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A fixed-point characterization of the optimal
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Abstract— A fixed-point characterization of the optimal
costate in finite-horizon optimal control problems for non-
linear systems is presented. It is shown that the optimal
initial condition of the costate variable must be a fixed-
point, for any time, of the composition of the forward and
backward flows of the underlying Hamiltonian dynamics.
Such an abstract property is then translated into a con-
structive condition by relying on a sequence of repeated Lie
brackets involving the Hamiltonian dynamics and evaluated
at a single point in the state-space. This leads to a sys-
tem of algebraic equations in the unknown initial optimal
costate that allows achieving a desired degree of accuracy
of the approximation while always consisting of a number
of equations equal to the dimension of the state of the
underlying system, regardless of the achieved accuracy. A
dual characterization of the optimal terminal value of the
state is also discussed, together with a few computational
aspects of the proposed strategy.

I. INTRODUCTION

One of the most classical control problem consists in
steering the state of the underlying controlled plant from
an initial condition - e.g. deriving from a perturbation of a
nominal operating condition or from a prescribed shift of the
corresponding working point for the system - to a desired final
condition or equilibrium point. It is therefore natural that tools
and strategies capable of achieving such a control objective
in an optimal way would have attracted intensive research
interest in the past decades, see e.g. [1], [2], [3], [4], [5],
[6], [7]. The above control task can be naturally formulated
as an infinite-horizon optimal control problem [8], provided
the time available to perform the steering is sufficiently
large, compared to the time-scales of the underlying plant.
Interestingly, whenever it is instead crucial to complete the
control task within a prescribed time interval, fixed a priori,
while less attention is paid to the value of the state at the
end of such an interval, the structure of the solution to such
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a seemingly similar problem becomes notably different, being
for instance intrinsically time-varying [5].

Despite such differences two main strategies, common to the
so-called infinite-horizon and finite-horizon optimal control
problems, have been introduced and deeply explored in the
second half of the last century, i.e. Dynamic Programming
(DP), see e.g. [2], [9], and Pontryagin’s Minimum (or Maxi-
mum) Principle (PMP) [10].

The former approach characterizes the optimal feedback in
terms of the solution to a certain quadratic partial differential
equation (PDE), i.e. the so-called Hamilton-Jacobi-Bellman
(HJB) equation [4]. Methods inspired by DP are particularly
appealing since they provide necessary and sufficient con-
ditions for optimality and permit the characterization of the
optimal solution, as well as of the optimal cost, for any initial
condition in the state-space. In the case of infinite-horizon
control problems strategies to approximate the optimal control
law have been envisioned, see e.g. [11], [12], [13], [14],
[15], [16], [17], [18]. Along a different line to circumvent
the computational issues arising in the solution of the HJB
equation, an alternative (weaker) notion of solution has been
proposed in the case of non-differentiable value functions, see
e.g. [19], [20], introducing the notion of viscosity solution
of the HJB equation. However, in the case of finite-horizon
optimal control problems the task of determining a closed-
form expression for the solution to the HJB PDE is further
complicated by the intrinsic dependence of the value function
on time.

On the other hand, methods based on the PMP provide
- without additional conditions, such as convexity - only
necessary conditions for optimality. As a consequence such
strategies may be employed only to identify candidate optimal
solutions or extremals. Moreover, the characterization of the
optimal control law heavily relies on the knowledge of the
initial condition of the state of the system even for infinite-
horizon control problems, hence essentially leading to open-
loop strategies. Nonetheless, the wide-spread use of such
strategies is essentially motivated by the simplicity of the
underlying conditions, provided in terms of ordinary differ-
ential equations (instead of partial differential equations) that
should be satisfied by the optimal process together with an
auxiliary variable (the costate). While in the case of infinite-
horizon problems determining the correct boundary conditions
for such a dynamical system essentially requires to compute
an explicit solution to the HJB PDE, hence recovering the
computational complexity of the DP approach, in the case of
finite horizon optimal control problems it can be recast in
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terms of a two-point boundary value problem (TPBVP) for a
nonlinear system.

As a consequence, intensive research efforts have been
devoted to the design of efficient strategies to determine or
approximate the solution to TPBVPs for linear or nonlin-
ear systems. Indeed, by relying on the increasingly growing
computational capabilities available in modern applications,
the so-called computational optimal control has become a
separate field of active research [21], [22], [23], [24], [25],
[26], [27], [28]. Such efforts resulted in the development of
several efficient tools and software devoted to the solution
to TPBVPs, including e.g. GPOPS [29], ICLOCS2 [30], as
well as the approaches in [31], [32], [33], [34], [35] among
several others. Although diverse, the above methods share
common features: they are based on a direct transcription
of the underlying continuous-time optimal control problem
into a nonlinear programming problem (NLP), which can be
then solved with standard [36] or more dedicated approaches,
e.g. IPOPT [37]. In particular, direct collocation methods rely
on a discretization of the state and control at a collection of
suitably defined points within the time interval of interest. In
h-methods, the time interval is divided into a prescribed grid
and the state is approximated by means of polynomials of
fixed degree in each cell of the mesh, with convergence to the
optimal solution achieved by increasing the number of collo-
cated points. On the other hand, in p-methods convergence to
the optimal solution is obtained by increasing the order of the
polynomial. Recently, hp-methods [21] that combine the two
previous approaches adaptively adjusting the dimension of the
grid and the degree of the polynomial have been envisioned.
As a common feature to all the previous approaches, the
transcription of the continuous-time optimal control problem
yields a sparse, although typically very large, NLP problem,
hence a very large system of nonlinear algebraic equations.

The main contribution of this paper consists in proposing a
design strategy to compute or approximate the optimal initial
condition for the costate variable in finite-horizon optimal
control problems by solving a system of n algebraic equations,
regardless of the prescribed degree of accuracy. The result is
achieved by first discussing a fixed-point characterization of
the optimal costate, which is then translated into more con-
structive conditions by relying on a sequence of Lie brackets.
These involve the underlying Hamiltonian vector field together
with a suitably defined projective vector field. Such Lie
brackets are then evaluated at the initial condition of the state
variable, thus leading to a system of algebraic equations in
the (unknown) costate initial condition. An identical strategy is
then extended to the computation of the optimal terminal value
of the state variable. Somewhat similar ideas are employed in
[38] to construct solutions to infinite horizon optimal control
problems. In particular, therein the key aspect consists in
considering the composition of the flows of the (projected)
Hamiltonian dynamics and that of the closed-loop optimal
system in the original coordinates. Note that an identical
strategy could not be straight-forwardly pursued in the context
of finite horizon problems, since the latter vector field becomes
time-varying, hence introducing challenges that can be only
circumvented by considering instead the composition of the

forward and backward Hamiltonian system, as pursued herein.
The rest of the paper is organized as follows. The definition
of the finite-horizon optimal control problem dealt with is
provided in Section II together with additional results and
assumptions instrumental for the subsequent derivations. The
main statements - consisting of a design strategy that allows to
characterize or approximate the optimal initial condition of the
costate variable - are presented in Section III. The specializa-
tion to the linear setting of the above results is instead the topic
of Section IV, while the objective of Section V is to extend
the previous machinery to compute (or approximate) also the
value of the state variable at the end of the interval of interest,
which is unknown, similarly to the costate initial condition.
Finally, the paper is concluded by extensive discussions on
several computational aspects of the approach in Section VI
and further comments in Section VII.

Notation. N defines the set of positive integers, N0 =
N ∪ {0}, and R>0 (R>0) defines the set of non-negative
(positive) real numbers. σ(A) denotes the spectrum of the
matrix A ∈ Rn×n. Given a symmetric matrix M = M>,
M � 0, denotes a positive semi-definite matrix, namely
such that v>Mv > 0 for any vector v; similarly M � 0
denotes a positive definite matrix. In denotes the identity
matrix of dimension n. Given two vectors x1 ∈ Rn1 and
x2 ∈ Rn2 , (x1, x2) denotes the vector

[
x>1 x>2

]>
. For

a continuously differentiable function f : Rn → R, ∇xf
denotes the column vector of the partial derivatives of f ,
namely ∇xf =

[
∂f(x)/∂x1, . . . , ∂f(x)/∂xn

]>
. Given

two vector fields f : Rn → Rn and g : Rn → Rn,
the Lie bracket of f and g, denoted [f, g](x), is defined
as [f, g](x) = (∇xg)f(x) − (∇xf)g(x). The repeated Lie
bracket operation of a vector field g with the same vector
field f is recursively defined as adkfg(x) = [f, adk−1

f g](x),
with ad0

fg(x) = g(x). Given an ordinary differential equation
ẋ = f(x) with boundary condition x(0) = x0 and the
vector field f : Rn → Rn sufficiently smooth, the mapping
ϕf : R × Rn → Rn denotes the corresponding flow such
that ∂ϕf (t;x0)/∂t = f(ϕf (t;x0)) for any t > 0 and x0.
The notation Cκ indicates the space of functions that possess
continuous derivatives of order less than or equal to κ. A
function f : X → Rn is analytic in the open set X , denoted
as f ∈ Cω(X ), if for every v ∈ X there is a neighborhood U
such that the Taylor series expansion centered at v converges
pointwise to f(x) for x ∈ U . Given a function f : X → X ,
a point c in the topological space X is a fixed-point of f
if f(c) = c, namely if (c, c) ∈ graph f . B(x̄, R) denotes
the open ball of radius R > 0 centered at x̄ ∈ Rn, i.e.
B(x̄, R) := {x ∈ Rn : |x− x̄| < R}, whereas B̄(x̄, R) denotes
the closure of B(x̄, R).

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an optimal control problem defined over a finite
horizon and described by

min
u
Jt0,x0

(u) :=
1

2

∫ T

t0

(q(x(τ)) + ‖u(τ)‖2)dτ , (1a)

s.t. ẋ(t) =f(x(t)) + g(x(t))u(t) , x(t0) = x0 (1b)
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with x(t) ∈ X ⊆ Rn, where X is a n-dimensional smooth
manifold, and u(t) ∈ Rm, u ∈ C0([0, T ]), while x0 ∈ X is
a given initial condition of the differential equation (1b). It
is worth observing that - even in the absence of additional
requirements, e.g. hard constraints (saturation) on the control
input - the optimal control problem formulated in (1a)-(1b)
already exhibits the features and computational challenges that
are addressed in this paper. In fact - as anticipated herein
and briefly recalled in the rest of this section - it is well
known that the problem (1a)-(1b) may be tackled either by
relying on Pontryagin’s Minimum Principle or on a Dynamic
Programming approach, which however requires the compu-
tation of the explicit solution of the Hamilton-Jacobi-Bellman
partial differential equation. While the latter can be seldom
determined in practice, the former strategy yields typically a
two-point boundary value problem defined with respect to the
underlying (nonlinear) Hamiltonian dynamics. To address such
a problem several methods have been proposed, including the
so-called collocation methods [23] and shooting methods [39].

The main objective of this paper is to propose an approach
alternative to the above mentioned methods, which hinges
upon more abstract, geometric, properties of the optimal
costate and for which - differently from the former methods
- the number of algebraic equations does not grow with
increasing accuracy of the approximation and remains equal
to the dimension of the state. On the other hand, instead of
considering the entire forward flow of an unstable system as in
the latter strategies, herein the required conditions are obtained
by characterizing the optimal costate by means of subsequent
Lie brackets evaluated at a single time instant.

Assumption 1: The function q : Rn → R>0, q(0) = 0, and
the vector fields f : Rn → Rn, f(0) = 0, and gi : Rn → Rn,
gi(0) = 0, i = 1, ...,m, are analytic at x = 0 with radius of
convergence rx such that X ⊂ B(0, rx). ◦

The function V ? : R>0×X → R>0 defined as V ?(t0, x0) =
minu{Jt0,x0(u)} is referred to as the value function of the
problem (1). Since the cost functional (1a) and the vector fields
appearing in (1b) do not depend explicitly on the time t, in the
following it is assumed that t0 = 0 without loss of generality.

Remark 1: The presence of a terminal cost, m(x(T )), with
m : X → R>0 a real analytic function, on the state of the
system (1b) in (1a) can be straight-forwardly encompassed
into the framework of (1a) by replacing the terminal cost with
an equivalent Lagrangian cost. In fact, since

m(x(T )) = m(x0) +

∫ T

0

d

d t
m(x(t))d t , (2)

and since x(0) = x0 is a constant with respect to u, the
terminal cost m can be included in the Lagrangian term
by defining the modified running cost q̃(x, u) = q(x) +
2(∇xm(x))(f(x) + g(x)u), provided q̃(x, u) + ‖u‖2 remains
positive definite with respect to x and u for consistency with
the definition of (1a). N

Consider the underlying (minimized) Hamiltonian function
H : T ?X → R, with T ?X denoting the cotangent bundle over

X with natural coordinates (x, λ), defined as

H(x, λ) :=
1

2
q(x) + λ>f(x)− 1

2
λ>g(x)g(x)>λ . (3)

The optimal process (x?(t), λ?(t)) then satisfies the Hamilto-
nian dynamics[

ẋ

λ̇

]
= J∇H(x, λ) := XH(x, λ) , (4)

with

J :=

[
0 In

−In 0

]
(5)

and XH denoting the Hamiltonian vector field, together with
the split boundary conditions (x(0), λ(T )) = (x0, 0). Alter-
natively, the Hamiltonian dynamics (4) can be initialized at
(x(0), λ(0)) = (x0,∇xV ?(t0, x0)), where the value function
V ?(t, x), V ? : R × X → R>0, satisfies the Hamilton-Jacobi-
Bellman partial differential equation

−∂V
?

∂t
=

1

2
q(x) +

∂V ?

∂x
f(x)− ∂V ?

∂x
g(x)g(x)>

(
∂V ?

∂x

)>
,

(6)
for all x ∈ X and t ∈ [0, T ], together with the boundary
condition V ?(T, x) = 0 for any x ∈ X . As a consequence, the
computation of the value function constitutes a critical bottle-
neck for the solution of problem (1) regardless if one relies on
the DP strategy or on PMP approach, since for any x0 ∈ X
the costate variable λ(0) should be initialized at λ?0(x0) :=
∇xV ?(0, x0).

In the following it is assumed that, for given initial condition
x0 and terminal time T > 0, the optimal control problem (1)
admits a solution that satisfies additional continuity properties,
as detailed in the statement below.

Assumption 2: Given an initial condition x0 ∈ X and a
terminal time T ∈ R>0, there exists a unique smooth solution
V ? : R × X → R>0 of (6), for t ∈ [0, T ] and for all x ∈ X
together with the boundary condition V ?(T, x) = 0 for all
x ∈ X . ◦

Finally, introducing z := (x, λ) and considering the Hamil-
tonian dynamics ż = XH(z), z0 = (x0, λ0), let ΦXH

t :
X × Rn → X × Rn denote the one-parameter group of
local diffeomorphisms, under the operation of composition,
that defines an integral curve of XH for any z ∈ T ?X , namely
ΦXH
t (z) = ϕXH(t;x0, λ0), where ϕXH : R>0×X×Rn → X×

Rn defines the flow of the vector field XH. As a consequence
of Assumption 2 the flow ϕXH(t;x0,∇xV ?(0, x0)) is defined
for all t ∈ [0, T ] and it satisfies λ(t) = ∇xV ?(t, x(t)),
see for instance [10, Chapter 1]. Moreover, as a result of
Assumption 1, the costate λ : R→ Rn is an analytic function
of time. Suppose, in addition, that the following requirement
is satisfied on the radius of convergence for the analyticity
property of the costate λ with respect to time.

Assumption 3: The flow ϕXH(t;x0, λ
?
0(x0)) is an analytic

function at t = 0 with the property that its radius of
convergence rH satisfies rH > 2T . ◦
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III. A FIXED-POINT CHARACTERIZATION
OF THE OPTIMAL COSTATE

Let π : T ?X → X denote the natural projection operator
that maps an element of T ?xX into the corresponding base
point x ∈ X . The following statement provides a fixed-point
characterization of the optimal costate variable.

Theorem 1: Consider the finite-horizon optimal control
problem (1). Let x0 ∈ X and T ∈ R>0 be given and
suppose that Assumptions 1-3 hold. Then a vector λ0 ∈ Rn
is such that λ0 = ∇xV ?(0, x0) if and only if there exists a
function λa : [0, T ] → Rn, analytic at t = 0, with radius of
convergence larger than T and such that λa(T ) = 0, with the
property that

ω(t) := ϕXH(−t;π ◦ ϕXH(t;x0, λ0), λa(t)) = (x0, λ0) , (7)

for all t ∈ [0, T ]. �

Proof: (⇒) Since the function t 7→ V ?(t, x(t)) is smooth,
hence at least twice continuously differentiable, it follows
that the trajectory x : R → Rn yields the optimal time-
evolution of the state variable only if it can be obtained as
the projection on the x-coordinates of a trajectory of the
Hamiltonian dynamics (4) and the costate variable verifies
λ(t) = ∇xV ?(t, x(t)), for all t ∈ [0, T ], which is analytic
by Assumptions 1 and 2. Moreover, recalling that the value
function V ?(t, x), V ? : R×X → R>0, satisfies the Hamilton-
Jacobi-Bellman partial differential equation (6) for all x ∈
X and t ∈ [0, T ], together with the boundary condition
V ?(T, x) = 0 for all x ∈ X , it follows that ∇xV ?(T, x) = 0
for any x ∈ X . Therefore, λ0 = ∇xV ?(0, x0) verifies (7)
together with the feasible selection λa(·) := ∇xV ?(·, x(·)).

(⇐) For any x0 ∈ X ⊂ Rn, λ0 yields the optimal initial
condition of the costate variable if the composition of the
forward flow (for t seconds) along the vector field XH from
(x0, λ0) with the backward flow (for t seconds) along the same
vector field - considering the state component reached at time
t and the costate component potentially set to the value of an
analytic function λa(t) - yields again (x0, λ0), for all t > 0.
Since the latter task alone may be accomplished by letting
λa(·) be defined as any function v(x(·)) such that the manifold
{(x, λ) ∈ X × Rn : λ = v(x)} is invariant for (4), namely
any v : X → Rn with the property that ( ∂v∂x∇λH(x, λ) +
∇xH(x, λ))|λ=v(x) = 0, for any x ∈ X , sufficiency of (7)
follows by additionally requiring that λa(T ) = 0 and by
uniqueness of the trajectories of (4). �

Remark 2: The condition (7) entails that the mapping
(x0, λ0) 7→ ϕXH(−t;π ◦ ϕXH(t;x0, λ0), λa(t)) possesses a
fixed-point at (x0,∇xV ?(0, x0)) for all t > 0, obtained by
letting λa(t) = ∇xV ?(t, x?(t)). Therefore, the operations
of flowing along the vector field XH forward for t seconds,
projecting the reached composite state into X , and flowing
backward again along XH for t seconds must yield the initial
condition (x0, λ0) of the extended system, provided the costate
component of XH is suitably set to λa(t) at time t. N

Let now id : X×Rn → X×Rn denote the identity function,
namely id(z) = z, and define the partial projective mapping

x

λ

(x0, λ0)

ϕXH
(t;x0, λ0)

(x(t), λa(t))
ϕXH

(−t; ·)

Fig. 1. Graphical representation of the composition of the forward
and backward flows of the Hamiltonian dynamics (4). The gray dashed
vector describes the distance of (x0, λ0) from being a fixed-point of the
composition in (7).

p : X × Rn → X × Rn as

p(z) =

[
π ◦ z
h(z)

]
, (8)

where h : X × Rn → Rn is an arbitrary analytic function.
Suppose that the following standing assumption holds.

Assumption 4: There exist positive constants c` ∈ R>0 and
cu ∈ R>0 such that

inf
t∈[0,T ], x∈X

σ((ΦXH
−t )?) > c` , (9a)

sup
t∈[0,T ], x∈X

σ̄((ΦXH
−t )?) 6 cu , (9b)

with (ΦXH
−t )? denoting the differential of ΦXH

−t . ◦
Note that (9a) in particular implies that the differential of the
flow ΦXH

−t is an invertible matrix for any t ∈ [0, T ].
Theorem 2: Consider the finite-horizon optimal control

problem (1). Let x0 ∈ X and T ∈ R>0 be given and suppose
that Assumptions 1-4 hold. Then a vector λ0 ∈ Rn is such
that λ0 = ∇xV ?(0, x0) if and only if there exist λk :=
hk(x0, λ0) ∈ Rn with hk(z) := 〈∇hk−1, XH〉, k = 1, 2, ...
and h0(z) = h(z), with the properties that

adkXH
p(x0, λ0) = adkXH

id(x0, λ0) , (10)

for k = 1, 2, ..., and
∞∑
k=0

λk
T k

k !
= 0. �

Proof: Since the function t 7→ ω(t) defined in the left-
hand side of (7) is analytic at t = 0, the condition on the
right-hand side of (7) is equivalent to requiring that ω(0) =
(x0, λ0), which holds for any (x0, λ0) ∈ X × Rn, and that
dkω(t)/dtk|t=0 = 0. Define then the analytic function

W (t) = (ΦXH
−t )? p(Φ

XH
t (z0)) (11)

with z0 = (x0, λ0) and the vector field p introduced in (8),
and note that by the Campbell-Baker-Hausdorff formula W :
R→ R2n can be expanded in the form [40]

W (t) =
∞∑
k=0

adkXH
p(z0)

tk

k !
, (12)
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namely such that

dkW (t)

dtk

∣∣∣
t=0

= adkXH
p(z0) . (13)

Moreover, by noting that ω may be written as ω(t) =
ΦXH
−t ◦ p(Φ

XH
t (z0)) and by relying on (9a), it follows that

(ΦXH
−t )−1

? W (t) = p(ΦXH
t (z0)), hence

ω(t) = ΦXH
−t

(
(ΦXH
−t )−1

? W (t)
)
. (14)

Therefore, ω(t) = (x0, λ0) for all t > 0 if and only if W (t) =
(ΦXH
−t )? ΦXH

t for all t > 0, which in turn is equivalent to

adkXH
p(z0) =

(
dk

dtk
(ΦXH
−t )? ΦXH

t

) ∣∣∣
t=0

. (15)

The latter is then equivalent to (10) by applying again the
Campbell-Baker-Hausdorff formula with p replaced by the
identity function on X × Rn. The proof is concluded then
by noting that h(z(T )) = 0 by the summation requirement on
λk and that λa(t) = h(z(t)) =

∑∞
k=0 λk(tk/k !). �

The conditions in (10) consist of a system of algebraic
equations that are linear in the variables λi, i = 1, 2, ...,
although nonlinear in λ0. The following statement shows that
the conditions (10) can be equivalently recast into a system
of n equations in the variable λ0 alone. To this end, consider
first the definition of the operator D, introduced in [38], as
follows.

Definition 1: Given a smooth vector field f : Rn → Rn,
consider the operator Di(f) recursively defined as D0(f) = f
and

Di(f) = (∇Di−1(f))D0(f) , (16)

for i ∈ N, where∇f denotes the Jacobian matrix of the vector-
valued function f. ◦

Theorem 3: Consider the finite-horizon optimal control
problem (1). Let x0 ∈ X and T ∈ R>0 be given and suppose
that Assumptions 1-4 hold. Then a vector λ0 ∈ Rn is such
that λ0 = ∇xV ?(0, x0) if and only if

T (λ0) := λ0 +N
∞∑
i=1

Di−1(XH(x0, λ0))
T i

i !
= 0 , (17)

with N :=
[

0 In
]
∈ Rn×2n describing the natural

projection πλ : X × Rn → Rn on the λ-coordinates. �
Proof: To begin with, note that, provided the first k − 1

equations in (10) are satisfied, the k-th becomes

0 =(∇z adk−1
XH

p(z0))XH(z0)− (∇zXH(z))>adk−1
XH

p(z0)

− (∇z adk−1
XH

z0)XH(z0) + (∇zXH(z))>adk−1
XH

id(z0)

=
(
∇z adk−1

XH
p(z0)−∇z adk−1

XH
z0

)
XH(z0)

=∇z
(

adk−1
XH

p(z0)− adk−1
XH

z0

)
XH(z0) .

(18)

Then it can be shown by induction that

∇z
(

adk−1
XH

p(z0)− adk−1
XH

z0

)
XH(z0) = −Dk−1(XH(z0))

+

[
MDk−1(XH(z0))

hk(z0)

]
,

(19)

for any k > 1, with M =
[
In 0

]
∈ Rn×2n. In fact, for

k = 1, one has

0 = [XH, p](z0)− [XH, id](z0)

=

([
M

∇h(z)

]
XH(z)− (∇XH(z))>

[
Mz

h(z)

]) ∣∣∣
z=z0

−
(
XH(z)− (∇XH(z))>z

) ∣∣∣
z=z0

=

[
MXH(x0, λ0)

λ1

]
−XH(x0, λ0) ,

(20)

where the last equality is obtained by noting that Mz0 = x0

and h(z0) = λ0. Then, assuming that (19) holds up to a certain
index k, it can be shown that, for k + 1,

∇z
(

adk+1
XH

p(z)− adk+1
XH

z
)
XH(z) =

= ∇z
(

[XH, adkXH
p(z)]− [XH, adkXH

z]
)
XH(z) =

= ∇z
(
∇z
(

adkXH
p(z)− adkXH

z
)
XH(z)

+∇zXH (adkXH
p(z)− adkXH

z)︸ ︷︷ ︸
=0, for z=z0

)
XH(z) ,

where the property that the previous k equations are satisfied
at z = z0 has been employed. Therefore,

∇z
(

adk+1
XH

p(z0)− adk+1
XH

z0

)
XH(z0) =

= ∇z

([
MDk−1(XH(z0))

hk(z0)

]
−Dk−1(XH(z0))

)
XH(z0) =

=

[
MDk(XH(z0))

hk+1(z0)

]
−Dk(XH(z0)) ,

(21)

where the first equality is obtained by the inductive hypothesis.
As a straight-forward consequence of (21), it follows that
λi = πλ ◦ Di−1(XH(z0)) and the claim, hence equation (17),
is therefore shown by noting that the values λi describe the
coefficients of the Taylor series of λa(t) at t = 0 and by
imposing the terminal condition λa(T ) = 0. �

Remark 3: Equations identical to (10), and consequently to
(18), can be obtained, in a more convoluted way, by directly
considering the subsequent time derivatives of the function ω
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?
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(xξ, λξ) Λloc

Λ µ

Fig. 2. Graphical illustration of the sets Λloc (solid black line) and Λ
(gray region) involved in the proof of Theorem 4.

introduced in (7). For instance, for k = 1,

ω̇(t) =− ∂

∂t
ϕXH(−t;MϕXH(t;x0, λ0), λa(t))

+∇sϕXH(−t; s)

 M
∂

∂t
ϕXH(t;x0, λ0)

λ̇a(t)

 (22)

which coincides with equation (20) for t = 0 recalling that
∇sϕXH(0; s) = In and letting λ1 := λ̇a(0). N

Before stating the following result we provide a definition.
Given a vector-valued function σ : Rn → Rn, V(σ) denotes
the algebraic set associated to σ, namely the set {x ∈ Rn :
σ(x) = 0}. Moreover, given a set W and a point v, d(W, v)
denotes the distance between a set and a point, namely

d(W, v) = inf
w∈W

d(w, v) . (23)

Theorem 4: Consider the finite-horizon optimal control
problem (1). Let x0 ∈ X and T ∈ R>0 be given and suppose
that Assumptions 1-4 hold. Let

Tκ(λ0) := λ0 +N
κ∑
i=1

Di−1(XH(x0, λ0))
T i

i !
= 0 . (24)

Then for any ε > 0 there exist κ(ε) and a compact set Λ ⊂ Rn
containing ∇xV ?(0, x0) such that

d(L, ∇xV ?(0, x0)) < ε , (25)

with L := V(Tκ) ∩ Λ. �

Proof: The claim is proved by showing that the difference
between Tk and T can be made arbitrarily small in a compact
set containing λ?0. Since by Assumptions 2 and 3 the optimal
costate λ? : R → Rn is an analytic function at t = 0 such
that the terminal time T belongs to the interior of the domain
of convergence with the property that B(0, 2T ) ⊂ B(0, rH), it
follows that the Taylor series expansion in the left-hand side
of (17) is absolutely, uniformly, convergent to λ?(T ). As a
consequence, by applying the Cauchy’s integral formula to
the complex extension of the analytic function λ?(·), which
is well-defined and analytic, and since, by (17), λ(k)(0) =

NDk(XH(x0, λ0)), it follows that

|NDk(XH(x(s), λ(s)))| 6 k !

2π

∫
∂B̄(s,%)

|λ?(w)|
|w − s|k+1

|dw|

< cλ
k !

2π

1

%k+1
2π% = cλ

k !

%k
,

(26)

recalling that B̄(s, %) ⊂ B(0, rH), for some % > T and for any
s ∈ [0, T ], where cλ > maxw∈B̄(0,rH) |λ?(w)|. Therefore,

|NDk(XH(x̂, λ̂))| < cλ
k !

%k
, (27)

for any k ∈ N and for all (x̂, λ̂) in the set Λloc :=
{(x̂, λ̂) ∈ R2n : ∃s ∈ [0, T ], (x̂, λ̂) = ϕXH(s;x0, λ

?
0(x0))}.

By considering now the Lagrange form of the remainder of
the Taylor series expansion Tκ with respect to T , it follows
that the latter remainder in Λloc is given by

Rk(s) := N Dκ+1(XH(xξ, λξ))
Tκ+1

(κ+ 1) !
, (28)

for any s ∈ [0, T ] and for some (xξ, λξ) ∈ Λloc,
by Taylor’s theorem, hence such that |Tκ(λ) − T (λ)| <
|N Dκ+1(XH(xξ, λξ))(T

κ+1)((κ+1) !)| < cλT
k+1/%k+1, for

any λ ∈ Λloc. Thus, by smoothness of the Hamiltonian vector
field XH with respect to (x, λ), there exists µ > 0 such that

|Tκ(λ)− T (λ)| < cλ

(
T

%

)κ+1

, (29)

for all λ ∈ Λ = Λloc + B(Λloc, µ). The right-hand side of
(29) can be then made arbitrarily small by increasing κ and
recalling that T < %. �

The intuition behind the statement of Theorem 4 is pro-
vided in the following discussion. By relying on Assump-
tion 2, V(T ) consists of a single point, namely λ?0(x0) =
∇xV ?(0, x0). The truncation Tκ for finite κ may instead have
multiple (real) roots such that Tκ = 0. The conclusions of
Theorem 4 guarantee that among such real solutions there is
one that approaches λ?0(x0) for increasing values of κ.

Note that determining roots of Tκ(λ0) coincides with com-
puting solutions to the system (10) for k = 1, ..., κ, with

λκκ = − κ !

Tκ

(
λκ0 +λκ1T + ...+λκκ−1(Tκ−1/(κ− 1) !)

)
, (30)

where the superscript κ in the unknown vectors λκi hints at
the finite truncation of (10).

Remark 4: In addition to the value of λκ0 that approximates
∇xV ?(0, x0) arbitrarily close, the statement of Theorem 4
entails that, instead of using such a value as the (approximate)
initial condition of the unstable dynamics (4), the values λκi
can be employed to compute a Taylor series expansion for
λa(t) as λ̃(t) =

∑κ
k=0 λk(tk/k !) and then implementing

directly the feedforward control law ũ(t) = −g(x(t))>λ̃(t).
N
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IV. INSIGHTS ON THE LINEAR CASE

The objective of this section consists in specializing the
above results to the case of linear systems and quadratic cost
functionals, namely

min
u
Jx0

(u) :=
1

2

∫ T

0

(x(τ)>Qx(τ) + ‖u(τ)‖2)dτ , (31a)

s.t. ẋ(t) =Ax(t) +Bu(t) , x(0) = x0 , (31b)

with Q � 0. Under these structural assumptions the Hamil-
tonian dynamics are linear and described by the vector-field

XH =

[
A −BB>

−Q −A>

][
x

λ

]
:= H

[
x

λ

]
, (32)

with H ∈ R2n×2n referred to as the Hamiltonian matrix. In
the context of Linear-Quadratic (LQ) optimal control, the com-
putation of the optimal solution hinges upon the Differential
Riccati Equation (DRE)

−Ṗ (t) = Q+A>P (t) + P (t)A− P (t)BB>P (t) , (33)

P (t) = P (t)> ∈ Rn×n, with terminal boundary condition
P (T ) = 0, which is the linear counterpart of the HJB equation
(6). The flow of the former Hamiltonian system then becomes
ϕXH(t; z0) = eH tz0. Therefore, the function ω(t) introduced
in (7) reduces, in the linear case, to

ω(t) = e−H t

 MeH t

[
x0

λ0

]
λa(t)

 . (34)

As a result, a claim similar to that given in Theorem 4 in
the nonlinear setting can be stated.

Proposition 1: Consider the finite-horizon optimal control
problem (31). Let x0 ∈ X be given. Then for any ε > 0 there
exists κ(ε) such that the solution λκ0 to

Hi

[
x0

λ0

]
=

 MHi

[
x0

λ0

]
λi

 , i = 1, ..., κ− 1

Hκ

[
x0

λ0

]
=


MHκ

[
x0

λ0

]
− κ !

Tκ
∑κ−1
j=0 λj(T

j/j !)


(35)

satisfies
‖λκ0 − P (0)x0‖22 < ε . (36)

�
Proof: To begin with it is shown that a truncation of the

equations (10) to the order κ reduces to (35) in the linear case.
This is achieved by imposing that ω(t) = (x0, λ0) for any
t > 0. Note that the latter condition is equivalent to requiring
that

$(t) :=

 MeH t

[
x0

λ0

]
λa(t)

− eH t

[
x0

λ0

]
= 0 , (37)

for all t > 0. This can be obtained by letting $(i)(0) = 0 for
i ∈ N, or approximated via a finite truncation with i = 1, ..., κ.
Therefore,

$(i)(t) :=

 MHieH t

[
x0

λ0

]
λ

(i)
a (t)

−HieH t

[
x0

λ0

]
,

which yields (35) together with the constraint∑κ
i=0 λ

(i)
a (0)(T i/i !) = 0. Finally, the inequality (36) is

obtained by noting that (35) is a square linear system of
equations admitting a unique solution λκ0 . �

Remark 5: In the case of LQ optimal control problems over
finite-horizon, defining and partitioning the transition matrix
associated to the Hamiltonian dynamics (32) according to

eH t := ΦH(T, 0) =

[
Φ11(T, 0) Φ12(T, 0)

Φ21(T, 0) Φ22(T, 0)

]
, (38)

yields that λ?0(x0) = −Φ22(T, 0)−1Φ21(T, 0)x0, provided
det(Φ22(T, 0)) 6= 0. N

The following statement provides an insight on the structure
and sparsity of the system of equations (35) by establishing
a relation with the construction mentioned in Remark 5. To
provide a concise statement, consider the partition

Hi :=

[
U11,i U12,i

U21,i U22,i

]
. (39)

Proposition 2: Consider the finite-horizon optimal control
problem (31). Let x0 ∈ X be given. Then the solution λκ0 of
(35) is given by

λκ0 = −

(
κ∑
i=0

U i22,i (T i/i !)

)−1
 κ∑
j=1

U21,j(T
j/j !)

x0

(40)
provided the terminal time T > 0 is such that∑κ
i=0 U

i
22,i (T i/i !) is non-singular. �

Proof: To begin with, considering the partition in (39)
and noting that MHi =

[
U11,i U12,i

]
, note that the i-th

equation in (35) can be written as[
U11,ix0 + U12,iλ0

λi

]
=

[
U11,i

U21,i

]
x0 +

[
U12,i

U22,i

]
λ0 ,

hence [
0

λi

]
=

[
0

U21,i

]
x0 +

[
0

U22,i

]
λ0 ,

which can be then compactly arranged, for i = 1, ..., κ, as
−U22,1 I 0 . . . 0

−U22,2 0 I . . . 0

...
. . .

...

G1 . . . Gκ




λ0

λ1

...
λk−1

 =


U21,1

U21,2

...
U21,κ

x0 ,

(41)
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λ

x(xT , 0)

ϕXH
(−t

;xT
, 0) (xa(t), λ(−t))

ϕXH
(t;

·)

Fig. 3. Graphical representation of the dual composition of the
backward and forward flows of the Hamiltonian dynamics (4). The gray
dashed vector describes the distance of (xT , 0) from being a fixed-
point of the composition in (42).

with G1 = −(U22,κ + (Tκ κ !)I) and Gj = −(κ !
j !T

j−κ)I ,
for j = 2, ..., κ − 1. The claim is then proven by noting that
λi = U22,iλ0 + U21,ix0, i = 1, ..., κ − 1, and replacing the
latter into the last equation of (41). �

V. THE DUAL CASE: FIXED-POINT CHARACTERIZATION
OF THE OPTIMAL FINAL STATE

The fixed-point characterization of the optimal costate dis-
cussed in Theorem 1 relies on the property that the initial
condition of the entire Hamiltonian dynamics (4) is only
partially known, since x(0) = x0 is fixed, while the value
of the costate λ at time t = 0 must be determined. Such a
consideration then leads to the characterization of the optimal
costate as pursed in (7), which relies on the composition of
Hamiltonian flows.

Interestingly, a somewhat dual strategy is also viable to
directly compute the optimal final state by relying on the
knowledge of the value of the optimal costate at the terminal
time t = T , namely λ(T ) = 0, and exploiting ideas fully
similar to the composition in (7). This aspect is discussed
in the following statement, the proof of which is a straight-
forward adaptation of that of Theorem 1, hence it is omitted.

Theorem 5: Consider the finite-horizon optimal control
problem (1). Let x0 ∈ X and T ∈ R>0 be given and suppose
that Assumptions 1-3 hold. Then a vector xT ∈ X is such
that x?(T ) = xT if and only if there exists a function xa :
[−T, 0] → X , analytic at t = 0, with radius of convergence
larger than T and such that xa(−T ) = x0, with the property
that

ωd(t) := ϕXH(t;xa(t), πλ◦ϕXH(−t;xT , 0)) = (xT , 0) , (42)

for all t ∈ [0, T ]. �

By building on the fixed-point characterization (42) in
Theorem 5, results identical to those in Section III can be
stated and derived. Herein, an in-depth discussion is carried out
explicitly in the somewhat explanatory case of linear systems,
which allows to highlight the main differences with respect to
the results above without any additional burden of notation.

To this end, similarly to (37), let

$d(t) :=


xa(t)

Ne−H t

[
xT
0

]
− e−H t

[
xT
0

]
, (43)

with N =
[

0 In
]
∈ Rn×2n, which is equal to zero for

any t if and only if ωd(t) is equal to (xT , 0) for any t, as
prescribed by (42) specialized to the linear case.

Proposition 3: Consider the finite-horizon optimal control
problem (31). Let x0 ∈ X be given. Then for any ε > 0 there
exists κ(ε) such that the solution xκT to

Hi

[
xT
0

]
=

 (−1)ixi

NHi

[
xT
0

]
 , i = 1, ..., κ− 1

Hκ

[
xT
0

]
=


− κ !

Tκ

xT − x0 +

κ−1∑
j=0

(−1)jxj(T
j/j !)


NHκ

[
xT
0

]


(44)
satisfies

‖xκT − x?(T )‖22 < ε . (45)

�
Proof: By following arguments identical to those employed

in the proof of Proposition 1, consider subsequent time-
derivatives up to the order κ of $d at t = 0, which
immediately yields the first κ − 1 equations in (44) where
xi denotes the i-th derivative of xa(t) evaluated at t = 0. The
last equation, instead, is obtained by additionally considering
the constraint xa(−T ) = x0. �

Remark 6: By extending the discussion in Remark 4 to the
dual case of the fixed-point characterization of the optimal
final state, it may be possible to employ the vectors xi ∈
Rn, solutions to (44), to define a truncated Taylor series
approximation of xa(t) according to

x̃(t) = xT +x1(t−T )+x2
(t− T )2

2
+...+xκ

(t− T )κ

κ !
, (46)

where xκ = − κ !

Tκ
(xT − x0 +

κ−1∑
j=0

(−1)jxj(T
j/j !)). N

VI. FURTHER DISCUSSIONS
ON COMPUTATIONAL ASPECTS

The objective of this section is to expand the discussion con-
cerning the computational aspects of the strategy introduced
above. This is achieved, first, by pointing out drawbacks of the
approach, mainly by means of a few numerical simulations,
and then by suggesting possible ways of circumventing or
mitigating such shortcomings.
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Fig. 4. Time-histories of the optimal costate variable λ?(t), t ∈ [0, 1]
(solid black line) and of the approximation obtained via the truncation
(24) (solid gray lines), for different values of κ.

A. Minimizing the time-derivatives of the approximate
costate

By combining the discussion in Remark 4 with the equa-
tion (30), it appears that the coefficient λκκ alone - which
dictates the κ-th derivative of the function λ̃(t) at time t = 0
- is “in charge” of compensating for the remainder of the
truncation of the Taylor expansion at t = T , namely of
enforcing λ̃(T ) = 0. This aspect is illustrated via the following
numerical simulation.

Example 1: Consider the finite-horizon optimal control
problem in (1) with q(x) = x2, f(x) = x2, g(x) = 1,
x(t) ∈ R, and T = 1. In this case, the Hamiltonian vector
field XH is given by

XH(x, λ) :=

[
x2 − λ
−x− 2xλ

]
. (47)

The latter vector field can be then employed to construct the
function Tκ(λ0) according to (24) with the recursive operator
D introduced in Definition 1. In this case, then, the function
Tκ(λ0) is a univariate polynomial in λ0, for fixed x0 ∈ R.
In the following numerical simulations let x0 = 0.5. The
time histories of Figure 4 clearly illustrates the discussion
at the beginning of this section. In fact, while on one hand
the convergence to the optimal value λ?0 of a solution to
Tκ(λ0) = 0 for increasing κ is evident, on the other hand it
can be also appreciated that, for small values of κ, the major
shortcoming of the approximate solution λ̃(t) consists in the
fact that such a solution - despite being correctly equal to
zero at t = T - intersects the value λ = 0 with higher-order
derivatives much larger than those of the optimal costate λ?,
as expected in light of (30). ◦

To counteract the issue illustrated in the example above
while maintaining the order κ to a reasonable value, it may

be possible to introduce and employ correction functions, as
detailed below.

Definition 2: A function ψλ : R → R is said to be an
initial correction function of order κ if it is such that ψλ(T ) =

ψ
(1)
λ (T ) = ... = ψ

(κ)
λ (T ) = 0. A possible selection of ψλ(t)

is provided by

ψλ(t) = α
(t− T )κ+1

(κ+ 1) !
, (48)

with arbitrary α ∈ Rn. ◦
As it appears from Definition 2, the augmented estimate

of the costate λψ(t) = λ̃(t) + ψλ(t) has the property that
λψ(T ) = 0, while the estimate of the initial condition for the
state is modified according to λψ(0) = λκ0 +ψλ(0). In addition,
by resuming the discussion illustrated in the Example 1 above,
the criterion on which the arbitrary vector α in (48) is selected
is that of minimizing the norm of a specific time-derivative,
e.g. the highest one, of the (modified) costate variable in the
proximity of the terminal time T . More precisely, the choice
of α must satisfy

min
α
Ci(α, γ) :=

∣∣∣∣∣∣λ(i)
ψ (γ T )−

κ∑
j=i+1

λ̃(j)(0)
(γ T )j

j !

∣∣∣∣∣∣
2

, (49)

for some γ ∈ R, which prescribes the time at which the i -
th order time derivative of λψ is minimized. Interestingly, the
criterion (49) can be easily minimized in closed form, yielding

α?(γ) := arg min
α
Ci = − (κ+ 1− i) !

((γ − 1)T )κ+1−iDi−1(XH(x0, λ
κ
0 )),

(50)
where λκ0 is obtained by solving the equation Tκ(λ) = 0.
The effect of the selection of the scalar coefficient γ, which
constitutes the remaining degree of freedom, is illustrated by
means of the following numerical simulation

Example 2: Consider the finite-horizon optimal control
problem in (1) with q(x) = x>x, f(x) = Ax, g(x) = B,
x(t) ∈ R2, and T = 2, where

A =

[
0 1
0 0

]
, B =

[
0
1

]
, (51)

namely the system (1b) exhibits double integrator dynamics.
Consider then the solution λ4

0 to (35) with κ = 4. Figure 5
depicts the phase plot of the optimal costate (solid black line)
and of the approximation λ̃ (solid gray line) for κ = 4.
Suppose then that an initial correction function ψλ as in (48)
is introduced and the vector α ∈ R2 is selected to minimize
Ci(α, γ) in (49) for i = κ, namely to minimize the norm of the
highest derivative of λψ at t = γ T . By inspecting the structure
of the unique minimizer (50), one realizes that the selection of
the parameter γ naturally leads to a line-search strategy along
the direction of the highest derivative defined by the constant
vector Dκ−1(XH(x0, λ

κ
0 )), represented by the dotted gray line

in Figure 5, which leaves the time history of the costate not
altered towards the end of the interval [0, T ]. The latter points
are clearly illustrated by the gray dashed lines in Figure 5 that
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Fig. 5. Phase plot of the optimal costate (solid black line) and of the
approximate costate λ̃ (solid gray line) obtained with κ = 4 in (35),
together with the augmented functions λψ obtained for different values
of the parameter γ (dashed gray lines). The dotted line describes the
direction of the κ-th order time derivative of the approximate costate λ̃.

describe the augmented function λψ for different values of the
parameter γ. ◦

Therefore, in general, the choice of γ can be based on a line-
search algorithm to determine - along the direction induced by
minimizing the norm of a certain derivative of the approximate
costate - the augmented estimate

λψ(0) = λκ0 + α?(γ)
(−T )κ+1

(κ+ 1) !
(52)

that yields a minimal norm of the costate λψ(T ) at the
terminal time. Moreover, the above construction can be iterated
by considering the minimization of the norm of different
time derivatives of the augmented function λψ(t), with the
sequence of such derivatives induced by the optimal steps
α?k(γ?k) of the line-search algorithm. This aspect is illustrated
by means of two consecutive steps of the algorithm in Figure 6,
which completes the discussion of Example 2. Note that the
simulation is limited to two steps to more clearly visualize
the directions induced by the derivatives of the approximate
costate λ̃ and that a longer sequence of iterations would
converge to the exact value of λ?0, as it can be appreciated
from Figure 7.

B. Time-scaling
The statements of Theorems 3 and 4 suggest that large

values of the terminal time T may hinder the precision
and reliability of the numerical operations involved in the
computation of the estimate of the optimal costate. One may
then envision a strategy that consists in scaling the time
variable t with respect to which the system (1b) is defined
in such a way that the finite-horizon problem can be written
in the (scaled) time interval [0, 1]. However, while allowing

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0
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0.15 0.2 0.25 0.3
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2.35

2.4

2.45
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Fig. 6. Phase plot of the optimal costate (solid black line) and of the
approximate costate λ̃ (solid gray line) obtained with κ = 4 in (35). The
gray square depicts λ4

0, while the gray circles represent two steps of the
line search algorithm obtained via (49) and the optimal selection of γ.
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Fig. 7. Convergence of the line-search algorithm to λ?0 with respect to
the iteration number k.

to relax the requirements in Assumption 3 associated to a
smaller interval, it can be shown that such an approach leads
to numerical computations identical to those of the unscaled
case.

To this end, define the scaled time τ(t) such that τ(0) = 0
and τ(T ) = 1, e.g. consider the linearly scaled time τ = t/T .
According to this definition, it is easy to see that the scaled
dynamics become

dx

dτ
=
dx

dt

dτ

dt
= Tf(x(τ)) + Tg(x(τ))u(τ) , (53)
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and that the cost functional is similarly scaled as

1

2

∫ 1

0

(
Tq(x(τ)) + T‖u(τ)‖2

)
dτ . (54)

It is then not difficult to see that the scaled Hamiltonian vector
field Xs

H(x, λ) is related to the unscaled one according to
Xs

H(x, λ) = TXH(x, λ). Therefore, to approximate the initial
condition of the optimal costate in the setting of the scaled
formulation, one should solve the equations

0 = λ0 +N
κ∑
i=1

Di−1(Xs
H(x0, λ0))

1

i !

= λ0 +N
κ∑
i=1

Di−1(TXH(x0, λ0))
1

i !

= λ0 +N
κ∑
i=1

T iDi−1(XH(x0, λ0))
1

i !
,

(55)

where the last equality is obtained by definition of the op-
erator Di, which coincides with (24). Finally, in the case of
nonlinearly scaled time according to τ = σ(t), with σ(0) = 0
and σ(T ) = 1, the scaled dynamics becomes time-varying as
dx/dτ = σ̇(σ−1(τ))(f(x(τ)) + g(x(τ))u(τ)).

C. Minimizing the “gap” between approximate state and
costate

With the aim of combining ideas similar to those introduced
in Section VI-A with the dual characterization of the optimal
state as in Section V, and in particular in Remark 6, consider
the following statement that extends Definition 2.

Definition 3: A function ψx : R → R is said to be a
terminal correction function of order κ if it is such that
ψx(0) = ψ

(1)
x (0) = ... = ψ

(κ)
x (0) = 0. A possible selection of

ψx(t) is provided by

ψx(t) = β
tκ+1

(κ+ 1) !
, (56)

with arbitrary β ∈ Rn. ◦
Clearly, the modified approximate state xψ(t) = x̃(t) +

ψx(t) still verifies xψ(0) = x0. Along the same lines of what
has been discussed above, the initial and terminal correction
functions may be employed to provide a more accurate approx-
imation of the optimal state and costate without increasing the
complexity of the algebraic equation (24). This objective can
be achieved by selecting the parameters α and β according to
the criterion

min
α,β

∣∣∣∣∣
[ ˙̃x(t̄) + ψ̇x(t̄)

˙̃
λ(t̄) + ψ̇λ(t̄)

]
−XH(x̃(t̄) + ψx(t̄), λ̃(t̄) + ψλ(t̄))

∣∣∣∣∣
2

,

(57)
namely such that the distance between the actual time deriva-
tives of the approximate state and costate - obtained according
to the (distinct) strategies discussed in Sections III and V - and
the corresponding value of the Hamiltonian vector field, at a
specific time t̄ ∈ [0, T ], is minimized.

To conclude this section two notable cases of interest in
the linear setting are discussed in detail. These consist in the

selection of the available parameters α and β to improve, on
one hand, the approximation of the costate initial condition -
obtained by minimizing (57) at t̄ = 0 or, on the other hand,
the approximation of the state terminal condition obtained by
minimizing (57) at t̄ = T . Such cases are discussed in the
following two statements, respectively.

Proposition 4: Consider the finite-horizon optimal control
problem (31). Fix κ > 0 and consider the solutions λκ0 , λi
and xT , xi, with i = 1, ..., κ, to (35) and (44), respectively.
Suppose that {(κ+ 1)/T} ∩ σ(A) = ∅. Then

α? := −(G>2 G2 +G>4 G4)−1(G>2 G1 +G>4 G3) , (58)

with

G1 :=
κ∑
j=1

xj
(−T )i−1

(i− 1) !
−Ax0 +BR−1B>λκ0 , (59a)

G2 :=BR−1B> (−T )κ+1/(κ+ 1) ! , (59b)

G3 :=λ1 +Qx0 +A>λκ0 , (59c)

G4 :=
(−T )κ

κ !
I +

(−T )κ+1

(κ+ 1) !
A> , (59d)

is the unique minimizer of (57) at t̄ = 0. �

Proof: The claim is easily proven by noting that in
the case of system (31b) the Hamiltonian vector field XH
is linear and that, by construction x̃(0) + ψx(0) = x0,
λ̃(0) + ψλ(0) = λκ0 + α(−T )κ+1/(κ + 1) !, while ˙̃x(0) +

ψ̇x(0) =
∑κ
i=1 xi(−T )i−1/(i−1) ! and ˙̃

λ(0) + ψ̇λ(0) = λ1 +
α(−T )κ/(κ !). Therefore, the minimization in (57) becomes

min
α

∣∣∣∣∣
[
G1 +G2α

G3 +G4α

]∣∣∣∣∣
2

, (60)

which depends only on the vector α, and where the ma-
trices Gj , j = 1, ..., 4 are defined in (59). The proof is
then concluded provided it is shown that the positive semi-
definite matrix G>2 G2 +G>4 G4 is invertible. To this end, note
that G4 = (−1)κ T

κ

κ !

(
I − T

κ+1A
>
)

is non-singular by the
assumption on the spectrum of the matrix A. �

A similar result can be stated in the case in which the
solution to (57) is employed to improve the approximation
of the terminal value of the state x̃, namely at t̄ = T .

Proposition 5: Consider the finite-horizon optimal control
problem (31). Fix κ > 0 and consider the solutions λκ0 , λi
and xT , xi, with i = 1, ..., κ, to (35) and (44), respectively.
Suppose that {(κ+ 1)/T} ∩ σ(A) = ∅. Then

β? := −(G>2 G2 +G>4 G4)−1(G>2 G1 +G>4 G3) , (61)
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with

G1 :=x1 −AxT , (62a)

G2 :=
Tκ

κ !
I − Tκ+1

(κ+ 1) !
A , (62b)

G3 :=
κ∑
j=1

λj
T i−1

(i− 1) !
+QxT , (62c)

G4 :=
Tκ+1

(κ+ 1) !
Q , (62d)

is the unique minimizer of (57) at t̄ = T . �

The proof of Proposition 5 follows arguments identical to
those employed in the proof of Proposition 4, hence it is
omitted.

VII. CONCLUSIONS AND FURTHER DISCUSSIONS

In this paper a fixed-point characterization of the optimal
costate variable in finite-horizon optimal control problems has
been proposed for linear and nonlinear systems. In particular,
the main idea revolves around the property that the optimal
initial condition of the Hamiltonian dynamics must verify,
together with an auxiliary function that replicates the time-
evolution of the costate itself, a fixed-point condition with
respect to the composition of a forward and backward flows
of the Hamiltonian vector field. Due to the presence of time in
the above condition, although rather insightful such a charac-
terization is however not particularly practical and amenable to
numerical computations. Therefore, it has been shown that the
above property can be cast in more constructive requirements
by relying on the notion of (repeated) Lie brackets, which
involve the Hamiltonian vector field and a suitably defined
projective vector field and which are evaluated at a single
point in the state-space. This strategy then yields a system
of algebraic equations in the costate initial condition, the
number of which always matches the dimension of the state
of the underlying system regardless of the prescribed degree
of accuracy for the approximation.

As further developments concerning the computation of the
optimal costate, it would be of interest to expand the discussion
about the main computational features of the algorithm. The
final outreach is to envision and develop computationally
efficient routines to compute or approximate the optimal
costate. Moreover, the idea of deriving algebraic conditions
from fixed-point characterizations in composition of flows
seems appealing in diverse fields of application, in additional
to optimal control, such as the computation of invariant sets,
periodic orbits of nonlinear systems as well as concepts related
to nonlinear reachability and controllability. Finally, similar
abstract, geometric considerations may be extended also to
the class of continuous-time stochastic systems by relying
on an adapted formulation of the Hamiltonian dynamics, in
which the backward evolution must be suitably defined to
avoid violating nonanticipativness of the solutions [41].
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