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Permanently installed structural health monitoring (SHM) systems are now a viable alter-
native to traditional periodic inspection (nondestructive testing (NDT)). However, their
industrial use is limited, and this article reviews the steps required in developing practical
SHM systems. The transducers used in SHM are fixed in location, whereas in NDT, they are
generally scanned. The aim is to reach similar performance with high temporal frequency,
low spatial frequency SHM data to that achievable with conventional high spatial fre-
quency, and low temporal frequency NDT inspections. It is shown that this can be done
via change tracking algorithms such as the generalized likelihood ratio (GLR), but this
depends on the input data being normally distributed, which can only be achieved if
signal changes due to variations in the operating conditions are satisfactorily compensated;
there has been much recent progress on this topic, and this is reviewed. Since SHM systems
can generate large volumes of data, it is essential to convert the data to actionable infor-
mation, and this step must be addressed in the SHM system design. It is also essential to
validate the performance of installed SHM systems, and a methodology analogous to the
model-assisted probability of detection (POD) (MAPOD) scheme used in NDT has been
proposed. This uses measurements obtained from the SHM system installed on a typical
undamaged structure to capture signal changes due to environmental and other effects
and to superpose the signal due to damage growth obtained from finite element predictions.
There is a substantial research agenda to support the wider adoption of SHM, and this is
discussed in this study. [DOI: 10.1115/1.4051974]
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1 Introduction
The replacement of periodic nondestructive testing (NDT) by

permanently installed structural health monitoring (SHM) systems
has been discussed for many years, and there is a vast literature
on SHM [1]. However, the industrial take-up of SHM technology
has been slow, with very few widely deployed applications. This
contrasts with rotating machine condition monitoring [2] that is
very well established in many sectors after initial issues with false
calls were overcome. Most machine condition monitoring applica-
tions use passive measurements of vibration or oil debris, whereas
monitoring of nonrotating structures usually requires active mea-
surements involving both transmitting and receiving transducers.
The two fields are therefore qualitatively different although they
are both often termed SHM [3].
The slow take-up of structural health monitoring technology is

partly a result of organizational and business case issues [1], but
there are also significant technical problems that make deployment
and reliable damage detection and quantification difficult and so
impact the business case. This article reviews the technical factors
hindering wider substitution of NDT by SHM and proposes a
system design process, together with a methodology for perfor-
mance validation.
Most NDT applications involve scanning a transducer or array

over the region of structure to be inspected. The scan can be
manual or automated, and the results are usually interpreted on

site by a qualified technician; inspection is typically carried out at
widely spaced time intervals, often at plant shutdowns. In contrast,
scanning is not generally practical in SHM, the transducers being
permanently fixed in position. It is not usually economically feasi-
ble to deploy an array of transducers at the scan pitch used in NDT,
so in SHM, the transducers are usually relatively sparsely deployed
over the structure, but frequent measurements can be taken. There-
fore, in NDT, measurements are taken at high spatial frequency and
low temporal frequency, whereas in SHM, they are taken at low
spatial frequency and high temporal frequency.
Unless the probable damage locations are precisely defined and

identified in advance, or the degradation will affect a large area
so a few sample points are sufficient to give a reliable estimate of
its severity, then successful SHM requires an area monitoring capa-
bility; it is unlikely to be practical to cover the structure with point
sensors, so a method that gives significant area coverage per sensor
is needed. This makes the use of ultrasonic guided waves very
attractive, and there is a huge literature on their use in SHM [1].
This article mainly focuses on example applications using guided
waves, and the application of bulk ultrasonic waves to thick struc-
tures is also discussed. However, the methodology is equally appli-
cable to other techniques that may be attractive for some SHM
applications such as potential drop [4–8], current deflection [9],
and magnetic measurements [10–12].
If the potential of SHM is to be realized widely in industry, a stra-

tegic approach to its development is required. This involves:

(1) Analysis of the business case and selection of applications
where the case is strong; development of an SHM system
requires considerable design, development, and validation
effort. This can be justified by a large volume of applications
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such as corrosion monitoring in the oil and gas industry2 or
very high value cases such as in nuclear plant [13].

(2) Careful analysis of the design requirements: what defects
must be detected, under what conditions, with what con-
straints; who will interpret the data; what decisions are to
be made from it; and what are the costs of incorrect
indications.

(3) Design of the transduction and instrumentation systems to
survive the operating environment and have appropriate sta-
bility, life (including battery if used), and connectivity.

(4) Design of the data processing system including compensa-
tion for environmental changes and conversion to usable
information for the recipient; consideration of the scale of
deployment is crucial here as a human operator can deal
with reviewing raw data from one or two systems, but auto-
mation is increasingly essential when the number of deploy-
ments reaches 100 s and 1000 s.

(5) Validation of performance: many applications with a strong
business case will be on safety critical structures, so evidence
of the efficacy of the system must be provided to the structure
operator and regulators.

This article concentrates on aforementioned points (2), (4), and
(5); Sec. 2 discusses SHM system design requirements and Sec. 3
then reviews the possibility of exploiting the high temporal data fre-
quency provided by SHM to overcome the loss of defect sensitivity
implied by its low spatial frequency. The use of receiver operating
characteristic (ROC) curves as a performance metric and a proposed
performance validation methodology are discussed in Sec. 4.
Section 5 discusses the remaining research requirements and pre-
sents the conclusions of the paper.

2 System Design Requirements
When considering implementation of an SHM system rather than

a traditional periodic inspection approach, it is vital to consider the
design of the whole system not just, for example, the transduction.
Todd and Flynn [14] propose a structured design approach for SHM
systems, starting with key questions:

(1) What are the failure modes the system is being designed to
monitor, and, to whatever degree possible, what are their
expected probabilities of occurrence? This is vital as not
only it is imperative that the system detect all critical forms
of damage at all likely locations but also it is not overde-
signed and so unnecessarily expensive.

(2) What specific actions will the SHM system direct in response
to the failure mode(s)? This forces consideration of the
decision-making process and who will be authorizing
actions, e.g., mandating the shutdown of a plant.

(3) What are the costs associated with the deployment and oper-
ation of the SHM system and the actions/decisions that the
SHM system directs. This highlights the need to identify
the capital and revenue costs of both the SHM system
itself and the decision-making process.

(4) What are the constraints present in the design space? For
example, temperature range, intrinsic safety requirements,
sensor and instrumentation mass, feasibility of cabling
versus wireless operation, and availability of power.

Todd and Flynn [14] then go on to use a Bayesian approach to the
design of the system, further details on an optimal sensor placement
study being given in Refs. [15,16].
The area of structure that must be monitored has significant

implications for the cost of an SHM system and the choice of
measurement technique. For example, consider simple 20 mm
deep, 32 mm wide, and 150 mm long beams and their corre-
sponding stress distributions in three-point and four-point

loading, as shown in Figs. 1(a) and 1(b). The corresponding prob-
abilities of cracks occurring at different locations in the two cases
are shown in Figs. 1(c) and 1(d ), respectively, these being
obtained using the Weibull weakest link theory [17] as explained
in Ref. [18], where the probabilities are quantified; here, the
concern is to illustrate the qualitative differences, so the scales
are simply low high. Figure 2 shows two candidate monitoring
methods, a fixed 25 mm diameter, 45 deg ultrasonic shear wave
probe in Fig. 2(a), and a potential drop system in Fig. 2(b).
The probabilities of detecting a 6 mm×6 mm vertical crack at dif-
ferent locations of the beam using the two techniques are shown
in Figs. 2(c) and 2(d ), respectively; these were estimated using
finite element analysis with assumptions about the signal-to-noise
ratio taken from experiments, as described in Ref. [18]. Again,
the results shown here are qualitative as the intention is to illus-
trate the issues involved in technique selection. As would be
expected, the ultrasonic system gives very high sensitivity at
the middle of the beam, but this drops away severely toward
the ends of the beam and also at the edges due to the beam
being wider (32 mm) than the transducer (25 mm diameter). In
contrast, the potential drop system gives relatively uniform cover-
age over the beam, but the peak sensitivity is lower than with the
ultrasonic system. The sensitivity and probability of defect occur-
rence at different locations maps of Figs. 1 and 2 can be com-
bined to give overall probability of detection (POD) values as
presented in Table 1. (The values given are for a very low prob-
ability of false alarm (PFA), but the relative performance is repli-
cated at other PFA values.) This shows that the single-point
ultrasonic test cannot be used reliably with the four-point bend
loading, but it performs little better than the potential drop
system for the three-point loading case; this is because of the
reduction in performance at the edges of the beam shown in
Fig. 2(c). This demonstrates that unless the likely defect location
is known very precisely, or it is acceptable to cover the structure
with transducers, wide area and less-sensitive monitoring systems
are likely to be preferable to the very sensitive, highly localized
systems that are more often used in NDT. The difference is
that in NDT, the transducer can be scanned so that the high sen-
sitivity is achieved at all scan locations. The question in SHM is
whether obtaining frequent readings in time from a low sensitiv-
ity, wide area system can reproduce the performance obtained by
scanning at infrequent intervals in NDT; this is addressed in the
next section.
An idea of the probability of damage occurrence is important as it

will be a key factor in determining an acceptable false call rate. If
damage is very unlikely to occur, then a very low false call rate
will be required to ensure that there is a reasonable probability
that a positive damage call correctly indicates that damage is
present; this is a very well-known issue in medical screening and
is related to the base rate fallacy [19]. For example, suppose that
the probability of false call (PFA) in an inspection is 10% and the
POD of a real defect is 90%, and further suppose that the a priori
probability of a callable defect being present is 5%. Then, in
1000 inspections, we expect 95 false calls, 45 correct defect calls,
and 5 missed defects; therefore of 140 defect calls, ∼ 70% are
false. If the a priori probability of a callable defect being present
is reduced to 1%, then more than 90% of defect calls will be
false. It is essential that the actions to be taken in the event of a
defect call are clearly specified so that their cost is known, and so
an acceptable false call rate can be defined. If the cost of investigat-
ing each call is high, then a very low false call rate will be required,
while maintaining the required POD; this puts severe demands on
the SHM system design.
Much in-service NDT is performed during plant shutdowns, so

the temperature is close to ambient and the structures are not signif-
icantly loaded; this means that standard transducers and instrumen-
tation can be used. In contrast, an SHM system is permanently
attached to the monitored structure so the transducers and instru-
mentation must survive the operational environment; it is some-
times decided only to take readings with the plant off load, but2http://www.permasense.com
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the system must still survive the full range of conditions, even if it
only has to operate over a narrower range. Design of an SHM
system is therefore often much more demanding than in NDT.
For example, Fig. 3 shows a high-temperature ultrasonic thickness
monitoring system3 [20] in which the transducers and instrumenta-
tion are outside the insulation over the high-temperature structure,
the ultrasonic waves being sent and received along stainless steel
strip waveguides, the resultant signals being transmitted to the
control room via a wireless link. Since the system was designed
to operate in zoned areas of oil and gas plant, it also had to meet
intrinsic safety requirements that, inter alia, limit the voltage and
current that can be used.

3 Exploiting Frequent Data
3.1 Background. As discussed earlier, SHM will become

much more attractive if wide coverage can be obtained from each
transducer position, but since wide area systems are typically less
sensitive than the point inspection systems that are scanned in
NDT, they can be employed only if the lost sensitivity can be recov-
ered via processing the frequent, time series data that can be
obtained.

Farrar and Worden [3] identify two broad methodologies for pro-
cessing the data: the inverse problem and pattern recognition
approaches. In this context, the inverse problem approach usually
adopts a physics-based model of the structure and tries to relate
changes in the measurements to changes in the model; this is
strongly related to the more recently termed digital twin concept
[21,22] that in the civil engineering field has been named structural
identification [23,24]. It is very challenging to invert a large model
to match measured signal changes to the structural changes (in this
case damage growth) that produce them although there has been
significant progress in the full wave inversion of sonic and

Fig. 1 Schematic (a) three-point and (b) four-point loading and stress distribution on a beam; corresponding probabilities of
defect occurrence: (c) three point and (d ) four point (adapted from Ref. [18])

Fig. 2 Schematic (a) ultrasonic corner-echo and (b) potential dropmonitoring systems on beams of Fig. 1; probabilities of detect-
ing defect if present at each location: (c) ultrasonic corner-echo and (d ) potential drop monitoring (adapted from Ref. [18])

Table 1 Expected probabilities of detection for 6 mm×6 mm
crack at 10−6 probability of false alarm in three-point and
four-point loading with the monitoring systems of Fig. 2

Expected POD ultrasonic
sensor (%)

Expected POD potential
drop sensor (%)

Four-point
bend

32.7 90.5

Three-point
bend

92.5 90.6

Note: Adapted from Ref. [18].

3See Note 2.
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ultrasonic signals, starting in the geophysics field [25]. The pattern
recognition approach is therefore more commonly followed in
machine condition monitoring and SHM although once change
has been identified, located, and its magnitude estimated, it is
then possible to investigate the size of the structural change that
has produced it using damage models; this is discussed further in
Sec. 4.
In this context, pattern recognition becomes a change-point

detection [26,27] or trend identification problem [28], and these
have been widely studied in other fields such as machine condition
monitoring [3,2], medical monitoring [29], and finance [30]. Many
rotating machines operate in protected environments and under
fairly constant conditions that ease the problem [3]. In SHM, it is
very common for measurements to be taken under varying environ-
mental conditions, and this must be accounted for. This was recog-
nized in early attempts at bridge monitoring using natural frequency
measurements where it was initially found that the measured natural
frequency increased with the introduction of damage, whereas it
would be expected that damage would decrease the stiffness and
so decrease the natural frequencies; this anomaly turned out to be
caused by temperature changes between the predamage and post-
damage measurements [3].

3.2 Temperature Compensation. This article concentrates on
the use of ultrasonic-guided wave measurements for SHM, and
there is a vast literature on signal compensation for environmental
changes, particularly temperature. Two widely used methods for
the temperature compensation of guided wave signals are baseline
signal stretch (BSS) and optimal baseline selection (OBS). BSS
requires only one baseline signal that is used as a reference to
which any current measurement is compressed or stretched in
time to minimize the residuals [31,32], so compensating for velocity
and dimension changes with temperature. In OBS, a set of baseline
signals is stored so that the one deemed most similar to the specific
current measurement is used for amplitude subtraction, often after
also applying BSS on the selected baseline [31,33]. Both these tech-
niques are in principle applicable to bulk wave and guided wave
signals.
Unfortunately, the signal phase often changes with temperature

with both piezoelectric and electromagnetic acoustic transducer
(EMAT) transducer systems [34–37], and Mariani et al. have
extended the BSS method to compensate for phase changes [38].
There have also been several attempts to deal with the difficulty of
temperature compensation on multimode guided wave signals
[39,40]. All these methods seek to minimize the difference
between the current and baseline signals, and the function that is

minimized usually is the rms residual when the two signals are sub-
tracted; therefore, they process the whole signal and the residual
tends to be dominated by changes in any large reflections that are
present. A blind trial of a guided wave pipe monitoring system
[41] on the pipe shown schematically in Fig. 4 reveals that it was pos-
sible to reliably detect defects about five times smaller than could be
detected by interpreting the signal obtained in a single test.4

The residual signal amplitude as a function of time at a location
where no defect was introduced when processed with the phase
compensation (PSC) method of Ref. [38] is shown in Fig. 5(a),
along with the temperature of the pipe (this result is slightly superior
to that obtained with BSS compensation). It can be seen that the
residual varies significantly and that this variation correlates with
temperature. To limit false calls, the defect “call” level has to be
set above the level of variations in the absence of damage, so
these variations limit the improvement in sensitivity that can be
obtained. Therefore, it was clear that improved temperature com-
pensation was the key to improving the defect sensitivity obtained
in monitoring.
Mariani et al. hypothesized that the remnant temperature depen-

dence was due to interference between different guided wave modes
present in the signal, the interference being a function of tempera-
ture; this is due to the different modes having different velocity
coefficients of temperature and also due to the relative amplitudes
of the excited modes being a function of temperature. They devel-
oped a new temperature compensation method that denoted
location-specific temperature compensation (LSTC) [42]; unlike
the BSS, OBS, and other previous methods that consider the
whole signal in a single process, LSTC treats each point on the
signal, corresponding to a particular location on the test structure
separately. The method comprises a calibration phase and a moni-
toring operation phase. In calibration, a set of baseline signals is
acquired across the temperature range of interest, which is used to
construct a calibration curve for each signal sample, i.e., each
point on the captured waveform. Each curve shows how the
expected signal amplitude at each location in the absence of
damage varies with temperature. In the monitoring operation
phase, when a new measurement is acquired, at each point, the
expected value at the relevant temperature obtained from the cali-
bration curves is subtracted from the measurement itself. Thus, in
the absence of damage, the expected value of the residual signal
is zero. Further details are given in the study by Mariani et al. [42].
Figure 5(b) shows the residual signals corresponding to those of

Fig. 5(a) when LSTC compensation is applied following initial PSC
compensation. The temperature dependence of the residuals has
been removed, and Fig. 5(c) shows that the residual signal is now
normally distributed (the data comfortably passed the Lilliefors nor-
mality test [43] at a 5% significance level [42]). Figures 6(a) and
6(b) show the results corresponding to those of Figs. 5(a) and
5(b) at the location of defect 2 shown in Fig. 4. The solid curve
labeled defect 2 shows the history of defect introduction that
started after about 330 measurements and grew to a cross section
loss of about 1.8% (note that the amplitude scales on Figs 5 and
6 are different). The residual signal of Fig. 6(a) again correlates
with temperature, making reliable defect calling difficult until the
defect has grown to above about 1% cross section loss, whereas it
would be possible to call the defect reliably much earlier from the
residual signal of Fig. 6(b) that remains low with zero mean
before the defect introduction, and then tracks its growth; the
final residual signal level expressed as a percentage of the end
reflection before damage was grown is slightly above the percent-
age cross section loss since the reflected signal is a function of
the defect shape and the section loss [44].
The defect signal amplitude, and hence defect size, that can be

reliably detected at a given false call rate is determined by the varia-
bility in the signal obtained from an undamaged structure. If the
signal from an undamaged structure is normally distributed, as

Fig. 3 High-temperature ultrasonic thickness monitoring
system [20]

4http://www.guided-ultrasonics.com
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shown in Fig. 5(b), then the probabilities of detection and false
alarm are a function of the ratio of the defect signal amplitude to
the standard deviation of the signal from an undamaged structure;
this is discussed in more detail in Ref. [45].

3.3 Data Analysis. In most conventional inspections, the
signals are analyzed on site by the inspection technician who inter-
prets the data and will often carry out any necessary follow-up
inspection to confirm a defect call or to size the indication more
accurately. Therefore, those responsible for the integrity manage-
ment of the structure are only alerted when there is an abnormality.
In contrast, SHM data are generated automatically, and it is typi-
cally much more frequent than NDT inspections (e.g., daily rather
than annual) and is transmitted direct to the structure operator. As
the number of monitoring locations on a structure or plant increases,
this data stream can become unmanageable unless some automatic
preprocessing is applied. When the thickness monitoring system5

[21] was first deployed at 100 s of locations on a plant, operators
described the experience of frequent, multipoint data as being like
“drinking from a hosepipe.” Goulet and Smith [46] note that with
increasing availability of communication systems and decreasing
cost of sensors, more and more structures are being measured, but
our capacity to analyze large amounts of data is only marginally
increasing.
The Cambridge Centre for Smart Infrastructure and Construction

(CSIC) stresses the importance of data handling and interpretation
and present a pyramid model [47], a simplified version of which
is shown in Fig. 7. Here, data are processed to a digestible form
before being passed to the decision-making level, different
degrees of automation being possible at each level.
While the number of sensors on a plant remains modest, it may be

sufficient simply to compress the information displayed to the oper-
ator in time and space. For example, the display used in the thick-
ness monitoring system6 [21] was initially a single-point A-scan as
shown in Fig. 8(a) and then graduated to a thickness versus time
plot as shown in the uncompensated graph of Fig. 8(b). This
showed sudden jumps in thickness that caused confusion for oper-
ators until it was understood that they were due to temperature
excursions changing the speed of sound; this led to a thermocouple
being incorporated in the transducer of Fig. 3, which enabled the
temperature compensated thickness versus time plot of Fig. 8(b)
to be produced. In turn, this enabled reliable corrosion rates to be
computed, and the different rates shown in Fig. 8(b) proved to cor-
relate with feedstock changes in the plant. Figure 8(c) shows the
next level of data compression with corrosion rates being displayed
at all locations in the plant, enabling the operator to see at a glance

where rates are highest and also to see commonality between differ-
ent locations that is also valuable information not readily seen from
individual plots.

3.4 Automated Analysis and Change Detection. As data
volumes increase, it is essential to increase the automation of pro-
cessing, a reasonable target to keep the absolute volume of data
requiring manual processing constant with time. Therefore, the frac-
tion of data requiring manual intervention decreases in proportion to
the number of sensors installed. Gradually increasing automation in
this way ensures that the development team doing the manual pro-
cessing sees a large number of cases with their associated difficul-
ties, so informing the development of automated processing. This
also gives a significant database of cases that can be used for super-
vised learning if machine learning algorithms are to be considered;
this is discussed further below.
Since the a priori probability of the structure being defective is

usually low, the most effective and valuable way to reduce the
volume of data to be processed manually is to automatically identify
those cases where there is high confidence that no significant defect
is present. This usually corresponds to the cases with the cleanest
signals, so this is relatively simple to automate. In the thickness

Fig. 4 Geometry of the 8 in. schedule 40 test pipe used in blind
trial [41]. The 7 and 2 m pipe sections are connected by a 90 deg
elbow with the bend radius being 1.5 times the outer diameter of
the pipe. The defects introduced in the “forward” direction are
highlighted and numbered. The distances given of the defects
and weld in the forward direction are measured from the
middle of the sensor produced by Guided Ultrasonics Ltd.

Fig. 5 Residual signal and temperature as a function of mea-
surement number (time) at 1.45 m location on pipe of Fig. 4,
where no defect was grown when residuals obtained using
method of (a) Ref. [38] and (b) Ref. [38] followed by LSTC
method [42]. (c) Distribution of residual signals of (b) with
normal curve fit shown.

5See Note 2.
6See Note 2.
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monitoring example of Fig. 8, this might involve identifying those
cases where there is high confidence that the corrosion rate is less
than, for example, 0.1 mm/year.
The presence of uncompensated environmental effects such as

the excursions with temperature shown in the uncompensated thick-
ness plot of Fig. 8(b) or the residual guided wave signals of

Figs. 5(a) and 6(a) makes the automated reliable calling of small
defects very difficult. However, if the environmental effects are
compensated satisfactorily, then automated processing is relatively
straightforward as shown by the corrosion rate calculations of
Fig. 8(b). Likewise, the normal distribution of the residual guided
wave signals after LSTC compensation of Figs. 5(b) and 5(c)
makes it possible to apply standard change tracking algorithms
that have been developed in the statistical process control (SPC)
field.
Over the past century, researchers in SPC have produced a

number of methods for the quality control of manufacturing pro-
cesses that involve the analysis of monitored parameters (e.g., tem-
perature, pressure, humidity) that are typically assumed to follow
normal distributions [48,49]. Increasing computer power has
resulted in increased attention from SPC researchers to the general-
ized likelihood ratio (GLR) approach, which was first proposed by
Lorden in 1971 [50]. Although the GLR is rather computationally
intensive, it is particularly attractive as it does not require the
extent or time of change to be specified in advance. Mariani and
Cawley [45] tested it on guided wave pipe monitoring data of the
type shown in Figs. 5 and 6 and showed that it can enable the reli-
able detection of defects equivalent to as little as 0.1% cross section
loss in cases similar to those of Fig. 6 without a significant number
of false calls. This assumes that the sensor is stable with time and
that the residual signal in a given structure state remains normally
distributed. Nonstationarity of the data coming from an unchanged
system is a recognized problem in change-point detection that is still
the subject of current research [27]. Therefore, as signal processing
is used to drive down the minimum detectable defect size, the
demands on sensor stability with time increase so it is necessary

Fig. 6 Residual signal and temperature as a function of measurement number (time) at
location of defect 2 on pipe of Fig. 4 when residuals obtained using method of
(a) Ref. [38] and (b) Ref. [38] followed by the LSTC method [42]

Fig. 7 Pyramid model of decreasing data volume and increas-
ing data value (adapted from Ref. [47])
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Fig. 8 Increasing compression of data presentation: (a) single-point A-scan, thickness being inferred (automatically) from time
between successive peaks and speed of sound, (b) thickness versus time plots uncompensated and compensated for temperature
variations, and (c) corrosion rate at all sensor locations on three units on plant (darker color—higher wall loss rate). Sensors on unit
C and some on unit A installed later than on unit B.
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to pay increased attention to the design of transducers and their
attachment to the structure; it is also essential to check the statistics
of the signals as part of the automated analysis process.
In some systems, it is possible to employ signal processing

methods that eliminate the effect of drift, one example being a
bulk wave ultrasound test in which the amplitude of the echo from
the back face of the test piece is monitored. In this case, Mariani
et al. [51] used a method first proposed by Achenbach et al. [52] in
which instead of using the amplitude of the back wall echo as the
measure of structural health, the ratio between successive back
wall echoes is employed; the ratio is much less sensitive to drift.
However, this technique is only applicable in a limited number of
cases, so more research is needed on the problem of sensor drift.
An alternative to the aforementioned traditional approaches is to

employ supervised machine learning. There has been substantial
research interest in applying supervised machine learning, usually
in the form of multilayer perceptron (MLP) networks, to NDT
signals, see, e.g., [53]. Due to the limited hardware capabilities in
early work, shallow MLP networks consisting of a limited
number of hidden layers were the preferred choice, and the
signals were typically preprocessed to reduce their dimensionality
by extracting features deemed to be sensitive to defect reflections,
see, e.g., Ref. [54]. However, this work has not found widespread
application in NDT, partly due to the need for skillful operators
to manually determine defect-sensitive features effective for each
specific application.
It would be attractive to feed full time-domain waveforms to the

machine learning algorithm, hence using the network itself to learn
the defect detection features, rather than relying on operator input;
this requires more complex architectures able to model the com-
plexities of ultrasonic wave propagation, especially when dealing
with multimodal propagation of guided waves.
In the last decade, with the advent of GPU-based machines, there

has been a proliferation of deep learning architectures involving the
use of multiple hidden layers. Mariani et al. [55] have reviewed
the field and shown that in two guided wave monitoring examples,
the WaveNet convolutional neural network originally developed for
audio signals [56] was able to learn features and/or patterns related
to the presence of waves scattered from damage, thus eliminating
the need for any feature input from human operators. The
network outperformed the optimal baseline selection and baseline
signal stretch compensation methods discussed earlier, and it was
especially encouraging that the improvements over the conven-
tional approach were particularly marked when the “current”
signals were taken at temperatures well outside the temperature
range available in the set of baseline signals. This suggests that
this class of network can complement or replace existing
methods, especially when testing occurs under new environmental
and operational conditions. This is also a possible approach for
dealing with the effects of sensor drift, but this requires much
more investigation.
The need for very large training data sets makes the application of

supervised machine learning in SHM difficult although it is possible
to supplement experimental data on damaged structures with data
from undamaged structures on which predicted damage signatures
are superposed; this is discussed further in the next section. A
further concern is whether the training data set covers a wide
enough range of cases, and it is also more difficult to qualify a
supervised machine learning system for use in safety critical appli-
cations than one based on predefined signal processing operations.

4 Performance Validation
Receiver operating characteristic curves [57] are routinely used in

the evaluation of diagnostic tests in medicine and engineering; they
plot the sensitivity (POD in NDT/SHM terminology) for the test
against its specificity (PFA in SHM) for a given change in condition
(defect size and type in SHM), both axes being on a (0,1) scale. The
ideal operating point is at the top left-hand corner of the plot,

corresponding to unity probability of detection and zero probability
of false alarm, but of course this is not practically attainable. The
ROC curve enables the following questions to be answered:

• What is the POD at an allowable false call rate of 1% for a
given damage size, type, and location and under a specified
range of operating conditions?

• What is the smallest damage size that can be detected at 95%
POD and 1% false call rate given a specified measurement fre-
quency and range of operating conditions?

For example, Fig. 9 shows ROC curves for a guided wave pipe
monitoring system using location-specific temperature compensa-
tion (LSTC) for three different levels of cross section loss. They
are plotted on a semi-log scale, so that low levels of probability
of false alarm can be seen, recognizing that the PFA must be very
low for the system to be acceptable, as discussed earlier. The perfor-
mance improves dramatically as the defect size (cross section loss)
increases, being almost perfect at unit POD and < 0.01% PFA for
0.36% cross section loss. The dashed line corresponds to the perfor-
mance expected from a random guess strategy; this would be a
straight, 45 deg line on a linear plot
Unfortunately, it is typically even more costly to define ROC

curves experimentally in SHM applications than it is to conduct
POD trials in NDT. This is because the SHM system must be
installed on many structures of the required design that are cycled
through the full range of operational conditions, damage being
introduced in some of the structures at a representative range of
locations. In most cases, this is totally impractical and its cost
would preclude the application of the SHM system. In NDT,
there is an increasing move toward model-assisted POD
(MAPOD) evaluation [58], and Liu et al. [59] have proposed a
related approach for ROC curve generation in SHM.
Modern computational resources mean that the signature pro-

duced by damage in bulk wave ultrasound, guided wave ultrasound,
and other techniques can be reliably predicted, even when it has
complex shape [44]. In contrast, the reliable prediction of signal
changes due to environmental and other variability is not possible
so it is not feasible to predict the signal changes seen in the
absence of damage. However, it is straightforward to obtain

Fig. 9 Example ROC curves plotted on semi-log scale. Case of
guided wave pipe monitoring system using LSTC temperature
compensation with defects corresponding to 0.12% cross
section loss (black – lowest solid curve), 0.24% loss (blue –

middle solid curve), and 0.36% loss (red – top solid curve).
Data are used to compute Fig. 13(a) of Ref. [45]. Dashed line is
random guess that is 45 deg line on a linear plot.
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experimental data with environmental variation from an SHM
system installed on a typical undamaged structure. Therefore, mea-
sured data can be obtained over multiple environmental cycles on
an undamaged structure, and predicted damage signatures can be
added at different locations with different growth patterns. The
effect of different degrees of environmental variation on the ROC
curves is then straightforward to simulate by appropriate selection
of signal sets, and the effect of varying damage severity, multiple
damage sites, frequency of readings, and so on is easy to assess.
The approach has been validated on data obtained in the blind
trial of a guided wave pipe monitoring system [41] by Heinlein
et al. [60].
Crucially, this approach can also be used to validate performance

of an installed SHM system. Suppose that the regulator requires
assurance that the SHM system installed on a nuclear power plant
is correct in indicating that no defect larger than a specified size
has grown at a particular location. Signals from defect growth at
the specified location can be predicted and added to the sequence
of raw signals measured from the installed SHM system; the result-
ing synthetic signal sequence can then be processed by the algo-
rithms used to determine the health of the system, so verifying
whether the required defect would be detected if present. The statis-
tics of the measured signals can also be checked to ensure that any
assumptions about, for example, normality of residuals as discussed
earlier are valid.

5 Conclusions and Future Research Needs
Permanently installed SHM systems are now a viable alternative

to traditional periodic inspection. The SHM system must have high
reliability over the envelope of operating conditions, a particular
concern being the avoidance of false calls due to, for example, tem-
perature or load changes. Since scanning a transducer over the
structure, as is routinely done in NDT, is not possible with the
fixed transducers used in SHM, the data obtained in SHM typically
have a much lower spatial frequency than that in NDT, and it is
desirable to choose methods that enable high volume coverage
from each transducer. On the other hand, it is possible to acquire
data much more frequently in SHM than in NDT; hence, the aim
is to achieve similar performance with low spatial frequency, high
temporal frequency SHM data as is obtained in NDT with high
spatial frequency, and low temporal frequency information. This
can be done via change tracking algorithms such as the GLR, but
this depends on the input data being normally distributed, which
can be achieved only if signal changes due to variation in the oper-
ating conditions are satisfactorily compensated. There has been
much progress in this area, and the recently developed LSTC
method [42] has shown excellent results on both ultrasonic-guided
wave and bulk wave data. There is also increasing interest in the
application of supervised deep learning methods to SHM signals.
The transducers and instrumentation used in SHM must survive

the operating environment and remain stable over extended
periods; this is much more demanding than in NDT where inspec-
tion is generally carried out offline. Since SHM systems can gener-
ate large volumes of data and often transmit it direct to the engineers
responsible for the plant, it is essential to convert the data to action-
able information, and this step must be addressed in the SHM
system design. It is also essential to validate the performance of
installed SHM systems, and a methodology analogous to the
scheme used in NDT has been proposed. This involves using mea-
surements obtained from the SHM system installed on a good struc-
ture to capture signal changes due to environmental and other
effects and to superpose the signal due to damage growth obtained
from finite element or other predictions.
The routine industrial use of SHM is in its infancy [1], with high

value oil and gas industry applications to the fore. There are many
sensors deployed on civil engineering structures, but data process-
ing to provide useful information to operators is far from standar-
dized [46]. There has been a great deal of interest in SHM in the

aerospace sector, and many prototype systems have been developed
and flown on a trial basis; however, few systems are in routine use
apart from a few local hotspot monitoring systems, particularly on
military aircraft.
There is a substantial research agenda to support the wider adop-

tion of SHM, key topics being:

• Transducers and instrumentation to withstand harsh environ-
ments and remain stable

• Calibration methods to account for any drift in sensitivity,
phase, and so on with time

• Methods to increase area coverage per sensor at the required
sensitivity and low probability of false call

• Further techniques for performance validation including both
probability of defect detection and false call rate

• Development of use cases including both the technology and
business case

• Efficient data handling to give operators information on which
decisions should be taken, rather than raw data

• Fusion of data from multiple sources to provide better prog-
nostic information
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