) is the horizontal projection of the outward pointing unit normal on the element edge, and ‘+’ and113

‘−’ denote either side of the interior edge.114

3.1.1. Depth-averaged sediment concentration equation115

Thetis uses very similar techniques to solve the hydrodynamic equations, (1) and (2), and the sediment concentration116

equation (11). We focus on the latter because it is themost pertinent for this work; the formulation for the hydrodynamic117

equations can be found in Kärnä et al. (2018), Pan, Kramer and Piggott (2019) and Vouriot et al. (2019).118

To define the sediment concentration on the element edges, Thetis uses an upwinding scheme, c: at each edge,
c is chosen to be equal to its upstream value with respect to velocity, cup (see Leveque, 1996). We discretise the
sediment concentration equation (11) using the implicit Backward Euler timestepping method. The starting point for
our numerical implementation is the following weak form

∫Ω
 
⎛

⎜

⎜

⎝

c(n+1)i − c(n)i
Δt

⎞

⎟

⎟

⎠

dx + ∫Ω
 u(n+1)i ⋅ ∇ℎc

(n+1)
i dx − ∫Ω

 ∇ℎ ⋅
(

�s∇ℎc
(n+1)
i

)

dx = ∫Ω
 
(

Enbi −D
n
bi

)

dx, (39)

where  is the test function employed in the weak formulation of the finite element method. Note that as Eb and Db119

are calculated explicitly using (12), the full formulation is semi-implicit.120

Several choices can be made to reach the final form used in the model. We choose to integrate the advection term
by parts to obtain a boundary integral term, which allows the imposition of boundary conditions on our equation and
the fluxes between elements on the element boundaries to be controlled. Thus the weak form of the advection term
becomes

∫Ω
 u ⋅ ∇ℎcdx = −∫Ω

c∇ℎ ⋅ (u )dx + ∫Γ
cup [[ u]]nds. (40)

For the diffusivity term, we must transform the second order derivative to a first order one since the equations are
solved using a piecewise linear function space. Following Kärnä et al. (2018), we thus integrate by parts, applying the
Symmetric Interior Penalty Galerkin (SIPG) method given in Epshteyn and Rivière (2007) to ensure the discretisation
is stable. Thus the weak form of the diffusivity term becomes

−∫Ω
 ∇ℎ ⋅ (�s∇ℎc)dx = ∫Ω

�s(∇ℎ ) ⋅ (∇ℎc)dx − ∫Γ
[[ ]]n ⋅ {{�s∇ℎc}}ds − ∫Γ

[[c]]n ⋅ {{�s∇ℎ }}ds

+ ∫Γ
�{{�s}}[[c]]n ⋅ [[ ]]nds.

(41)

where � is the penalty parameter of the SIPG method given in Kärnä et al. (2018).121

To solve the full sediment concentration weak form equation, Thetis formulates the equation as a matrix problem122

for c(n+1) and uses the generalised minimal residual method (GMRES) to solve the system (see Jacobs and Piggott123
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(2015)). The use of upwinded numerical fluxes and slope limiters means our model is robust at modelling steep bed124

gradients formed such as those in the migrating trench test case in Section 4 (see Kubatko, Westerink and Dawson,125

2006). Furthermore, the combination of a DG based method with a semi-implicit timestepping method makes our126

model very stable.127

3.1.2. Exner Equation128

In order to avoid grid-scale noise and unstable oscillations in solving the Exner equation (37), we define the
bedlevel, zb, on a continuous grid, and thus use a continuous Galerkin based finite element discretisation (CG). We
project all hydrodynamic and sediment transport variables from the DG space into the CG space before calculating
the terms in the Exner equation. This causes a minor loss of accuracy in model variables, but overall a more stable
bedlevel result. The weak form of the divergence term ∇ℎ ⋅Qb is

∫Ω
 ∇ℎ ⋅Qb dx = −∫dΩ

(Qb ⋅ n) ds + ∫Ω
(Qb ⋅ ∇ℎ) dx. (42)

Here the only boundary contribution is from the domain boundary dΩ because we are on a continuous grid and are
assuming centred fluxes on interior edges. Therefore the values on either side of each interior edge cancel over the
whole domain. We use the implicit backward Euler method to solve Eq. (37) allowing us to use large timesteps stably.
Thus

∫Ω

⎛

⎜

⎜

⎝

(1 − p′)
z(n+1)bi

− z(n)bi
Δt

⎞

⎟

⎟

⎠

 dx = G(n+1)i , (43)

where G(n+1)i is the sum of the weak form of the source term (as in (39)) and (42). Note that the radius of curvature,129

(33), in the secondary current parametrisation is dependent on the surface elevation � rather than on zb. Hence, we130

rewrite � as (ℎ + zb) meaning we can benefit from an implicit discretisation.131

4. Migrating trench test case132

We consider the simple test case of a migrating trench (as in, for example, Gerritsen et al. 2008 and Van Rijn 1980)133

to validate the implementation of the mathematical and numerical methods used in Thetis, by using experimental data134

from a lab study in Van Rijn (1980) and results from Villaret et al. (2016).135

In Villaret et al. (2016), for this test case, a coupled model is used comprising Telemac-Mascaret’s 2D depth-136

averaged hydrodynamic module, Telemac2D, and its sediment transport and bed evolution module, Sisyphe. We refer137

to this coupled model as Sisyphe. For the discretisation, they use Telemac-Mascaret’s continuous finite element model138

(Danilov, 2013) with the method of characteristics for the hydrodynamic advection terms and distributive schemes139

for the sediment transport advection terms. The method of characteristics has the advantage of being unconditionally140

stable, but is not mass conservative and is diffusive for small timesteps, meaning the problem is artificially regularised141

with potentially spurious mixing. Distributive schemes are mass conservative, but also have high numerical diffusion142

and Courant number limitations to ensure stability. For further details on both methods, see Hervouet (2007) and Tassi143

and Villaret (2014). The limitations of these two methods in part motivate our use of DG based methods in Thetis.144

4.1. Test case configuration145

In Figure 2, the initial trench profile and the final bedlevel profile after a 15 h experiment is observed demonstrating146

the trench migration over time.147

For Sisyphe, we use the model of Villaret et al. (2016), and summarise the parameter values in Table 1. As these148

have been calibrated and validated by experiments, Sisyphe’s results can assist the validation of our model. Thus, we149

use the same parameter values in Thetis on a grid of mesh size Δx = 0.2m in the x-direction. A coarser Δy = 0.22m150

is set in the y-direction in our Thetismodel than Villaret et al. (2016), who applied Δy = 0.11m. We found that unlike151

in Sisyphe, our model results are consistent with eitherΔy, indicating that our model is more robust. Thus we adopt the152

less computationally expensive option. Finally, we use the boundary conditions from Section 2 and set the incoming153

suspended sediment flow rate so that the erosion flux, Eb, equals the deposition flux, Db, at the upstream boundary.154

Hence, sediment equilibrium is established at the inlet and the bed remains unaltered.155
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Figure 2: Bedlevel after 15 h for different morphological scale factors comparing experimental data, Sisyphe and Thetis. Experimental
data and initial trench profile source: Villaret et al. (2016).

Table 1
Parameter values for the migrating trench test case Villaret et al. (2016)

Variable Name Variable Value
Length in x-direction 16m
Length in y-direction 1.1m
Morphological simulation time 15 h
Depth 0.397m
Downstream elevation 0.4m
Upstream flux 0.22m3 s−1

Median particle size (d50) 1.6 × 10−4 m
Sediment density (�s) 2650 kgm−3

Water density (�f ) 1000 kgm−3

Kinematic viscosity (�) 1 × 10−6 m2 s−1

Bed sediment porosity (p′) 0.4
Diffusivity (�s) 0.01m2 s−1

Nikuradse friction height (ks) 0.025m

4.2. Results156

We run both Thetis and Sisyphe for this test case. As discussed in Section 2.5, a pure hydrodynamics simulation is157

run for 200 s ramping up the initial hydrodynamic conditions for our coupled simulation with bedload and suspended158

sediment transport. We do not use either the slope effect angle correction or secondary current here because both are159

superfluous in a straight channel.160

Figure 2 shows that the bedlevel results from Thetis and Sisyphe agree in both magnitude and profile, but are clearly161

different from the experimental data. By contrast, when Villaret et al. (2016) use the parameter values in Table 1, the162

Sisyphe results agree with the experimental data. The difference between the two set-ups is the timestep, Δt: Villaret163

et al. (2016) use Δt = 1 s, whereas we use Δt = 0.05 s in Figure 2. This choice of Δt is because Thetis requires a164

smaller Courant number (UΔt∕Δx) than Sisyphe and for comparability reasons the same Δt is used in both models. A165

possible explanation of this Courant number requirement in Thetis is that the overall model can be perceived as semi-166

implicit since all model equations are solved implicitly (or semi-implicitly for the sediment concentration equation),167

while the coupling of the hydrodynamic and sediment transport components is explicit.168

Figure 2 also illustrates that using either a morphological scale factor of 10 or 1 in our Thetis model gives very169

similar results. Unless otherwise stated, all figures in this section are produced using a morphological scale factor of170

10. Although Sisyphe has an option for a morphological scale factor, it is not imposed in this work in Sisyphe because171

neither Villaret et al. (2016) or Villaret et al. (2013) apply it.172

4.2.1. Sensitivity study173

The dependence of Sisyphe’s results onΔt presents a necessity for a sensitivity study on the robustness of themodels174

to small changes in physical parameters, timestep and/or mesh step size. First, we explore the impact of varying Δt175

and the mesh sizeΔx on the final bedlevel. Note that once the mesh sizeΔy is small enough that the results are smooth176

in Sisyphe, it has no effect because there is negligible bedlevel variation in that direction. Figure 3a shows that the177

Sisyphe bedlevel results vary significantly with Δt. Only when Δt = 1s, the value of Villaret et al. (2016), is there a178

good agreement between Sisyphe and the experimental data. As Δt decreases, Sisyphe’s results converge to the same179

result as Thetis in Figure 2. By contrast, bedlevel results from Thetis are largely insensitive to changes in Δt, as seen180

in Figure 3b.181
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(a) Sisyphe with Δx = 0.2m. (b) Thetis.

(c) Sisyphe with Δt = 0.01 s. (d) Sisyphe with Δt = 1 s.
Figure 3: Sensitivity of bedlevel to Δx and Δt.

Furthermore, we run a small study to investigate whether Sisyphe is always sensitive to Δt for this test case. When182

the method of characteristics is chosen for the hydrodynamics, as in Villaret et al. (2016), we find Sisyphe is always183

sensitive to Δt, independent of the choice of morphodynamic scheme. Other methods for the hydrodynamics have184

stricter Courant number criteria, requiring Δt < 0.01 s to run (even smaller than our Thetis value), meaning this effect185

is less noticeable.186

We also run a sensitivity study for Δx and find that for finer meshes than that used in Villaret et al. (2016), both187

models were insensitive to Δx (see Figures 3b, 3c and 3d). However, one of the advantages of the DG method is that188

it is good at dealing with sharp gradients. To illustrate this we run the test case with a significantly coarser mesh of189

Δx = 0.5m. Thus in the x-direction, each side of the trench is initially represented by three mesh elements and the flat190

bottom of the trench is initially represented by six mesh elements. The mesh nodes are located exactly at the vertices of191

the slope, meaning that the initial geometry is accurately represented by this mesh. Figure 4b shows that for our Thetis192

model there are no observable differences between the coarser and finer meshes. On the other hand, Figure 4a shows193

that Sisyphe fails to produce an accurate solution. Due to instabilities, the Sisyphe solution has also broken symmetry194

in the y-direction meaning that it is no longer independent of y, indicating Sisyphe has not converged accurately. To195

show the solution’s dependence on y, in Figure 4a, we show the final bedlevel transects at the beginning (y = 0.0m),196

midpoint (y = 0.55m) and end (y = 1.1m) of the domain (recall that in Sisyphe, Δy = 0.11m). By contrast in Figure197

4b, as in the other figures in this section, we only need to show the transect at the midpoint because the solution from198

our model is effectively independent of y.199

Given the robustness of Thetis from this point onwards all our model results for the migrating trench test case apply200

Δx = 0.5m and Δt = 0.6 s. Given the lack of robustness in Sisyphe from this point onwards all our Sisyphe model201

results for the migrating trench test case use Δt = 0.01 s.202

For small values of Δt, Thetis and Sisyphe are consistent. We conjecture that the errors caused in Sisyphe with203

larger Δt values manifest themselves as an increase in effective diffusivity in the model. We thus conduct a sensitivity204

study for the sediment turbulent diffusivity coefficient, �s. For this study, we choose Δt = 0.01 s in Sisyphe. Bedlevel205

results from both Sisyphe and Thetis in Figures 5a and 5b show they are indeed greatly affected by �s and, importantly,206

that both models behave consistently. Note that, due to stability constraints, Sisyphe does not run with �s > 0.2m2 s−1,207

unlike Thetis. The observed sensitivity to �s is to be expected because the grid Peclet number (UΔx∕�s) decreases208

with �s, making diffusion the key driver of the sediment concentration equation, rather than advection. Thus, we can209

use �s to calibrate both models; in Sisyphe, Δt can be used to similar effect. If we set �s = 0.15m2 s−1, Thetis and210

Sisyphe’s converged results agree well with each other and with the experimental data, as shown clearly in Figure 6.211

Thus, we have validated Thetis for this simple test case.212
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(a) Sisyphe (Δt = 0.01 s) (b) Thetis

Figure 4: Bedlevel using a very coarse mesh (Δx = 0.5m) compared with a fine mesh (Δx = 0.1m) for reference.

(a) Sisyphe. (b) Thetis.

Figure 5: Sensitivity of bedlevel to diffusivity.

Figure 6: Bedlevel from Thetis and Sisyphe after 15 h using �s = 0.15m2∕s.

5. Meander test case213

Our second test case regards the curved channel of a meander, which requires and demonstrates the implemen-214

tation of a slope effect angle correction and a secondary current. This test case is used to validate these additional215

functionalities, and affirm our model can handle more complex and realistic set-ups.216

5.1. Test case configuration217

We use the configuration from experiment 4 from Yen and Lee (1995) and validate Thetis through the experimental218

data and Sisyphe results fromVillaret et al. (2013). Most of the bed changes occur at the boundary so, following Villaret219

et al. (2013), we use a finer mesh there (0.1m) and a coarser one (0.25m) along the centre of the channel, as in Figure220

7.221

We impose time dependent flux and elevation boundary conditions reproducing Yen and Lee (1995). The initial222

inflow flux and outflow elevation are 0.02m3 s−1 and 0m, respectively. Both increase linearly until reaching their223

respective maximums of 0.053m3 s−1 and 0.103m at 100min, and then decrease linearly to their initial values at 5 h.224

We also impose a free-slip condition on the meander boundary walls.225

In both Thetis and Sisyphe, we use the parameter values summarised in Table 2. Following Villaret et al. (2013),226

we only model bedload transport because this is the principal sediment transport component in rivers. Hence, we do227
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Figure 7: Meander mesh and domain used both in Thetis and Sisyphe by Villaret et al. (2013).

Table 2
Parameter values for the meander test case Villaret et al. (2013)

Variable Name Variable Value
Channel width 1m
Inner radius 3.5m
Outer radius 4.5m
Straight reach at channel ends 11.5m
Morphological simulation time 5 h
Depth 0.0544m
Median particle size (d50) 1 × 10−3 m
Sediment density (�s) 2650 kgm−3

Water density (�f ) 1000 kgm−3

Kinematic viscosity (�) 0.01m2 s−1

Bed sediment porosity (p′) 0.4
Nikuradse friction height (ks) 0.0035m

not need to specify the diffusivity coefficient �s. The implementation of the secondary current requires we determine228

the flow roughness to set the value of �′ in Eq. (33). Following Kulkarni and Sahoo (2013), we calculate that the229

roughness Reynolds number, defined by (ks√�b)∕(�√�f ), is approximately 80, and conclude that the case is subject230

to a rough turbulent flow regime. Consistently with Tassi and Villaret (2014), we use �′ = 0.75.231

5.2. Results232

5.2.1. Modelling the hydrodynamics233

If the same viscosity value is applied when modelling the hydrodynamics for the meander test case as for the234

migrating trench test case (1 × 10−6m2 s−1), our model does not accurately solve the flow at the meander boundary235

walls. Instead of finding a smooth solution, the flow magnitude increases dramatically in cells closest to the boundary.236

However molecular viscosity values (1 × 10−6m2 s−1) only become relevant at the Kolmogorov scale. This test case237

is at a much larger scale where viscous turbulence forces exist. As such the viscosity is acccounting for the turbulence238

or eddy viscosity and a value of 1 × 10−3m2 s−1 (the value by Vouriot et al. (2019) for their Thetis test case) is more239

appropriate. As we increase � in the hydrodynamic equations (1) and (2) the flow becomes smoother and for viscosity240

values of O(1 × 10−3) the boundary issue no longer exists. The issue itself is related to the manner in which boundary241

conditions at closed impermeable boundaries are imposed in equal order DG discretisations and will be addressed in242

the future.243

As we are not using a turbulence model, to find the correct value of �, we use Sisyphe’s hydrodynamic results to244

calibrate our model, noting that Villaret et al. (2013) use 1 × 10−2m2 s−1. These alterations in � change the nature of245

the test case, but can be balanced by altering the longitudinal bed slope. In Yen and Lee (1995), the meander has a246

longitudinal bed slope of 0.002, as in Villaret et al. (2013). We find that for a longitudinal bed slope of 0.0035 and �247

of 0.035m2 s−1, our model’s velocities match those in Sisyphe reasonably well, as shown in Figures 8a and 8b. These248
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(a) Streamwise velocity, u1. (b) Cross-stream velocity, u2.

Figure 8: Minimum and maximum velocities from Thetis (� = 0.035m2 s−1, slope = 0.0035) with a morphological scale factor of 1
and 10, and Sisyphe, present study, (� = 0.01m2 s−1, slope = 0.002).

(a) No physical
corrections.

(b) Only slope effect
magnitude.

(c) Both slope effect corrections
(note smaller colour scale).

(d) All physical
corrections.

Figure 9: Meander section showing scaled bedlevel evolution from Thetis with different physical corrections to Qb.

figures also show that even with time dependent boundary conditions, using a morphological scale factor equal to249

either 1 or 10 in Thetis gives equivalent results. Thus, unless otherwise stated, in this section our Thetis results are250

produced with a morphological scale factor of 10.251

5.2.2. Modelling sediment transport252

As the hydrodynamics of Thetis agree with Sisyphe, we introduce sediment transport into the models. As discussed
in Section 2.5, initially a simulation for 200 s solves only the hydrodynamics with a fixed flux inflow of 0.02m3 s−1
and outflow elevation of 0m. For our full sediment transport simulation, we use these results as initial flow conditions
and impose time dependent flux and elevation conditions from Section 5.1 as the boundary conditions. We present the
scaled bedlevel evolution results, defined as

Scaled Bedlevel Evolution = zfinal − zinitial
zinitial

(44)

where zfinal is the final bedlevel after 5 h and zinitial is the initial bedlevel of −0.0544m.253

Figure 9 shows the effects of implementing secondary current and slope effects on the bedlevel evolution at the254

meander outflow. The slope effect magnitude correction has little effect compared to the secondary current and slope255

effect angle corrections, likely because the slopes in this test case are fairly gentle.256

In Figure 9d, the final scaled bedlevel evolution result is shown, with erosion at the outer bend and deposition at257

the inner bed, as expected from physical intuition. Comparing this figure with Figure 10 from Villaret et al. (2013), we258

see Thetis result has the same distribution and magnitude as the experiment and Sisyphe. Hereafter, unless otherwise259

stated that the results are from the present study, Sisyphe results are taken from those presented in Villaret et al. (2013).260

To compare our Thetis result with the experiment and Sisyphe’s results more accurately, we take a cross-section261

at the 90° and 180° angles marked on Figure 10. Figures 11a and 11b shows our model reproduces the experimental262
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Figure 10: Scaled bedlevel evolution from Sisyphe (coloured bars) and experimental data (black contours). Source: Villaret et al.
(2013).

(a) Cross-section at 90°. (b) Cross-section at 180°.

Figure 11: Scaled bedlevel evolution from Thetis (with � = 0.035m2 s−1, slope = 0.0035); Sisyphe, Villaret et al. (2013); and
experimental data Yen and Lee (1995).

Table 3
Sum of relative error norms for different values of longitudinal slope and � (m2 s−1).

Slope � = 0.025 � = 0.035 � = 0.05 � = 0.075
0.003 0.5041 0.4934 0.4847 0.4930
0.0035 0.4911 0.4828 0.4752 0.4851
0.004 0.5253 0.5167 0.5106 0.5199
0.0045 0.5809 0.5707 0.5635 0.5686

results better than Sisyphe, with a particular improvement at the 180° cross-section and the bedlevel erosion at both263

cross-sections.264

5.2.3. Calibration study265

In Section 5.2.1, we used the hydrodynamic results from Sisyphe to calibrate the viscosity and longitudinal slope
in Thetis in the absense of observed data. However, Figures 11a and 11b show Sisyphe does not agree completely with
the experimental data. Hence, to improve our model’s accuracy, we re-run the calibration study using the experimental
data as the ‘real solution’. We seek to minimize the relative error norm at both the 90° and 180° cross-section and thus
minimise
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, (45)

where ŷ.i is the experimental data and y.i our model result. The results are summarised in Table 3 and show that a
viscosity of 0.05m2 s−1 and a longitudinal slope of 0.0035 yield the best approximation to the experimental data. To
ensure that by using (45) we are not merely reducing the error at one cross-section whilst allowing the error at the other
cross-section to grow, we also calculate the following maximum norm
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Table 4
Maximum error norms for different values of longitudinal slope and � (m2 s−1).

Slope � = 0.025 � = 0.035 � = 0.05 � = 0.075
0.003 0.2734 0.2768 0.2834 0.3035
0.0035 0.2463 0.2534 0.2674 0.2978
0.004 0.2849 0.2644 0.2729 0.3134
0.0045 0.3332 0.3096 0.2862 0.3327

Figure 12: Scaled bedlevel evolution from Thetis with � = 0.05m2 s−1, slope = 0.0035 and experimental data Yen and Lee (1995).

(a) Cross-section at 90°. (b) Cross-section at 180°.

Figure 13: Scaled bedlevel evolution from Sisyphe, Villaret et al. (2013); Sisyphe, present study, with � = 0.05m2 s−1 and slope =
0.0035; and experimental data Yen and Lee (1995).

and summarise the results in Table 4. Although � = 0.05m2 s−1 and a longitudinal slope of 0.0035 do not minimize266

Eq. (46), they result in one of the smallest maximum error norms. Comparing Figures 11 and 15, we can confirm that267

using these new values of � and longitudinal slope result in a better approximation to the experimental data.268

Using a viscosity of 0.05m2 s−1 and a longitudinal slope of 0.0035, Figure 12 shows that the scaled bedlevel269

evolution from Thetis agrees closely with the experiment, particularly at the inner bend and at the meander outflow.270

Comparing the experiment, Sisyphe (Figure 10) and our results (Figure 12), we see that Thetis predicts the bedlevel271

erosion to a greater degree of accuracy, particularly at the outer bend. Furthermore, it shows uniform erosion at the272

inflow bedlevel, unlike Sisyphe (Figure 10), although neither model predicts the inflow bedlevel particularly accurately.273

For rigour, we run Sisyphe with these optimised values for viscosity and longitudinal slope. The resulting bedlevel274

change is shown in Figures 13a and 13b at the 90°and 180° cross-sections, respectively. There is a marginal improve-275

ment in the total relative error norm (45), which falls from 1.144 for the results from Villaret et al. (2013) to 1.067 for276

the optimised values. However, the errors of Sisyphe are still higher than those obtained for Thetis.277

5.2.4. Sensitivity Study278

Given Sisyphe’s sensitivity to Δt discussed in Section 4.2.1, we conduct a sensitivity study on Δt and Δx, main-279

taining a ratio between fine and coarse meshes at 2:5. We configure Sisyphe ourselves and use our optimised viscosity280

and longitudinal slope values for consistency with Thetis.281

Thetis is insensitive to Δt (Figure 14b), whereas Sisyphe (Figure 14a) is sensitive to Δt, as in the migrating trench282

test case. Although for Δt ≤ 0.25 s Sisyphe’s results are robust, for larger Δt values they are both sensitive and283
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(a) Sisyphe to Δt. (b) Thetis to Δt.

(c) Sisyphe to Δx. (d) Thetis to Δx.
Figure 14: Sensitivity of bedlevel to Δx and Δt (90° cross-section). (Sisyphe results, present study)

(a) Cross-section at 90°. (b) Cross-section at 180°.

Figure 15: Scaled bedlevel evolution from Thetis (� = 0.05m2 s−1 and slope = 0.0035) with a morphological scale factor of 1 and
10; Sisyphe, Villaret et al. (2013); and experimental data Yen and Lee (1995).

inaccurate. Furthermore, for this test case, Thetis converges for Δt < 10 s, meaning it is much less computationally284

expensive than Sisyphe, which requires Δt ≤ 0.25 s.285

Both models are relatively insensitive to the mesh step size Δx (Figures 14c and 14d). There are slight differences286

when a fine Δx = 0.25m is used in both models, suggesting our fine Δx = 0.1m is appropriate.287

As in Section 4.2, we assess whether Sisyphe results depend on the discretisation of the advection terms. Our288

preliminary results show that Sisyphe’s sensitivity to Δt is independent of the choice of morphodynamic scheme,289

as indicated in the previous example. The strict Courant number stability criteria of other Sisyphe hydrodynamic290

discretisations means they require small Δt to run and thus the effect is less noticeable.291

Finally, Figures 15a and 15b provide an overview of our results and show not only that we have validated our292

model, but that it is more accurate than Sisyphe for this more complex test case. Figures 15a and 15b also confirm that293

a morphological scale factor of 10 is appropriate with no observable difference between a morphological scale factor294

of 10 and 1 (i.e. no scaling).295

6. Benchmarking296

Finally, we compare the computational times and error norms of Thetis and Sisyphe for both test cases discussed297

and summarise results in Table 5. For Sisyphe we have chosen the most efficient matrix storage method following298

guidance by Lang et al. (2014). We find that for the more complex geometry of the meander, our model using the same299

mesh is approximately twice as accurate as Sisyphe. For the migrating trench, we find that Sisyphe is more accurate300
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Table 5
Comparison of computational time, ts (seconds) (left) and L2 error norm to data (right) with a morphological scale factor. For the
migrating trench, Δt = 0.01 s and Δx = 0.2m in Sisyphe and Δt = 0.6 s and Δx = 0.5m in Thetis; for the meander Δt = 0.1 s in Sisyphe
and Δt = 2 s in Thetis and a fine Δx = 0.1m in both.

Model Morphological
Factor

Migrating Trench
ts (s)

Meander
ts (s)

Migrating Trench
L2 (m)

Meander
L2 (m)

Thetis 1 66,452 17,785 0.04135 0.4752
Thetis 10 6590 2140 0.04084 0.4751
Thetis 25 2646 913 0.03920 0.4722
Thetis 50 1386 450 0.03666 0.4741

Sisyphe 1 14,113 980 0.01756 1.067

than our model. However, this is only true for this specific choice of mesh resolution and timestep in Sisyphe. As the301

timestep increases and the mesh becomes coarser, the accuracy of the Sisyphe result is found to decrease (see Figure302

3a and Figure 4a respectively), whereas the accuracy in our model stays broadly the same.303

The robustness advantages observed with Thetis’s DG-based discretisation deliver accurate results with both larger304

Δt and Δx values. Without using a morphological scale factor, Thetis is slower, partly since on the same mesh a DG305

discretisation possesses significantly more degrees of freedom. However, the added robustness means we are able306

to readily apply a morphological scale factor to reduce computational times without compromising accuracy. Table 5307

presents the accuracy and efficiency results of applying amorphological scale factor. It shows that with amorphological308

scale factor of 50, the meander test case is two times more efficient than Sisyphe and the migrating trench test case is309

ten times more efficient, whilst retaining accuracy in the obtained results.310

7. Conclusion311

In this work, we have presented a new 2D depth-averaged coupled hydrodynamic and sediment transport function-312

ality within the finite element based coastal ocean model Thetis. Our model makes significant, novel contributions313

to the complex problem of modelling sediment transport. It is shown to be accurate, as well as more efficient and314

stable than other standard models. To the best of our knowledge, it is the first full morphodynamic model employing315

a DG based discretisation. We report on several new capabilities within Thetis, including bedload transport, bedlevel316

changes, slope effect corrections, a secondary current correction, a sediment transport source term, a velocity correc-317

tion factor in the sediment concentration equation, and a morphological scale factor. All these were validated using318

the migrating trench and meander test cases, indicating the significance of each of the additional components. The319

coupled and nonlinear nature of the problem makes this type of model very sensitive to parameter changes. However,320

Thetis is found to be largely insensitive to changes in timestep and mesh grid size, unlike the current state-of-the-art321

model Sisyphe, which is found to have a much larger variability, particularly with respect to the timestep in the case of322

the test cases considered in this work. The robustness of Thetis enables the application of a morphological scale factor323

for computational efficiency relative to existing models, whilst remaining accurate.324

In future work, we will use our model in a coastal zone case study requiring coupled wave and current modelling.325

We will also use the advantages of the adjoint capabilities of Thetis to perform adjoint-based model calibration on our326

hydro-morphodynamic model, improving the accuracy of our model.327
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