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Abstract  

 

Demand for low density and high strength materials in the aviation sector has expanded greatly 

due to ambitious carbon emission and fuel consumption targets. In order to meet these targets, 

manufacturers have focused on weight reduction via the use of lightweight materials. In the 

aerospace sector, high strength structural components are made from titanium alloys. However, 

the forming of complex-shaped components from titanium alloys is time, energy and cost 

intensive. One promising solution to overcome these difficulties proposed in the literature is 

using the hot stamping process to form complex-shaped components from sheet metal with 

cold dies, and rapidly quenching the workpiece in the dies simultaneously. The hot stamping 

process promises to reduce the tool wear commonly found in conventional hot forming 

processes and be an overall more efficient and economical process when compared to 

conventionally used isothermal hot forming techniques. A novel hot stamping process for 

titanium alloys using cold forming tools and a hot blank was studied systematically in this thesis. 

This work aims to investigate the microstructural evolution and flow behavior of a titanium 

alloy (Ti6Al4V) under hot stamping conditions experimentally, and to model these parameters 

using the constitutive equations proposed. The material behavior was modelled using 

mechanism-based viscoplastic constitutive equations to replicate the material response of a 

two-phase titanium alloy Ti6Al4V under hot stamping conditions. Finally, the developed 

model's accuracy was validated by comparing to experimental uniaxial tensile tests and 

microstructural maps of the deformed alloy. Microstructural analysis revealed that the heating 

and soaking conditions are vital to the microstructure and post-form strength, whereas the 

plastic deformation during the hot stamping only has a negligible effect on both 

recrystallization and phase transformation due to the very short deformation time. The 

developed material model was implemented into the Finite Element (FE) simulation to study 

the deformation characteristics during the hot stamping process. The verified simulation data 

were analysed through a novel hot stamping technique with good agreements achieved between 

the predicted and experimental results. A complex shaped wing stiffener panel component was 

successfully formed from TC4 titanium alloy, demonstrating the great potential of investigated 

technology in forming complex shaped titanium alloys components. Finally, Fast light Alloys 

Stamping Technology (FAST) is proposed for titanium alloys, where fast heating to a two-

phase titanium alloy sheet with equiaxed microstructure is employed.  

 



 

7 

Nomenclature 

 

α - titanium alpha phase 

β - titanium beta phase 

�̇�𝒑 - plastic strain rate 

�̇�𝒑𝜶  - plastic strain rate for α phase 

�̇�𝒑𝜷  - plastic strain rate 

 ƒ𝜷 - volume fraction of beta phase 

σ - flow stress  

𝐻 - stress due to dislocation hardening,  

𝑘 - initial yield stress,  

𝐾  - material parameter 

𝑯𝜶 - stress due to dislocation hardening for α phase 

𝑩𝜶  - α phase material constant 

�̅�𝜶  - normalized dislocation density for α phase 

𝑯𝜷 - stress due to dislocation hardening for β phase 

𝑩𝜷  - β phase material constant 

�̅�𝜷  - normalized dislocation density β phase 

𝒏𝟏 - material constant for strain hardening for α phase 

𝒏𝟐 - material constant for strain hardening for β phase 

𝒏𝜶 - material constant for α phase recovery 

𝒏𝜷 - material constant for β phase recovery 

𝑪𝜶 - α phase material constant 
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𝑪𝜷 - β phase material constant 

𝜀𝑡  - the total strain 

𝜀𝑝 - the plastic strain 

𝐸  - the Young’s modulus 

X  - the material constant 

m - the material constant;  

T - the current temperature 
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CHAPTER 1 

1.  Introduction 

1.1  Background  

Demand for low density and high strength materials in the aviation sector has expanded due to ambitious 

fuel consumption targets set for aircraft vehicles. In order to meet fuel consumption targets, weight 

reduction via the use of lightweight materials has been a key driver. In the aerospace sector, low strength 

structural components are commonly produced from aluminium alloys, and high strength structural 

components are made from titanium alloys and carbon fiber reinforced plastics (CFRP). Main 

advantages of CFRP include mass and part reduction, complex shape manufacture, improved fatigue 

life, design optimisation, and generally improved corrosion resistance. CFRP are mainly used for 

airframes and airplane tails constructions (Soutis 2005). On the other hand, titanium alloys are used in 

high operating temperatures and high stresses, for example gas turbines. The forming of complex-

shaped components from titanium alloys is time, energy and cost intensive. The aircraft industry 

currently uses methods such as superplastic forming, superplastic forming with diffusion bonding, hot 

stretch forming, creep forming, hot gas-pressure forming or isothermal hot forming to produce 

complex-shaped components (Peters et al. 2003; Serra et al. 2009; Astarita et al. 2013; Deng et al. 2014; 

K. Wang et al. 2017; Raghu et al. 2011; Ermachenko et al. 2011). However, these techniques usually 

require a very high temperature, a very slow strain rate and simultaneous heating of tools and sheet 

during the process. These characteristics decrease productivity, and proportionally increase the cost of 

production.  

Research into forming technologies with increased productivity has developed processes such as the 

Heat Form Quench (HFQ) (J. Liu et al. 2015), the Quick-plastic forming (Bariani et al. 2013), and the 

hot stamping using rapid heating (Hamedon et al 2013; Maeno et al. 2017). One promising solution to 

this problem proposed in the literature is the use of a hot stamping process to form complex-shaped 

components from sheet metal using cold dies, rapidly quenching the workpiece. The hot stamping 

process promises to reduce the tool wear commonly found in conventional hot forming processes and 

be an overall more efficient and economical process when compared to conventionally used techniques 

(Hamedon et al. 2013). Moreover, the mechanical properties and microstructure of the formed part can 

be tailored by the regulation of heating temperature, heating rate, soaking time and cooling rate. 

1.2  Project driving force 

Commercially pure titanium and titanium alloys are widely used in the aircraft industry as lightweight 

structural materials due to their good strength-to-weight ratio, high temperature performance, and 

corrosion resistance. However the critical issues in forming these alloys are poor formability and a 
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serious springback effect. As a result, the hot forming process becomes crucial to successfully form a 

complex-shaped part. At high temperatures, the formability of titanium alloys increases and the 

springback effect is reduced. However, most of the currently used hot forming techniques experience 

significant tool wear, a very slow strain rate and simultaneous heating of the forming tools and blank 

during the forming process. The relatively long forming time, high temperatures, and variation in part 

quality due to tool wear also impair the final mechanical properties of the formed part. In this study, the 

hot stamping of titanium alloys is proposed to mitigate these problems.  

This work focuses on investigating the feasibility of a hot stamping process for Ti6Al4V titanium alloy 

using cold forming tools and a warm/hot blank. The mechanical properties and microstructure of the 

supplied material under different conditions are studied by uniaxial tensile tests, hardness test and 

scanning electron microscope to determine the possible forming windows for hot stamping. A part was 

formed to verify the feasibility of forming technology. Results show that this new technology has a 

great potential in forming titanium alloys sheet components and a qualified part (with no visible cracks 

observed) was formed successfully. The deformation condition had a great influence on both the 

mechanical property and microstructure of the material after deformation. The post-form mechanical 

properties and microstructure can be tailored by the adjustment of heating temperature, heating rate, 

soaking time and cooling rate. 

1.3  Aims & Objectives 

The primary aim of this PhD project is to develop a hot stamping process to form components from the 

Ti6Al4V titanium alloy in the warm/hot condition utilising cold forming tools in order to improve the 

forming efficiency and reduce tool wear found in commercial hot forming processes.  

To achieve this aim, the following objectives must be met: 

• Determination of mechanical properties of the Ti6Al4V alloy in varying conditions, under a 

range of forming parameters (temperature and strain rate). Description of flow behavior and 

formability of titanium alloys under high strain rate; 

• Description of microstructure evolution during the hot stamping of titanium alloys; 

• Development of mechanism-based constitutive equations for titanium alloys; 

• Optimisation of forming process parameters via Finite Element modelling, creating a forming 

window of acceptable parameters 

• Forming of prototype components utilising the new process and forming window (prediction 

and control of the defects during the forming of the typical component); 

• Testing of prototype component properties (post-form strength) 
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1.4  Thesis structure 

In this thesis, the introduction of pure titanium and its alloys, as well as a review of forming technologies 

for titanium alloys and their industrial applications are shown in Chapter 2. The material 

characterisation of the Ti6Al4V alloy, including tensile tests, microstructural investigations and 

forming tests are presented in Chapter 3. Detailed microstructure evolution and material modelling of 

the Ti6Al4V alloy under hot stamping conditions are presented in Chapter 4. The FE simulation for the 

forming of the Ti6Al4V wing stiffener component is shown in Chapter 5. Development of FAST 

technology for hot stamping of titanium alloys is presented in Chapter 6. The final conclusions of this 

research are summarised in Chapter 7. 
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CHAPTER 2 

2.  Literature review on the sheet metal forming technologies of titanium 

alloys 

 

2.1  Titanium alloys – introductory remarks 

Titanium and its alloys are known as materials for aerospace applications possessing their high strength 

to weight ratio and a great corrosion resistance. However, the usage of these alloys is limited due to 

huge costs of high temperature forming and fabrication of titanium itself, which is approximately four 

times greater that of stainless steel (Donachie 2001). Titanium is rarer than other metals, and it is 

typically found bonded to other elements only, which make it difficult to process. For that reason, the 

advantages of titanium applications must be balanced against their production cost (Boyer 1996).  

Titanium has two allotropic varieties: low-temperature Tiα with the hexagonal crystallographic compact 

structure and high-temperature Tiβ which crystallizing in a body-centered cubic (BCC) structure. A 

transformation of titanium occurs at a temperature of 882.5°C. This transformation depends on the 

purity of the titanium compound (Peters et al. 2003a; Sieniawski et al. 2013). The schematic process of 

the transformation is shown in Figure 2-1. 

 

Figure 2-1. Schema of allotropic transformation Tiα into Tiβ 

Titanium is one of the lightest metal because of its low density (4.51 g/cm3), which is almost twice 

times lower than the density of steel, nickel or copper alloys. The density of titanium alloys depends on 

a type and amount of alloy additives (Beal et al. 2006). The addition of aluminium slightly reduces the 

density of the alloy. However, the addition of the high-density metals significantly increases this 

property. Titanium has a smaller thermal expansion coefficient than magnesium, aluminum, and iron. 

It also has a lower thermal conductivity than aluminum (approx. 15 times) or nickel-chromium steel 

(approx. 2.5 times). A disadvantage of pure titanium is its low mechanical strength, which significantly 

decreases at higher temperature. This phenomena can be eliminated by the addition of alloy additives. 

Some of the physical and mechanical properties are presented in Table 2-1. 
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Table 2-1. Selected physical and mechanical properties of titanium alloys (R. W. Cahn, 1995). 

 
Young’s 

modulus 

[GPa] 

Yield Strength 

[MPa] 

Ultimate 

Tensile 

Strength 

[MPa] 

Elongation 

[%] 

Hardness 

[HV] 

α alloys 100-120 170-830 240-870 15-25 120-300 

Near α alloys 100-130 850-990 990-1050 6-16 340-350 

α + β alloys 110-140 800-1200 900-1300 8-19 300-400 

β alloys 80-120 800-1200 800-1400 6-20 250-500 

 

Titanium is sensitive to the addition of alloying elements. This is a result of the high solubility of certain 

elements in one phase of titanium and titanium polymorphism. Alloy additives affect both, the 

microstructure and mechanical properties of titanium. However, these alloying elements are also 

stabilizers of phases which could decrease or increase the transition temperature in the α into β 

transformation (Froes 2015). The most common alloying elements using as stabilizers for α phase are 

oxygen, nitrogen, carbon, aluminum, gallium, lanthanum and cerium; for β phase – hydronium, niobium, 

vanadium, molybdenum, wolfram, tantalum (isomorphous addition) and chromium, iron, cobalt, nickel, 

manganese (eutectoid addition).  Titanium strongly reacts with oxygen, which increases the α phase, 

but only by a limited value (0.10-0.12%). Impurities such as nitrogen, hydrogen or carbon have a 

negative effect on the properties of titanium alloys resulting in reduced ductility, creep resistance and 

cold brittleness. By proper selection of the alloying elements, the desired structure of the alloys with 

suitable mechanical properties is obtained. Changes in the structure of titanium can be obtained by heat 

treatment process. Technically, pure titanium and its alloys are characterized by a number of unique 

properties that distinguish them from conventional construction materials. First of all, they have a higher 

or equivalent mechanical strength compared to steel and corrosion resistant alloys based on iron and 

nickel. Moreover, titanium is characterized by a much higher relative strength (determined by the tensile 

strength to density (Rm / δ) ratio) than other construction materials. For example, the value for titanium 

alloys can be up to 33, where for the relative strength of the steel is 19-23. Only aluminum alloys are 

equal to titanium in this regard. However, the strength of aluminum decreases drastically at higher 

temperature. In the temperature range from 300°C to 600°C titanium alloys are 10 times stronger, and 

therefore, they are widely used in the aerospace industry (Peters et al. 2003a). In addition, these alloys 

demonstrate higher strength under long-term loads, compared to structural steel. Titanium and its alloys 

are characterized by high corrosion resistance in most environments oxidizing chlorides and salt water. 

The reason for this phenomenon is the formation of a stable oxide layer of TiO2, which is strongly 
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linked with the alloy.  Due to its corrosion resistance titanium compounds can work in the most 

agressive environments, where most of the conventional steels could not. On the other hand, titanium 

is not resistant to corrosion under reducing conditions, where the passive layer is broken (e.g. by 

hydrofluoric acid). It is crucial that titanium itself is a very strong oxidizing element at a temperatures 

above 500°C, when it can consume oxygen, nitrogen and hydrogen. Plastic deformation is a key factor 

to a large extent of titanium mechanical properties. At 80% deformation, the strength of technically 

pure titanium may increase three-fold, while titanium alloys will only increase two-fold. Other 

properties of titanium alloys are presented below (Peters et al. 2003a): 

• high fatigue strength in air and chloride environments, 

• high fracture toughness, 

• low modulus of elasticity, which involves in reduced bending stresses, 

• low coefficient of thermal expansion, 

• non-magnetic - slightly paramagnetic, 

• non-toxic,  

• excellent cryogenic properties. 

 

2.2  Mechanical and microstructural characterisation of titanium alloys 

2.2.1 α and near α alloys 

α-phase alloys include technically pure titanium and alloys containing elements stabilizing the α phase 

(Sn and Al) and other elements (O, C, N), which are dissolved in the α phase. They also contain limited 

content of β phase stabilizing elements (V, Mo, and Fe). The addition of Al and Sn increases the 

temperature of allotropic transformation α into β. These alloys have the structure of the solid solution α 

(Figure 2-2) (Destefani et al. 1990). 

 

Figure 2-2. Pure titanium structure after annealing for 1 hour at a temperature of 675°C and slowly 

cooled in air (Arun 2006) 
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These alloys are not subjected to strengthen by heat treatment. In most cases, they are subjected to 

recrystallizing or normalized annealing in order to eliminate stresses caused by plastic deformation. 

Increase in strength is obtained mainly by the addition of elements (N, O, and C) which can 

simultaneously reduce toughness of material. With the increase of temperature, effects of material 

strengthening rapidly decreases. α phase titanium alloys have good casting characteristics, improved 

resistance to creep and are easily plastically deformed in spite of the alloys with β phase structure. They 

also have good weldability but do not exhibit satisfactory fatigue. Selection of this class of materials is 

generally based on the good corrosion resistance and ease of fabrication, not on the mechanical 

properties. Single α phase alloys have been used (Destefani et al. 1990): 

• in the marine industry for machine parts for desalination of water and the hulls of ships,  

• aircraft industry on the compressor aircraft engines,  

• medical implants,  

• chemical and petrochemical industries for high-pressure cryogenic and wherever required a 

high resistance to corrosion and a high capacity for plastic deformation (sheet metal parts). 

Pseudo α alloys contain a small addition of β phase stabilizing elements (1-2%), which directly affects 

the strength and creep resistance. These alloys are the most commonly used titanium alloys for the 

production of engines in the aerospace industry because of the opportunity to work at elevated 

temperatures up to 550°C (Peters et al. 2003a). 

The commercially pure grade could be produced with yield strength from 170 MPa to 480 MPa. The 

main advantages of these grades are good formability and excellent corrosion resistance. Strength of 

these titanium alloys is comparable to 300 series stainless steels with the 40% reduction in density 

achieved. Commercially pure grade titanium alloys possess good weldability and there are not heat 

treatable. Selected material properties were presented in Table 2-2 and  Table 2-3  below: 

Table 2-2. Selected mechanical properties of  commercially pure titanium alloys (Beal et al. 2006) 

Type of Ti alloy Minimum ultimate tensile 

strenght [MPa] 

Minimum 0.20% yield 

strenght [MPa] 

Elongation [%] 

Commerially pure titanium 

ASTM grade 2 / CP-3 345 280-450 20 

ASTM grade 4 / CP-1 550 480-655 15 

ASTM grade 3 / CP-2 450 380-550 18 

ASTM grade 1 / CP-4 240 170-310 24 
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Table 2-3 Selected mechanical properties of  α and near α titanium alloys (Beal et al. 2006) 

Type of Ti alloy Minimum ultimate tensile 

strenght [MPa] 

Minimum 0.20% yield 

strenght [MPa] 

Elongation [%] 

Alpha titanium alloys 

5Al-2.5Sn / A-1 790 760 10 

5Al-2.5Sn / A-2 690 657 6 

8Al-1Mo-1V/ A-4 828 760 6 

6Al-2Cb-1Ta-0.8Mo / A-3 711 657 10 

 

2.2.2 β alloys 

 

β phase alloys are characterized by a high content of β phase stabilizing elements, such as vanadium, 

molybdenum or niobium (above 20%). The subjection of these elements significantly reduce the 

temperature of phase transition (β → α), and therefore β phase alloys crystallize in the body-centered 

lattice system, not as α-phase in a hexagonal compact system. There are two types of β phase alloys: 

stable and metastable β alloys (pseudo-β). Pseudo β alloys are strengthened by heat treatment and have 

high tensile strength even at elevated temperatures. Stable alloys are not subjected to a heat treatment. 

The main features of the β-alloy are high degree of strengthening while maintaining a high yield and 

very good hardenability. Also, ease of shaping at temperatures lower than other titanium alloys. Some 

alloys may be subjected to cold working. They have a smaller thermal stability, lower corrosion 

resistance and creep resistance as compared with α phase alloys (Peters et al. 2003b). Through the 

addition of molybdenum, vanadium or iron β-alloy obtain a higher density than those with the α 

structure. These type of titanium alloys (include Ti10-2-3, Ti-15-3) are known from their higher 

strengths up to 1380MPa. They could be heat treated to obtain desirable strength/fracture toughness 

properties. β alloys possess good cold rolling capabilities. They also could be forged at lower 

temperatures which significantly reduce die cost. Selected mechanical properties of such alloys were 

listed in Table 2-4  below. 

Table 2-4. Selected mechanical properties of β titanium alloys (Beal et al. 2006) 

Type of Ti alloy Minimum ultimate tensile 

strenght [MPa] 

Minimum 0.20% yield 

strenght [MPa] 

Elongation [%] 

Beta titanium alloys 

13V-11Cr-3Al / B-1 911 872 8 

11.5Mo-6Zr-4.5Sn / B-2 690 623 10 

3Al-8V-6Cr-4Mo-4Zr / B-3 828 796 6 

8Mo-8V-2Fe-3Al / B-4 828 796 8 
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2.2.3 α/β alloys 

 

These type of titanium alloys (include Ti6Al4V, Ti6Al6V2Sn and Ti6Al2Sn4Zr6Mo) are known from 

their good combination of mechanical properties. These type of titanium alloys could work in 

temperatures up to 400°C without losing its strenght. Also very good corrosion resistance made these 

alloys an excellent candidates for aerospace applications. Two phase titanium alloys could be 

strengthened through solution heat treatment below beta transus temperature and subsequent ageing 

process. They are also highly weldable. 

Two-phase α + β alloys are obtained by adding α and β phase stabilizing elements. β phase stabilizing 

elements (eutectoid or isomorphic) extend the temperature range of the phase α + β → β transition. β 

phase fixed with eutectoid elements (Cr, Fe, Co, Ni, Mn) have better mechanical properties. 

Unfortunately, it also has poorer formability compared with the β phase alloys obtained as a result of 

adding isomorphic elements (Nb, V, Mo, Ta, and W). The solubility of the β stabilizers in α solid 

solution is very low, therefore, these elements cause little reinforcement of material.  α phase stabilizer 

is mainly aluminum, which not only reinforces the α phase but also improves the heat stability of β 

phase. Two-phase α + β alloy structure consists of a mixture of a reinforced α solid solutions and β solid 

solution. The microstructure and mechanical properties depend largely on the performed processes and 

heat treatments. Therefore, the final equilibrium of microstructure can be categorized depending on the 

cooling rate. With low cooling from a temperature above the transition β → α, β phase is converted to 

equiaxed α phase type (Figure 2-3a). For fast cooling rate, β phase is transformed into α growing from 

grain boundaries, to the center of the grain (Figure 2-3b). The length and thickness of the plates depend 

on the cooling rate. In the case of rapid cooling (quenching) a martensitic β → α' transition occurred 

(Figure 2-3c) (Destefani 1990). 

 
Figure 2-3. The structure of α + β alloys: equiaxed (a), the leaf (b) and martensitic (c) (Donachie 

2000) 

Effect of volume fraction and morphology of different phases have a great impact on mechanical 

properties of the biphasic alloys. The increase of β phase improves the strength of alloy, which reaches 

a maximum at a content of 50% of the two phases. Two-phase alloys have higher strength and ability 

to cold working as compared with those α single-phase alloys. Moreover, they also have good 
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mechanical properties at elevated temperature. These features have been applied in the aerospace 

industry for aircraft engine turbine blades and high-pressure cryogenic containers (Destefani et al. 1990). 

The most widely used α + β alloy is Ti6Al4V, where most applications include aerospace and aviation, 

like engine parts in airplanes and spacecraft (Peters et al. 2003a). The Ti6Al4V alloy has two-phase α 

+ β structure with the phase stabilizers - aluminum (α) and vanadium (β). It consist of elements like 

aluminum (5.6-6.75%), vanadium (3.5-4.5%), carbon (<0.1%), iron (<0.3%), oxygen (<0.2%), nitrogen 

(<0.05%), hydrogen (<0.01%). Aluminum has a great solubility in solid α solution and strengthens it. 

In result, strength increase and reduction of the alloy density occurs. The Ti6Al4V alloy is one of the 

most intensively developed and widely used titanium alloys (more than 50% of all titanium 

applications). It is a result of a good balance between strength, ductility and fatigue resistance. Moreover, 

it has good corrosion resistance. It is recommended for use at temperatures up to 350°C (Peters et al. 

2003a). Some of the mechanical properties are presented in the table below (Table 2-5). 

Table 2-5. Selected physical and mechanical properties of the alpha-beta titanium alloys (Peters et al. 

2003a) 

Type of Ti alloy Minimum ultimate tensile 

strenght [MPa] 

Minimum 0.20% yield 

strenght [MPa] 

Elongation [%] 

Alpha-beta titanium alloys 

8Mn / AB-6 863 761 10 

6Al-4V / AB-1 897 830 8 

6Al-4V / AB-2 863 934 6 

6Al-4V-2Sn / AB-3 1001 934 8 

6Al-2Sn-4Zr-2Mo / AB-4 897 830 8 

6Al-4V-SPL / AB-5 621 519 15 

 

The Ti6Al4V titanium alloy possesses an attractive combination of material properties for the 

manufacture of aircraft components. As a result of its properties of yield strength, ductility, fracture 

toughness, high temperature strength, creep characteristics, weldability and workability, the Ti6Al4V 

alloy quickly found an application in many fields, such as aircraft, marine, medical, electronic and 

chemical industries, making it the most widely used titanium alloy. It has found many applications in 

aircraft airframes and engine parts (for example fan blades, fan case) (Inagaki et al. 2014; Williams et 

al. 2003; Peters et al. 2003a), and for this reason, the Ti6Al4V alloy is the focus of this research.  

Generally, the microstructure of titanium alloy is described by the arrangement and amount of α and β 

phases using the phase diagram (Figure 2-4). At room temperature the Ti6Al4V alloy consists mainly 

of the hexagonal close-packed (HCP) α phase and the body centred cubic (BCC) β phase. 



Chapter 2 – Literature review 

 

28 

 

Figure 2-4. Vertical section of phase diagram for Ti alloys of type Ti-6Al-xV (Donachie 2000) 

 

Application of different heat treatments during the forming process results in various ranges of 

microstructures and mechanical properties. By changing the cooling rate and the thermal processing 

history, many states of microstructure are observed (Figure 2-5) for example, plate-like α + β (Figure 

2-5a), equiaxed α and intergranular β (Figure 2-5b, c), α’ + β (Figure 2-5d), primary α and α’ + β 

(Figure 2-5e) and primary α and metastable β (Figure 2-5f). Using a slow cooling rate above the β 

transition temperature, the β phase transforms into the globular type of α phase (Figure 2-5). In the case 

of rapid cooling (quenching), the β phase transforms into the martensitic α´ phase. Regarding the 

Ti6Al4V alloy, the amount of the martensitic HCP α’ or the orthorhombic α’’ phase depends on the 

composition of the β phase before the quenching process. Because the HCP α´ phase is enriched in the 

β stabilizing element, the ageing treatment in the range between the martensitic start temperature (Ms) 

and the β transition caused a decomposition of the HCP α´martensitic phase into α and β equilibrium 

phase (Figure 2-6). Ageing at a temperature of 700°C for about 30 minutes caused a full decomposition 

of the α´ phase into the equilibrium α and β phases. 

 

Figure 2-5. Ti6Al4V microstructures after furnace slow cooling (50°C/h) and water quenching 

(Donachie 2001) 
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Figure 2-6. CCT diagram for Ti-6Al-4V alloy (Sieniawski et al., 2000.). 

 

2.3  Applications of titanium alloys 

Titanium alloys are widely known as "space" materials and they are used in aerospace and aviation, 

from the beginning of the 50s. Over the past 10 years, titanium materials were use in chemical 

engineering, medicine for bone implants, the marine industry, automotive and energy sector and many 

others (Peters et al. 2003a). In the aerospace titanium is used thank such characteristics as high relative 

strength, corrosion resistance, creep resistance, load carrying capabilities at elevated and cryogenic 

temperature, a capacity to create alloys, composites, and intermetallic phases. Commonly used 

applications of titanium alloys are pressure vessels in spacecraft, gas turbine components, connectors, 

brackets, springs, undercarriage components, fuselage, wings and other components of airplanes and 

helicopters.  Aerospace, military and civil aviation industry demand continuous work on obtaining 

better and better properties of titanium alloys, titanium materials with an intermetallic matrix, powder 

materials or composites. For this purpose, are increasingly being used unconventional manufacturing 

technologies which also leads to a reduction in production costs. These technologies include the 

formation of objects in superplastic conditions   so called hydrogen and incremental laser technologies 

(Peters et al. 2003a). The use of titanium has solved a technically complicated problem of heat 

exchangers manufactured in the chemical industry. It is also used for the production of steam condensers 

for turbines in nuclear power plants. Titanium effectively supplanted the graphite as the material for the 

tube heat exchanger for cooling the chlorine solution. Other applications in the chemical industry are 

chemical reactors, filters, dryers, pumps, pipelines, separators and more (Beal et al. 2006). In the 

automotive industry, use of titanium reduces the weight of vehicles, which directly affect the decrease 
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in fuel consumption and reduction of carbon emissions. For example, a reduction in weight of 1.1% 

reduces fuel consumption by 0.7%. Special titanium alloys have a high strength to density ratio in 

temperatures to 600°C which is so much better in comparison to aluminum and steel. Initially, titanium 

alloys have been introduced to racing cars on elements such as connecting rods, valves, axles (front and 

rear), suspension components, bearings and others. Today, many car companies such as Volkswagen, 

General Motors, Mitsubishi Motors, Honda Motors and Toyota expands a range of components 

manufactured from titanium alloys (Beal et al. 2006). In the marine industry, titanium was applied 

because of good surface corrosion resistance in the sea water, resistance to pitting and biological 

corrosion. The disadvantage of titanium materials is that at elevated temperatures, they lose the 

anticorrosion properties for example Ti2Ni alloy, used for pipes to pump sea water in nuclear power 

plants. Other applications in the marine industry are elements of submarines, ships surfaces and hulls 

deep-sea cameras. Quite new application of titanium alloys is to use them for parts of oil rigs and mining, 

pipes and pipelines operating in the marine environment under high load (Destefani 1990; Peters et al. 

2003a). There has been a high increase in the use of titanium in the manufacture of common use objects, 

such as bicycle frames, eyeglass frames, bodies’ watches and cameras, fishing equipment, golf club 

heads, climbing equipment, etc. The use of titanium in the manufacture of consumer products will grow 

through nontoxic nature of this material (Peters et al. 2003a). Applications of titanium alloys are 

presented in Table 2-6 below (Singh et al. 2017; Boyer 1996): 

 

Table 2-6. Industrial applications of titanium alloys 

T
y

p
e 
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f 

T
i 

 

Advantages Grade Applications 

α
 a

ll
o

y
s 

 

Formability, corrosion 

resistance, operating at high 

temperatures, 40% weight 

savings 

Commercially pure Ti floor support structure in the galley and lavatory 

areas, tubes or pipes in the lavatory system, clips and 

brackets, and ducting for the anti-icing and 

environmental control systems (ECS). 

40% weight savings Ti-3AI-2.SV hydraulic tubing, honeycomb core structures, 

good fracture toughness and 

ductility down to cryogenic 

temperatures 

Ti-5-2.5, Cryogenic applications, high pressure fuel turbo-

pump of the space shuttle. 

low density and high modulus Ti-8-1-1 blades in turbine engines; fan blades for military 

engines,  tear straps on commercial airframes 

good properties retention and 

creep resistance at elevated 

temperatures 

Ti-6-2-4-2S, gas turbine engine industry, rotating components 

such blades, discs and rotors at temperatures up to 

about 540 °C. high pressure compressor 
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α
/β

 a
ll

o
y

s 
good balance of characteristics: 

strength, ductility, fracture 

toughness, high temperature 

strength, creep characteristics, 

weldability, workability, and 

thermal processability 

Ti-6-4 airframe and engine parts, static and rotating 

components in gas turbine engines, fuselage, fan 

blades, fan case, nacelles, landing gear, wing, and 

empennage. 

higher weight savings, though 

the fracture toughness and stress 

corrosion resistance are reduced. 

Ti-6-6-2 landing gear support structures 

oxidation resistance and creep 

property 

Ti-6Al-2Sn-4Zr-2Mo compressor discs 

Thermal stability Ti-5AI-2Sn-2Zr-4Mo-

4Cr. 

fan and compressor discs 

Thermal stability Ti-17/ Ti-6-2-4-6 high pressure compressor 

β
 a

ll
o

y
s 

Thermal stability, operating 

temperatures, about 250-315°C 

Ti- 13V- 11Cr-3A1 

(Ti- 13-11-3) 

It was used for wing and body skins, frames, 

longerons, bulkheads, ribs, rivets and essentially the 

complete main and nose landing gears. Nowadays - 

coil springs, down-lock landing gear springs, feel and 

centering , springs for the yoke, pedal return springs 

for the brakes, hydraulic return springs, and flight 

control springs are common aircraft applications of 

titanium springs 

strip producibility, cold 

formability, and the ability to 

heat treat to high strengths 

Ti-15-3. fire extinguisher bottles, springs, clips and brackets 

in the floor support structures 

excellent fatigue properties Ti-10-2-3 landing gear, flap tracks. rotor systems 

 

2.4  Manufacturing techniques of titanium alloys  

 

 In general, hot forming is expensive technology and requires special tools and procedures. Nevertheless, 

hot forming has many attributes compared to cold forming of metal alloys (Table 2-7). Highest quality 

of derived elements is achieved by using the appropriate steps at every stage of processing. Starting 

from a proper clean work surface, the selection of the annealing temperature, the use of lubricants, 

appropriate tools and methods for processing. To prevent damage during processing, each element 

undergo for hot forming method must be clean and free from surface defects. To avoid reducing the 

strength of materials after heat treatment it is recommended to remove the oxidized surface. All kinds 

of lubricants and oils should be also removed before due to thermal susceptibility to corrosion. Also 

heavily oxidized surfaces shall be applied to alkaline and acid baths. Surface specimens before testing 

should be cleaned sandpaper. Only properly cleaned material can be used for studies of mechanical 

properties, containing tensile and yield strength (Froes 2015).  
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Table 2-7. Advantages and disadvantages of hot forming and cold forming/hot sizing (Froes 2015) 

Hot forming Cold forming/hot sizing 

Advantages 

Fewer operations Forming can be done on all available types of forming 

machines 

Lower forming pressures Reduced dwell time in cold forming press 

Material is at elevated temperature for shorter time than hot 

sizing 

Parts are stress relieved on hot sizing 

Parts can be made in most alloys that could not be produced by 

cold forming 

Can use lower-cost tooling materials in cold forming 

Disadvantages 

Requires heat-resistant tool materials Requires additional equipment (hot sizing presses) 

Tools must be adapted for heating Long dwell times in hot sizing press (30 min) 

Requires use of slow press with some dwell time (5 min or 

more) 

Requires two sets of dies (one set heat resistant) 

Limited to forming operations on equipment that can use 

heated tools 

Some parts cannot be made by cold forming procedures 

 

 Depending on the type of titanium alloy, suitable processing temperature must be applied. Most used 

are three ranges of temperatures - 200°C to 315°C, 480°C to 540°C and 650°C to 815°C for the most 

difficult-to-form alloys. The behavior of the material under load determines the selection of the 

appropriate temperature. Typical processing temperature for titanium alloys are presented in Table 2-

8. There are many methods for heating blanks and tools for forming. Due to degradation of mechanical 

properties and subsequent destruction, overheating of the treated material or tools material should be 

avoided. Both the temperature and heating time should be minimized. Below are listed some heating 

methods: 

• furnace heating - electric furnaces with air atmosphere are the most useful for heating titanium 

blanks. Flame-Gas furnaces are acceptable but only if the flame does not touch the surface and 

the atmosphere is slightly oxidizing. Especially important is to preserve the purity of the 

atmosphere. Every change of the hydrogen content results in catastrophic degradation of 

material properties; 

• resistance heating - this type of heating is commonly used because of titanium high electrical 

conductivity. Problems caused by the change of current density may happen in this case. Also, 

higher temperatures occur in areas where the cross-section is smaller. Nevertheless, it is an 

effective method for many types of hot forming. Process can be done properly even with the 

loss of heat or handling time; 
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• hot die heating - blank and heated die are in contact till forming part does not reach the desired 

temperature. Once it is reached, it is followed by compressing and giving the desired shape. 

Heated forming die are often used, especially at high temperatures (Peters et al. 2003a). 

Table 2-8. Temperatures for forming processes (Froes 2015) 

Alloy 

Forming 

temperature ['C] 
Forming method 

mild 

forming 

severe 

forming 

drop 

hammer 
Hydropress

1 brake spin draw 
matched 

die 
Hydroform1 finish 

die 

creep 

form 

Unalloyed 

titanium 

205-

316 
… x x x x x x x … … 

… 482-538 x … … … x … … x x 

… 538-705 … … … x … … … … … 

Ti6Al4V 

205-

316 
… … x … … … … … … … 

… 482-538 … … … … … x x x … 

… 538-649 … … x … … … … … x 

… 538-788 x … … x x x … … … 

Ti5Al2.5S

n 

205-

316 
… … x … … … … … … … 

… 482-538 … … … … … x x … … 

… 538-760 x … x x x … … … x 

Ti8AlMoV 

… to 732 x x x … … … … … … 

343 649-760 x … … … … … … … … 

… 788 … … … … x x … … x 

1
In hydropress process, the flat sheet and the protective rubber pad placed on it are deformed to die shape under pressure 

applied by the hydraulic fluid bag. In hydroform, a high pressure hydraulic fluid is used to press working material into a die. 

To reduce energy expenditure, heat transfer and friction between blank and tool surfaces some 

lubricants are applied. Most used are combinations of solid additives with oils (Table 2-9). Using of 

appropriate tool material is also a crucial factor. Typical tool materials are listed in the Table 2-10. 

Table 2-9. Lubricants for forming processes (Froes 2015) 

Forming operation Forming temperature Lubricants used 

Stretch forming skins Cold Grease-oil combinations, Wax-type lubricant 

 Hot Colloidal graphite 

Stretch forming sections Cold Wax-type lubricant plus flake graphite (10:1 by volume) 
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Stretch forming extrusions Hot Molybdenum disulphide, Colloidal graphite 

Brake forming Cold Colloidal graphite 

Contour rolling sections Cold Colloidal graphite 

Roll forming Cold Heavy oil (SAE 60) 

 Hot Colloidal graphite 

Hot sizing Hot Colloidal graphite 

Draw forming Hot Colloidal graphite plus alcohol, xylene 

Hammer forming Hot Colloidal graphite 

Hydropress forming Hot Colloidal graphite 

 

Table 2-10. Tooling materials for forming processes (Froes 2015) 

Forming operation Forming temperature Tool material 

Stretch forming skins Cold Cast aluminium with epoxy face 

 Hot Cast ceramic 

Stretch forming sections Cold Kirksite form block; Ampco Bronze No. 21 wiper die 

 Hot H11, H15 tool steels; high-silicon cast iron 

Stretch forming extrusions Cold Mild steel; AISI 4130 steel 

 Hot AISI 4130 steel; type 310 stainless steel 

Brake forming Cold AISI 4340 steel (36–40 HRC) 

 Hot H11, H13 tool steels; Incoloy 802 

Contour rolling sections Cold O2 tool steel 

Hot sizing Hot 

Mild steel; high-silicon cast iron; high-silicon nodular cast 

iron; H13 tool steel; type 310 stainless steel; RA 330 stainless 

steel; Inconel X; Hastelloy X; Incoloy 802 

Draw forming Hot High silicon cast iron; Incoloy 802 

Hammer forming Hot 

Kirksite dies with stainless steel caps; lead punches with 

stainless steel caps; high silicon cast iron; RA 330 stainless 

steel; Inconel X; Incoloy 802 

Hydropress forming Cold or hot High silicon cast iron; Incoloy 802 

 

Among the hot forming techniques for titanium alloys, the most common are listed below: 

- Break forming - which is similar to break forming of stainless steel with the exception of titanium 

alloys are characterized by higher springback effect. Typical die for brake forming titanium is presented 

in Figure 2-7. The channel punch and die are made from various types of steels. Materials used for 
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these tools are based on zinc alloys and other inexpensive steels. Blank and tool can also be heated for 

hot forming break. 

 

Figure 2-7. Schema of typical die for brake forming (Froes 2015)  

- Stretch forming - this technology allows the production of single-curved contours and more complex 

contours in a sheet. During process, metal streches around the die. Blank is holding by grips as it is 

pulled into desire shape. Typical setup is presented in Figure 2-8. This type of processing is typically 

carried out in the cold to die eliminate expensive materials and to Obtain the best properties in the 

formed part, 

 
Figure 2-8. Stretch forming sheet (Froes 2015) 

- deep drawing – in this technology punch pulls a metal blank through the die surrounding metal punch 

and then reduce the diameter, length of the part or thickness of the wall (redraw). Some types of deep 

drawing like single action without hold down (Figure 2-9a), double-action with recessed hold down 

(Figure 2-9b), single-action inverted with die-cushion hold-down reverse redraw (Figure 2-9c), 

double-action with flat hold down push-through (Figure 2-9d), double-action redraw push-through 

(Figure 2-9), and single-action redraw with die cushion hold-down (Figure 2-9) are presented below. 

Typically, the titanium blank is located between the draw ring and pressure pad. In order to prevent the 

buckling during this process, a proper pressure must be applied. Deep drawing could be used at elevated 

temperatures by heating the blank or the dies, or both of them. Unfortunately drawing speed is rather 

slow (254 mm / min) and forming forces on the part held for five or more minutes after forming, 
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Figure 2-9. Various deep-drawing operations (Froes 2015) 

- drop-hammer forming - method which consists of using gravity or pneumatic drop-hammer to 

presses titanium by progressive deformation with repeated blows in matched dies. Typical part 

produced by means of drop-hammer method is presented in Figure 2-10. Forming energy depends on 

the mass of the ram, tool and its striking velocity. Hammer is typically made of lead or other soft 

material that will cause deformation of the female die contour. Dies are usually made from steel, 

stainless steel and Inconel. Execution of complex shapes requires the use of high temperatures (Froes 

2015; Peters et al. 2003a). 

 

Figure 2-10. Drop-hammer and formed parts (Froes 2015) 

With increasing demand for high strength lightweight parts in the aircraft industry, a number of 

techniques for forming titanium alloys have been developed and commercially used. Since the 

formability of titanium alloy sheets at room temperature is low, the sheets are commonly formed at 

elevated temperatures. Processes such as hot stretch forming, creep forming, hot gas-pressure forming 

have become promising methods to overcome the springback effect (Destefani 1990), however these 

processes have long processing times and thus high per-unit costs. Recent research into new 

manufacturing processes for the hot forming of titanium has led to the development of processes, with 

superplastic forming gaining the most traction in the aircraft industry. Titanium super-plastic formed 

parts are used in military and commercial engines for fan blades, casings, ducts and exhaust nozzles 

(Serra 2009). Superplasticity is the ability of materials to reach the elongation over 200% at an elevated 
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temperature (higher than 0.5 value of the melting point) prior to failure without necking (H. Yang et al. 

2011). Superplastic forming is commonly used in aircraft part fabrication. At approx. 900°C a solid 

titanium is deformed beyond its usual breaking point. Superplastic materials deform by getting thinner. 

There is no behavior like necking leading to fracture. Superplastic forming process required the optimal 

size of alpha grain <10um and well-dispersed beta phase at the grain boundaries. Generally, as a 

superplastic mechanism is based on the diffusion and sliding of grains past each other. Obtained parts 

are completely springback and stress-free. During one cycle, several parts of varying shape can be 

obtained. It significantly reduces the cost of the process. Thank to this technique large amount of part 

may be produced during one machine cycle so cost savings and time reduction are significant. Another 

advantages of the SPF include very complex geometry of produced parts; lighter and more efficient 

structures; applied force is supplied by a gas so there is equal pressure in the whole sheet of work-piece. 

During the SPF process, the gas pressure is controlled by a computer programme to keep a constant 

strain rate of deformed sheet.  The most common used titanium alloy for such kind of process is the 

Ti6Al4V. This alloy should have microstructure of fine and equiaxed grains (usually less than 10 µm) 

and high elongation at the elevated temperatures (Beal et al. 2006). At the beginning of the SPF the 

forming part is placed on top of cavity die (Figure 2-11a). As soon as the tool and blank reach the 

forming temperature in the superplastic range, proper gas pressure is applied to hold a constant strain 

rate during the process. When the part is at its final stage of deformation, the gas pressure increase to 

preserve the strain rate and the thickness of the sheet decreases. The final part has a geometry based on 

the die shape (Figure 2-11b).  

 

Figure 2-11. Superplastic forming of titanium alloys at the beginning of the forming cycle (a) and 

after forming (b) (Beal et al. 2006) 

 

 The main disadvantages of the SPF process include requirement of heat-resistant tool materials; a 

specialized forming machines which provide high temperature and high pressure during process; 

relatively long preheat time to obtain the forming temperature; a protective atmosphere. However, even 

above mentioned limitations SPF process is still very attractive method to produce complex shaped 

parts. Some of most interesting investigations were reported in literature. Comparison tests between 

sub-micron grained (0.3 µm grain size) Ti6Al4V sheets of 0.8 and 1.8 mm thickness and commercially 

available superplastic Ti6Al4V sheets of 0.8 mm thickness (5 µm grain size) and 1.36 mm thickness (3 

µm grain size) were carried out. Tensile tests were performed using three types of specimens (according 
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to the rolling direction by 0, 45 and 90°) by means of screw driven tensile testing machine equipped 

with split type resistance furnace. Tests were conducted at various temperatures and different strain rate 

range in an inert atmosphere. Because sub-microcrystalline type of titanium has an average size of grain 

less than 1µm, it shows it superplastic behavior at lower temperatures (600-700°C) than commercially 

available one (850-950°C) (Beal et al. 2006).  

 The superplastic forming process has a relatively slow forming rate, as compared to the other hot 

forming methods. Time of one cycle vary from 30 min to 2h. That is why a new attempts to reducing a 

forming time are investigating. In paper (Liu et al. 2013) a new superplastic-like forming method is 

presented. The Ti6Al4V alloy sheets were successfully formed at 800°C in 16 min. Titanium alloy 

sheets of 1.6mm thickness were tested under forming conditions by means of presented machine 

(Figure 2-12).  

 

Figure 2-12. Schema of superplastic-like forming machine (Liu et al. 2013) 

Several parts under various operating temperature (750, 800 and 825°C) were formed (Figure 2-13). 

As it shown the surface is shining with some little oxidations areas at 750°C. The one obtained at 800°C 

is darker than previous and also a little oxidation formed on the surface. At the highest temperature of 

825°C, more oxide film were observed.  

 
Figure 2-13. Surface finish after superplastic-like forming process at different temperatures (Liu et al. 

2013) 

As it is well known, the oxidation effect occurred on the Ti6Al4V alloy surface above temperature of 

650°C. At temperature of 800°C in air atmosphere the weight of gain is about 1.2mg/mm2. The thickness 

of the oxide film is around 5µm in this case. When temperature increase to 900°C, the weight of gain 

is about 2mg/mm2 and the thickness of the oxide film was 25µm (Guleryuz and Cimenoglu 2009). As 
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the superplastic-like process consist of the hot drawing and the blow forming processes (Figure 2-14), 

the thickness measurements after each process were conducted.  

 
Figure 2-14. Bulge height profiles after hot drawing (a), and blow forming (c,d) (Liu et al. 2013) 

Because the sheet was formed without any visible fracture on the surface, the thickness were measured 

from the dome centre to the edge along the cross section. Each measurement was named by its location 

(numbers 1 to 11) (Figure 2-15a). The thickness profiles are presented in the graph (Figure 2-15b). 

The maximum reduction is located at location 4, where thinning was about 54%. The reason of such 

kind of behavior was influenced by the forming process. When the sheet came into contact with the 

punch during hot drawing, material adjacent to this area was locked against the die surface by friction 

and gas pressure.  

 
Figure 2-15. Cross section of obtained Ti-6Al-4V part at 800°C (a); Distribution of thickness after 

two forming operations (Liu et al. 2013) 

Undeniable advantages of superplastic forming including very complex geometry of produced parts and 

lighter and more efficient structures. Moreover, depending on the initial sheet size, more than one piece 

may be successfully produced during one forming cycle. Force applied during superplastic forming is 

supplied by a gas so there is equal pressure in the whole sheet of work-piece and thus minimal thinning 

of the sheet material occurs during forming. However, this process requires heat-resistant tool materials 

and specialized forming machines which provide high temperature, high pressure and a protective 

atmosphere. Despite the use of a protective atmosphere during forming, an oxide layer can still form on 

the material surface as a result of the long timescale of the process. Moreover, the superplastic forming 

process has a relatively slow forming rate, as compared to other hot forming methods such as hot stretch 

forming or isothermal hot forming (Froes 2015) . 
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2.5  Hot stamping technology 

 

Hot stamping is a hybrid process which combines a sheet metal forming and a heat treatment process 

in order to obtain comparable mechanical properties between the formed metal part and initial blank 

(Chen et al. 2014). The main advantages of this process include a desirable material microstructure, 

reduction of the springback effect, and a good formability at elevated temperatures. Due to these 

benefits, very thin and complex shaped sheet metal parts with a high strength-to-mass ratio and a high 

geometrical accuracy can be produced (Karbasian et al. 2010). Applications of titanium hot stamped 

components for the aircraft industry (Maeno et al. 2017) mainly focus on curved extruded profiles, load 

carrying structures, fan frame structures and airframes.  

By controlling the process parameters and changing the thermo-mechanical sequence of operations 

during the forming process, production of components with different mechanical properties is possible 

(Karbasian et al. 2010). The standard temperature versus time diagram of the hot stamping cycle for 

steel components is presented in Figure 2-16. The blank of the material, with a ferritic-pearlitic 

microstructure and relatively low mechanical properties at room temperature, is heated in a furnace 

above the austenitization temperature. The blank is soaked until a homogeneous austenitic 

microstructure is formed throughout the material. Afterwards the blank is rapidly transferred into the 

forming press, where it is formed and quenched at a controlled cooling rate. At the end of the process, 

the formed component has a fully martensitic microstructure, with a strength of over 1500 MPa and a 

good ductility (Karbasian et al. 2010). 

 

Figure 2-16. The temperature versus time diagram of the hot stamping process (Bruschi et al. 2014a). 

 

The hot stamping technology has two variants: direct and indirect hot stamping (Figure 2-17). In the 

direct hot stamping process, the blank of the material is heated up and then transferred to the press. 
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Then, it is pressed and formed at the temperature higher than the austenitization temperature and 

quenched at a controlled cooling rate by the same dies that are cooled (Figure 2-17a). In the indirect 

hot stamping process, the blank of the material is pre-formed at room temperature and then heated up 

to the austenitization temperature. The part is then transferred to the press where it is quenched in the 

die, followed by ejection and trimming (Figure 2-17b). The direct hot stamping process is devoted to 

the production of components with a relatively small drawing depth or with a limited formability. The 

indirect process is commonly used for the production of more complex-shaped parts (Bruschi et al. 

2014a). 

 

Figure 2-17. The hot stamping process variants: (a) direct hot stamping, (b) indirect hot stamping 

(Bruschi et al. 2014a). 

Titanium alloys may be formed using mechanical or hydraulic presses, however this process has the 

inherent disadvantages of poor material ductility, dimensional accuracy, and significant springback. A 

hot forming process improves these common issues in the stamping processes. The successful hot 

stamping of titanium components requires the additional consideration of: notch sensitivity (causing 

cracking and tearing), galling, poor ability to shrink, embrittlement from overheating and from 

absorption gasses (hydrogen and oxygen), limited workability and the springback effect (Beal et al. 

2006). 

The high temperatures used during the hot stamping process increase formability, reduce the 

springback effect and enable maximum deformation with minimal annealing time between forming 

operations. In most cases, a forming process must be executed in hot dies with a preheated blank. A flat 

metal sheet is located in the die and heated up to a high temperature. The punch is activated to deform 

the blank into the die, and is held for 10 minutes under pressure. Research has been conducted in the 

use of a combination of a hot/warm blank and cold dies and in the hot forming process of titanium 

alloys. In the literature (Hamedon et al. 2013), hot hat-shaped bending of the Ti6Al4V alloy sheet using 

resistance heating was carried out. The conditions and general schematic of the process are presented 

below (Figure 2-18). 
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Figure 2-18. Hot hat-shaped bending using resistance heating of titanium alloy sheet and the 

experimental conditions (Hamedon et al. 2013) 

 

The productivity of the bending process was improved by resistance heating. Die heating was 

eliminated and the heating time of the titanium sheet was reduced. To prevent the heating of the die, 

the punch, blank holders and the sheet were not in contact with these tools during the forming process. 

The sheet (130mm length and 20mm width) was successfully formed at temperatures above 370°C. To 

evaluate the success of the forming, cracking was investigated via the use of non-destructive fluorescent 

penetrant test, and no cracks were observed on the sheet (Figure 2-19a).  In the final stages of forming, 

the bending load was reduced from 6.5kN at room temperature to 1.8kN at a heating temperature of 

880°C. The performed studies reveal no significant microstructural changes after the forming process 

indicating that heating rate was too high to entirely transform the structure of formed part (Figure 2-

20); and almost constant hardness values measured in the longitudinal direction of the formed part 

(Figure 2-19b). The hardness at temperatures of 550°C and 880°C were similar to the hardness of the 

as-received sheet. The hardness increased from 320HV20 to 370HV20 when the heating temperature 

was approximately 880°C (Hamedon et al. 2013). The strength increase was caused by phase 

transformation however no analysis of the phase transformation or deformation mechanisms was 

presented.  

 

Figure 2-19. Hot stamped sheets formed at various temperatures (a) and Vickers hardness distribution 

in the longitudinal direction for various heating temperatures (b) (Hamedon et al. 2013). 
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Figure 2-20. Microstructure of the formed sheet: as-received (a) and formed at 880°C (b) (Hamedon 

et al. 2013). 

Resistance heating was also evaluated by Fahrettin et al. (Ozturk et al. 2016) who found that no 

microstructural change occurred during forming at 600°C, 650°C and 680°C. DIN WL 3.7024 titanium 

sheets with a thickness of 0.6mm in the range of temperatures from 600 to 680°C were formed under a 

press force of 1100kN and a punch speed of 45mm/s. No contact between tools and blank occurred 

during the heating process. As a result, an industrial part was successfully produced (Figure 2-21).  

 

Figure 2-21. Example of an industrial part formed by electric resistance method (Ozturk et al. 2016). 

Under these processing conditions, it was found that the part was free from tearing and cracks and the 

springback effect was eliminated. The highest ductility and property uniformity throughout the part 

occurred at temperatures above 540°C. Above 870°C the forming process is most effective in a vacuum 

or under a protective atmosphere to minimize oxidation.  

To obtain the highest values of ductility, temperatures below 425°C should be avoided. Moreover, 

alpha-beta alloys should be formed under the β-transition temperature. Generally, to avoid deterioration 

of the mechanical properties, the temperature during the forming process should be lower than 815°C 

(Sieniawski et al. 2013).  The most important conclusion is that no significant microstructure and no 

phase changes occurred during the forming process at 600°C, 650°C and 680°C. The average grain size 

of the as-received material was 10µm (Figure 2-22a) and after forming all specimens had an 

equiaxed-grain microstructure with a grain size of 12µm (Figure 2-22b-d). Nevertheless, different 

temperatures only slightly changed the grain size and elongation of grains was observed as the 

temperature approached 882°C (β-transition temperature). Therefore, there was no significant change 

in the grain size at forming temperatures below 882°C and short heating (30s) and forming (10s) times. 

Subsequently, X-ray diffraction (XRD) analysis showed that the microstructure of the formed parts are 

extremely close to the as-received material (Figure 2-23). These studies confirmed that no phase 
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transformation occurred, and thus this method can be successfully applied for the titanium alloys. 

However, heated specimens have negligible amounts of titanium dioxide and titanium oxide only on 

their surfaces, which is a result of oxidation kinetics during heating in air. 

 

Figure 2-22. Optical microscope images of the as-received material (a), and formed at 600°C (b), 

650°C (c), and 680°C (d) (Ozturk et al. 2016) 

 

Figure 2-23. XRD analysis of the specimens formed at various temperatures (Ozturk et al. 2016) 

 

The mechanical properties of titanium alloys are strongly dependent on the thermo-mechanical history, 

initial microstructure, alloy concentration and impurities within the structure. At room temperature and 

temperatures up to 600°C the common microstructure of the Ti6Al4V alloy consists of equiaxed alpha 

and elongated α (HCP crystal structure) phase in a minor volume of β phase matrix (BCC crystal 

structure). In order to understand and model the mechanical behavior of titanium alloys under varying 

temperatures and strain rates, a number of studies were performed (Zherebtsov et al. 2016; Oh et al. 

2015; Majorell, et al 2002a; 2002b; Semiatin et al 1998; W. S. Lee and Huang, n.d.; Moćko, et al 2017). 

Due to the high yield strength and low elastic modulus, the springback effect and shape distortion was 

found to be extensive upon forming thin sheets. The formability of titanium alloys could be increased 

with increasing temperature and decreased with an increase of strain rate in the lower temperature region. 

At elevated temperatures, the compressive flow behavior is characterized by a peak stress followed by 

strain softening. The strain softening may occur as a result of temperature increase during deformation, 

phase transformation and microstructural changes resulting from dynamic recovery, dynamic 

recrystallization and local necking (Rollett, A; Humphreys, F; Rohrer, G.S; Hatherly 2013). Despite the 
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difficulties of titanium forming, the benefits of the material properties result in an ever increasing 

demand for titanium alloys in airframes and engines (Bridges and Magnus 2001; Ermachenko, Lutfullin, 

and Mulyukov 2011; Boyer 1996; Peters et al. 2003b; 2003a).  

2.6  From hot stamping to FAST – the development of new technology 

Titanium alloys are widely used in the aviation industry due to their outstanding mechanical properties 

(K. Wang et al. 2018). However, titanium alloys are seldomly used in the commercial field due to the 

prohibitively high cost (Peters et al. 2003a). It is reported that the cost of a product made from titanium 

alloy is 40 times greater than steels and 20 times greater than Aluminium alloys (Sikirica 2016). The 

price pressure of titanium alloy products is becoming more pronounced with the continued expansion 

of the aviation and aerospace industry. The cost contribution to manufacturing titanium alloy products 

can be subdivided into sponge titanium, additive alloys, melting and manufacturing cost (Sengupta et 

al 2017). It is difficult to further reduce the price of processes such as sponge titanium, additive alloys 

and melting due to the mature production lines and increasing environmental pressure (Cui et al. 2011). 

Therefore, reducing the manufacturing cost of titanium alloy products is becoming increasingly 

important as it is the area that can benefit most from new technologies.  

Titanium alloys have strong deformation resistance at room temperature and a high level of springback, 

resulting in titanium alloy sheet components being generally formed at elevated temperatures (H. Yang 

et al. 2011). In the traditional hot pressing process, both forming tools and blank are heated in a furnace 

attached to the press (Velay et al. 2016). When the forming tools have a large mass, significant amounts 

of energy and time are required. Extended heating times also impose strict requirements on the tool 

material, as it must exhibit high temperature performance including high strength at elevated 

temperature, creep resistance and oxidation resistance, which results in high tooling cost. Moreover, 

tool wear and galling are also critical at elevated temperatures, which will reduce tool life. Due to these 

reasons, it is necessary to develop new technologies to improve the forming efficiency and reduce the 

cost of manufacturing titanium alloy components. 

Hot stamping technology is widely used in the automobile industry (Karbasian et al. 2010), which uses 

cold forming tools to form and quench the hot (austenized) steel blank. In this hybrid forming 

technology, forming and heat treatment are conducted simultaneously, and one could obtain a part with 

martensite structure after forming (Maeno et al. 2017) . However, the application of hot stamping to 

titanium alloys has not yet achieved widespread adoption in industry. Compared with the traditional hot 

forming process for titanium alloys, hot stamping has the advantages of higher heating and energy 

efficiency, improved production efficiency, lower tool cost and improved post-form properties. Hot 

stamping of titanium alloys is used to produce components of complex geometry and superior 

mechanical properties. Ozturk et al. (Ozturk et al. 2013; 2011; 2016) investigated the application of 

electric resistance heating methods on titanium hot forming by using cold forming tools at industrial 

scale. In the authors' work, hot forming of commercially pure titanium and the Ti6Al4V alloy was found 
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to be applicable for industrial size part production with effective elimination of springback. It was 

observed that the combination of high deformation speed (45 mm/s) and relatively low forming 

temperature (< 700˚C) prevented grain size growth during forming. A hot stamping process of a titanium 

alloy sheet using resistance heating and cold forming tools was also studied by Hamedon et al. 

(Hamedon, et al 2013) where the sheet was successfully formed at elevated temperatures above 370˚C. 

It was also found that at the optimum heating temperature of 880˚C, the springback effect was 

successfully reduced and hardness of sheet improved. Meng et al. (Meng et al. 2017) proposed a near 

isothermal forming technique to manufacture a titanium alloy component, aiming to reduce cost and 

obtain a specific microstructure for the formed component. In this study, the dies were heated to a 

temperature approximately 150˚C lower than that of the workpiece. The results show that the 

microstructure morphology of the deformed titanium alloy can be changed by control of the strain rate 

and thermal path 

In the authors’ previous work (Kopec et al. 2018a; Kopec et al. 2018b), a feasibility study on hot 

stamping of titanium alloy was performed. The results show that the processing windows for TC4 

titanium alloy during hot stamping are very narrow and one could only achieve a qualified part without 

surface cracking between 750°C and 850°C. During the hot stamping process, the sheet blank was first 

heated in a furnace to the target temperature and soaked for approximately 2 minutes to enhance the 

ductility, followed by rapid transfer to the cold forming dies and forming. During the transfer and 

forming process, the temperature decreased rapidly. It is known that the microstructure of titanium 

alloys is sensitive to the thermal-mechanical processing conditions. During the heating and soaking 

process, phase transformation of α to β would occur; and the reverse phase transformation of β to α 

would occur during the subsequent forming and cold die quenching processes. The heating temperature 

and soaking time will determine the volume fraction of β phase at the specific heating temperature; the 

cooling path will determine the volume fraction and morphology of different phases after quenching. 

Hence, the formability and post-form properties of titanium alloys are mainly determined by the 

material heating and cooling history. When the heating temperature is low (<750°C), titanium alloys 

have limited elongation under the hot stamping condition, which will lead to crack failure and severe 

springback. In the hot stamping of steels, the material is heated to the single-phase zone, where all the 

other phases are transformed to austenite. However, if the titanium alloy is heated to the single-phase 

zone and formed at a lower temperature, forming will be unsuccessful due to the poor ductility caused 

by the martensite, which is different from steel (Bruschi et al. 2014a). The authors’ results showed that 

a qualified part could not be formed if the microstructure of the blank is β phase dominant which 

reduced ductility. On the other hand, increasing the forming temperature is one of the most effective 

approaches to reduce the springback (Hamedon et al. 2013). However, for titanium alloys, the rates of 

β phase transformation, grain coarsening and oxidation increase with temperature, especially when the 

temperature is near the β phase transus temperature. Therefore, there is a dilemma between reducing 



Chapter 2 – Literature review 

 

47 

the springback and improving the formability. Due to the above limitations, it is challenging to form 

complex-shaped components through hot stamping technologies. 

Recently, a novel data driven forming technology, namely the FAST (Fast light Alloys Stamping 

Technology) (Zhang et al. 2019), was proposed to address the technological challenges of hot stamping 

(Cai, Z.-H., et al 2019) and to support the multi-material mix for the next-generation vehicles (Sun et 

al., 2019). In this new technology, a sheet blank is heated to the target temperature at an ultra-fast rate 

and immediately formed and quenched in the cold dies. The innovation of the FAST technology lies in 

the precise control of the phase transformation, grain growth and oxidation at elevated temperatures by 

the combination of tailored initial microstructure, precisely controlled heating, transfer, forming and in-

die quenching, which could solve the dilemma discussed above. More importantly, it  improves the 

formability and reduces the springback simultaneously. In addition, the forming efficiency could also 

be improved. 

Ozturk et al. (2016) and Maeno et al. (2016) studied the hot stamping of titanium alloys utilising 

resistance heating, where the heating rates ranged from 108°C/s to 132°C/s. During the resistance 

heating, the materials in contact with the electrodes were not heated, and as a consequence, when the 

shape of the blank was not rectangular, the temperature was non-uniform (Maeno et al. 2018). 

Therefore, significant efforts have been devoted to solving this heating problem (Maeno et al. 2016). 

However, in these studies, the effect of heating rate on the formability and post-form properties was not 

studied. Other studies regarding fast heating of titanium alloys focused on the kinetics of the phase 

transformation from α to β (Elmer et al. 2004), and it is reported, that the diffusion distance of β 

stabilizer elements, such as V, decreases with the increasing heating rate (Elmer et al. 2005). This leads 

to a higher β-transus temperature under fast heating conditions (Rhaipu 2002). The microstructure of 

the rapidly heated titanium alloy does not have sufficient time to reach equilibrium, and therefore, 

affects the formability and post-form properties significantly. However, limited research has been 

performed in this field, particularly under the FAST conditions. 

 

2.7  Deformation mechanisms in titanium alloys  

The deformation mechanisms in titanium alloys can vary widely depending   on   the   specific   alloy 

composition (Karasevskaya et al. 2003) and the temperature of its deformation (Vanderhasten et al. 

2007). These mechanisms include grain boundary sliding, dislocation slip, twining, dynamic recovery, 

dynamic recrystallization and dynamic grain growth.  

The deformation mechanisms could be considered globally, for the material as a whole structure, or 

locally, when the deformation in each phase is investigated separately. In general, the occurrence of 

plastic deformation is determined by the movement of dislocations defined as defects or irregularities 

within the structure. It is affected by the alloying elements, strain rate and temperature (Sandala 2012). 

The movement of dislocations in a crystallographic direction can be executed by mechanisms of slip or 
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dislocation climb when an edge dislocation moves perpendicular to its slip plane (Barrett 1952). 

Dislocation slip has a little dependence on temperature while the dislocation climb occurs at high 

temperatures due to increase in mobility of vacancies. Dislocation slip occurs in particular planes and 

directions that are called dominant slip systems. The homogeneous plastic deformation requires five 

active and independent slip systems, according to Von Mises theory (Von Mises 1928). In two phase 

titanium alloy, twelve slip systems in the β phase and primarily three in the α phase were defined 

(Lutjering 2007). It was reported (Leo Prakash et al. 2010), that activation of secondary slip and twining 

is possible in α phase, however, twining rarely occurred in two phase titanium alloys due to the high 

content of aluminium. 

Historicaly, the deformation mechanisms for titanium alloys were summarised by Sargent and Ashby 

(1982) and presented in Figure 2-23 in form of the deformation maps. 

 

Figure 2-24 The deformation map for titanium alloys (Sargent 1982) 

A compressive summary reported by (Vanderhasten et al. 2007) and (Wu et al. 2017; Souza et al. 2015) 

allows a categorisation of the deformation mechanisms based on the deformation temperature (Table 2-

11). It was presented, that classical work hardening was a dominant mechanism if the temperature did 

not exceed 650°C. The work hardening rate increases with strain rate and decreases with temperature 

(Fitzner et al. 2019). With the temperature increase up to 750°C, an enhancement in elongation was 

observed due to dynamic recrystallization (DRX) promoted by grain boundary sliding. Additionally, 
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dynamic recrystallization led to grain refinement and significant decrease in grain size was observed of 

approximately 50%. The two types of dynamic recrystallization can be distinguished: discontinuous 

DRX (DDRX) and continuous DRX (CDRX) (Raja et al. 2020). Nucleation of new grains and growth 

of new fine grains in the high dislocated areas are called DDRX (Knauer et al. 2013). This mechanism 

is mostly observed during hot deformation of materials with low to medium stacking fault energy. On 

the other hand, in materials with high stacking fault energy, the new fine grains with low-angle grain 

boundaries formed during deformation are gradually transformed into high-angle grain boundaries due 

to efficient dynamic recovery (CDRX) (Raja et al. 2020). Subsequent increase of the deformation 

temperature above 800°C resulted in increasing domination of dynamic grain growth and continued α 

to β phase transformation. The deformation at the temperature higher than 900°C led to the formation 

of β phase in the whole volume of material investigated. 

Table 2-11 Deformation mechanisms of titanium alloys  

Temperature 

range 

Room 

temperature - 

650°C 

650°C - 750°C 750°C - 900°C 900°C - 1050°C 

Deformation 

mechanisms 
work hardening 

Dynamic 

recrystallization 

promoted by grain 

boundary sliding 

Dynamic 

recrystallization 

and dynamic grain 

growth promoted 

by grain boundary 

sliding 

Static and dynamic 

grain growth 

 

 

2.8  The modelling of deformation behavior of titanium alloys 

The deformation behavior experienced by materials during component forming can be predicted using 

mathematical and computational modelling. By application of such modelling techniques, cost savings 

can be achieved due to the reduced requirement for forming trials before successful manufacture 

(Mosleh et al. 2019). Hence, modelling of the flow behavior and microstructure evolution during 

deformation has been investigated by many research groups. Yang et al. (L. Yang et al. 2016) developed 

a set of unified viscoplastic constitutive equations for the determination of flow stress and 

globularisation evolution in the Ti6Al4V alloy with initial lamellar microstructure. Due to the 

application of Ti6Al4V, mainly for superplastic forming purposes, low strain rates were considered in 

many studies (Velay et al. 2016; Guo et al. 2014; K. Wang et al. 2017; Liu et al. 2013). Large strain 

deformation response of Ti6Al4V has been evaluated over the strain rates ranging from  10-4 to over 10-

4 s-1 by Lesuer et al. (Biennial et al 2001) and the Johnson-Cook (JC) material model was used to describe 
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the flow behavior of titanium alloys. Generally, such models as Johnson-Cook or Arrhenius could 

precisely describe the mechanical behavior of titanium alloys during plastic deformation at high 

temperatures (> 850˚C) and wide range of strain rates (10-4 - 1 s-1) (Hu et al. 2018; W.-S. Lee et al 1998; 

Jha et al. 2017). A dislocation density based model for plastic deformation and globularization of 

Ti6Al4V developed by Babu et al. (Babu et al 2013) investigated plastic deformation of the alloy at 

strain rates ranging from 10-3 to 1 s-1 and temperatures between 20°C and 1100˚C. The model is capable 

of describing the plastic flow of the alloy in a wide range of temperature and strain rates by including 

the dominant deformation mechanisms such as dislocation pile-up, dislocation gliding, thermally 

activated dislocation climbing, and globularization. In this model, recovery and recrystallization are 

two competing restoration mechanisms and counteract strain hardening. In order to compute the 

evolution of dislocations, density and vacancy concentration are used as the internal state variables. 

However, the model assumes that the α - β phase composition of the alloy is in the equilibrium state at 

all temperatures which is only sound for the low heating or cooling rates used in hot stamping. Velay 

et al. (Velay et al. 2016) developed a material model which considers initial equiaxed microstructures 

(grain sizes of 0.5 and 3 μm) to predict their influence on the viscous flow and strain hardening. In this 

model, the dynamic recrystallization can be assumed negligible whereas, in contrast, grain boundary 

sliding and grain growth play a predominant role on the flow stress and hardening. The constitutive 

equations proposed were capable of modelling viscoplasticity, strain hardening and grain size evolution 

for a wide range of strain rates (10-4 to over 10-2 s-1) and forming temperatures (650°C - 870˚C). The 

developed model could also accurately replicate the flow behavior of titanium alloys under superplastic 

forming conditions. In the last dacade, great efforts have been made in terms of modelling of 

viscoplastic behavior of titanium alloys in high temperatures and low strain rates (< 1 s-1). With the 

development of new forming technologies, it has become increasingly important to understand the 

behavior of titanium alloys deformed at high temperatures and high strain rate conditions. Thus, such 

behavior was considered in this thesis.  

Finite element (FE) modelling has been widely used to analyse and optimise sheet metal forming 

processes (A. Wang et al. 2017). Under warm and hot stamping conditions, the formability of sheet 

metal varies depending on temperature, strain rate and strain path. These variables were analysed by 

Sirvin et al (Sirvin et al. 2017) in order to identify modelling potential to predict the mechanical 

behavior of the Ti6Al4V alloy under hot stamping conditions. The hardening plastic model identified 

in the study was introduced in FEM to simulate an omega shape forming operation. Chen et al (Chen et 

al. 2019) developed a numerical simulation model for the thero-plastic forming process of a high-

temperature titanium alloy of TA32. In this study, the viscoplastic properties of the TA32 titanium alloy 

at high temperatures were described by the hyperbolic sinusoidal Arrhenius equation and verified by 

experimental and FE simulation work. Fiorentino et al (Fiorentino et al 2015) developed experimental 

and numerical methods for the analysis of cold (20°C) and warm (300°C) CP titanium sheet stamping 

which were vertified through the production of an automotive component. Despite of the number of 



Chapter 2 – Literature review 

 

51 

papers on the hot stamping of titanium alloys (Sirvin et al. 2017; C. Chen et al. 2019; Fiorentino et al 

2015; Ozturk et al. 2010; Ma et al. 2016; Odenberger et al. 2011; Bruschi et al. 2014; Adamus 2009), 

the actual industrial practice in designing plastic deformation processes to obtained titanium complex 

shaped parts is based on empirical approaches. In order to verify these aproaches, several forming trials 

are required to solve the potential production errors and to identify the best forming parameters before 

full scale production. 

 

2.9  Conlusions 

The mass commercialization of titanium alloys in the aircraft industry is leading to a greater 

development of tools, testing machines and processing. Conventional hot forming processes require hot 

tools and hot blanks to form a final part. New trends have now focused on using cold dies and hot/warm 

blanks to form titanium components to overcome the high cost, low productivity and reduce the tool 

wear found in commercially used hot forming processes. In this thesis, the novel hot stamping process 

and evolution of microstructure and mechanical properties of the Ti6Al4V titanium alloy was studied 

in details. 
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CHAPTER 3 

3.  Formability and microstructure evolution mechanisms of the Ti6Al4V 

alloy during a novel hot stamping process 

A novel hot stamping process for titanium alloys using cold forming tools and a hot blank was studied 

systematically in this chapter. Uniaxial tensile tests at temperatures ranging from 600°C to 900°C and 

strain rates ranging from 0.1 s-1 to 5 s-1 were conducted to investigate the formability of the Ti6Al4V 

alloy. The microstructure and post-form properties of the material were characterised to identify the 

deformation mechanisms that occur at these test conditions. Hot stamping tests were performed in a 

wide temperature range to verify the feasibility of the novel process for the Ti6Al4V alloy. Results 

showed that the flow stress of the Ti6Al4V alloy was sensitive of both temperature and strain rate. The 

formability of the material under isothermal conditions increased with the increasing temperature and 

decreasing strain rate. A satisfactory elongation ranging from 30% to 60% could be achieved at 

temperatures ranging from 750°C to 900°C, respectively. The phenomenon of material hardening and 

softening varied with temperature due to the different deformation mechanisms present at different test 

conditions. For example, from 600°C to 700°C, the main mechanism was recovery; whereas from 

750°C to 950°C, the main mechanism was transformation and recrystallization. Refinement of α grains 

was observed from 750°C to 900°C, although α grains tended to grow with temperatures exceeding 

900°C. The hardness of the material after deformation first decreased with the temperature due to 

recovery at 750°C, and subsequently increased due to the phase transformation and recrystallization at 

900°C. During the hot stamping tests, qualified parts without visible cracks could be formed 

successfully at heating temperatures ranging from 750°C to 850°C, although the forming failed beyond 

this temperature range. At lower temperatures, the forming failed due to the limited ductility of the 

material. At higher temperatures (900°C - 950°C), extensive phase transformation of α to β occurred 

during the heating. During the transfer and forming, the temperature dropped significantly which led to 

the formation of transformed β, reduced the formability and caused the failure. The post-form hardness 

distribution demonstrated the same tendency as that after uniaxial tensile tests. 

3.1 Experimental details - Determination of mechanical properties and microstructure 

characterization 

Tensile specimens made of the Ti6Al4V titanium alloy, were supplied by AVIC Beijing Aeronautical 

Manufacturing Technology Research Institute. A dog-bone shaped specimen was used with a gauge 

length of 46 mm, a width of 12 mm and a thickness of 1.5 mm (Figure 3-1). A Gleeble 3800 thermo-

 
 Chapter 3 is based on paper work Kopec M., Wang K, Politis D.J., Wang Y., Wang L., Lin J., Formability and microstructure evolution 

mechanisms of Ti6Al4V alloy during a novel hot stamping process, MSAE 
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mechanical testing machine (Figure 3-2a) was used to conduct uniaxial tensile tests at elevated 

temperatures to characterize the properties of Ti6Al4V specimens at a range of strain rates and 

temperatures. Ti6Al4V flat specimens were heated at a rate of 2°C/s to the testing temperature and 

deformed immediately. The value of heating rate was chosen to ensure that the deformation temperature 

is as close as possible to target, testing temperature. After failure, specimens were cooled to room 

temperature at the cooling rate of 40°C/s. The test matrix for the uniaxial tensile tests is shown in Table 

3-1. Before each test, the width and thickness of the specimen was measured at three different locations 

and recorded, due to the stress and strain during each test could be calculated during post-processing of 

the data.  Subsequently, the center of the specimen was marked out to locate the position of the pair of 

thermocouples that were welded to the surface of specimen. The thermocouples were used to control 

and monitor the temperature of the specimen during the tensile test. The equipment used to spot weld 

the thermocouples is present in Figure 3-2b. The voltage used was based on previous experience and 

it was equal to 40V. 

 
Figure 3-1 Specimen geometry for the uniaxial tensile test. 

 

Figure 3-2 The Gleeble 3800 simulator (a) and spot welding equipment used during specimen setup 

(b). 



Chapter 3 – Formability and microstructure evolution mechanisms of the Ti6Al4V alloy during a novel hot stamping process 

 

54 

Table 3-1 Test matrix for uniaxial tensile tests of the Ti6Al4V 

Temperature (°C) / 

 Strain rate (s-1) 
600 650 700 750 800 850 900 

0.1    × × ×  

1 × × × × × × × 

5    × × ×  

 

The surfaces and the edges of the specimen were ground with fine sanding paper in order to provide a 

clean surface to weld the thermocouple and to stress concentrations elimination. Subsequently, the 

specimen was put between two low thermal conductivity stainless steel grips, which were positioned 

and clamped between the Gleeble jaws. A C-Gauge transducer was used to measure and record the 

width at the center of the specimen throughout the tensile test. The force was measured by a load cell 

fixed to the static jaw of the Gleeble. The full test setup is shown in Figure 3-3. 

 

Figure 3-3 The specimen setup in the test chamber. 

 

During heating, the system was put in ‘force control’ mode and the force set to zero in order to allow 

expansion of the specimen during the heating process. This prevents compressive stresses from 

developing in the specimen by enabling the actuator to compensate for any expansion. During 

deformation, the target temperature of the specimen is maintained, and the system put in ‘stroke control’. 

Here, the required actuator stroke (in mm) was set at each time increment of the test to achieve the 

target strain rate. This was done by assuming an initial gauge length of 10 mm in the specimen. The 

size of gauge length was determined by identification of isothermal zone and was presented in Appendix 

A. The most critical data acquired and recorded during the tests included the C-Gauge readings of the 
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width and the load history. True stress was calculated as the applied load divided by the actual cross-

sectional area (the changing area measured with c-gauge with respect to time) of the specimen at that 

load. True strain was calculated from the axial displacement data as the natural log of the quotient of 

current length over the original length. 

The hardness values of the specimens after the uniaxial tensile tests and hot stamping forming were 

measured by means of a Zwick hardness tester at room temperature with 6 measurements per condition. 

Each hardness measurement was performed using a 10 kgf force and the dwelling time of 10 seconds. 

Microstructure investigations were made for tensile test specimens tested at room temperature and in 

the range of 600°C - 900°C. The microstructure of investigated material was observed using a Scanning 

Electron Microscope (SEM) and backscattered electrons (BSE) mode. The specimens for 

microstructural characterization were prepared by conventional metallographic procedures for titanium. 

Prior to study, the specimens were first hot mounted and then ground using 600, 800, 1200 and 4000 

SiC paper. The polishing was performed using Metrep® MD-Chem cloth and 0.04 μm Colloidal Silica 

solution. The microstructural characterization was performed on a Zeiss Sigma300 scanning electron 

microscope (SEM) under Backscattered Electron (BSE) mode operated at 20 kV. Volume fraction of 

coexisting phases was measured by ImageJ software. Three SEM pictures were measured to get the 

average value. The average grain size was obtained by using Esprit software from single EBSD map of 

scanned material, where over 100 grains were calculated. 

 

3.1  Initial material 

The tensile test results for the as-received Ti6Al4V titanium alloy specimen cut in the rolling direction 

at room temperature and strain rate of 1s-1 is shown in Figure 3-4. The results show an ultimate tensile 

stress for the tested material of 1120 MPa, a yield strength of 850 MPa and Young’s modulus of 97 

GPa. Yield strenght was determined for the 0.2% offset strain from the experimental stress-strain curve. 

The hardness of the as-received material was 380HV10. Hardness tests details were presented in 

Appendix B respectively. 

 
Figure 3-4. Stress - strain curve obtained for the as received material at room temperature. 
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A microstructural investigation of the as-received material was performed on the SEM using 

Backscattered Electron (BSE) mode. The initial microstructure of material in the rolling direction is 

presented in Figure 3-5. The microstructure of the investigated titanium alloy contains the α-phase 

matrix and small particles of β-phase. The specific chemical composition of as-received material is 

presented in Table 3-2.   

Table 3-2. Chemical composition of the as-received Ti6Al4V. 

Wt. % C N O H Fe Al V Ti 

Ti6Al4V 0.08 0.05 0.2 0.15 0.4 6.8 4.5 Bal. 

 

Figure 3-5. SEM microstructure images of the as-received material. 

 

3.2  Effect of temperature on mechanical properties of the Ti6Al4V alloy 

To investigate the formability of the Ti6Al4V alloy, tensile tests were performed under a range of 

temperatures (600°C - 900°C) with a strain rate of 1s-1 on specimens cut in rolling direction (Figure 3-

6). It was observed that the temperature has a great influence on the elongation. In the range of 

temperatures from 600°C to 700°C, there is little change in elongation. However, for temperatures 

greater than 700°C, the elongation increased dramatically from 30% at 750°C to 60% at 900°C as shown 

in Figure 3-7. At elevated temperatures, high dislocation mobility led to an increase in ductility (Chang 

2017) as well Figure 3-7. It should be mentioned that in the range of temperatures from 600°C - 700°C, 

strain hardening occurs. At 600°C significant strain hardening is observed, leading to an UTS of 600 

MPa. At 750°C and higher temperatures, the flow stress curve became flat due to the occurrence of 

materials softening, indicating that the deformation mechanisms vary with the deformation temperature.  
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Figure 3-6. Stress - strain curves obtained for the Ti6Al4V specimens at the range of 600°C - 900°C. 

 

Figure 3-7. Ductility obtained for the Ti6Al4V specimens at the range of 600°C - 900°C. 

It can be concluded from the above tensile test results that the material exhibits good ductility at 

temperatures greater than 700°C. However as the strain rate during actual forming is not constant, the 

material behavior was studied through tensile tests conducted at temperatures ranging from 750°C to 

850°C, and strain rates ranging from 0.1 s-1 to 5 s-1 . Figure 3-8 presents the stress-strain curves of the 

initial material under different testing conditions. The ductility of the investigated material increased 

with increasing temperature and decreasing strain rate from 0.2 at 750°C (strain rate of 5s-1) to 0.3 at 

strain rate of 0.1s-1 and from 0.4 at 850°C (strain rate of to 5s-1) to 0.47 at strain rate of 0.1s-1. Peak 

stress decreased with temperature increase and strain rate decrease from 445 MPa at 750°C to 200 MPa 

at 850°C. Material softening during the hot deformation process was observed, and it was found that 

the softening rate increased with decreasing strain rate. It could be observed that the investigated 

material was strongly strain rate sensitive. It was concluded that both strain rate and temperature have 

a great influence on deformation behavior and mechanism of the material. The elongation increase and 

peak stress decrease with decreasing strain rate was observed during the tensile tests. This phenomenon 

is related to the dislocation mobility and atom diffusion at higher temperatures and lower strain rate 

resulting in larger elongation and lower stress.  
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Figure 3-8. Ti6Al4V stress - strain curves obtained by tensile test at different strain rate conditions 

for temperature values of 750°C (a), 800°C (b) and 850°C (c). 

3.3  Evolution of microstructure and post form strength after deformation 

Following tensile testing, the hardness distribution of all specimens after completed tensile tests 

performed was evaluated. The detailed hardness measurements of the Ti6Al4V alloy were presented in 

Appendix B. A microstructural investigation of specimens was performed on a SEM using BSE mode. 

The distribution of Vickers hardness of specimens following deformation at a strain rate of 1 s-1 for 

different temperatures is shown in Figure 3-9, and the corresponding microstructure and fraction of 

various phases presented in Figure 3-10 and Figure 3-11 respectively. It can be seen that the hardness 

of the material decreased at first and then increased with increasing temperature. The microstructure of 

the investigated material showed limited change after tensile testing at temperatures of 600°C and 

650°C. The dimension of the β-phase particles and their content in the whole volume of the material 

were almost the same in comparison to the initial microstructure (Figure 10a-b, Figure 11). This may 

be because the temperature was too low to initiate phase transformation. However, increased dynamic 

recovery occurred at higher temperature with the consumption of more dislocations, and as a result the 

hardness and flow stress began to decrease gradually with the increasing temperature before 750°C. 

When the temperature was greater than 750°C, both the content and size of β-phase increased with 

increasing temperature (Figure 10d-f, Figure 11) which caused material softening during the tensile 

tests. Both phase transformation and recovery reduced the dislocation density resulting in a reduction 

in material’s strength and a simultaneous increase in elongation. When the specimen was cooled after 

tensile tests, transformed beta phase formed during the cooling process which could improve the 
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hardness of the material at room temperature. The fraction of transformed beta increased with 

temperature, resulting in the simultaneous increase in hardness (Jadhav et al. 2017). It is worth noting 

that dynamic recrystallization of α grains may also occur during the deformation, which could refine 

the microstructure and improve the hardness (Furuhara et al. 2007). 

 

Figure 3-9. Evolution of Vickers hardness of tensile tested specimens conducted at different 

temperatures. 

  

  

  

Figure 3-10. SEM microstructure images of the Ti6Al4V specimens after completed tensile tests 

performed at 600°C (a), 650°C (b), 750°C (c), 800°C (d), 850°C (e) and 900°C (f). 



Chapter 3 – Formability and microstructure evolution mechanisms of the Ti6Al4V alloy during a novel hot stamping process 

 

60 

 
Figure 3-11. Evolution of α and β phase fraction after completed tensile tests at different 

temperatures. 

3.4  Feasibility of hot stamping technology – forming test of m-shaped component 

To verify the feasibility of the proposed technology, forming tests were conducted on a 250 Ton Instron 

press. The setup of facilities for hot stamping is presented in Figure 3-12. These tests were conducted 

under loading frame velocity of 10 mm/s at room temperature and at temperatures ranging from 600°C 

to 950°C. The specimen size was 90 x 8 x 1.5 mm. The heating and forming temperature was monitored 

by thermocouple wire welded to the specimen. Once the temperature of the specimen was stable, it was 

removed from the furnace, transferred to the forming tool and formed immediately by cold dies. The 

transfer time from the furnace to the cold die was controlled to be around 2s. The formed specimen was 

held for 10s within the die. Subsequently, the formed specimen was removed from the stamping tool to 

allow further cooling in air to room temperature. 

 
Figure 3-12 Setup of facilities for hot stamping experiment. 



Chapter 3 – Formability and microstructure evolution mechanisms of the Ti6Al4V alloy during a novel hot stamping process 

 

61 

From the above tensile tests, it can be found that the Ti6Al4V alloy has a good formability at elevated 

temperature even with a high strain rate and the deformation conditions have a huge impact on the 

material properties. In order to further verify the feasibility of the hot stamping of titanium alloys and 

determine the processing windows, forming tests were conducted. The hot stamping of titanium alloy 

includes three main steps: heating, transfer, and simultaneously forming and quenching as shown in 

Figure 3-13 During the whole forming process, temperature is one of the most important parameters, 

which will affect not only the formability of the material but also the post-form properties of the formed 

part. Therefore, a thermocouple wire was welded on the sidewall of the specimen to monitor the 

temperature evolution during the whole process. Figure 3-14a presents the typical temperature history 

of one specimen. The specimen was heated to 850°C and then soaked until the temperature became 

stable. The total time for heating and soaking was 180 s approximately. Subsequently, it was transferred 

from the furnace to forming tool, formed immediately by cold dies and quenched. During the transfer, 

the actual temperature of the specimen reduced from 850°C to approximately 700°C just before forming. 

During forming the temperature rapidly dropped to approximately 350°C and then gradually decreased 

to room temperature. Figure 3-14b shows the load and displacement information during the forming 

process. The displacement curve could be divided into two parts: forming and holding. In the forming 

part, the press moved at a constant speed of 10 mm/s, but the load curve represented different 

characteristics. Before the punch contacted with the specimen, the movement of the press would 

compress the gas spring in the dies, which led to the slow increase of load to around 10 kN. After the 

punch contacted with the specimen, the load increased dramatically as the specimen was deformed 

within cold dies (Figure 3-14c). After displacement reached its maximum value, the specimen was held 

for 5 seconds within the forming tools. 

 

Figure 3-13. Schematic of the forming process during heating of the specimen (a), at the positioning 

stage (b), during forming (c) and at the final stage (d). 
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Figure 3-14. Evolution of temperature (a), load/displacement (b) during forming process and 

load/temperature (c). 

Figure 3-15 shows the cross-section of the formed parts using cold forming tools at different 

temperatures. Titanium features have been formed at temperatures ranging from 600°C to 950°C 

(Figure 3-15b-f) since room temperature forming led to the fracture of the specimen into several pieces 

(Figure 3-15a). A qualified part without visible cracks could only be formed between 750°C to 850°C 

with specimen formed at 600°C displaying cracks on the surface indicating that forming temperature 

was too low to form the component (Figure 3-16a). Obvious cracks (Figure 3-16b) were also observed 

in parts formed at 900°C. When the heating temperature was increased to 950°C, the forming also failed 

due to the occurrence of cracking (Figure 3-15f). This tendency is different to the uniaxial tensile tests, 

where the elongation increased with increasing temperature. During the tensile tests, the specimen was 

deformed under isothermal condition, whereas the temperature reduced significantly during the transfer 

and forming stages of hot stamping. The formability of the material is determined by its microstructure 

under certain conditions, therefore one can infer that the crack and failure that occurred at 900°C and 

950°C was caused by the temperature dropping and the corresponding microstructure alteration.  The 

detailed explanation of this can be found in Section 3.6.   

c) 
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Figure 3-15. View of parts formed at room temperature (a), 600°C (b), 750°C (c), 850°C (d), 900°C 

(e) and 950°C (f). 

 
Figure 3-16. View of cracks of parts formed at 600°C (a) and 900°C (b). 

3.5  Evolution of post-strength of components formed at different heating temperatures 

Hardness tests were conducted on the formed parts to evaluate the post-form properties of the as-formed 

part, and the results are shown in Figure 3-17. The detailed hardness measurements of formed parts 

were presented in Appendix A The microstructure of the formed parts and the fraction of different 

phases are shown in Figure 3-18 and Figure 3-19, respectively. It can be seen that the hardness values 

increased from 341HV10 at 750°C to 392HV10 at 950°C (Figure 3-17) due to phase transformation 

(Figure 3-18, Figure 3-19), which is in good agreement with the tensile test results (Figure 3-7). It 

could be observed that the microstructure of the formed part changed little after forming at temperature 

of 600°C. The fraction of the β-phase in the whole volume of the material and the dimension of its 

particles were almost the same as compared with the initial microstructure (Figure 3-12). When the 

heating temperature was increased, significant phase transformation occurred and the content of β-phase 

increased dramatically from 6.7% at 600°C to 58% at 950°C as shown in Figure 3-17. 
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Figure 3-17. Post-form strength of components formed at different heating temperatures.  

  

 

Figure 3-18. SEM microstructure images of the Ti6Al4V specimens formed at temperatures 600°C 

(a), 850°C (b), and 950°C (c). 

 
Figure 3-19. Evolution of α and β phase fraction during forming at different heating temperatures. 
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During thermo-mechanical processing of metals, recovery, recrystallization and phase transformation 

are three important microstructure evolution mechanisms. The SEM results above revealed that obvious 

phase transformation took place when the temperature was greater than 750°C. To further verify 

whether recrystallization occurred, Kernel Average Misorientation (KAM) map was captured by EBSD 

as shown in Figure 3-20, where the blue colour represents low values of misorientation while the green 

colour represents large values. It can be observed that the average KAM values tended to decrease with 

increasing heating temperature and the average grain size of α grains decreased first (Figure 3-20) and 

then increased (Figure 3-20d). The initial material (Figure 3-20a) before the forming process consisted 

of grains with relatively high KAM value. It indicates that the dislocation density of the initial material 

was high. When the forming temperature increased to 850°C (Figure 3-20b), many fine grains with 

low KAM value appeared, demonstrating the occurrence of recrystallization. At this stage, the 

temperature was high enough to initiate the recrystallization nucleation. With the temperature 

increasing to 900°C (Figure 3-20c), recrystallization became more obvious, leading to grain refinement. 

At the temperature of 950°C (Figure 3-20d), secondary α precipitated in the β matrix and the equiaxed 

α grains grew coarser. This is because significant phase transformation of α to β took place at 950°C, 

which led to the secondary α phase precipitates during the cooling stage. The high temperature also 

intensified the diffusion process and led to the merging of adjacent α grains (Jiao 2010), which resulted 

in the noticeable increase of the α phase grain size. Both refinement of microstructure and transformed 

β phase could improve the hardness at room temperature. Therefore when the temperature was lower 

than 900°C, the hardness increase may be caused by the recrystallization and phase transformation. At 

950°C, the hardness increase was mainly caused by the phase transformation (Quan et al. 2015; Rollett, 

et al 2013). Both the possible grain growth during heating and the transformed β formed during the 

stamping process reduced the formability of the material, which led to the forming failure when the 

heating temperature was greater than 900°C.  

   
Figure 3-20. KAM maps of the material in as-received state (a) and after forming at different heating 

temperature values equal to: 850°C (b), 900°C (c) and 950°C. 
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3.6  Deformation mechanisms of titanium alloys under hot stamping conditions 

 

One can find from both tensile and hot stamping test results that both the formability and post-form 

properties varied greatly with the deformation conditions, indicating that deformation mechanisms 

under different conditions may be different. Based on the obtained results, the mechanisms for the 

Ti6Al4V alloy under hot stamping conditions were summarized in Table 3-3. At heating temperature 

ranging from 600°C to 700°C, work hardening was observed (Figure 3-7) during tensile tests, and the 

microstructure morphology changed little after deformation, indicating that the main mechanism was 

recovery. At heating temperature values ranging from 750°C to 900°C, work hardening disappeared 

and material softening appeared during the tensile tests. After the deformation, the fraction of β phase 

and post-form hardness increased with the temperature; recrystallization of α grains was also observed, 

and therefore the main mechanism at this temperature range would be phase transformation and 

recrystallization. When the heating temperature was greater than 900°C, significant phase 

transformation of α to β and noticeable grain growth of α grains occurred, which increased the post-

form hardness and simultaneously reduced the formability of the material. Therefore, the main 

mechanism at this temperature range would be phase transformation and recrystallization. Similar 

conclusions were also reported by Ning et al. (Ning et al. 2015). 

 

Table 3-3. Deformation mechanisms for the Ti6Al4V alloy under hot stamping conditions 

Temperature (°C) 600 - 700 750 - 900 > 900 

Microstructure morphology 

evolution 
Little change 

Phase transformation of α to β 

and recrystallization of α grains 

Phase transformation of α 

to β and grain growth of α 

grains 

Post-form hardness 
Decrease with the 

temperature 
Increase with the temperature 

Increase with the 

temperature 

Main mechanisms Recovery 
Phase transformation and 

recrystallization 

Phase transformation and 

recrystallization 

 

3.7  Determination of processing windows for hot stamping of the Ti6Al4V alloy 

 

It can be seen from the hot stamping tests, that the qualified part cannot be formed when the heating 

temperature was lower than 750°C or higher than 850°C, but can be formed between 750°C and 850°C 

as shown in Figure 3-21. The formability of the material was determined by both deformation 

conditions and the corresponding microstructure. Therefore, it is very important to fully understand the 

relationship between the forming process and microstructure evolution. The hot stamping process is a 

non-isothermal forming process, and the temperature varied in different stages as shown in Figure 3-

14. The heating temperature was higher than the temperature before forming due to the temperature 

drop during the transfer. There would be microstructure evolution during the heating, soaking and 
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transfer stages before forming. Hence, the heating and soaking condition would determine the 

microstructure before forming, and the heating temperature and temperature drop during transfer would 

determine the initial forming temperature. The microstructures of the material at different stages formed 

at heating temperatures of 850°C and 950°C are shown in Figure 3-21. It can be seen that despite the 

considerable drop of temperature during manual transfer from furnace to forming tools during the 

forming process, the microstructure changed little during the transfer. Moreover, the microstructure of 

the material after heating and soaking was also very similar with that after forming, even at the heating 

temperature of 950°C. It can be concluded that both formability and post-form properties of the material 

were mainly determined by the heating temperature and soaking time. Therefore, both formability and 

post-form properties of the material could be tailored through the control of the forming process and 

material microstructure.   

 

Figure 3-21. Evolution of microstructure during the forming process at 850°C and 950°C. 

 

Control of the phase transformation during heating and improving the forming temperature are the two 

basic guidelines to further extend the forming window. The transformed β would impair the ductility of 

the material, therefore in order to reduce the phase transformation during heating, a reduction of soaking 

time should be considered. It will also prevent the precipitation of secondary α phase within the structure, 

when the temperature will be great enough to initiate the phase transformation. On the other hand, the 

formability of the material could also be improved by using warm forming tools to reduce the 

temperature reduction during the forming process. It also should be mentioned that at elevated 
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temperatures, oxidation became an obvious problem. This phenomenon reduced the formability and 

increased the hardness of material during forming. In order to prevent oxidation during the forming, the 

use of high quality oxidation resistant lubricant coating should be considered.  

3.8  Conclusions 

In this chapter, the formability and deformation mechanisms during a novel hot stamping process for 

titanium alloys using cold forming tools and a hot blank were investigated. During uniaxial tensile tests 

at temperatures from 600°C to 900°C with the strain rate of 1s-1, a satisfactory elongation of the material 

ranging from 30% to 60% was achieved at temperatures ranging from 750°C to 900°C. The main 

conclusions were formulated as follows: 

• During deformation at temperatures from 600°C to 700°C, work hardening occurred. The 

hardening rate decreased with the increasing temperature resulting in the hardness reduction 

from 350HV10 at 600°C to 335HV10 at 750°C, indicating that the main deformation 

mechanism may be recovery. As the temperature increased to 900°C, phase transformation and 

grain refinement caused by recrystallization occurred resulting in the hardness increase to 

352HV10.  

• During the hot stamping tests, titanium parts were successfully formed at heating temperatures 

ranging from 750°C to 850°C. After forming at temperatures up to 750°C, cracks were observed 

on the component surface due to limited ductility of the material. On the other hand, the forming 

failed at heating temperatures above 850°C. It was found that heating to such high temperatures 

led to α → β phase transformation. During the following transfer and forming, temperature 

reduction occurred. As a result of such a reduction, formation of transformed β reduced the 

formability significantly and caused failure. The post-form hardness distribution demonstrated 

the same tendency as that after uniaxial tensile test, which dropped from 357HV10 at 600°C to 

341HV10 at 750°C indicating dynamic recovery of material and then increased to 392HV10 at 

950°C due to phase transformation.  

• The deformation condition had a great influence on both the mechanical properties and 

microstructure of the material. The post-form mechanical properties and microstructure were 

mainly determined by heating temperature and soaking time, hence formability and post-form 

properties of the material could be tailored through the adjustment of the forming process.  In 

order to extend the processing window, measures such as reduction of soaking time, use of 

warm forming tools and oxidation resistant lubricants during the hot stamping process should 

be considered. 
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CHAPTER 4 

4.  Experimental and modelling studies on the Ti6Al4V alloy under hot 

stamping conditions  

The chapter aims to investigate the microstructural evolution and flow behavior of a titanium alloy 

(Ti6Al4V) under hot stamping conditions experimentally, and to model these parameters using the 

constitutive equations proposed. In order to determine the material behavior, uniaxial tensile tests were 

conducted on the Ti6Al4V specimens at different temperatures ranging from 750°C to 850˚C and at 

strain rates ranging from 0.1 to 10 s-1. The material behavior was modelled using mechanism-based 

viscoplastic constitutive equations to replicate the material response of a two-phase titanium alloy 

Ti6Al4V under hot stamping conditions. Finally, the developed model's accuracy was validated by 

comparing to experimental uniaxial tensile tests and microstructural maps of the deformed alloy. 

Microstructural analysis revealed that the heating and soaking conditions are vital to the microstructure 

and post-form strength, whereas the plastic deformation during the hot stamping only has a negligible 

effect on both recrystallization and phase transformation due to the very short deformation time. The 

developed material model was implemented into the Finite Element (FE) simulation to study the 

deformation characteristics during the hot stamping process. The material model was verified 

experimentally through hot stamping of a demonstrator component, with good agreement achieved 

between the predicted and experimental results. 

  

4.1  Experimental details - High temperature uniaxial tensile tests and microstructure 

characterization  

Commercial Ti6Al4V titanium alloy was used for this study and uniaxial tensile tests were performed 

at elevated temperatures using a Gleeble 3800 thermo-mechanical testing machine. To analyse in details 

of the mechanical response and microstructural changes in the defined forming window, an additional 

set of uniaxial tensile tests was carried out. The mechanical properties of the titanium alloy were 

characterized at wider range of strain rates ranging from 0.1 to 10 s-1 and temperatures within the range 

from 750°C to 850˚C. Titanium specimens were heated at a higher and constant rate of 4˚C/s up to the 

test temperature and deformed immediately. After failure, the specimens were cooled to room 

temperature with an average cooling rate of 40˚C/s which was obtained by using air quenching pipes 

mounted in Gleeble chamber. The initial pressure of the compressed air was set as 2 bars in order to 

 
 Chapter 4 is based on paper work - Kopec, M., Wang, K., Qu, H., Politis, D.J., Liu, J., Wang, Y., Kowalewski, 

Z.L. Wang, L., Lin, J., Experimental and modelling studies on Ti6Al4V under hot stamping conditions  
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obtain an average cooling rate of 40˚C/s.  Evolution of microstructure during deformation was 

monitored via interrupted tensile tests and subsequent SEM analysis. The interrupted tensile tests were 

performed at a temperature of 850˚C. Specimens were deformed to strain values equal to 0.1, 0.3 and 

0.7 at a range of strain rates (0.1 – 10 s-1) and cooled immediately by water quenching after deformation. 

The microstructure of the deformed specimens was characterized by SEM by using the same methods 

described in chapter 3.3.1. 

4.2  Determination of Ti6Al4V flow stress at elevated temperatures 

The geometry of the tensile specimens made of  the Ti6Al4V titanium alloy were presented in Figure 3-

1 and the initial thickness of specimens was 1.6 mm. The results of uniaxial tensile tests performed on 

the specimens for the evaluated temperatures and strain rates are shown in Figure 4-1. The ductility of 

the material increased with increasing temperature and decreasing strain rate. This phenomenon is 

attributed to the improvement of dislocation mobility and atom diffusion at high temperatures and low 

strain rates resulting in higher elongation and decrease in the peak stress. During deformation at high 

strain rate conditions (10 s-1), ductility increased by 42% from 0.4 to 0.7 whereas at low strain rate 

conditions (0.1 s-1), ductility increased by 30% from 0.78 to 1.1. As such, temperature effects on the 

ductility enhancement were more pronounced at high strain rate conditions. It can also be seen that peak 

stress decreased with increasing temperature and decreasing strain rate from 455 MPa at 750˚C to 120 

MPa at 850˚C. At 750˚C (Figure 4-1a), the stress first reached a peak value, followed by a plateau, 

indicating that recovery may be the dominant softening mechanism (Takaki et al 2015). With the 

increasing temperature (for example at 850˚C) (Figure 4-1c), the stress first reached a peak value, 

followed by a gradual decrease, indicating that dynamic recrystallization may be the dominant softening 

mechanism. During deformation under lower strain rates, a sufficient deformation time for diffusion 

and dislocation polygonization is provided (Tan et al. 2015). Increasing temperature and decreasing 

strain rate result in an increase of elongation during deformation.  

The reduction in flow stress with an increase in the deformation temperature and a decrease in the strain 

rate is caused by the presence of higher volume fraction of the β phase with a bcc crystal structure. Such 

higher volume fraction of the β phase lowers the flow stress as it has more slip systems than the hcp α 

phase (Rollett et al 2013). The larger number of slip systems promote the dynamic recovery. 

Additionally, the β phase was found to be more ductile at high temperature than the α phase, and thus, 

with the increase of its volume, the elongation of material increased accordingly. On the other hand, the 

increase of flow stress at high strain rates is also related to the high volume fraction of dislocations, 

which inhibit the movement of mobile dislocations and result in a resistance to the plastic deformation 

and subsequent higher flow stress requirement. Such material behavior was also reported by Souza et 

al. (Souza et al. 2015) . 
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Figure 4-1 True stress-strain curves of the as-received material tested under different strain rate and 

temperature conditions. 

It was reported in Ref (Kopec et al. 2018a) that after the deformation, the fraction of β phase and post-

form hardness increased with the deformation temperature. When the heating temperature was 900°C 

and higher, significant phase transformation of α to β and noticeable grain growth of α grains was 

observed. Such behavior resulted in increase of the post-form hardness and simultaneous reduction of 

the material formability. During feasibility studies of hot stamping of the Ti6Al4V alloy reported by 

authors elsewhere (Kopec et al. 2018b), the qualified part can be formed between 750°C and 850°C 

thus the temperature of 850°C was selected as optimal for hot stamping of full scale component. 
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Therefore, microstructure evolution during the deformation at 850°C was studied in the following study. 

In order to maintain the initial grain size during forming at such high temperature, relatively high strain 

rates during deformation should be used during the process. 

4.3  Microstructure evolution of the Ti6Al4V alloy during high temperature 

deformation 

4.3.1 Phase transformation during high temperature deformation 

It is widely reported that more phase transformation occurred with the increasing temperature for 

titanium alloys. More information about this could be found in Ref (Kopec et al. 2018). The 

microstructural evolution with strain is shown in Figure 4-2. Figure 4-2a shows the microstructure of 

a specimen heated to 850˚C, with a heating rate of 4˚C/s. After heating to 850˚C, a typical microstructure 

consisted of the finely transformed β (β t) and primary α phases. During deformation at a strain rate of 

1 s-1 (Figure 4-2b), additional deformation filaments characterized by deflated α phase among 

elongated β grain boundaries were observed. On the contrary, at the strain rate of 0.1 s-1, elongated and 

intermittent β phase grains in α phase matrix were observed (Figure 4-2c). At such high temperatures 

(850˚C), some α phase dissolved through α to β transformation. The volume fraction of β phase in the 

specimens tested at 850˚C was approximately 42% and remained almost constant during deformation 

(Figure 4-2) indicating that phase transformation occurred mainly during the heating stage (Kopec et 

al. 2018). Based on above results, it could be concluded that deformation below β transus temperature 

within investigated range of strain rates did not influence the volume fraction of β phase due to relatively 

short time of deformation.  

An evolution of the titanium alloy microstructure  at 850˚C is presented schematically in Figure 4-3. 

The material initially containing 7% β phase was heated to the target temperature. During the heating 

and soaking stage, the fraction of β phase increased to 42% and slightly increased during forming as 

reported in a previous study of the authors (Kopec et al. 2018). After hot deformation at 850˚C, the 

microstructure of titanium alloy consisted of deflated α phase among elongated β grain being observed 

on the grain boundaries. 
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Figure 4-2. Microstructure of specimens heated to: (a) 850˚C, (b) 850˚C and deformed at strain rate 

of 1s-1 to strain value of 0.7, and (c) 850˚C and deformed at strain rate of 0.1s-1 to strain value of 0.7 

(dark field - α phase, bright field - β phase). 

 

 

Figure 4-3. Schematic diagram of the microstructure evolution during a hot stamping process (Kopec 

et al. 2018). 
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4.3.2 Grain size evolutions during hot plastic deformation 

The grain size evolution of the specimen deformed at 850˚C with different strain rates are presented in 

the form of grain boundary maps and grain size distribution graphs in Figure 4-4 and Figure 4-5, 

respectively. It was confirmed that the high strain rate (above 1 s-1) enables the microstructure of the 

material obtained after heating to be maintained without any change in the grain size. As expected, 

during deformation at the strain rate of 1 s-1 (Figure 4-4a-b), only slight changes of the grain size were 

observed. Even after deformation to a strain value of 0.7, the grain size remained at its initial value of 

3 µm approximately. 

On the contrary, during deformation at the strain rate of 0.1 s-1 with increasing deformation, the grain 

size gradually decreased due to the occurrence of dynamic recrystallization (Figure 4-4c-e). 

Deformation under lower strain rates provides a sufficient deformation time for diffusion and 

dislocation polygonization and accelerate the occurrence of dynamic recrystallization  (Tan et al. 2015). 

Dynamic recrystallization phenomenon is characterized by the nucleation and growth of new fine grains 

during deformation. Such structure refinement and grain growth could be observed at relatively low 

strain rates. These changes to the material microstructure are common for titanium alloys formed by 

using hot forming technologies such as superplastic forming.    

 
Figure 4-4. Grain size distribution maps of the specimens deformed at 850˚C to different strain 

values: (a) strain rate 10 s-1, strain 0.3, (b) strain rate 1 s-1, strain 0.3, (c) strain rate 1 s-1, strain 0.7, (d) 

strain rate 0.1 s-1, strain 0.1, (e) strain rate 0.1 s-1, strain 0.3, (f) strain rate 0.1 s-1, strain 0.7. 
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Figure 4-5. Average grain size evolution during deformation at 850˚C. 

Based on the results captured, it could be concluded that the microstructure of investigated material is 

mainly determined by heating temperature. The deformation under temperature of 850°C affect the 

morphology of β phase, but not its volume fraction. The effect of strain rate on microstructure is more 

pronounced as a slight drop of average grain size was observed during deformation at strain rate of 

0.1s-1. Such a drop of average grain size was determined by occurrence of dynamic recrystallization 

resulting in growth of new, fine grains. Deformation under strain rates ranging from 1 to 10s-1 did not 

affect the grain size considerably and allow to maintain its initial size. 

 

4.4  Development of unified constitutive equations 

The successful modelling of material behavior requires representative equations modelling the key 

mechanisms involved during deformation. The Johnson–Cook (JC) model and Arrhenius equation are 

widely used phenomenological models to describe material’s stress–strain response. However, these 

models do not include physical phenomena occurred during titanium deformation such as material 

recovery or evolution of dislocation density. Based on the microstructural observations and mechanical 

response of material presented in previous subsections, the material behavior was modelled using 

mechanism-based viscoplastic constitutive equations to precisely replicate the material and mechanical 

response of a two-phase titanium alloy Ti6Al4V under hot stamping conditions. In order to improve the 

accuracy of the model, the behavior of both phases was modelled separately. For metal stamping 

processes, the viscoplastic flow behavior for both α and β phases can be expressed using Eq. (1): 

�̇�𝒑 = (
𝝈−𝑯−𝒌

𝑲
)𝒏                                                                                                                                   (1) 

where �̇�𝒑 - plastic strain rate, σ - flow stress, 𝐻 - stress due to dislocation hardening, 𝑘 - initial yield 

stress, 𝐾 - material parameter . In order to model material behavior of two phase Ti6Al4V titanium alloy 

with equiaxed initial microstructure accurately, the material model presented by Bai et al. (Bai et al. 
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2013) was modified by neglecting the spheroidizing. 

The hardening parameter 𝐻 defined in Eq.(1) is determined by dislocation density for both phases 

separately: 

𝑯𝜶 = 𝟎. 𝟓𝑩𝜶�̅�𝜶
𝟎.𝟓                                                                                                                              (2) 

𝑯𝜷 = 𝟎. 𝟓𝑩𝜷�̅�𝜷
𝟎.𝟓                                                                                                                                (3) 

where 𝐵 is a material parameter. Titanium alloys exhibit the viscoplastic behavior at elevated 

temperature. The total flow stress during deformation at high temperatures consists of three parameters: 

the initial yield stress 𝑘, dislocation hardening parameter 𝐻 and the stress caused by viscoplastic 

behavior which can be calculated by σ−𝐻−k . The investigated Ti6Al4V titanium alloy is a two-phase 

material, and thus, different phases should be considered separately: 

�̇�𝒑𝜶 = (
𝝈𝜶−𝑯𝜶−𝒌𝜶

𝑲𝜶
)𝒏𝟏                                                                                                                              (4) 

�̇�𝒑𝜷 = (
𝝈𝜷−𝑯𝜷−𝒌𝜷

𝑲𝜷
)𝒏𝟐                                                                                                                          (5) 

Based on the high temperature indentation tests on the Ti6Al4V performed by Bai et al (Bai et al. 2013), 

it was found that the ratio of 𝜷 yield stress over 𝜶 yield stress is approximately 0.8. As a consequence, 

it was assumed that 𝒌𝜷 = 𝟎. 𝟖𝒌𝜶. 

Total viscoplastic flow behavior is expressed in the following way: 

�̇�𝒑 = �̇�𝒑𝜶(𝟏 − ƒ𝜷) + �̇�𝒑𝜷ƒ𝜷                                                                                                                (6) 

The flow stress can be obtained according to the Hooke’s law 

𝝈 = 𝑬(𝜺𝒕 − 𝜺𝒑)                                                                                                                                 (7) 

where 𝜀𝑡 is the total strain, 𝜀𝑝 is the plastic strain, and E is the Young’s modulus. 

The dislocation evolution involves dislocation accumulation and concurrent dislocation annihilation, 

which for different phases can be calculated by Eqs. (8) and (9). 

�̇̅�𝜶 = 𝑨𝜶(𝟏 − �̅�𝜶)�̇�𝒑,𝜶 − 𝑪𝜶�̅�𝜶
𝒏𝜶                                                                                                        (8) 

�̇̅�𝜷 = 𝑨𝜷(𝟏 − �̅�𝜷)�̇�𝒑,𝜷 − 𝑪𝜷�̅�
𝜷

𝒏𝜷
                                                                                                       (9)  

where �̅�α and 𝜌 ̅β is the normalized dislocation density for α and β phase, respectively, and 𝑨𝜶, 𝑪𝜶, nα, 

𝑨𝜷, 𝑪𝜷 and nβ, are the material parameters.  

The Ti6Al4V titanium alloy used in the present research consists of primary HCP α phase, with a 

dispersion of BCC β phase within the structure. In this paper, the Eq. (10) was used to express the 

volume function of β phase fraction rate and temperature:  

𝒇�̇� = 𝟎. 𝟓𝑿(𝒇𝜷)
𝒎

(𝟏 − 𝒇𝜷)𝜸𝑻                                                                                                        (10) 

where X and m are the material constants; T is the instantaneous temperature. The variation of β phase 

volume fraction with temperature is based on previously obtained experimental results. Experimental 

data of the β phase fraction and results computed by using Eq. (10) are presented in Figure 4-6, showing 
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a good agreement between the experiment and predicted results. 

 

Figure 4-6. Evolution of β phase volume fraction. 

The stability of β phase depends on the vanadium concentration and its size. The higher the temperature, 

the greater the α phase that transforms into β phase and the vanadium diffusing into β phase (Souza et 

al. 2015). As titanium alloys are highly temperature sensitivity, the flow behavior during deformation 

of the Ti6Al4V alloy at temperatures greater than 800°C depends on the combined effect of both 

dynamic recrystallization and phase evolution. However, by using the hot stamping technology (high 

strain rate deformation at 850°C), the dynamic recrystallization is not observed, thus, the material model 

was developed to predict the flow behavior within the work hardening/dynamic recovery regime. 

4.5  Model calibration 

In order to model material behavior under hot stamping conditions, the developed model does not 

include grain size evolution and softening caused by dynamic recrystallization. The set of constitutive 

equations (Eqs. 1 – 10) developed to characterise this behavior and the material constants calibrated via 

experimental data are presented in Table 4-1.  

Table 4-1. Material parameters in the model. 

Parameter n1 (-) n2 (-) Aα (-) Cα (-) nα (-) Aβ (-) Cβ (-) nβ (-) 

Value 1.007 1.636 26.975 0.390 4.162 5.991 2.847 20.243 

Parameter Kα (MPa) kα (MPa) Bβ (MPa) Bα (MPa) m (-) X (-) ɣ (-)  

Value 86.709 22.098 75.500 30.158 2.400 0.005 3.400  
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The experimental data and computed results for the developed material model are presented in Figure 

4-7, where the symbols represent the experimental results and the solid lines represent the modelling 

results. As can be seen, good agreement between the experimental results and theoretical calculations 

were achieved.  

 

Figure 4-7. Comparison of the true stress - true strain curves obtained from the experiments and 

numerical calculations at: (a) different temperatures and (b) strain rates. 

 

The above proposed constitutive equations for the Ti6Al4V alloy were developed based on the 

dominant modes of deformation observed during the high strain rate deformation. However, the 

response of the Ti6Al4V alloy is highly sensitive to deformation path. The set of constitutive equations 

proposed has been successful in modelling the stress-strain behavior of the material for the range of 

strain rates and temperatures encountered in titanium hot forming processes.  A temperature and strain 

rate dependent viscoplastic material model (Eqs. 1 - 10) for the Ti6Al4V alloy were implemented in the 
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FE simulation as the material card for modelling the hot stamping of a wing stiffener demonstrator 

component. The results are presented in next chapter.  

 

4.6  Conclusions 

The main conclusions stemming from this chapter can be formulated as follows: 

• The regime of hot stamping technology for the Ti6Al4V alloy has been determined, using 

uniaxial tensile tests at temperatures ranging from 750 – 850˚C and at different strain rates in 

the range of 0.1 – 10 s-1. Optimal conditions were prevalent for the temperature of 850˚C at 

strain rates between 1 - 10 s-1. 

• Microstructural analysis indicates that deformation under high strain rate conditions and 

temperatures under 900˚C allow for the initial grain size of the material to be maintained. 

Moreover, the ductility and strength of the Ti6Al4V alloy was strongly dependent on the 

volume fraction of β phase, which was mainly determined by the heating and soaking stages. 

• On the basis of microstructure evolution under high strain rate deformation conditions, the 

strain-stress relationships of the investigated Ti6Al4V titanium alloy for different temperatures 

and strain rates were predicted; good agreements between the experimental and theoretical 

results were obtained. 
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CHAPTER 5 

5.  Finite Element (FE) simulation of hot stamping of the Ti6Al4V wing 

stiffener 

In this chapter, the hot stamping process for a Ti6Al4V wing stiffener component is simulated using 

the FE commercial software PAM-STAMP. The FE simulation results were validated using 

experimental results obtained from forming tests. This chapter includes an introduction to the PAM-

STAMP software, a description of simulation setup, verification of FE simulation and a discussion of 

simulation results.  

5.1  FE simulation setup PAM-STAMP simulation setup for the Ti6Al4V wing stiffener 

forming process  

In the present research, Finite element (FE) simulations of the hot stamping of the Ti6Al4V wing 

stiffener were conducted using the commercial software PAM-STAMP and the temperature and strain 

rate dependent material model developed above. As shown in Figure 5-1, the simulation model 

comprised of a punch, dies, blank and the blank holder sets. The tools, in particular the blank holder, 

punch and dies were modelled using rigid elements with all degrees of freedom restrained, except for 

the top blankholder and punch with vertical direction (z-direction) unconstrained. The mesh size used 

during present FE simulation was set as 1mm. In the present research, the lubricant used was boron 

nitride and a friction coefficient of 0.2 was chosen to account for surface interaction between the sliding 

sheet and the die assembly (X. Liu et al. 2017). The main simulation parameters are shown in Table 5-

1.  

 

Figure 5-1. Pam-Stamp simulation model 

 
 Chapter 5 is based on paper work - Kopec, M., Wang, K., Qu, H., Politis, D.J., Liu, J., Wang, Y., Kowalewski, 

Z.L. Wang, L., Lin, J., Experimental and modelling studies on Ti6Al4V under hot stamping conditions and Liu 

X., Kopec M., El Fakir O., Qu H., Wang Y., Wang L, Characterisation and validation of the interfacial heat 

transfer coefficient in hot stamping of titanium alloys - International Communications in Heat and Mass Transfer 
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Table 5-1. Main process and simulation parameters 

Initial workpiece temperature (°C) 850 

Initial tooling temperature (°C) 20 

Punch speed (mm/s) 250 

Friction coefficient (−) 0.2 

Pressure dependent heat transfer coefficient (kW/m2K) 1.6 – 6 (Liu et al 2020) 

The PAM-STAMP software is a sheet metal forming simulation package which allows the numerical 

evaluation of cold and warm sheet metal forming processes. This software is widely used in the 

automotive and aerospace industries. In this work, PAM-STAMP was used to simulate the hot stamping 

of a Ti6Al4V wing stiffener component. The ‘PAM-STAMP hot-forming module’ was selected to 

simulate the forming process. The procedure of PAM STAMP simulation is presented in Figure 5-2:  

 

Figure 5-2. The procedure of PAM STAMP simulation 

CAD models of forming tools were created by using Solidworks software and then exported to PAM 

STAMP software. Subsequently, forming tools were meshed automatically by using DeltMesh module. 

The size of mesh for the blank was obtain by using the PAM-STAMP mesh-size rule described as 

follows: 

𝑴 = 𝟎. 𝟓 × (𝟎. 𝟓𝑻 + 𝑭) 

where M is the mesh size, T is the blank thickness and F is the smallest radius in all imported models 

of the forming tools. According to presented equation, the blank mesh size was set as 1mm. In next step, 

material properties of forming tools and blank were defined using data presented in Table 5-1. The 

rolling direction of blank was defined as parallel to the longitudinal direction of the blank. In order to 
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identify the plastic anisotropy, Lankford’s coefficients on the basis of uniaxial tensile tests (temperature 

of 850°C, strain rate of 1s-1) of specimens cut in three different rolling directions (0°, 45° and 90° angle 

to the rolling direction) were determined and were set as R0=0.74, R45=0.69 and R90=0.76. The Lankford 

coefficients were defined as the plastic width strain divided by the plastic thickness strain in a tensile 

tested specimenafter unloading. 

As all material properties were imported into software, each part of forming tool and blank were 

assembled and positioned as shown in Figure 5-1. Each part of forming tool were set as rigid body 

without consideration of any deformation during forming. To ensure the consistency of forming trails, 

forming tools as well as initial blank were in the same size as in real condition forming trials.  

Simulation of the viscoplastic response of Ti6Al4V titanium alloys during deformation was based on 

imported data from stress-strain curves as functions of strain rate and temperature. In order to simulate 

deformation under hot stamping conditions, the forming temperatures limits were set from 750°C to 

950°C and strain rates from 0.1s-1 to 10s-1. Stress/strain responses for different temperatures and strain 

rates were obtained from developed viscoplastic material model presented in previous chapter. 

Experimental flow stress curves were used to validate the viscoplastic material model. By using this 

model, the flow behavior of titanium was predicted and stress/strain curves were obtained. These curves 

were imported to PAM-STAMP software in form of material cards. Besides the material properties of 

blank and tools, the contact properties between them were defined as well. A constant friction 

coefficient of 0.2 was used between forming tools and blank for all forming stages. This value was 

determined by calibration of simulating and experimental results. Due to limitation of PAM-STAMP 

software, it was impossible to model friction coefficient with combined effect of contact pressure, 

sliding speed and temperature. In order to model such behaviors, the interfacial heat transfer coefficient 

(HTC) was introduced as functions of the gap between the blank and tools (before contact of these parts) 

and then pressure (after contact). These functions were developed and presented by (Liu et al. 2015). 

To simulate the hot stamping process, the Hot Forming Process Macro was selected from PAM –

STAMPs Process Macro database directory. By using this macro, each stage of forming process was 

defined. This included gravity stage (initial setup of blank on tools), holding stage (clamping the blank 

between forming tools) and stamping stage. The boundary conditions used in all forming were listed in 

Table 5-2. 

The forming parameters in each stage of hot stamping process of the Ti6Al4V titanium alloy were 

simultaneously defined. In the gravity stage, the material was positioned on the bottom blankholder. In 

this stage, the gravity acceleration value was set to 9.81m*s-2. During holding stage, the top blankholder 

is clamping the bottom blankholder with the speed of 250mm/s. During stamping stage, initial blank 

was formed in two pressing stages. In the first stage, blank was deformed by using top punch only. In 

next stage, blank was deformed with two central punches positioned under the bottom die. Forming 

speed is determined by the speed of stroke set by user and its value is 250mm/s.  
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Table 5-2. Boundary conditions for forming stages. 

Part / Forming stage Gravity Holding Stamping 

Top punch   
Translation: X, Y 

Rotation: X, Y, Z 

Top blankholder  
Translation: X, Y 

Rotation: X, Y, Z 

Translation: X, Y 

Rotation: X, Y, Z 

Blank 
Translation: unlocked 

Rotation: unlocked 

Translation: unlocked 

Rotation: unlocked 

Translation: unlocked 

Rotation: unlocked 

Bottom blankholder 
Translation: X, Y, Z 

Rotation: X, Y, Z 

Translation: X, Y, Z 

Rotation: X, Y, Z 

Translation: X, Y, Z 

Rotation: X, Y, Z 

Bottom die   
Translation: X, Y 

Rotation: X, Y, Z 

Punches   
Translation: X, Y 

Rotation: X, Y, Z 

5.2  Verification of the FE simulation results of formed wing stiffener component 

Hot stamping tests were performed for a demonstrator wing stiffener component formed at a speed of 

250 mm/s and temperature of 850°C, where the feasibility of complex shaped forming was evaluated. 

To perform the tests, specimens of size of 200×65×1.6 mm were prepared. Tests were conducted on a 

25 ton ESH single action press and wing stiffener forming tool designed by El Fakir et al (El Fakir et 

al. 2013) and presented in Figure 5-3. For the heating stage, the specimen was heated to the required 

forming temperature and soaked for 60 seconds in order to ensure the target temperature was reached, 

with the temperature monitored by thermocouples. Once heated, the hot blank was transferred to the 

cold tool, where the stamping process was activated immediately. The transfer time from the furnace to 

the cold die was controlled to be approximately 8 seconds and stamping tests were conducted at a 

forming speed of 250 mm/s. The blank was formed with the punch center aligned to the center of the 

blank to ensure an evenly distributed load was applied. Forming tests were repeated three times in order 

to evaluate the repeatability and reliability.  

  

Figure 5-3 Stamping facilities and tool used to form wing stiffener component 
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Rectangular shaped specimens were used in the forming tests (Figure 5-4). Each specimen was 

prepared using a guillotine cutting machine with its longitudinal direction parallel to the rolling 

direction. The specimen surface was covered with lubricant to avoid the oxidation. Lubricant was also 

applied to the forming die and punch before testing to minimise the friction during the forming process. 

The temperature of the test-piece was monitored by thermocouple attached to its edge.  

The simulation results were verified through comparisons of thickness reduction between experiments 

(Figure 5-5a) and simulations (Figure 5-5b-d). The experimental results were captured as 

measurements of thickness in two cross section lines (AB and CD) as shown in Figure 5-5b. The 

formed Ti6Al4V wing stiffener components were sectioned along cross sections using Electrical 

Discharge Machining (EDM) in order to obtain a material cross-section. The thickness along the cross 

section was measured every 5 mm by using optical microscopy. Three wing stiffener components were 

formed, cut and measured for each test condition. The results were presented in the form of thinning 

distribution as shown in Figure 5-5c-d. The thinning value displayed is calculated as follows: 

∆𝒍 = (𝒕 − 𝒕𝟎)/𝒕𝟎 

where t is the thickness measured in specific locations post deformation and t0 is the initial thickness. 

Simulation results were obtained by exporting the thinning distribution from PAM-STAMP. Figure 

5-5b shows the 3D thinning reduction contours from the FE simulation and Figure 5-5c-d shows the 

post-forming thinning reduction comparison between experimental and simulation results. Thickness 

reduction along the curvilinear distance was obtained by taking a 2D cross-sectional view perpendicular 

to the AB and CD sections. The same cross sections were selected in PAM-STAMP for comparison. 

Moreover, temperature evolution at two locations was recorded during forming and then compared to 

simulation results during the quenching stage (Figure 5-6). 

 

Figure 5-4 Specimens used to form wing stiffener component. 
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Figure 5-5. TC4 titanium alloy wing stiffener formed by hot stamping technology (a), 3D contours of 

thinning distributions obtained in the FE simulation (b), and thinning reduction comparison between 

experimental (symbols) and simulation results (line) for the Ti6Al4V wing stiffener (c – d) 

 

Figure 5-6 Comparison of temperature evolution during quenching stage between experimental 

(symbols) and simulation results (line) 

As shown in Figure 5-5c-d and Figure 5-6, simulation and experimental results exhibited a very close 

agreement in terms of the thinning distribution. The largest degree of thinning was initiated around the 

corners of the central features (Figure 5-7, 5-8) which was also captured during thickness measurements 
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of the specimen’s cross-sections. As the punch stroke increased during forming, the blank was first 

stretched from the central region. Meanwhile, the side area of the blank in contact with the blankholder 

was quenched rapidly, leading to a higher material strength in this region. Therefore, the severe plastic 

deformation region shifted towards the central region of the component where a higher blank 

temperature was maintained. Subsequent forming of the two central features led to the cold die 

quenching effect which would cause an increase in the thinning as presented in Table 5-3. As shown in 

Figures 5-5c-d, the thickness reduction at the corners of central features and the temperature evolution 

during quenching stage were predicted accurately by the FE simulation.  

 

 

Figure 5-7 Selected regions for thining inspection 

Table 5-3 Thining results for selected regions of part 

Element Location Thining 

1 Corner region 0.265 

2 Flat region 0.019 

3 Thin wall region 0.072 

4 Edge region 0.185 

 

Figure 5-8 show that the higher value of thinning was observed in region 1, which was located 

at one of the corners of the central feature of the wing stiffener component. Suchs high degree 

of thinning occurred in this region due to the complex geomerical features. Element 2 was 

located at the flat region of the formed part thus minimal thining of material occured. The 

thining was also observed on the side wall of central feature however higher values were 

observed on the edge, where the plastic deformation during forming occurred. 
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Figure 5-8 Comparison of thining for selected regions 

Based on the results from FE simulation, the strain rate and temperature distribution map during the hot 

stamping process was obtained, as shown in Figure 5-9. It could be observed that during the forming 

at temperature of 850°C, most of deformation was accumulated within the strain rate range between 

0.1s-1 to 10s-1.  

 

Figure 5-9 The strain rate and temperature distribution during the hot stamping process. 

 

One of the main challenges in the hot forming of titanium alloys is to increase the efficiency of 

production through the minimization of the forming time and assuring the structural integrity of the 

component. Conventional hot forming technologies such as superplastic forming utilise low strain rates 
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(under 0.1s-1) and high temperatures (above 900°C). During deformation under such conditions, the 

initial microstructure of titanium alloys changed, thus, affecting the ductility and post form strength.  

By using a technology that forms the component at high strain rate conditions and temperatures below 

900°C, it is possible to obtain tailored microstructure by controlling the heating temperature. It has been 

proved that the post form hardness of formed part was reduced only by 5% in comparison to its initial 

strength. Therefore, hot stamping under high strain rate conditions could further improve the efficiency 

of hot forming technologies for titanium alloys by reducing the forming cycle time and forming 

temperature (Gao et al. 2019; Sirvin et al. 2017) thus it should be further studied. 

 

5.3  Conclusions 

The main conclusions stemming from this chapter were formulated as follows: 

• A FE simulation model was made in accordance with the experimental parameters to study the 

deformation features of the Ti6Al4V alloy. PAMSTAMP-FE simulations of the hot stamping 

for forming wing stiffener components were successfully verified experimentally through the 

hot stamp forming of a demonstrator component and good agreements were obtained between 

the experimental and FE simulation results. Material thinning and temperature evolution results 

were accurately predicted.  

• The thickness of the formed part at different locations were measured and compared with FE 

simulation results in form of thining graphs. It was found that the localised necking was initiated 

around the corners of the central features. Such thining of material was caused by the punch 

stroke increase during forming leading to stretching of the blank in its central region. During 

this stage of deformation, the side area of the blank was also in contact with the blankholder 

which led to rapid quenching and simulatious increase of materal strength in this region.  
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CHAPTER 6 

6.  Enhanced formability for titanium alloys by fast heating under FAST 

condition 

Hot stamping of titanium alloys requires a narrow and carefully controlled processing window, as 

defined in previous chapter (750°C - 850°C and 60 sec soaking), to successfully form components. 

Improper forming temperatures result in limited material formability, whereas temperatures 

approaching the β phase transus lead to a reduction of formability due to phase transformation, grain 

coarsening and oxidation during the long time heating and subsequent soaking stage. To solve this 

problem, the Fast light Alloys Stamping Technology (FAST) for titanium alloys was proposed in this 

chapter, where fast heating of a two-phase titanium alloy sheet with equiaxed microstructure was 

employed. High-temperature uniaxial tensile tests with varying heating rates and temperatures were 

conducted to study the effects of heating parameters on the formability and post-form strength of the 

material. The microstructure after high-temperature uniaxial tensile tests was characterised to reveal the 

evolution mechanisms of elongation and post-form strength. Forming of a demonstrator wing stiffener 

component was performed to validate this new process. The test results show that under FAST 

processing conditions, the phase transformation, grain coarsening and oxidation can be greatly reduced 

due to the short processing time. The difference between the observed microstructures after slow and 

fast heating became more pronounced with increasing heating temperature. When the temperature was 

greater than 850°C, the ductility was improved dramatically by ultra-fast heating. The post-form 

hardness increased gradually with increasing heating temperature at both slow and fast heating 

conditions, although the hardness value at slow heating conditions was greater than that at fast heating 

conditions. A complex shaped wing stiffener panel component was successfully formed from TC4 

titanium alloy, demonstrating the great potential of the FAST in forming complex shaped titanium alloy 

components. The FAST technology promises to reduce the soaking-heating stage from several minutes 

to few seconds, and thus, be more efficient and economic in comparison to the hot stamping technology. 

6.1  Material and experimental procedure 

6.1.1 Material 

A two-phase TC4 titanium alloy sheet with the thickness of 1.6 mm was employed in this chapter. The 

initial microstructure was equiaxed to guarantee the thermo-ductility, and the microstructure is shown 

in Figure 6-1, where the white region shows the β phase and the dark region the α phase. The initial 

 
 Chapter 6 is based on paper work - Wang, K., Kopec, M., Qu, H., Politis, D.J., Liu, J., Wang, Y., Liu, G., Wang, L., Lin, J., Enhanced 

formability for titanium alloys by fast heating under FAST condition -  Materials and Desgin 
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microstructure consists of equiaxed α phase and fine β phase. Both grain size and volume fraction of β 

phase are much smaller than that of the α phase in the initial microstructure. It should be noted that two-

phase titanium alloys with lamella dominant microstructure, near β or β titanium alloys with β phase 

dominant microstructure are not suitable for this technology.  

 

Figure 6-1. Microstructure of the as-received TC4 titanium alloy 

6.1.2 High-temperature uniaxial tensile tests and post-form strength examination 

To investigate the effect of heating history on the ductility, tensile tests were conducted on a Gleeble 

3800 thermo-mechanical simulator to represent the forming processes. The specimens were firstly 

heated up to the soaking temperature (ranging from 850°C to 950°C) with different heating rates (from 

0.5 to 150°C/s). After soaking for various times (0 and 2 min), the specimens were cooled down to 

700°C, at which tensile tests were performed at a constant strain rate of 1 s-1 as shown in Figure 6-2. 

Each test was performed at least twice to ensure the repeatability. During the tests, a K type 

thermocouple was welded in the centre of the specimen to accurately control and monitor the heating 

temperature and heating rate. 

 
Figure 6-2. High-temperature uniaxial tensile tests program – investigation of the heating history 

effect on the ductility 
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To investigate the effect of heating rate on the ductility of the TC4, high-temperature uniaxial tensile 

tests with different heating rates at a heating temperature of 900°C were performed. During the tests, 

the specimen was first heated to 900°C with different heating rates, and when the temperature reached 

the targeted value, the specimen was then cooled to 700°C with a cooling rate of 60°C/s and deformed 

immediately to failure as shown in Figure 6-3. The specimen was subsequently cooled with pressured 

air to room temperature within 10 s after the failure.  

 
Figure 6-3. High-temperature uniaxial tensile tests: investigation of the heating rate effect on the 

ductility 

The Vickers hardness values of the specimens after the uniaxial tensile tests and FAST forming were 

measured with the same conditions presented in Chpter 3.1.1. The specimens for SEM characterization 

were prepared by conventional metallographic procedures presented in Chapter 3.1.1. 

6.1.3 Forming of the wing stiffener panel components 

To verify the feasibility of the FAST technology and extend the forming processing windows for hot 

stamping, a complex-shaped wing stiffener component was selected as the demonstrator. A rectangular-

shaped initial sheet with thickness of 1.6 mm was machined from the rolled blank with dimensions 

shown in Figure 6-4(a), where the rolling direction was along the longitudinal direction. The geometry 

of the component is shown in Figure 6-4(b). To avoid complications arising from optimizing the blank 

shape, a section of the component containing the most complex features was formed. Further details 

regarding the full-size wing stiffener can be found in (El Fakir et al. 2014).  

   

Figure 6-4. The dimensional information of the initial sheet (a) and formed component (b) 
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The forming tests were performed on a 25-tonne press. The schematic of the forming tool is shown in 

Figure 6-5. The sheet was rapidly heated by the use of contact heaters. The sheet was lubricated by 

boron nitride on all surfaces and was heated to 900°C at an average heating rate of 15°C/s. A K-type 

thermocouple was attached to the sheet to monitor the temperature. Once the temperature of the sheet 

reached 900°C, the blank was transferred from the hot platen to the forming die and immediately 

formed. The formed specimen was held for 5 s within the die. Then the formed specimen was removed 

from the stamping tool to allow further cooling in air to room temperature. After the forming, the 

material thinning and post-form hardness along the cross-section was measured.  

 

Figure 6-5. The schematic for FAST forming of titanium alloy wing stiffener 

6.2  Effect of heating temperature on ductility and post-form strength of TC4 titanium alloy 

The formability of the material decreased when the heating temperature was greater than 850°C during 

the hot stamping. Tensile tests under hot stamping and FAST conditions were first carried out to reveal 

the failure mechanisms and to investigate the effect of heating temperature on the formability and post-

form strength of the TC4 titanium alloy. For the hot stamping condition, the specimen was first heated 

to the target temperature with a heating rate of 4°C/s, and was followed by soaking for 2 minutes, 

cooling to 700°C and finally deforming immediately to failure with a strain rate of 1 s-1. The specimen 

was cooled with high pressure air to room temperature within 10 s after failure. As for the FAST 

condition, the specimen was first heated to the target temperature with a heating rate of 100oC/s, and 

when the temperature reached the target value, the specimen was cooled to 700°C and deformed 

immediately to failure with a strain rate of 1 s-1. After failure, the same cooling rate and method was 

used, and the stress-strain curves are shown in Figure 6-6. It could be observed that the material had a 

higher failure strain but lower flow stress at FAST conditions, indicating greater ductility. Under the 

FAST condition, the flow stresses were almost the same; while at hot stamping conditions, the flow 

stress increased dramatically after heating to 950°C. The elongation and post-form hardness distribution 

is shown in Figure 6-7. It is obvious that the heating temperature affects the elongation significantly. 
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Figure 6-6. Effect of heating temperature a) 950°C; b) 900°C; c) 850°C on the ductility of 

investigated titanium alloy tested under both hot stamping and FAST conditions 

The elongation decreased gradually with increasing heating temperature at hot stamping condition; 

while the elongation first increased and eventually decreased at FAST condition. The elongation 

enhancement obtained at FAST condition increased from 17% at 850°C to 241% at 950°C. The post-

form hardness increased gradually with the increasing heating temperature at both hot stamping and 

FAST conditions, although hardness at hot stamping condition is greater than that at FAST condition. 

The high-temperature uniaxial tensile test results at hot stamping condition were in good agreement 

with previous forming tests results (Kopec et al. 2018)，where the decreasing ductility with the 

increasing heating temperature caused forming failure when the temperature was greater than 850°C. 

 

Figure 6-7. Effect of heating temperature on elongation (a) and post-form hardness (b) 
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To reveal the evolution mechanism of elongation and post-form hardness, the post-form microstructure 

near the fracture area and fracture morphology were characterised and the results are shown in Figure 

6-8 and Figure 6-9 respectively. With the increase of heating temperature, the volume fraction and size 

of β phase increased. Under the FAST condition, the volume fraction of prior β phase at elevated 

temperature is much lower than that under the hot stamping condition. It can also be found that the 

difference between the microstructures after fast heating and slow heating became larger with 

increasing temperature. When the temperature was greater than 850°C, secondary α appeared under the 

hot stamping condition; while no visible secondary α could be found in the SEM figures under the 

FAST condition. This is because of the insufficient time for element diffusion under the FAST condition 

to generate more  β phase, although the β phase grew coarser than the initial state (Semiatin et al. 2019). 

Therefore, the elongation enhancement by fast heating would be more obvious at higher temperature 

range (> 850°C) for titanium alloys at hot stamping condition.  

 

 
Figure 6-8. Microstructure of the investigated titanium alloy after deformation at different conditions 

 

The fracture morphology demonstrated ductile fracture with various dimples at all conditions is 

presented in Figure 6-9. More larger and deeper dimples were observed in FAST condition than under 

the hot stamping condition, indicating that more plastic deformation occurred under the fast heating 

condition. However this difference reduced at 900 and 850°C which is in good agreement with the 

stress-strain curves. Based on the above results, it can be concluded that the fast heating could restrain 

the phase transformation of α to β during the heating and therefore improve the formability of the TC4 

titanium alloy under hot stamping condition.  
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Figure 6-9. Fracture morphology of the Ti6Al4V alloy after deformation at different conditions 

6.3  Effect of heating rate on the ductility and post-form strength of TC4 titanium alloy 

From the above results, 900°C is an effective heating temperature for TC4 titanium alloy at FAST 

condition. The investigated material was tested under different heating rates conditions ranging from 

0.5 to 150°C/s. It can be seen from Figure 6-10 that heating rate affects the ductility of the material, 

where an increased heating rate increases the tensile elongation.  

 
Figure 6-10. Stress-strain curves for the material heated to 900°C at different heating rates, quenched 

and tested at 700°C 

The distribution of elongation-to-failure with different heating rates is shown in Figure 6-11a. The 

elongation increased from 49.2% at the heating rate of 0.5°C/s to 64.9% at the heating rate of 150°C/s, 

which was increased by 31.9%. However, the elongation enhancement decreased with the increasing 

heating rate. When the heating rate is greater than 50°C/s, the elongation exhibits negligible changes. 

The specimen demonstrating the lowest elongation was at a heating rate of 4°C/s followed by two 

minutes soaking. Therefore, it would be very important to avoid extensive soaking during hot stamping 

to guarantee formability. The post-form strength was evaluated by Vickers hardness and the result is 
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shown in Figure 6-11b. The post-form strength decreased with the increasing heating rate. 

Approximately 94.7% of the original hardness was retained even after deformation at a heating rate of 

150°C/s. Therefore, it could be concluded that FAST could maintain the post-form strength. 

 

Figure 6-11. Effect of heating rate on elongation (a) and post-form hardness (b) 

The microstructures near the fracture area after tensile tests are shown in Figure 6-12. It can be seen 

that both volume fraction and size of β phase increased with decreasing heating rate, and fine secondary 

α phase formed at heating rates of 0.5 and 4°C/s with 2 min soaking. Hence, it can be summarised that 

more phase transformation of α to β occurred during the hot stamping condition, and the β phase formed 

increased the hardness but decreased the ductility. Based on the above discussion, it was concluded that 

when the TC4 titanium alloy was heated at a high temperature range in the two-phase zone (e.g. > 

850°C), the formability and efficiency will be improved under the FAST condition, although post-form 

strength may decrease slightly; under the hot stamping condition, the post-form strength may be 

improved, but this may negatively impact the formability and efficiency. Hence, an appropriate heating 

rate is very important. According to the elongation and post-form hardness distribution, heating rates 

ranging from 4°C/s to 50°C/s at 900°C is suggested for the investigated TC4 titanium alloy.  

 
Figure 6-12. Microstructure near the fracture area of the specimen after tensile tests with a heating 

rate of 150°C/s (a), 100°C/s (b), 50°C/s (c), 0.5°C/s (d) and 4°C/s with 2 min soaking (e) 
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6.4  Validation of FAST by forming of a wing stiffener 

To validate the feasibility of FAST for titanium alloys, forming tests of a wing stiffener were performed. 

According to the high-temperature uniaxial tensile tests, a relatively good forming condition was 

determined to be a heating rate ranging from 4°C/s to 50°C/s at 900°C, because in this range, the 

material exhibited a relatively good elongation and the post-form strength was similar with the initial 

material. In the actual forming, the blank was heated to 900oC with an average heating rate of 15°C/s 

through contact heating. After reaching the target heating temperature, the blank was immediately 

transferred and formed. A qualified wing stiffener without visible cracks was successfully formed with 

fully formed local features as shown in Figure 6-13. However, when the initial sheet was soaked in the 

furnace for 2 minutes at target temperature of 900°C, the formed part failed due to the cracks occurring 

on the surface as shown in Figure 6-13. The longer heating time led to more phase transformation, 

grain coarsening and surface oxidation, which resulted in the cracks. In order to investigate the post-

form hardness of the as-formed part, hardness tests were conducted on wing stiffener shaped 

components. Hardness measurements were performed in the longitudinal direction of formed parts as 

shown in Figure 6-14. The post-form hardness distributed uniformly along the longitudinal direction 

and the average value was 370HV±10, which was almost the same as the initial material.  

 

Figure 6-13. Comparison of parts formed by FAST and hot stamping with soaking (heating 

temperature 900°C) 
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Figure 6-14. Post-form strength distribution of the investigated TC4 titanium alloy wing stiffener 

formed by FAST 

The thickness distribution along sections AB and CD from the wing stiffener is shown in Figure 6-15. 

It can be seen that the thickness was distributed non-uniformly. In the flange area, there was some 

thickening; whereas localized thinning can be observed in other areas. With an initial thickness of 1.6 

mm, the minimum wall thickness is approximately 1.27 mm resulting in a 20% thickness reduction. 

The maximum thickness reduction occurred at the corner regions due to the local deformation. 

 

Figure 6-15. Thickness distribution along the cross sections of AB (a) and CD (b) 

 

6.5  Conclusions  

In this chapter, FAST was proposed to extend the processing windows for titanium alloys with a tailored 

initial microstructure under hot stamping conditions. High-temperature uniaxial tensile tests with 

different heating rates and different heating temperatures were performed in Gleeble to study the effects 

of heating parameters on the ductility and post-form strength. Forming tests of a TC4 titanium alloy 

wing stiffener were performed to verify this new process. The main conclusions obtained in this study 

are as follows: 
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(1) Under the fast heating condition, the heating time was too short for full element diffusion, 

which could reduce the phase transformation, grain coarsening and oxidation for titanium 

alloys, and therefore the formability of the TC4 titanium alloy could be improved. 

(2) When the heating temperature was 900°C, the elongation was increased by 31.9% when 

the heating rate increased from 0.5°C/s to 150°C/s. However, the elongation enhancement 

decreased with the increasing heating rate. When the heating rate is greater than 50°C/s, 

the elongation change was negligible. 

(3) The elongation decreased gradually with increasing heating temperature at slow heating 

condition; while it first increased and was followed by a reduction at fast heating conditions. 

The elongation enhancement obtained at fast heating condition improved from 17% at 

850°C to 241% at 950°C. The post-form hardness also increased gradually with increasing 

temperature at both slow and fasting heating conditions, although the hardness values were 

greater at slow heating conditions. 

(4) A qualified TC4 titanium alloy wing stiffener part without visible cracks could be formed 

successfully at 900°C with an average heating rate of 15°C/s. The post-form hardness was 

distributed uniformly and the as-formed part had almost the same strength as the initial 

material. The proposed FAST process demonstrates the great potential in forming complex 

shaped titanium alloy components. 
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CHAPTER 7 

7.   Final conclusions and futurework 

7.1  Conclusions 

In this thesis, an innovative forming technology to shape the Ti6Al4V titanium alloy utilizing low 

temperature forming tools and a hot blank was studied through uniaxial tensile test and hot stamping 

process. The uniaxial tensile properties of the Ti6Al4V alloy at temperatures ranging from 600°C to 

900°C with the various strain rate ranging from 0.1 to 10s-1 where investigated to define the optimal 

processing window for hot stamping of titanium alloys. The comprehensive studies of the Ti6Al4V 

microstructure evolution and flow behavior under hot stamping conditions were performed. 

Characterisation of material behavouir allowed to develop a viscoplastic constitutive model in order to 

precisely describe the response of the material under high temperature deformation. The developed 

material model was calibrated through various uniaxial tensile tests with good agreements between the 

experimental and theoretical results. Simultaneously, the data from material modelling was transfered 

into the Finite Element (FE) simulation software (PAM-STAMP) in the form of material card to study 

the deformation characteristics of investigated Ti6Al4V alloy under hot stamping conditions.  

The key findings from the project are summarised below: 

1. The optimal temperature for the hot stamping of titanium parts were prevalent in a range from 

750°C to 850°C at strain rates between 1 - 10 s-1. Forming at temperatures up to 750°C led to 

surface cracks. Such occurrence of cracks was related to limited ductility of the material. On 

the other hand, the forming at heating temperatures above 850°C led to excessive α → β phase 

transformation. During the following transfer and forming, temperature reduction occurred 

resulting in a formation of transformed β phase and simultanious reduction of the formability. 

It was found that deformation condition influenced both the mechanical properties and 

microstructure of the material. The post-form hardness and microstructure were mainly 

determined by heating temperature and soaking time. Through the proper adjustment of these 

parameters, the formability and post-form hardness of the material could be tailored during the 

forming process. 

2. Microstructural analysis of the Ti6Al4V titanium alloy indicates that deformation under high 

strain rate conditions and temperatures under 900˚C allow for the initial grain size of the 

material to be maintained. The ductility and post-form strength of the Ti6Al4V alloy was 

determined by the volume fraction of β phase formed within the structure during the heating 

and soaking stages. 
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3. On the basis of the Ti6Al4V flow behavior and its microstructure evolution under high strain 

rate deformation conditions, the strain-stress relationships for different temperatures and strain 

rates were predicted with good agreements between the experimental and theoretical results. 

The data obtained from calculations performed  using the material model developed was 

imported into FE simulation software (PAM-STAMP) in the form of material card, and 

subsequently, FE simulation model was elaborated. Such model allows to reflect the forming 

conditions and simulate each step of material deformation. FE model was successfully verified 

experimentally through the hot stamp forming of a demonstrator component. Good agreement 

was achieved between the experimental and FE simulation results, especially with regard to the 

thinning and temperature history during forming. 

4. Deformation of material under the FAST conditions led to the elongation enhancement from 

17% at 850°C to 241% at 950°C. A qualified TC4 wing stiffener part without visible cracks 

could be formed successfully at 900°C within the heating rate ranging from 15 to 50°C/s. The 

proposed FAST process demonstrates the great potential in forming complex shaped titanium 

alloy components. The FAST technology allows to reduce the soaking-heating stage from 

several minutes to few seconds, and thus, be more efficient and economic in comparison to hot 

stamping technology. 

7.2  Suggestions for futurework 

A number of aspects involved in the modelling and simulation of the hot stamping process and FAST 

forming that could to be further improved were listed below : 

1. Improved modelling of the heating rate dependent viscoplastic behaviors & post-form 

microstructure/strength prediction of the Ti6Al4V alloy under hot stamping conditions; 

2. Improved modelling of the FAST forming by detailed characterisation of microstructure 

evolution of investigated titanium alloy during fast heating and high strain rate deformation; 

3. Development of multi-objective simulations of a forming process using a cloud computing 

environment for titanium alloys components; 

4. Implementation and comerialisation of FAST technology to industrial scale. Forming a big 

scale components; 
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APPENDIX A 

 

The length of isothermal zone of tensile speicmen in the Gleeble tensile test was measured by using 

three set of thermocouples spot welded and positioned on the tensile specimen. Thermocouple TC1 was 

welded in the centre of the specimen while thermocouples TC2 and TC3 were welded in 5 milimiters 

distance from the centre of specimen on its left and right side, respectively (Figure A-1).  

 

Figure A-1. The location of thermocouples on tensile specimen 

In the Gleeble heating test, the target temperature was set to 700°C. The temperatures of three defined 

positions in each time were recorded simultaneously by Gleeble. The temperature profiles against time 

were shown in Figure A-2. The relatively uniform temperature distribution was recorded within 5 mm 

from centre of the specimen in each direction and the gauge length of 10 mm was selected. 

 

Figure A-2. Temperature recordings from 3 set of thermocouples at testing temperature of 700°C 
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APPENDIX B 

 

The hardness values of the specimens after the uniaxial tensile test were measured by means of a Zwick 

hardness tester (Figure B-1) at room temperature with 6 measurements per condition. Each hardness 

measurement was performed using a 10 kgf force and the dwelling time of 10 seconds. Detailed results 

of hardness measurements could be found in Table B1. 

 

Figure B-1. Zwick ZHU hardness test machine (a) and measurement of indentation (b) 

Table B-1 Hardness measurements of Ti6Al4V specimens tested in temperatures ranging from 

600°C - 900°C 

Heating 

temperature 

[⁰C] 

Hardness [HV10] 
Average 

HV10 

600 350 347 348 353 351 350 350 

650 345 345 340 339 338 339 341 

700 337 333 335 339 335 340 337 

750 332 336 335 333 335 334 334 

800 338 336 337 339 334 337 337 

850 344 340 344 340 340 341 341 

900 352 356 352 351 353 351 352 

 

The hardness of m-shaped parts were evaluated in 20 different positions as presented in Figure B-2. 

The detailed hardness measurements of formed parts were presented in Table B-2. 
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Figure B-2 Visual presentation of hardness measurement points 

 

Table B-2 Hardness measurements of m-shaped parts 

Heating temperature 

[°C] 

600 750 850 900 

Hardness [HV10] 360 342 362 376 

359 338 353 374 

358 341 358 388 

365 344 361 381 

361 343 365 383 

363 347 366 383 

357 345 370 373 

360 340 364 385 

361 349 351 372 

357 335 367 365 

359 339 354 373 

355 336 361 384 

362 347 359 365 

364 331 363 372 

355 347 356 373 

361 339 360 381 

362 341 354 381 

360 340 361 385 

360 337 352 378 

354 339 365 379 

AVG HV10 359 341 360 377 

 


