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ABSTRACT

This chapter studies a capacity procurement problem in
which a buyer meets an uncertain demand using a combina-
tion of spot purchases and supply options that are offered
by a number of competing suppliers. The specific setting we
consider involves the suppliers each owning a block of ca-
pacity and the buyer restricted to reserving the entire block
or none. For this setting, we are interested in understanding
the buyer’s optimal procurement strategy and the suppliers’
competitive bidding behavior in the supply option market.
To this end, we first examine the buyer’s optimal decision
given a set of supply options, and then study the suppliers’
optimal bidding strategies in equilibrium. We find that it
is optimal for suppliers to set execution price at cost and
hence make a profit only through the reservation payment.
We also prove that when all the blocks have the same size
the buyer’s optimal profit as a function of supplier set is
submodular. This property allows us to characterize an equi-
librium in which the supply chain optimum is achieved, each
supplier makes a profit equal to their marginal contribution
to the supply chain and the buyer takes the remaining profit.
When the blocks have different sizes, we develop a recursive
procedure to characterize a class of equilibria in which the
supply chain efficiency is achieved.



1
Motivation and Description of the Problem

The work described in this chapter is based on Anderson et al. (2017).
In today’s increasingly competitive markets there is a pivotal role for
effective procurement. However, procurement firms face significant chal-
lenges due to a multitude of uncertainties, such as demand uncertainty
and purchase price volatility. To manage those risks, firms often use a
portfolio of procurement arrangements. In practice, a combination of
spot purchases and supply options has seen wide applications in capital-
intensive industries, such as commodity chemicals, electric power, and
semiconductors (Kleindorfer and Wu, 2003; Wu and Kleindorfer, 2005).
Spot purchases provide firms with flexibility but also come with great
price uncertainty. Supply options allow procurement firms to tailor their
purchase volumes to realized demand and spot price, but a reservation
fee has to be paid in advance. Thus, an optimal procurement strategy
requires a good balance between cost and flexibility.

Besides the uncertainty-driven challenges, there are some additional
institutional restrictions and specifications that further complicate the
capacity procurement problem. When a production facility needs to
be built or made available in its entirety, the buying firm may be
required to reserve capacity in blocks. An example of this sort occurs
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within the UK’s system for purchasing Short Term Operating Reserve
(STOR) for electricity supply. This is a scheme under which the National
Grid maintains a reserve generation ability in case of sudden demand
variations or plant failures. In this market, the bids come as blocks of
capacity so the National Grid determines the optimal set of blocks to
reserve.

This chapter seeks to address these challenges in a capacity pro-
curement setting where a buyer, facing an uncertain future demand
and volatile spot market, would like to determine an optimal portfolio
of procurement arrangements. The demand will be met using both a
spot market and supply options from multiple competing suppliers. In
the model, each supplier is able to dedicate a capacity block that is
bid into the supply option market. The suppliers each simultaneously
submit a bid consisting of a reservation price and an execution price
to the buyer, and given these supplier bids, the buyer decides which
blocks to reserve prior to knowing the actual demand and spot price.
When demand and spot price uncertainties are resolved, the buyer
decides how much reserved capacity to use as well as how much to
purchase from the spot market. In this setting, we are interested in
understanding the buyer’s optimal procurement strategy as well as the
suppliers’ competitive bidding behavior.

Supply options have been extensively studied in the operations
management literature (see e.g., Barnes-Schuster et al., 2002; Burnetas
and Ritchken, 2005; Fu et al., 2010; Secomandi and Wang, 2012). This
literature began with an investigation of a buyer’s optimal purchasing
decision given a fixed set of supply options (see e.g., Martínez-de-
Albéniz and Simchi-Levi, 2005), and has been extended to examine
option contract design problems in a Stackelberg game between a buyer
and a supplier (Pei2011). Further extensions have also been made to
study supplier competition in an option market (Wu and Kleindorfer,
2005; Martínez-de-Albéniz and Simchi-Levi, 2009).

Wu and Kleindorfer (2005) consider the case of multiple competing
suppliers where an open spot market provides an alternative source of
supply for the buyer. They show that a competitive equilibrium between
the suppliers will deliver an efficient solution for the supply chain as a
whole. Our model is different since we have uncertainty in demand as



4 Motivation and Description of the Problem

well as in the spot price. Moreover, we have a restriction that capacity
is only available in discrete blocks – the buyer has to reserve it all or
none. We show that some results of Wu and Kleindorfer (2005) extend
to our setting with suppliers offering contracts with an execution price
equal to cost, and an equilibrium that is efficient for the whole supply
chain. However, the equilibrium strategies and profit allocations are
different in our model, and our efficiency result is due to a different
driving force.

The model considered by Martínez-de-Albéniz and Simchi-Levi
(2009) is also close to ours, with competing suppliers offering reservation
and execution prices to a buyer who has to meet an uncertain demand.
Their model does not include a spot market, but a more significant
difference is that they assume that each supplier has an (infinitely)
scalable capacity, and the buyer can decide how much capacity to reserve
from each supplier. In our model, however, we assume that capacity
comes as a block, so that the buyer is faced with a combinatorial
optimization problem. Such model differences result in contrasting
findings.



2
Modelling Approach and Methodology

We consider a supply chain with n suppliers and one buyer. Each
supplier i ∈ N = {1, . . . , n} has a fixed capacity Ki. Recognizing the
fact that the buyer must reserve all or none of the capacity, we say
each supplier owns a capacity block with block size Ki. There are costs
incurred by the suppliers associated with the reservation and execution
of their capacity, and we let ei be the unit reservation cost and ci be the
unit execution cost. The buyer faces random demand D. Before demand
occurs, the buyer can reserve capacity that is offered in blocks by these
n suppliers and pay a reservation price. After demand occurs, the buyer
will meet the demand (up to the total amount of capacity reserved) and
at this point pays an additional (execution) price for the capacity that
is used. In addition to the reserved capacity, there is also an open spot
market from which the buyer can purchase to meet demand. In the
open spot market, no player can exercise market power to manipulate
the (random) spot price P0. Denote by G(t, p) the complement of the
joint cumulative probability distribution for demand and spot price,
i.e., G(t, p) = Pr[D ≥ t, P0 ≥ p].

Decisions on the capacity to reserve are made prior to P0 and D
being realized, but the actual use of that capacity relies on there being
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sufficient demand and the spot market price being sufficiently high. The
buyer is paid a price ρ for each unit of demand that can be met. We
assume the upper bound of P0 is no greater than ρ so that demand
will be always fulfilled. This is without loss of generality, because if this
restriction is violated, we can define a new variable P̃0 = min(ρ, P0)
and replace P0 with P̃0, then the results will follow.

We analyze a two-stage model. In the first stage, the suppliers
each independently maximize their expected profits by choosing unit
reservation prices ri and unit execution prices pi, where i ∈ N , and
simultaneously submit their bids to the buyer. Given these supplier
bids, the buyer then decides which blocks to reserve. Note that all these
decisions are made under uncertainties in the demand and spot price. In
the second stage, both demand and spot price are realized, and the buyer
decides how much reserved capacity to use and how much to purchase
from the spot market. We can see that this is a Stackelberg game
where the suppliers are leaders and the buyer is a follower. Meanwhile,
the suppliers play a non-cooperative game by competing in the option
market, and we use the Nash equilibrium concept to study the suppliers’
bidding behavior.

For convenience of presentation, we assume that all execution prices
{pi : i ∈ N} are distinct, and label the bids so that p1 < p2 < · · · <
pn. Suppliers will not offer an execution price higher than the unit
revenue, so it is reasonable to assume pn ≤ ρ. We suppose that the joint
distribution G and unit revenue ρ together with all the costs ei and ci

(i = 1, 2, ..., n) are common knowledge.
Given the set of supplier bids B = {(pi, ri,Ki) : i ∈ N}, the buyer

decides which blocks to reserve. For any S ⊆ N , we denote by S(B)∗

the optimal set of bids for the buyer given that the choice is made
from amongst bidders in S. Here the optimality is with respect to
maximizing the total expected profit for the buyer. This depends on
the set of suppliers available, and we write ΠB(X) for the profit given
bidders in X, so that

S(B)∗ = arg max
X⊆S

ΠB(X). (2.1)

The solution to the right-hand side of equation (2.1) may not be
unique. Since the buyer’s choice has an impact on the suppliers’ deci-
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sions, we need to give a definite description of the buyer’s behavior,
when different choices yield the same expected profit for the buyer. As
mentioned earlier, the problem faced by the suppliers and the buyer
forms a Stackelberg game with multiple leaders, and thus involves
bilevel optimization (see, e.g., Dempe, 2002). Drawing on the bilevel
programming literature, we will adopt the optimistic approach with
the economic interpretation that the follower is willing to support the
leaders. Formally, we assume that if two sets of blocks give the same
(maximum) expected profit, the buyer chooses the set of more blocks.
Note that this rule avoids a situation where a supplier has an incentive
to constantly adjust his bidding so that his marginal contribution to
the total expected profit of the buyer remains positive (to keep himself
selected by the buyer) but is infinitesimally small.

To deal with ties in which two choices have an equal number of
blocks, we introduce the following desirable property of preference:
If two sets of blocks give the same marginal expected profit in the
optimal selection of the buyer, then her preference of one over another
is independent of other blocks in her optimal selection. This property
says that the prices of the other blocks in the buyer’s optimal selection
do not affect her preference between two sets of blocks that contribute
the same marginal expected profit to the buyer. Such a property is
known as Independence of Irrelevant Alternatives in decision theory.



3
Main Results and Insights

To understand the dynamics in the Stackelberg game, we follow the
standard backward induction approach: we first consider an optimal
policy for the buyer given an arbitrary set of supplier bids, and then
turn to considering the optimal bidding behavior and the equilibria for
the suppliers, anticipating the buyer’s optimal reaction to their bids.

3.1 The buyer’s procurement problem

The buyer makes a two-stage decision that involves the reservation
choice prior to knowing actual demand and spot price, and the execution
decision when both demand and spot price are known. We begin with
the analysis of execution decision given the buyer’s reservation choice.

Given bids B = {(pi, ri,Ki) : i ∈ N}, suppose the buyer’s reservation
set is {(pi, ri,Ki) : i ∈ S ⊆ N}, where

S = {j1, . . . , jv} with j1 < · · · < jv. (3.1)

It is convenient to denote by Yi the total capacity of the first i blocks
in S when ordered by the prices pi. Thus

Yi =
i∑

m=1
Kjm , i = 1, . . . , v. (3.2)

8
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At the time when actual demand and spot price are known, the
buyer can fulfil customer demand by using the reserved capacity and
spot purchases. Our first observation is that once a set of blocks has
been reserved (and reservation payments made), when demand occurs
the blocks that are used will be those that have the cheapest execution
prices. Mathematically, for any realized demand t and spot price p0, we
denote by xi(t, p0) the amount of capacity from supplier ji that is used,
and obtain

xi(t, p0) =
{

min
{

(t− Yi−1)+ ,Kji

}
, if pji ≤ p0,

0, otherwise,

where (z)+ = max{z, 0}, and the purchase amount from the spot market
is t−

∑v
i=1 xi(t, p0). Then the buyer’s expected profit from reserving S

in the option market (as well as purchasing in the spot market) is

ΠB(S) =
v∑

i=1
((ρ− pji)ED,P0 [xi(D,P0)]− rjiKji) (3.3)

+ ED,P0

[
(ρ− P0)

(
D −

v∑
i=1

xi(D,P0)
)]

,

where the expectations are taken over the joint distribution of D and
P0. The first and second terms in ΠB(S) represent the buyer’s profits
from purchasing in the option market and the spot market, respectively.

One strategy for the buyer is to reserve no capacity and rely entirely
on the spot market. We writeW for the expected profit under this policy.
Hence, we obtain W = ED,P0 [(ρ− P0)D]. We can then reformulate the
expected profit for the buyer:

ΠB(S) =
v∑

i=1
ED,P0 [(P0 − pji)xi(D,P0)− rjiKji ] +W. (3.4)

From equation (3.4) we observe that ED,P0 [(P0 − pji)xi(D,P0)− rjiKji ]
measures the (expected) extra profit the buyer can make from reserving
block ji, in comparison with the profit by relying on the spot market
alone. Since W is a constant, the buyer essentially maximizes the sum
of these additional profits by choosing the optimal (sub)set of suppliers
in the option market.
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We now explore the property of the set function ΠB(·). We can show
that the set function ΠB(X) with X ⊆ N is submodular, which implies
that the marginal contribution of a block to the buyer’s expected profit
is smaller when the existing set of blocks is larger. Note that ΠB(X)
is non-monotone since the marginal contribution of a block could be
negative if it is forced into the choice set.

The buyer’s problem is to find a set that maximizes her expected
profit:

max
S⊆N

ΠB(S), (3.5)

where the expression of ΠB(S) is given in equation (3.4). In general, it is
NP-hard to maximize a non-monotone submodular function. However,
we can show that, with equal-size blocks, the submodularity property
is inherited by the function Π∗B(X), which takes the best buyer profit
given a set of available blocks X ⊆ N :

Π∗B(X) = max
S⊆X

ΠB(S). (3.6)

Theorem 3.1. When blocks have the same size, the set function Π∗B(X)
with X ⊆ N is submodular.

The theorem is complex to establish because we need to track
the change of the buyer’s optimal choice when an additional block is
available. We offer some intuition here. With equal-size blocks, the
selection of an additional block ` has a limited impact on the buyer’s
choice over existing blocks: First, any block that is not chosen in the
absence of block ` will still not be chosen in the presence of block
`; second, there is at most one existing block that is chosen when
block ` is unavailable but will not be chosen when block ` is available.
Consequently, the additional value added by block ` occurs because: (i)
block ` has a more competitive price than the dropped block; or (ii)
the buyer simply requires it to meet certain demand (without affecting
the existing blocks). The proof shows that, if the existing set is larger,
it is less likely that block ` will be chosen, and less likely to be used if
it is chosen by the buyer. As a consequence, the optimal buyer’s profit
function is submodular. Note that this result may not hold when the
blocks have different sizes.
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3.2 The suppliers’ competitive bidding problems

After understanding the buyer’s optimal reservation behavior, we are
now in a position to study equilibrium bidding strategies for suppliers.
That is, we will characterize the Nash equilibria for the supplier bidding
game. A standard approach for studying Nash equilibrium is to first
look at each supplier’s best response to their competitors.

3.2.1 Suppliers’ best response

Let us start with an examination of a supplier’s best response to the bids
of the other suppliers. Specifically, we look at how supplier ` responds to
bids of suppliers in the set L = N\{`} by making a choice of (p`, r`). We
write N∗ and L∗, respectively, for the optimal buyer’s choice from the set
of bids N and L. We write π`(p`, r`) for the expected profit of supplier
` if he makes an offer with execution price p` and reservation price r`,
assuming a fixed set of bids by the suppliers L, {(pi, ri,Ki) : i ∈ L}.

Theorem 3.2. Given bids {(pi, ri,Ki) : i ∈ L} it is optimal for supplier
` to choose execution price p` = c`.

Theorem 3.2 shows that, in an optimal solution, suppliers charge
only costs for their execution prices, but make profits from the buyer’s
reservation payments. We find that at the optimal execution price of
supplier `, which we write as p∗` = c`, the total supply chain surplus is
maximized. By choosing the reservation price as high as possible subject
to still being chosen by the buyer, the buyer makes the same profit as she
does when her choice is restricted to choosing from {(pi, ri,Ki) : i ∈ L}.
The consequence is that, since the supplier’s profit equals the total
surplus less the buyer’s original profit Π∗B(L), such a bidding strategy
must also maximize the supplier’s profit. Let B′ = {(pi, ri,Ki) : i ∈
L} ∪ {(c`, e`,K`)}, so that block ` is offered at cost. The proof of the
theorem reveals that, for the optimal solution with p∗` = c`, we have
an optimal choice of reservation price r∗` = (Π∗B′(N)−Π∗B(L)) /K`.
Therefore, supplier `’s optimal expected profit is π∗` = Π∗B′(N)−Π∗B(L).
This is the supplier `’s marginal contribution to the supply chain with
the existing bids {(pi, ri,Ki) : i ∈ L}. Supplier ` is able to extract
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all the marginal surpluses, because the buyer in our model makes an
all-or-nothing decision, which significantly limits her choice flexibility.

3.2.2 Equilibria with blocks of an equal size

Having established the best response for each supplier, we now investi-
gate Nash equilibria among the n suppliers. We start with a special case
of the problem in which blocks are of an equal size and then consider
the more general problem where suppliers may have blocks of unequal
sizes.

Without loss of generality we take the block sizes as Ki = 1, i =
1, 2, . . . , n. Based on Theorem 3.2 we can assume that each supplier
chooses an execution price pi = ci.

We characterize the equilibrium for suppliers in the theorem below.

Theorem 3.3. When all blocks have the same size, the bids B∗ =
{(ci, r

∗
i ) : i ∈ N} form a Nash equilibrium, where r∗i = ei + Π∗C(N) −

Π∗C(N\{i}) for i ∈ N where C = {(ci, ei) : i ∈ N}. Moreover, at
any equilibrium with p∗i = ci, i ∈ N , the buyer chooses the supply
chain optimal set N(C)∗, and supplier i makes a profit π∗i = Π∗C(N)−
Π∗C(N\{i}).

Theorem 3.3 shows that, at equilibrium each supplier charges his
execution cost and adds a margin to his reservation cost, and the
margin is equal to the additional supply chain profit that is obtained
with the inclusion of his block. The equilibrium stated in Theorem 3.3
is not unique. This occurs because the unchosen suppliers can set
their reservation prices to any values no less than their reservation
costs. Despite the fact that there may be multiple equilibrium bidding
strategies, all equilibria lead to the same profit allocation: Each supplier
makes a profit equal to his marginal contribution to the supply chain
optimal profit, and the buyer takes the remaining profit. Theorem 3.3
also implies that the existence of an equilibrium is guaranteed in our
model.
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3.2.3 Equilibria with blocks of unequal sizes

Next we show how to construct an equilibrium when suppliers have
blocks of unequal sizes. Let C = {(ci, ei,Ki) : i ∈ N}, and N(C)∗ =
{j1, . . . , jm}, which is an optimal buyer’s choice when each supplier
offers at cost. Following Theorem 3.2, we focus on the bidding strategies
with execution prices equal to execution costs. We adjust suppliers’
reservation prices by following a recursive procedure. Define {B(k) : k =
0, . . . ,m} recursively as follows:

B(0) = C;
B(k) = B(k−1)\{(cjk

, ejk
,Kjk

)} ∪ {(cjk
, r∗jk

,Kjk
)}, k = 1, . . . ,m,

where

r∗jk
=
(
Π∗B(k−1)(N)−Π∗B(k−1)(N\{jk})

)
/Kjk

+ ejk
. (3.7)

At the initial step (k = 0), we set price to be cost for every block.
Thus, solving the buyer’s problem is equivalent to solving the supply
chain optimization problem. In the next, we adjust the reservation
prices for the blocks in N(C)∗ one at a time. Specifically, at step
k > 0, we keep increasing the reservation price of block jk until it
is dropped by the buyer. This leads to the maximum allowable increase(
Π∗B(k−1)(N)−Π∗B(k−1)(N\{jk})

)
/Kjk

. Thus, equation (3.7) gives the
maximum reservation price r∗jk

. It is easy to see that r∗jk
≥ ejk

, and
hence no suppliers will make a loss by using the above bidding strate-
gies. At the end of the final step m, the procedure returns a set of bids
B(m) = {(ci, ei,Ki) : i ∈ N \N(C)∗} ∪ {(ci, r

∗
i ,Ki) : i ∈ N(C)∗}, and it

can be shown to form an equilibrium as stated in the following theorem.

Theorem 3.4. When supplier blocks may have different sizes, the set
of bids B(m), defined above, forms an equilibrium.

Theorem 3.4 states that, in the above equilibrium, the suppliers
who are not in the supply chain optimal set, set price to cost, while
the suppliers in the supply chain optimal set add a margin to their
reservation costs. The equilibrium constructed in the procedure ensures
that the buyer’s optimal choice matches the supply chain optimal
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set, showing that even with different block sizes, the supply chain
efficiency can still be achieved. It also implies that there is always a
Nash equilibrium for the case with general-size blocks.



4
Future Research

In this chapter, we have studied supplier competition in a capacity
procurement setting where a buyer meets demand by using spot pur-
chases and supply options. Our model considers a setting where each
supplier’s capacity comes as a block so that the buyer has to reserve
the block in its entirety. Our focus is on understanding the buyer’s
optimal procurement strategy and the suppliers’ competitive bidding
behavior in the supply option market. For this, we have characterized
an equilibrium in which the supply chain efficiency can be restored in
this non-cooperative game.

There are many possible extensions and we mention two of them here.
First, like most models in this literature, our model considers a linear
cost for suppliers. In practice, however, supplier costs may be nonlinear
as capacity investment often involves a one-off setup cost or there may
be scale (dis)economies in production. Thus, it is interesting to examine
how suppliers compete in this environment, although this could be
technically challenging. Second, an important assumption underpinning
our model is that suppliers have complete information about each other’s
cost. Extending our work to an asymmetric information setting will be
another avenue for future research.
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