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Abstract. We propose a new model for the emergence of blood capillary networks. We
assimilate the tissue and extra cellular matrix as a porous medium, using Darcy’s law for
describing both blood and intersticial fluid flows. Oxygen obeys a convection-diffusion-
reaction equation describing advection by the blood, diffusion and consumption by the
tissue. Discrete agents named capillary elements and modelling groups of endothelial
cells are created or deleted according to different rules involving the oxygen concentration
gradient, the blood velocity, the sheer stress or the capillary element density. Once created,
a capillary element locally enhances the hydraulic conductivity matrix, contributing to a
local increase of the blood velocity and oxygen flow. No connectivity between the capillary
elements is imposed. The coupling between blood, oxygen flow and capillary elements
provides a positive feedback mechanism which triggers the emergence of a network of
channels of high hydraulic conductivity which we identify as new blood capillaries. We
provide two different, biologically relevant geometrical settings and numerically analyze
the influence of each of the capillary creation mechanism in detail. All mechanisms seem
to concur towards a harmonious network but the most important ones are those involving
oxygen gradient and sheer stress. A detailed discussion of this model with respect to the
literature and its potential future developments concludes the paper.
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1 Introduction

Networks appear ubiquitously in nature and in man-made structures. Examples of net-
works in living systems are the circulatory, respiratory and nervous systems of vertebrates,
the branches, roots and leaves of trees, coral formations, bacterial colonies. In nature, river
networks, erosion patterns, lightnings of thunder are other example of networks. The lit-
erature on network modelling is enormous and growing at an impressive speed. Yet, most
works assume a given topological structure, possibly random or dynamic, but which is,
for a given realization or a given time, well-defined. However, in many cases, networks
are fuzzy objects which, according to the observed scale, adopt a different structure. This
is particularly the case of emergent networks, where a network pattern emerges from a
continuum. One can think for instance of erosion gradually sculpting an originally flat
landscape into gullies, channels and ultimately valleys. Many networks in nature emerge in
this way. Current network modelling methodologies are unadapted to capture this emer-
gence phase because they need an already established network structure from the start.
In this paper, we propose a novel methodology to model emergent networks and apply it
to the emergence of blood capillary networks, the so-called vasculogenesis or angiogenesis
phenomena. However, the approach is fairly versatile and could easily be adapted - mod-
ulo appropriate changes - to other emergent networks. In particular, we refer to earlier
works developing similar ideas for ant trail formation [6] and tissue self-organization [60].

Vasculogenesis (the de novo formation of new blood vessels) or angiogenesis (the de-
velopment of new blood vessels from existing ones, see e.g. [67]) play a fundamental role
in living systems by influencing growth, regeneration and reparation through an increase
of blood flow and tissue oxygenation and consequently by boosting the transport of nutri-
ents as well as the disposal of waste. Angiogenesis has been the subject of intense study
over the last decades for its crucial role in the development of cancerous tumours. Once
a tumour has reached certain level of maturation, the surrounding tissue starts to suffer
from hypoxia, or lack of oxygen, which induces the accumulation of hypoxia-inducible
factors. As a consequence, hypoxic cells start to secrete tumour angiogenic growth factors
(TAFs) such as the vascular endothelial growth factor (VEGF) [39, 83]. The TAFs diffuse
through the tissue until reaching the nearby blood vessels, triggering the formation of a
new vascular network to supply the tumour with nutrients and oxygen. Angiogenesis is
not unique to tumour growth but is also a key part of wound healing, the menstrual cycle,
embryonic development and of several diseases such as rheumatoid arthritis [10, 19, 20].
New blood vessels grow through the Extracellular Matrix (ECM), which is a collection of
collagen fibers, interstitial cells, proteoglycans and matrix binding molecules among many
other components. The ECM provides support for cells which gather together to form
organs. It also provides mechanical support for cells and offers an environment for the
transmission of chemical cues.
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There are many different approaches to model vasculogenesis and angiogenesis in the
literature. Many of them are two-dimensional cell-based models, describing the migration
of endothetial cells to form new blood vessels and including various aspects of the tissue
environment [5, 15, 44, 53, 76]). Evolving network models have been developed in [70, 72].
Other models use a continuum approach for the endothelial cell (EC) density [3, 9, 77]
and the link between cell-based and continuum approaches is investigated e.g. in [63]. In
most of these models, blood flow plays no or little role in determining the geometry of
the network. For instance, the efficiency of blood perfusion in a predetermined network
is studied in [26]. For a review of recent models, we refer to [71]. One important charac-
teristics of our model is that blood and oxygen flows have the leading role in shaping the
network structure. Another feature is that the network structure is not imposed a priori
but emerges as an outcome of the evolution rules ascribed to the agents.

In the present work, we describe the emergence of vascular networks by considering
agents (EC or group of such cells referred to as capillary elements) obeying elementary
heuristic rules. Indeed, the biology, biophysics and biochemistry involved are incredibly
complex and still incompletely known [61, 74]. However, by their combined influence cells
are likely to respond in a determinable (if not deterministic) way to environmental cues,
such as blood flow, oxygen concentration, etc. In other words, cells behave like social
agents with a behavior determined by their own state and their environment. This is the
viewpoint developed here. Moreover, cell social behavior is not fully understood yet and
the model aims to provide a platform to test the validity of such behavioral hypotheses.
Once elucidated, cell behavior can be traced back to biochemistry through experiments
whose design is facilitated by the intuition gained by the model.

In this model, unlike most models of the literature we put the flow of blood, interstitial
fluid and oxygen at the heart of the capillary creation process. We assimilate the tissue
and ECM as a porous medium in which blood and interstitial fluid (we make no distinction
between those) flow under the influence of a pressure gradient (powered by the pressure
difference between arteries and veins). We assume blood velocity follows a Darcy law, i.e.
the fluid is incompressible and its velocity is proportional to the pressure gradient through
a proportionality matrix called the hydraulic conductivity tensor. Oxygen is supplied by
e.g. an oxygenated tissue, transported by the blood velocity and diffuses through and is
consumed by the tissue. If there are no capillaries, due to low hydraulic conductivity of
avascular tissue flow is very slow and oxygen is mostly transported by diffusion. Thus,
oxygen concentration falls quickly off even at short distance from the supply due to quick
consumption. This is where capillary creation comes at play. So far, the treatment of
blood flow and oxygen transport are through a continuum model. We now introduce an
agent-based description of the formation of the capillary network, making our model a
hybrid model coupling continuum and agent-based descriptions of the system.

We assume that capillary elements (representing individual EC or group of such cells)
can be created in response to a gradient of oxygen concentration. The creation of this
capillary element could either correspond to a de novo blood vessel creation or to the re-
cruitment of EC previously at a different location. We do not make any difference between
the two processes as, for the sake of simplicity, we do not follow the motion of these EC
prior to their recruitment. For the same reason, we assume that once created, a capillary
element stays in place without moving, until it is eventually destroyed. A capillary element
is modelled by a rod-shape particle with finite area (we assume a 2-dimensional model).
Once created, it locally enhances the hydraulic conductivity in the direction of the rod,
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contributing to locally increase the blood velocity and the flow of oxygen in this direction.
This increase is limited to the area of the particle. The process is time-dynamic: capillary
elements are created following a spatio-temporal Poisson process the intensity of which is
large when and where the gradient of oxygen concentration is large. Each time a capillary
element is created, we assume an instantaneous adaptation of the blood velocity through
solving Darcy’s equation with the new value of the hydraulic conductivity. This new veloc-
ity is fed into the convection-diffusion-reaction equation satisfied by oxygen concentration
and the process goes on. It leads to the appearance of more capillary elements.

Importantly, we do not assume any connectivity between the capillary elements. They
could appear anywhere following the Poisson process and do not need to intersect. The
influence of each of them is summed up at each update of the hydraulic conductivity tensor.
In spite of the absence of connectivity constraint between capillary elements, simulations
show the creation of streets of capillary elements forming what we could assimilate as
a new blood capillary. Connectivity emerges as an outcome of the model but does not
need to be prescribed. This is an important advantage of the model as keeping track of
connectivity requires the use of adequate data structures that considerably increase the
complexity of code development and its computational cost.

In our model, the creation of capillary elements in response to a gradient of oxygen
concentration is a proxy for the influence of growth factors such as VEGF, which we do not
include in the model. Indeed, both gradients of VEGF and of oxygen concentration carry
information about the direction to be followed by new capillaries. The VEGF signaling
is likely to amplify this information for improved sensing by the cells or to be a chemical
intermediate that triggers a stronger reaction than mere oxygen gradient. However, both
encode similar information and ignoring VEGF allows us to reduce the model complexity
without distorting the phenomenology too much. We do assume several other capillary
creation mechanisms. One is by reinforcement of existing branches. Another one is through
wall shear stress which has proven to play a key role in the creation of new blood vessels (see
for instance [22, 37]). We also consider pruning mechanisms when the capillary element
density is too high.

To summarize, there are two main innovations in this work. From the modelling
viewpoint, we propose a new paradigm for the emergence of capillary networks where,
by contrast to the literature, the flow of blood plays the central role in defining the
shape of the network. From the methodological viewpoint, we present a new method to
describe evolving networks which relies on disconnected discrete elements. Connectivity
is recovered at the large scale when computing macroscopic quantities (such as, in this
work, the hydraulic conductivity).

The outline of the article if the following. In Section 2, we provide a complete de-
scription of the model although the details of the numerical methods are deferred to the
appendices. Results of the model are given in Section 3. A discussion is then developed
in Section 4.

2 Model

2.1 Presentation

We consider a two-dimensional model. The tissue occupies a spatial domain Ω ⊂ R2. We
will specifically consider two different geometries described in Section 2.6. As outlined
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above, the model considers four different entities:

• The flow of blood or interstitial fluid described by its pressure p(x, t) and its velocity
u(x, t) where x ∈ Ω and t ≥ 0 and where p ∈ R and u ∈ R2. The quantities u
and p are continuum variables which satisfy Partial Differential Equations (PDE),
namely Darcy’s equations, described in Section 2.2, with boundary conditions given,
according to the geometrical case studied, in Section 2.6.

• The flow of oxygen, described by the oxygen concentration ρ(x, t) ∈ R. The quantity
ρ is also a continuum variable satisfying a Partial Differential Equation (PDE),
namely a convection-diffusion-reaction equation described in Section 2.3 with initial
and boundary conditions given in Section 2.6.

• Capillary elements in turn are discrete quantities (particles) carrying a direction and
their dynamics is given by an agent-based model described in Section 2.4.

• The tissue and the ECM mediate the interaction between the capillaries on the one
hand and the blood and oxygen flows on the other hand. The tissue characteristics
determine the coefficients of the PDE for the blood and the oxygen and those are
dependent on the position and direction of the capillaries. The computation of these
coefficients is detailed in Section 2.5.

We now describe the various elements of the model in detail. The numerical values of all
the parameters are summarized in Table 1.

2.2 Blood and intersticial fluid flow

We lump blood and interstitial fluid in one and single fluid which we will call ’blood’ for
simplicity. We assume that blood is an incompressible Newtonian fluid described by its
pressure p(x, t) and its velocity u(x, t). The tissue viewed as a mixture of cells, ECM
and blood vessels is assimilated to a single porous medium with hydraulic conductivity
tensor K(x, t), which is a symmetric uniformly positive-definite matrix. Because of the
presence of capillaries and the possible creation/removal of capillaries, K is dependent on
both position and time. In a porous medium velocity and pressure are linked by Darcy’s
law

u(x, t) = −K(x, t)∇xp(x, t), x ∈ Ω, t ≥ 0, (1)
eq:bloodPDE1

where ∇xp denotes the gradient of p. This equation asserts that in spite of the time
variations of the conductivity matrix K, pressure and velocity instantaneously adjust one
with each other according to (1). This is consistent with the assumptions leading to
Darcy’s law, i.e. viscous terms dominate inertial ones, resulting in a quasi-steady flow.
Darcy’s law is complemented with the incompressibility condition:

∇x · u = 0 , (2)
eq:bloodPDE2

where ∇x · u stands for the divergence of the vector field u. Substituting (1) into (2) we
obtain p as a solution of the following elliptic problem:

−∇x · (K∇xp) = 0 in Ω× [0, T ], (3)
eq:elliptic

where T is the total simulation time. The expression of K will be given in Section 2.5.
This equation is complemented by boundary conditions detailed in Section 2.6.
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2.3 Oxygen flow

We recall that the oxygen concentration at a point x ∈ Ω and time t ≥ 0 is denoted by
ρ(x, t). The oxygen may be either convected by the blood flow, diffused through the tissue
or consumed. Thus, we assume that ρ is described by the following convection-diffusion-
reaction equation

∂tρ+∇x · (vρ) = −β(ρ)ρ , (4)
O2PDE

where

v(x, t) = u(x, t)−D(x, t)
∇xρ(x, t)

ρ(x, t) + ρ̃
, (5)

eq:v

β(ρ) =
βsat

ρ+Km
. (6)

eq:beta

The left-hand side of (4) together with (5) is the convection-diffusion part. The first term
of (5) is the blood velocity u and models the convection of oxygen by the blood flow. The

second term is a nonlinear diffusion with diffusivity matrix D(x, t) ρ(x,t)
ρ(x,t)+ρ̃ . For small values

of the oxygen concentration ρ� ρ̃, this nonlinear diffusion behaves like −∇x·(D
2ρ̃∇xρ

2) and
leads to the porous medium equation. In particular, it maintains v finite (and actually
equal to 0) where ρ = 0. On the other hand, for high oxygen concentrations ρ � ρ̃,
it behaves like −∇x(D∇xρ), which leads to the standard linear diffusion equation. The
diffusivity D(x, t) is a symmetric nonnegative matrix which, like the hydraulic conductivity
K, depends on the presence of capillaries and consequently, on space and time. It will be
specified in Section 2.5. The right-hand side of (4) is a reaction term that accounts for
oxygen consumption by the tissue. Formula (6) is the classical Menten-Michaelis reaction
term which is widely used for biological reactions. The consumption term β(ρ)ρ is a linear
function of the oxygen concentration at low oxygen concentration and models the increase
of the number of cells able to consume oxygen (through for instance, cell proliferation).
The consumption term β(ρ)ρ saturates at large oxygen concentration because the number
of cells and reaction sites able to consume oxygen cannot grow indefinitely and saturate
to a maximal value. The Michaelis constant Km is the oxygen concentration at which the
consumption rate reaches half of its maximum value and βsat is the maximal consumption
rate. Eq. (4) must be supplemented with initial and boundary conditions which will be
given in Section 2.6.

We comment on the chosen values for the parameters ρ̃, βsat and Km (see Table 1).
All quantities relating to oxygen densities are expressed relative to the oxygen density in
the oxygenated tissue ρ0 which is a boundary condition for (4) (see Section 2.6). The
particular value of ρ0 is irrelevant. Indeed, since the model is two-dimensional, it can be
viewed as representing a three dimensional volume of certain thickness where all quantities
are independent of the third coordinate. Thus, ρ0 is equal to the actual volumetric oxygen
density in the oxygenated tissue times the thickness of the considered volume and that
thickness is arbitrary. The chosen value of ρ0 is thus purely arbitrary. The value ρ̃ is chosen
to be 10% of ρ0 meaning that we switch to nonlinear diffusion when the oxygen density
is 10% lower than that of the oxygenated tissue. We could not find any documentation of
this effect in the literature and this value appeared as a sensible choice. As for the oxygen
consumption, we refer to [75] where the rate of consumption of oxygen was measured in
a rabbit eye. This rate was measured to be of the order of 10−5 ml(O2) (ml(tissue) s)−1,
while the O2 volume fraction was of the order of 4 10−3 ml(O2) (ml(tissue))−1 which gives
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a consumption rate of 14% min−1. However, we have chosen the much lower value 2%
min−1. If we match this value to the maximal consumption rate of formula (6), this gives

us the value
βsat
Km

= 0.02 min−1 which we can deduce from Table 1. The reason for choosing
this low value lies in the approximations made in the model. Indeed, as already mentioned
above, we use the oxygen gradient as a proxy for the VEGF gradient, which we do not
include in the model. However, for a physiological value of the consumption rate, oxygen
is consumed too quickly and there is not enough oxygen left to trigger the formation of
capillaries (see Section 2.4). By lowering the value of oxygen consumption, we allow for
enough oxygen to remain and fuel capillary growth. A physiologically realistic value of
the oxygen consumption should be usable when we include VEGF in future developments
of the model. Now, we have chosen Km, the oxygen concentration which halves the
consumption rate, to be equal to half the oxygen concentration in the oxygenated tissue.
This is consistent with values given in [13] which suggest that the Michaelis constant is of
the same order of magnitude as the oxygen concentration in the oxygenated tissue.

2.4 Capillaries

2.4.1 Capillary element

The fundamental assumption of the model is to consider capillary elements as directional
information of the flow, rather than describing the exact geometry of the network. Biolog-
ically capillary elements could represent one or a group of EC depending on the size chosen
for the capillary element. We represent each capillary element as a rod of fixed length Lc
and width wc, defined by the position of its centre X ∈ Ω and direction ω = (cos θ, sin θ)
where θ ∈ [0, 2π) (see Fig. 1). We assume that each capillary element influences the local
direction of the blood flow as well as the diffusivity properties of the tissue (see Sect. 2.5).
The capillary network is formed by superposing all the capillary elements and its connec-
tivity is not imposed at the particle level but is recovered through an averaging process
at the continuum level detailed in Section 2.5. We have taken the values Lc = 15µm and
wc = 4µm (see Table 1) as these correspond to the typical size of human EC [23].

Figure 1: A capillary element of length Lc and width wc with center at X and direction ω.

We assume that capillary elements are created in response to environmental cues. This
process could represent both de novo formation of new capillaries as in vasculogenesis or
recruitment of existing EC that are attracted to the location where this creation happens.
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We do not model the process of EC migration (by contrast to many other works in the
literature) for the sake of modelling simplicity. Likewise, once created, capillary elements
remain immobile, until they are eventually destroyed. Thus capillary element dynamics
reduces to creation and destruction processes. We assume three different creation processes
and one removal process according to the nature of the environmental cues considered.
They are all described by spatio-temporal Poisson processes whose intensities depend on
these environmental cues. These processes are:

• Creation by oxygen concentration gradient (detailed in Section 2.4.2): when the
norm of the gradient of oxygen concentration at some location exceeds a certain
threshold, this signals a fast drop of oxygen concentration and a potentially hypoxic
region at some distance along the direction of the gradient. Then, the probability of
capillary creation is increased. The newly created capillary element, directed along
the direction of the gradient, will contribute to bring more blood and eventually more
oxygen, feeding the hypoxic region. However, if the oxygen concentration is already
high, there is no need for more blood inflow and the capillary creation is inhibited.
As already noted, this mechanism is a proxy for the creation of new capillaries in
response to VEGF gradients, while we ignore VEGF in this model.

• Creation by reinforcement of small capillaries (detailed in Section 2.4.3): to stabilize
the newly created capillary elements, we have introduced a reinforcement mechanism.
As long as the norm of the blood velocity is smaller than a threshold value and the
oxygen concentration lies between two bounds, we trigger the formation of new
capillary elements directed in the direction of the blood velocity. The bound on the
velocity is because we want to avoid the blood flow going too fast, and ’missing’
some nearby hypoxic regions. The bounds on the oxygen concentration is because
there is no point in reinforcing capillaries if no or too much oxygen is already flowing
in them.

• Creation by Wall Shear Stress (WSS) (detailed in Section 2.4.4): WSS is known to
play a fundamental role in the development of new capillaries [36, 37, 38, 49, 73]).
A fluid flowing in a duct exerts a shear stress on its walls, called WSS. There is
evidence of a mechanosensing mechanism which triggers capillary sprouting when
WSS exceeds a certain value. WSS is expressed as the maximal eigenvalue of the
viscous stress tensor. In the model, when at a given location WSS exceeds a threshold
value, the creation of a new capillary element in the normal direction to the velocity
is favored. The choice of this direction is motivated by experimental observations
[38] where it seems favored. But this point will be scrutinized in future work.

• Capillary pruning (detailed in Section 2.4.5): we assume that capillary elements
can be destroyed if the tissue hydraulic conductivity is already large. Indeed, the
creation of new capillaries increases the tissue hydraulic conductivity (see Section
2.5) but on the other hand, the conductivity should not be locally too large, to
avoid channeling all the blood flow in a localized region and leaving the rest of the
domain hypoxic. We use the Frobenius norm γ := ‖K‖ (defined in Section 2.4.5)
of the hydraulic conductivity tensor K to sense the conductivity of the tissue. We
trigger the removal of capillary elements when γ exceeds a threshold value γ∗ and
the removal probability is then a quadratic function of γ − γ∗. The choice of the
quadratic function is motivated by [31] where it is assumed that there is a cost for
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the maintenance of the network which is a quadratic function of a quantity which
plays a similar role as the hydraulic conductivity used here. In [31], such a nonlinear
cost is needed for the appearance of capillaries and we wanted to test if it is similar
here.

In the following sections, these four processes are described in detail.

2.4.2 Capillary creation triggered by oxygen gradient

We recall that ρ denotes the oxygen concentration in the tissue. We assume that the
creation of capillary elements is given by a spatio-temporal Poisson process with intensity

νc = ν∗cψ

(
Lc0 g(ρ,∇xρ)− 1

hc

)
ψ

(
1− ρ

ρs

hs

)
, (7)

nuc

where

ψ(z) =
1

2
(1 + tanh(z)) , (8)

eq:tanh

g(ρ,∇xρ) =
|∇xρ|
ρ+ ρ∗

, (9)
eq:gradient_length

and ν∗c , Lc0, hc, ρs, hs, ρ
∗ are positive parameters. The function g = g(ρ,∇xρ) defined

in (9) represents a smoothed logarithmic sensing function of the oxygen gradient ∇xρ
where the parameter ρ∗ is introduced in order to avoid singularities where ρ = 0. The
function ψ defined in (8) is a sigmoid. It operates as a switch which is turned on or off
whether z is positive or negative respectively. It smoothly transitions from 0 to 1 which
introduces uncertainty in the turn on/off of the switch, with a mushy zone located between
the values z = −1 and z = 1. For instance, consider the first activation function

g 7→ ψ1(g) = ψ

(
Lc0g − 1

hc

)
where g ∈ R, (10)

eq:phis1

on the right-hand-side of (7). The parameter hc prescribes the width of the fuzziness
region of the activation function. We set hc = 0.1 which represents a ±10% uncertainty
around the value 1/Lc0 (see Fig. 2(A)). Therefore, (10) turns on the creation process when
the logarithmic sensing g(ρ,∇xρ) of the oxygen gradient exceeds a threshold 1/Lc0± 10%.
The second sigmoid on the right-hand-side of (7) follows the same rationale. It activates
capillary creation when ρ is less than the threshold value ρs up to a fuzziness of order ±10%
(taking hs = 0.1) (see Fig. 2(B)). This factor prevents the formation of more capillary
elements if the oxygen concentration is high enough. The parameter ν∗c is the intensity of
the creation rate when both switches in (7) are totally on. If a capillary element is created
at the position X ∈ Ω then it is oriented towards the oxygen gradient

ω =
∇xρ(X)

|∇xρ(X)|
,

which represents the optimal direction for the spreading of the oxygen.
We have already commented on the choice of hc = hs = 0.1 corresponding to ±10%

uncertainties on the threshold values. The constant ν∗c is the parameter of the Poisson
process where all the switches are on i.e. where the two factors involving the function ψ
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(A) (B)

Figure 2: (A) The function g 7→ ψ1(g) = ψ((Lc0g−1)/hc) where ψ is defined in (8) models
an on/off switch. Its fuzziness region is shadowed in gray. On its left-hand-side the switch
is off whereas on its right-hand-side it is on. (B) The function ρ 7→ ψ2(ρ) = ψ((1−ρ/ρs)/hs)
with fuzzy region shadowed in gray. As opposed to (A) the switch is on at the left-hand-
side of the shadowed region and it is off on the right-hand-side.

in (7) are equal to 1. It corresponds to the fastest rate of capillary creation where large
oxygen concentration gradient and low oxygen concentration signal a strongly hypoxic
region. It is difficult to obtain such data from the experimental literature and we have
resorted to trial and error with the model. The choice made, ν∗c = 0.05 min−1 µm−1 can
be best understood when relative to a capillary element area Sc = Lcwc = 60µm2. Then
ν∗cSc = 3 min−1 meaning the maximal creation rate of capillary elements due to oxygen
concentration gradient is one new capillary element every 20 seconds per surface of a
capillary element. This value sounds too high and was chosen on the basis of numerical
constraints. This time-scale issue will be discussed in greater details in Sect. 3. We
have taken the oxygen gradient length threshold Lc0 which triggers the formation of new
capillaries as half the size of an EC (Lc0 = 8µm) as concentration sensing should be done at
the cell level. The quantity ρ∗ is just a regularizing constant and has been chosen as 10%
of the oxygen concentration in the oxygenated tissue ρ0 consistently with the choice done
for the other regularizing constant ρ̃. The threshold oxygen concentration beyond which
the capillary creation is turned off has been chosen equal to the oxygen concentration
in the oxygenated tissue ρ0 which means that for concentrations above ρ0 the tissue is
assumed fully oxygenated. The numerical values of parameters ν∗c , Lc0, hc, ρs, hs, ρ

∗ are
summarized in Table 1.

2.4.3 Capillary creation by reinforcement

In order to enhance the creation of small branches we introduce a spatio-temporal Poisson
process with intensity function

νf = ν∗f ψ

(
1− |u|u
hf

)
ψ

( ρ
ρ − 1

hf

)
ψ

(
1− ρ

ρ

hf

)
, (11)

nuf

where ν∗f , u, hf , ρ and ρ are positive parameters and u is the blood velocity. The acti-
vation function ψ is defined in (8). Following the same rationale as in Sect. 2.4.2, the
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intensity (11) promotes the creation of capillary elements when the magnitude of the blood
velocity |u| is below the threshold parameter u up to a fuzziness region of ±10% set by the
parameter hf = 0.1. We also impose a cut-off when the oxygen concentration ρ is below
ρ or above ρ up to an uncertainty of ±10% set by the same parameter hf . If a capillary
element is created at a point X its direction is set to be the normalized velocity vector
at X, i.e.

ω =
u(X)

|u(X)|
.

Indeed, this choice is best to reinforce the flow in the direction of the blood velocity u(X).
The parameter u was estimated by taking it slightly above the typical blood velocity in

the tissue in the absence of capillaries. This velocity can be estimated through Darcy’s law
using the hydraulic conductivity of the tissue in the absence of capillaries κh = 400µm2

min−1 mmHg−1 (see Section 2.5 for a justification of this value). With a pressure difference
of about 20 mmHg and a typical tissue length of 1 mm (see section 2.6), such velocity is
8µm/min. We have chosen u = 20µm/min. The values that we chose for ρ and ρ are,
respectively, 10% and 50% of the the oxygen concentration ρ0 injected to the tissue (see
Sect. 2.6). Indeed below 0.1 ρ0 the oxygen density is too small and capillaries must first
be created by other creation mechanisms. Above 0.5 ρ0 the oxygen density is close to that
of the oxygenated region and capillaries do not need any reinforcement. The parameter of
the Poisson process ν∗f corresponding to the maximum intensity when all switches are on
is set to be 1/5 of the corresponding intensity for the creation process by oxygen gradient.
Indeed, once capillaries are created, the threat posed by hypoxia on the tissue is reduced
and the reinforcement mechanism can be slower, but still within an order of magnitude of
the faster process of creation by oxygen gradient. All these parameters are summarized
in Table 1.

2.4.4 Capillary creation by Wall-Shear-Stress

For a given point x we consider the deviatoric stress tensor at x which, thanks to the
incompressibility condition for the blood flow (2), reduces to

σ(x) = µ
(
∇xu(x) + (∇xu(x))T

)
, (12)

eq:sigma

where (∇xu)ij = ∂uj/∂xi is the tensor gradient of the vector field u, AT , where A is a
2× 2 matrix, denotes the transpose of A and µ is the dynamic viscosity of the blood. The
2 × 2 tensor σ(x) is nonnegative symmetric and traceless. Hence it has eigenvalues ±λ
with λ ≥ 0. The creation by WSS is given by the spatio-temporal Poisson process with
intensity function

νw = ν∗w ψ

( λ
λ∗ − 1

hw

)
, (13)

eq:wall

where ν∗w, λ∗ and hw are positive parameters and the activation function ψ is defined
in (8). Following the same rationale as in Sect. 2.4.2, capillary elements are created if λ is
bigger than the threshold parameter λ∗ up to an uncertainty given by hw (also set to be
0.1) and ν∗w is the intensity when the switch is totally on. If a capillary element is created
at a point X its orientation is taken to be

ω =
u⊥(X)

|u⊥(X)|
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where u⊥(X) denotes the rotation of u(X) by 90◦ in the counterclockwise direction. We
chose this branching angle following the experimental data presented in [37] and [38]. The
value of λ∗ was taken from [56] and the value of the dynamic viscosity of the blood µ at
37◦C was taken from [21]. Following a set of numerical trials, and owing to the literature
documenting the importance of this mechanism, the value of ν∗w was chosen large and set
6 times larger that the rate of creation by oxygen gradient. See Table 1 for a summary of
the numerical values of these parameters.

2.4.5 Capillary pruning

In order to impede excessive concentrations of capillary elements we remove them following
a spatio-temporal Poisson process with intensity defined by

νr = ν∗r

(( γ
γ∗
− 1
)

+

)2
, (14)

nur

where ν∗r , γ∗ are positive parameters, γ is the Frobenius norm of K and z+ = max{0, z} for
z in R. The Frobenius norm of a 2×2 matrix with real valued entries {aij}1≤i,j≤2 is given by
‖A‖ = (

∑
1≤i,j≤2(aij)

2)1/2. Formula (14) states that the removal mechanism is only turned
on when γ exceeds the threshold value γ∗. Then for γ ≥ γ∗ the removal intensity increases
quadratically. The quantity ν∗r is the intensity of the process for γ = 2γ∗. The choice
of the parameter γ∗ was estimated to be 5 times the hydraulic conductivity of individual
capillary elements (estimated in Section 2.5) meaning that we do not allow more than 5
individual capillary elements to superimpose at the same place (superposition of capillary
elements modelling broader capillaries). Indeed, larger number of superposed capillaries
would model larger vessels for which the Darcy approximation and consequently the whole
model would lose validity. We want to promote a fast removal rate when γ exceeds the
threshold γ∗. So, the value of ν∗r is chosen to be such that the lifetime of a capillary element
when γ = 2γ∗ is equal to 2 seconds which is comparable to the maximal creation rate of
capillaries by WSS, equal 1 every 3 seconds per capillary element area (see Section 2.4.4).
Finally, the pruning rate being a quadratic function of γ − γ∗ reflects the nonlinear loss
rate in the continuum model of network formation of [31]. This feature will be commented
in Section 4. We refer to Table 1 for a summary of the parameter values.

2.5 Tissue

The tissue is a mixture of cells, ECM and capillary vessels. It behaves like a porous
medium (see [74]) for the blood and oxygen fluids. It is characterized by its hydraulic
conductivity tensor K for the blood flow and its diffusivity tensor D for the oxygen. We
assume that in the absence of capillaries, the tissue is an isotropic homogeneous medium
characterized by scalar background hydraulic conductivity kh and oxygen diffusivity ∆h.
Each capillary element (Xk,ωk) induces a local increase of the tensor K by the quantity
κ (ωk ⊗ ωk)χSk

(X). The positive scalar κ is the conductivity of a capillary element,
computed below under the assumption of Poiseuille flow in the capillary. The symbol ⊗
denotes the tensor product of two vectors, i.e. if A = (Ai)i=1,2 and B = (Bi)i=1,2 are two
vectors in R2, then A ⊗ B is the 2 × 2 matrix whose entries are (A ⊗ B)ij = AiBj . We
have the formula (ωk ⊗ ωk)∇xp = (ωk · ∇xp)ωk giving that the flow velocity through a
capillary element is proportional to the directional derivative of p in the direction of ωk
and points in the direction of ωk. This is the feature of a porous medium whose pores are

12



all oriented in the direction of ωk and which is impermeable in the orthogonal direction
ω⊥k (where ω⊥k represents the counterclockwise rotation of ωk by 90◦). The increase of
hydraulic conductivity is limited to the domain occupied by the capillary element, which is
reflected by the factor χSk

(X) where Sk is the capillary element domain, i.e. the rectangle
defined by

Sk = {X ∈ R2
∣∣ |(Xk −X) · ωk| ≤

Lc
2
, |(Xk −X) · ω⊥k | ≤

wc
2
}.

For a subset S of R2, the function χS(X) is the indicator function of S i.e. it takes the value
1 if X ∈ S and 0 otherwise. The contribution of each capillary element is summed up with
those of the other capillary elements and with that of the bulk tissue given by khI2 (where
I2 is the 2×2 identity matrix and reflects the fact that the bulk conductivity is isotropic).
The same phenomenology holds for the oxygen diffusivity tensor D with a local increase
of the diffusivity due to the k-th capillary element by the quantity ∆(ωk ⊗ ωk)χSk

(X)
where ∆ will be estimated below.

The resulting formula for the hydraulic conductivity and diffusivity tensors of the tissue
are

K(X) = khI2 +
∑
X∈Sk

κ (ωk ⊗ ωk) , (15)
eq:tissue1

D(X) = ∆hI2 +
∑
X∈Sk

∆ (ωk ⊗ ωk) , (16)
eq:tissue2

The first component on the right-hand-side of (15) is the background conductivity of
the tissue in the absence of capillaries and the second one combines the influence of all
capillary elements whose domains contain X (see Fig. 3). So, each capillary element
(Xk,ωk) containing X in its domain exerts a local bias by facilitating blood flow along
ωk. The same phenomenology holds for the oxygen diffusivity given by (16).

The value of κh in (15) was taken from [74], whereas κ was estimated supposing that
the flow within a capillary follows Poiseuille’s law. It relates the pressure drop ∆p in a duct
of length Lc and radius wc/2 to the velocity |u| of the flow by the relation ∆p

Lc
= 8µ|u|

(wc/2)2

where µ is the dynamic viscosity of the fluid. With Darcy’s law within a capillary element

|u| = κ∆p
Lc

, we get κ = w2
c

32µ . With the values of wc and µ from Table 1, we get κ ≈ 106 µm2

(mmHg min)−1. In fact this value brings too large stiffness to the elliptic problem (3)
and we settle to a value about 10 times smaller equal to 0.8 105µm2 (mmHg min)−1. The
value ∆h deduced from from [76] is about 0.5µm2 min−1. We take a slightly larger value
of 10µm2 min−1 owing to the large variability of this parameter according to the type of
tissue. This larger value allows for a more uniform distribution of oxygen in the tissue. The
diffusivity of oxygen in a vessel is enhanced but not as much as the hydraulic conductivity
because the fluid molecules still constitute obstacles against the diffusion of the gaseous
oxygen. We assume for our model that ∆ = 20 ∆h. Again, the entire set of parameter
values is reminded in Table 1.

2.6 Geometry and boundary conditions

2.6.1 Geometry

For the sake of computational efficiency, we consider a 2D rectangular domain Ω = [0, Lx]×
[0, Ly]. Given a capillary-free tissue at initial time, we want to explore how the network
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Figure 3: Given a point X in the tissue, the second term of the right-hand-side of the
tensors K and D defined in (15) and (16) are computed by summing the tensors ωk ⊗ωk
over all capillary elements k that contain X in their domain Sk. For instance, in this
sketch, only five (dark-shadowed rods) out of the nine capillary elements are combined to
form tensors K and D at X.

appears. We assume that there is a highly oxygenated tissue on the left border with
high blood pressure bringing oxygenated blood into the tissue. We analyze two different
geometrical conditions distinguished by their boundary conditions.

Case 1 In the first domain Ω1 depicted in Fig 4 (A), the blood inflow region on the
left-hand boundary is surrounded by a lower blood pressure region, such as a region of
uptake of blood by the venous system, modelled by the top, bottom and right-hand-side
boundaries. The blood source is located in the middle of the left boundary and has small
extent. The rest of the left boundary is impermeable. This case models the spread of
capillaries around a blood vessel in a cross-section of the tissue normal to the blood vessel.
Only half of the environment of the blood vessel is taken into account since, at least in
a homogeneous tissue, the capillaries will spread in a similar fashion on the other side of
the left boundary. We take domain sizes equal to Lx = 1 mm and Ly = 2 mm. This
corresponds roughly to a domain which extends up to a distance of 1 mm to the blood
source, which is a typical distance covered by capillaries in wound healing for instance.
The extent of the blood and oxygen sources in the middle of the left boundary is 100µm
which corresponds to the diameter of a small blood vessel.

Case 2 In the second one denoted by Ω2 and shown in Fig. 4 (B), a highly oxygenated
high blood pressure region stands on the left-hand boundary. It faces a low blood pressure
region corresponding to the right boundary. The top and bottom boundaries are assumed
periodic: they represent a tissue that extends in the vertical direction on large distances in
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a somewhat similar fashion and for which only a representative fraction is simulated. The
creation of a new capillary is triggered by an inflow of oxygen on a small portion of the
left boundary. This case depicts the spread of a blood capillary longitudinally, i.e. when a
cross-section of the tissue is made in a plane containing the blood vessel making the blood
source. This situation also mimics the geometry of a corneal micropocket angiogenesis
assay [28]. We take domain sizes equal to Lx = 2 mm and Ly = 1 mm, which is the order
of magnitude encountered in such experiments. The oxygen sources in the middle of the
left boundary extends along 100µm similar to the previous case.

In both cases, the difference of pressures between the high and low blood pressure regions
produces a flow of the interstitial fluid which triggers the formation of a new vascular
network. The bulk of the domains are constituted of a tissue assimilated to a porous
medium as described in Sect. 2.5.

2.6.2 Boundary conditions on the pressure and boundary/initial conditions
on the oxygen concentration

Since we initially suppose a capillary-free tissue, we impose for consistency that the oxygen
concentration is initially zero, i.e. for both geometries Ω1 and Ω2 we impose ρ(x, 0) = 0
for all x. For the boundary conditions, we distinguish between the two cases depicted in
the previous section.

Case 1 The labeling of the different parts of the boundary of Ω1 is given in Fig. 5. We
impose the following boundary conditions for the pressure:

p = p0 on Γ1,D , (17)
eq:dir1

p = p1 on Γ2,D ∪ Γ3,D ∪ Γ4,D , (18)
eq:dir2

−(K∇xp) · n̂ = 0 on Γ1,N ∪ Γ2,N , (19)
eq:dir3

and for the oxygen concentration:

ρ = ρ0 on Γ1,D , (20)
eq:dir1_rho

−(D∇xρ) · n̂ = 0 on Γ2,D ∪ Γ3,D ∪ Γ4,D , (21)
eq:dir2_rho

ρ = 0 on Γ1,N ∪ Γ2,N , (22)
eq:dir3_rho

where n̂ is the outward unit normal vector to the boundary. Boundary Γ1,D has length
100µm and is located at the centre of the left boundary of the rectangle Ω1 i.e. it starts at
the height Lmin = 950µm and ends at Lmax = 1050µm. We set p0 > p1. Condition (17)
expresses that Γ1,D is the high blood pressure region with pressure p0 (for instance a blood
vessel). Γ1,D is also the source of oxygen and ρ0 stands for the oxygen concentration in
this highly oxygenated region, hence (20). The subset Γ2,D ∪Γ3,D ∪Γ4,D of the boundary
is the low blood pressure region, hence the Dirichlet condition (18) with pressure p1. It
surrounds the high pressure source to mimic the conditions depicted in Fig 4 (A). The
uptake of blood by the venous system takes place in this region and the oxygen flows out
of the domain. Along this boundary, we assume a zero normal gradient of the oxygen
concentration (21), meaning (with (5)) that the normal oxygen flow velocity v · n̂ is equal
to the normal blood flow velocity u · n̂. We expect the latter to be large and positive
(i.e. leaving the domain). Thus, oxygen will exit the domain freely without any possible
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Figure 4: (A) Geometrical setting for Ω1, which mimics a cross-section of the tissue in
the direction normal to a blood vessel. (B) Geometrical setting for Ω2 which mimics a
cross-section in a plane containing the blood vessel. The dimensions of Ω1 and Ω2 are
given in Table. 1.
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inflow. So, (21) expresses that the incoming flux of oxygen is zero. The Neumann boundary
condition (19) for the pressure along Γ1,N ∪ Γ2,N is a rigid wall condition stating that the
normal blood velocity to the wall is zero. We also assume that there is no oxygen, leading
to (22). Because the problem is two-dimensional, the quantity ρ0 is a surface density. As
explained in Section 2.3, its numerical value is irrelevant because it depends on the height
of the tissue in the third dimension, which is arbitrary. The boundary conditions on the
pressure are those that prevail between the inflow and outflow of the capillary system as
measured in [81]. The parameters are given in Table 1.

Figure 5: Labeling of boundaries and boundary conditions for the pressure p and oxygen
density ρ in Ω1.

Case 2 We refer to Fig. 6 for the labeling of the various parts of the boundary of Ω2

and consider the following boundary conditions for the pressure:

p = p0 on Γtop
1,D ∪ Γmid

1,D ∪ Γbot
1,D , (23)

eq:C2_p0

p = p1 on Γ2,D , (24)
eq:C2_p1

p(x) = p(x− Lye2) for all x on Γ1,per (25)
eq:C2_p-per
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where e2 is the unit vector in the vertical direction i.e. e2 = (0, 1). For the oxygen
concentration, the boundary conditions are set to:

ρ = ρ0 on Γmid
1,D , (26)

eq:C2_rho0

ρ = 0 on Γtop
1,D ∪ Γbot

1,D , (27)
eq:C2_rho=0

−(D∇xρ) · n̂ = 0 on Γ2,D , (28)
eq:C2_rho_outflow

ρ(x) = ρ(x− Lye2) for all x on Γ1,per (29)
eq:C2_rho-per

Again, we impose p0 > p1 and the Dirichlet condition (23) sets the pressure along the left
boundary Γtop

1,D∪Γmid
1,D∪Γbot

1,D to the high pressure value p0, while the Dirichlet condition (24)
sets it to the low value one p1 on the right boundary Γ2,D. Condition (25) simply states
that the values of the pressure on Γ1,per must be equal to those of Γ2,per expressing the
periodicity of the solution in the vertical direction. To trigger the formation of a capillary
we assume a large oxygen concentration along Γmid

1,D , hence the Dirichlet condition (26)
setting the oxygen concentration to ρ0 on this boundary. Along the remaining part of
the left boundary Γtop

1,D ∪Γbot
1,D, we assume no oxygen is present, hence the Dirichlet condi-

tion (27). We assume that Γmid
1,D has length 100µm and is located at the centre of the left

boundary i.e. it starts at the height Lmin = 450µm and ends at Lmax = 550µm. Like
for the pressure, condition (29) along Γ1,per expresses the periodicity constraint on ρ in
the vertical direction. Finally, (28) is an outflow condition for the oxygen concentration
along the right boundary Γ2,D. Its interpretation is the same as for (21) and we refer to
the previous case for a detailed explanation.

Figure 6: Labeling of boundaries and boundary conditions for the pressure p and oxygen
density ρ for Ω2.

2.7 Numerical method

In this section, we provide a brief summary of the numerical methods used and refer to
the Appendices A, B, C for a detailed description. A synopsis of the numerical treatment
of the problem is given in Algorithm 1 below and the choices for the numerical parameters
are summarized in Table 2.
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Quantity Symbol Value Units Source
Geometry 1 (Sect. 2.6)
Domain size in x-direction Lx 1000 µm estim.
Domain size in y-direction Ly 2000 µm estim.
Oxygen injection region: y-coordinate of lower end Lmin 950 µm estim.
Oxygen injection region: y-coordinate of upper end Lmax 1050 µm estim.
Geometry 2 (Sect. 2.6)
Domain size in x-direction Lx 2000 µm estim.
Domain size in y-direction Ly 1000 µm estim.
Oxygen injection region: y-coordinate of lower end Lmin 450 µm estim.
Oxygen injection region: y-coordinate of upper end Lmax 550 µm estim.
Blood (Sect. 2.2 & 2.4.4)
Pressure at high pressure boundary p0 37.7 mmHg [81]
Pressure at low pressure boundary p1 14.6 mmHg [81]
Dynamic viscosity µ 3.75× 10−7 mmHg min [21]
Oxygen and oxygen dynamics (Sect. 2.3)
Concentration at injection boundary ρ0 0.025 µm−2 estim.
Concentration for linear/nonlinear diffusion shift ρ̃ 0.1× ρ0 µm−2 estim.
Maximum consumption rate βsat 0.01× ρ0 min−1µm−2 estim. from [13, 75]
Michaelis constant Km 0.5× ρ0 µm−2 estim. from [13, 75]
Capillary elements (Sect. 2.4.1 & 2.5)
Length Lc 15 µm [23]
Width wc 4 µm [23]
Hydraulic conductivity κ 80000 µm2min−1mmHg−1 estim.
Oxygen diffusivity ∆ 200 µm2min−1 estim.
Capillary creation: oxygen gradient (Sect. 2.4.2)

Maximal creation rate ν∗c 0.05 µm−2min−1 estim.
Oxygen concentration gradient length threshold Lc

0 8 µm estim.
Concentration for regularization of logarithmic sensing ρ∗ 0.1× ρ0 µm−2 estim.
Width of sigmoid: oxygen gradient hc 0.1 − estim.
Oxygen concentration threshold ρs ρ0 µm−2 estim.
Width of sigmoid: oxygen concentration hs 0.1 − estim.
Capillary creation: reinforcement (Sect. 2.4.3)

Maximal creation rate ν∗f 0.01 µm−2min−1 estim.

Blood velocity threshold u 20 µm min−1 estim.
Lower oxygen concentration threshold ρ 0.1× ρ0 µm−2 estim.

Upper oxygen concentration threshold ρ 0.5× ρ0 µm−2 estim.
Width of sigmoids hf 0.1 − estim.
Capillary creation: WSS (Sect. 2.4.4)

Maximal creation rate ν∗w 0.3 µm−2min−1 estim.
Width of sigmoid hw 0.1 − estim.
WSS threshold λ∗ 3.75× 10−8 mmHg estim. from [56]
Capillary removal (Sect. 2.4.5)

Removal rate at twice threshold ν∗r 30.0 min−1 estim.
Hydraulic conductivity threshold γ∗ 400000 µm2 min−1mmHg−1 estim.
Tissue (Sect. 2.5)

Hydraulic conductivity kh 400 µm2min−1mmHg−1 [74]
Oxygen diffusivity ∆h 10 µm2min−1 [76]

Table 1: Parameters of the model. In case of estimated parameters (“estim.” in the last
column), we refer to the corresponding section (indicated in the first column) for the details
of this estimation.
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The elliptic equation describing blood flow (1)-(2) is approximated using a Q1 finite
element method on a rectangular spatial grid [7] of uniform mesh sizes ∆x and ∆y in the
horizontal and vertical directions respectively. Finite-element methods are regarded as
methods of choice for the resolution of elliptic problems with complex boundary conditions.
A Q1 finite element method provides an approximation of the solution by polynomials
linear in each variable on quadrangular numerical cells. We favored Q1 elements over more
classical P1 elements (which provide approximations by globally linear polynomials on
triangular numerical cells) to avoid too much numerical directional bias. For all numerical
simulations shown in this paper, otherwise stated, we set ∆x = ∆y = 1.25µm, which
resolves the scale of capillary elements. If we take finer mesh sizes we do not note any
significant changes in the network formation.

The diffusion-advection-reaction equation (4) describing the evolution of the oxygen
concentration ρ is discretized using the Smoothed Particle Hydrodynamics (SPH) method-
ology [47]. The choice of a SPH method is motivated by the initially zero oxygen concen-
tration. Dealing with regions of zero concentration with classical grid methods, such as
finite volume methods, is delicate due to the high risk of appearance of negative values,
which often leads to a breakdown of the simulation. The SPH method is not subject to
this risk and is the method of choice for problems involving jets or injections of gases in
vacuum. SPH is a classical method whose accuracy has been practically assessed, and
thoroughly studied theoretically (see e.g. [16, 42, 66, 78]).

It consists of approximating the function ρ(x, t) by a sum of N Dirac deltas located
at positions {Y`(t)}`=1,...,N and of equal and time-constant masses m. Here, since the
oxygen concentration scale is irrelevant (see Sect. 2.3), we take m = 1. These particles
move in space with a velocity V`(t) given by formula (5) evaluated at Y`(t). However
since (5) involves ∇xρ, it does not make sense with ρ equal to a sum of Dirac deltas. To
make sense of it, we approximate all Dirac deltas by smooth regularizations. Their role
is to spread the Dirac deltas over regions of finite extent η. We take η = 5µm which
spreads the Dirac deltas over 10µm, i.e. approximately the scale of a capillary. The
process of representing diffusion of a cloud of particles by their convection along their
regularized concentration gradient is known as the diffusion velocity method, introduced
in [17]. It stands as an alternative to stochastic methods for the treatment of diffusion
which introduces lower noise uncertainty. The regularization kernel is taken to be the
poly6 kernel (see Appendix) which has well documented reliability [48]. To account for
the consumption term (right-hand side of (4)), we use a splitting method. We first solve
for the left-hand-side of (4) by the SPH method and then we use a stochastic death process
to discretize the Michaelis-Menten reaction term.

The simulations of the spatio-temporal Poisson point processes (7), (11), (13) and (14)
are performed using a classical acceptance-rejection method (see for instance [27]). For
each creation process and each discrete time t, we pick Nc points x in the domain inde-
pendently and uniformly and compute the value of the corresponding Poisson parameter
ν(x, t). We can then estimate the probability of creation of a capillary element by this
process. The value Nc = 105 was selected by trial and error. Larger values of Nc do not
improve the quality of the solution but require longer computer time. Lower values of Nc

deteriorate the quality of the results. For the removal process, we just loop over all the
existing capillaries and compute the value of the removal Poisson rate at their location.
Again, this allows us to estimate the probability of removal of the considered capillary.
We could have accelerated the treatment of these processes by using Metropolis-Hastings
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or Monte-carlo Markov Chain methods but this step was so quick compared with the
resolution of the elliptic equation that it did not seem to be worth the effort.

We implemented the code in Fortran 95 and used the Mersenne twister generator
[43] for the generation of random numbers. The plots were generated in Gnuplot. The
simulations were conducted on two workstations, one with two Intel Xeon E5-2637v3
quad core processors clocked at 3.5 GHz with 12 MB of on-CPU cache and the other
one with two Intel Xeon Gold 5122 quad core processors clocked at 3.6 GHz with 16
MB of on-CPU cache. The time taken for each simulation is in average less than 72
hours for Geometry 1 and for Geometry 2 it takes in average 6 days depending on the
creation/deletion mechanisms involved. We summarize the choice of numerical parameters
in Table 2.

Input: Final time T and parameters in Tables 1 and 2
Initialisation: For every node X in the mesh of the FEM we set K(X) = khI2,
D(X) = ∆hI2 and set t = 0

Update the blood pressure p (solve the linear system (32))
Update the blood velocity u (Eqs. (33) & (34))
Oxygen particles injection (see Sect. B.3.3)
While t ≤ T Do

• Acceptance-rejection sampling method for the capillary element dynamics
∗ Add capillary elements (Algorithms 3, 4 or 5)
∗ Remove capillary elements (Algorithm 6)
∗ Update tensors K & D on finite element grid (Eqs. (15) & (16))

• Finite Element Method for blood flow
∗ Update the blood pressure p (solve the linear system (32))
∗ Update the blood velocity u (Eqs. (33) & (34))

• Smoothed Particles Hydrodynamics for oxygen flow
∗ First loop over all particles ` for the SPH method at time t

· Compute u`, D` by interpolation from their grid values
· Compute Vn

` by (40)
· Compute the time-step ∆tn by (43)
· Impose ∆tn ≤ 0.01 for accuracy of Acceptance-Rejection process

∗ Second loop over all particles ` for the SPH method at time t
· Update particle positions from Yn

` to Yn+1
` through (42)

· For Ω2 apply the periodic boundary conditions (see Sect. B.3.1)
· Apply oxygen consumption (Algorithm 2)

∗ Oxygen particles injection (see Sect. B.3.3)
∗ Update time from t to t+ ∆tn

End Do

Algorithm 1: Flowchart of numerical algorithm
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Quantity Symbol Value Unit

Finite-element-method for blood flow

Mesh size in x-direction ∆x 1.25 µm

Mesh size in y-direction ∆y 1.25 µm

SPH particle method for oxygen concentration

Particle “mass” m 1.0 −
Smoothing parameter η 5.0 µm
CFL parameter C 0.45 −
Point Poisson process for capillary creation

Number of sample points per time step Nc 105 −

Table 2: Numerical parameters

3 Results

3.1 Simulations for Geometry Ω1

In this section we consider Geometry Ω1 which mimics the branching of a new capillary
network from a blood vessel in the plane perpendicular to this blood vessel (see Fig. 4). We
explore the influences of the different creation/deletion mechanisms of capillary elements
introduced in Sect. 2.4 on the network structure. All the parameters used are those given
in Tables 1 and 2.

3.1.1 Including all capillary creation/deletion mechanisms

We first turn ’On’ all the mechanisms described in Sect. 2.4 i.e. creation of capillary
elements by oxygen gradient, reinforcement by blood flow and by WSS as well as capillary
pruning. Since all these processes are of stochastic nature, different realizations of the
same model will not give the same result. However, they are qualitatively similar. The
result of one given realization is displayed in Fig. 7. On this figure, the rectangle represents
the domain Ω1 i.e. corresponds to 1 mm in length in the horizontal direction and 2 mm in
the vertical direction. The positions of the oxygen particles in this domain are represented
by red spots and those of the capillary elements by tiny blue rods. As red spots overlay
the blue rods, capillary elements lying below the red oxygen particles are present although
not seen. For the same realization, the isolines and heatmap of the pressure p in Ω1 are
shown in Fig. 8 and a heat map of the Frobenius norm γ of the conductivity matrix K is
displayed in Fig. 9 (see Section 2.4.5 for the definition of the Frobenius norm). In both
figures, the colour code stands from blue (low value of p or γ) to red (high values) through
green and yellow (intermediate values). The six pictures (A) to (F) in these figures show
various stages of the evolution of the network, 2 min (A), 4 min (B), 6 min (C), 8 min (D),
10 min (E), 12 min (F) after initialization. The initial condition, not depicted, corresponds
to no oxygen and no capillary element at all, i.e. an empty domain for Fig. 7, regularly
spaced concentric pressure isolines emanating from the middle of the left boundary in Fig.
8 and a constant value equal to kh for Fig 9.

As the pressure drops (see isolines in Fig. 8) between the portion Γ1,D of the left
boundary (see Fig. 5 for the nomenclature) representing a blood vessel, and the top,
right and bottom boundaries Γ2,D ∪ Γ3,D ∪ Γ4,D where uptake of blood happens, there
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is a flow of blood from the former to the latter. Oxygen, which can enter the domain
through Γ1,D, is transported by blood flow. Blood flow and oxygen transport trigger the
formation of capillaries through the various creation/deletion mechanisms described in
Sect. 2.4. This results in the initiation of a capillary network emanating from Γ1,D which
gradually develops radially towards the surrounding boundaries Γ2,D ∪Γ3,D ∪Γ4,D as seen
in Fig. 7. Capillaries are made by the aggregation of many capillary elements along
distinctive branches and contribute to a dramatic increase of the hydraulic conductivity
along these branches as seen in Fig. 9. In Fig. 7 and 9 we observe spontaneous branch
sprouting, the merging of existing branches (forming so called ’anastomoses’) and the
spontaneous emergence of capillary tortuosity, which are characteristic features of actual
vascular networks (see for instance [24] or [49]). Fig. 9 which displays the norm of the
conductivity matrix K informs us on the density of capillary elements. In particular, the
big red spot of oxygen particles in the trunk of the network seen in Fig. 7 overlays a
uniform bed of capillary elements (hidden by the red spot) as indicated by the uniform
green color in the same region in Fig. 9. The creation of a capillary network instead of the
expansion of a homogeneous cloud of capillary elements is due to an instability akin to the
viscous fingering (or Saffman-Taylor) instability in fluids [69]. Such an instability arises
when a viscous incompressible fluids with large mobility penetrates a porous medium
occupied by another fluid of low mobility. If the two fluids are incompressible, they
are separated by a sharp interface which gradually forms indentations or fingers. This
instability has been mathematically studied in e.g. [52] and is recognized as a powerful
morphogenetic mechanism in biology [8]. Here, the creation of capillaries modifies the
mobility of the medium. Hence, blood flowing in a region filled with capillaries behaves like
the higher mobility fluid compared with blood flowing in the background medium. Within
this analogy, the creation of the blood capillary network can be viewed as a fingering
instability.

The pressure seems to remain constant and equal to its boundary value on Γ1,D

throughout the region covered by the capillary network and which roughly corresponds to
its convex hull (see Fig. 8). Indeed, due to the very large hydraulic conductivity along
the branches of the network, there is almost no pressure drop between Γ1,D and the tip
of the branches. Even if the hydraulic conductivity between the branches is much lower,
there is no reason for the pressure to drop significantly between these branches. So, all the
pressure drop between Γ1,D and the outer domain boundary occurs between the boundary
of the convex hull of the network (which we will call the ’envelope’ of the network) and the
outer boundary. As the envelope of the network moves towards the outer boundary, the
pressure isolines become closer and closer to each other, indicating a dramatically increas-
ing pressure gradient (see e.g. 8 (F)). When a network branch touches the outer boundary
(not depicted here), there is a sudden ’short circuit’ of the pressure difference and the flow
becomes virtually infinite, which does not make biological sense. So, the model currently
cannot describe the last phase of the network expansion, when it connects to the outer
boundary. Various mechanisms which may take place when the network transitions from
an expansion phase to an established phase are being investigated.

The results show that the network evolves over a time scale of the order of 10 minutes.
This is too fast and experimental results from e.g. [38] suggest that the right time-
scale would rather be 10 hours. So, the network dynamics is between 1 and 2 orders of
magnitude faster in the model than in reality. The issue there is a numerical issue. There is
a time-step limitation for the stability of the SPH resolution of the oxygen concentration
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equation. It requires that a particle does not move more than a smoothing length η
during one time step. The particle velocity is roughly that of the blood velocity. A slower
capillary creation/deletion dynamics would not dramatically affect this velocity, and thus,
the stability constraint. So, the time-step would be roughly similar to that used in the
current simulations. But the simulation would have to run for longer times, with 10 to 100
times more time-steps than in the current simulations. This would lead to unaffordable
simulation times. Resorting to implicit particle methods would be a possible cure. Some
implicit particle methods have been proposed in the context of plasma physics [40] but
they are cumbersome and would require to be adapted and validated for the present
case. Alternately, one could use the stationary form of the oxygen concentration equation.
Indeed, the time-scale for equilibration of the oxygen concentration is very fast compared
to the speed of network evolution. Therefore, we could safely assume an adiabatic evolution
of the oxygen concentration, where it would instantaneously adjust to the new network
structure exactly like the blood flow does in the current version of the model. The issue
here is the resolution of a degenerate stationary convection-diffusion-reaction equation
where the concentration takes zero values in large parts of the simulation domain. There
is no established method for this kind of problem and there are indeed potential issues
such as non-uniqueness of the solutions. This is why, in the present state, we have used the
SPH method and ’accelerated’ the evolution of the network to make solutions computable.

3.1.2 Influence of individual capillary creation/deletion mechanisms

In this section, we attempt to analyze the roles of individual creation/deletion mechanisms.
In Fig. 10 we display a set of simulations where the various creation mechanisms are turned
’On’ or ’Off’. When a mechanism is turned ’Off’, this simply means that the corresponding
Poisson parameter ν∗ is set to zero, while when it is turned ’On’, ν∗ is set to the value
given in Table 1. In Fig. 10 we have kept the deletion (capillary pruning) mechanism (see
Sect. 2.4.5) ’On’. If we turn this mechanism ’Off’ (not shown in the text but a video of
this situation is provided in the supplement), the magnitude of (the Frobenius norm of)
the conductivity tensor K reaches higher values in the middle of the branches, without this
having a perceivable influence on the network morphology itself, except for the dynamics
being slightly quicker (by about 10 %) than if the pruning mechanism is turned ’On’.

Fig. 10 takes the form of two binary trees placed back-to-back, the upper one (I)
corresponding to the reinforcement mechanism turned ’On’ and the lower one (II) to that
mechanism turned ’Off’. Within these trees, each branching corresponds to the choice of
one of the two other mechanisms (creation by oxygen gradient or by WSS) being ’On’
or ’Off’. The first branching (the topmost one for (I) and bottommost one for (II))
corresponds to choosing whether creation by WSS is ’On’ (this is depicted by a green edge
in the tree) or ’Off’ (red edge). Then the second branching (the bottommost one for (I)
and the topmost one for (II)) chooses whether creation by oxygen gradient (referred to
as ’O2∇’ on the picture) is ’On’ (greed edge) or ’Off’ (red edge). Each leaf of the tree
is a typical result of the model in the situation corresponding to the various mechanisms
being turned ’On’ or ’Off’ according to the path followed in the tree. Like in Fig. 7, the
picture shows the positions of the oxygen particles (red spots) and those of the capillary
elements (tiny blue rods). We refer to the previous section for a detailed description.

First we examine what happens when only one of the creation mechanisms is turned
’On’, the other ones being turned ’Off’.
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Figure 7: Positions of oxygen particles (red spots) and of capillary elements (blue rods)
in the rectangular domain Ω1 for a realization of the model. As red spots overlay the
blue rods, capillary elements lying below the red oxygen particles are present although not
seen. All the creation/deletion mechanisms of capillary elements are turned ’On’. All the
parameter used are those given in Tables 1 and 2. Pictures (A) to (F) give snapshots at
increasing times: 2 min (A), 4 min (B), 6 min (C), 8 min (D), 10 min (E), 12 min (F)
after initialization.
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Figure 8: Isolines and heatmap of the pressure p in the rectangular domain Ω1 for the same
realization of the model as in Fig. 7. All the creation/deletion mechanisms of capillary
elements are turned ’On’. All the parameters used are those given in Tables 1 and 2.
Pictures (A) to (F) give snapshots at increasing times: 2 min (A), 4 min (B), 6 min (C),
8 min (D), 10 min (E), 12 min (F) after initialization. The units are given in mmHg.
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Figure 9: Heatmap of the Frobenius norm γ of the hydraulic conductivity tensor K in
the rectangular domain Ω1 for the same realization of the model as in Fig. 7. All the
creation/deletion mechanisms of capillary elements are turned ’On’. All the parameter
used are those given in Tables 1 and 2. Pictures (A) to (F) give snapshots at increasing
times: 2 min (A), 4 min (B), 6 min (C), 8 min (D), 10 min (E), 12 min (F) after
initialization. The units are given in 105 µm2/(mmHg min)
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Figure 10: Two binary decision trees, placed back-to-back. The upper one (I) includes
capillary creation by reinforcement while the lower one (II) excludes it. Each tree succes-
sively includes or excludes capillary creation by WSS and oxygen gradient (noted O2∇).
At the end of each branch, a typical realization of the model with corresponding inclu-
sion/exclusion of the mechanism is shown. The picture shows the positions of the oxygen
particles (red spots) and those of the capillary elements (tiny blue rods). The times for
each of the snapshots are the following: 12 min (A), 12 min (B), 19.5 min (C), 30 min
(D), 12 min (E), 12 min (F) and 19.5 min (G), after initialization.
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• Creation of capillary elements by oxygen gradien ’On’, the other mecha-
nisms ’Off’: this corresponds to Fig. 10 (G). We notice a fully developed network.
So, creation by Oxygen gradient alone provides enough positive feedback to trig-
ger an instability. Let us describe a possible mechanism for this. First, due to the
large hydraulic conductivity in the branches, the blood flow velocity there is large.
Neglecting oxygen diffusivity, consumption and time variation of the oxygen con-
centration which are believed to play minor roles here, Eq. (4) roughly reduces to
u ·∇xρ = 0, showing that oxygen concentration is nearly constant in the branch and
equal to that in the inflow boundary Γ1,D, i.e. ρ0. Ahead of the branch tip, the
hydraulic conductivity drops, and so does the blood velocity and consequently the
oxygen concentration, which cannot be transported by the blood flow any more. So,
the creation mechanisms detects a large oxygen gradient at this place, oriented in
the direction along the branch. Therefore, it triggers the creation of a new capillary
element ahead of the branch tip in the direction of the branch, thereby increasing
its length. However, there are also oxygen gradients across the boundaries of the
branches. This results in capillary creation across the branches and contributes to
branch widening and the initiation of many new small branches across the main
branch. Indeed, we can see from Fig. 10 (G) that the trunk and main branches of
the network are thick and that branches terminate in a sponge-like structure. Several
anastomoses can also be seen. It takes about 20 min to observe a fully developed
network.

• Creation of capillary elements by WSS ’On’, the other mechanisms ’Off’:
this corresponds to Fig. 10 (F). Again, the WSS mechanism alone is able to generate
a full network. Here, the mechanism of network formation is a bit more mysterious
as WSS creates capillaries normal to the main blood flow. So, a new capillary created
at a branch tip will pursue the branch in the direction normal to the existing branch.
However, the next capillary will be created in the direction normal to the direction
of the previous capillary and thus again in the direction of the main branch. In this
way the branch advances a bit like a sailing boat forced to tack in headwind. Indeed,
the observation of the videos shows that the motion of the branch tip is undulatory
while it is straighter in the previous case. Behind the tip, the branch consolidates
into larger and straighter channels than in the previous case. The branch width is
very large at the trunk and decreases quickly in the secondary branches. Obviously
WSS also favors sprouting but most of these branches are not pursued because they
are not used by blood flow which finds an easier way towards the outer boundary
through the main branches. The formation of the network is faster than in the
previous case, with a fully developed network after only 12 min.

• Creation of capillary elements by reinforcement ’On’, the other mecha-
nisms ’Off’: this corresponds to Fig. 10 (D). Here, we cannot see much of network
formation. Rather, we observe the expansion of oxygen and capillary elements in
a diffusive way from the inflow boundary Γ1,D. The reinforcement mechanism does
not carry enough positive feedback to trigger a significant instability at least within
the 30 min time of the simulation (compared with the 12 min which are sufficient
for a fully developed network with WSS).

From this analysis, we can infer that the mechanisms that influence the network struc-
ture the most are the creation by oxygen gradient and by WSS. The creation by reinforce-
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ment seems to play a minor role. Let us examine this question more closely by comparing
what happens when we turn the reinforcement ’On’ and ’Off’ with all other parameters
unchanged. This corresponds to comparing homologous pictures in the upper (I) and lower
(II) binary trees of Fig. 10, i.e. (A) with (E), (B) with (F) and (C) with (G) (we leave
(D) aside because in this case, if we turn reinforcement ’Off’, there is no capillary creation
mechanism at all and nothing happens).

• Creation of capillary elements by WSS and oxygen gradients both ’On’;
comparison between reinforcement mechanism ’On’ and ’Off’: this corre-
sponds to comparing Figs. 10 (A) and (E). Fig. 10 (A) is the same as Fig. 7 (F) but
is reproduced again for the sake of comparison. The network structures in the two
plots are fairly different. While in the presence of reinforcement (Fig. 10 (A)) there
are thick branches with significant sprouting near their tip, in the absence of it (Fig.
10 (E)) branches are thinner and there is much less sprouting at the tip. In the latter
case, there are more thin branches directly branching off the trunk of the network.
Also, the network seems less developed in the absence of reinforcement, suggesting
that network formation is slightly slower. The reinforcement mechanism consolidates
small branches thereby giving them more chances to grow. When reinforcement is
absent, branching looks more difficult.

• Creation of capillary elements by WSS ’On’ and oxygen gradient ’Off’;
comparison between reinforcement mechanism ’On’ and ’Off’: this corre-
sponds to comparing Figs. 10 (B) and (F). Roughly speaking the same comparisons
as in the previous case can be made here, although the difference is less striking.

• Creation of capillary elements by oxygen gradient ’On’ and WSS ’Off’;
comparison between reinforcement mechanism ’On’ and ’Off’: this cor-
responds to comparing Figs. 10 (C) and (G). Here the two network structures are
qualitatively almost indistinguishable, except for the extension of the network, which
is larger when reinforcement is on, than when it is off.

So reinforcement seems to have little yet perceivable influence on the network structure.
In general it gives slightly more regular shape of branches so, we are going to keep it in the
next round of comparisons, thereby discarding the lower tree (II) of Figs. 10. Assuming
that we include reinforcement and looking only at the upper tree (I), we are going to
compare the cases where both WSS and oxygen gradient creation are ’On’ to the cases of
either one or the other is ’On’, i.e. compare Figs. 10 (A), (B) and (C) with one another

• Comparison between creation of capillary elements by WSS and oxygen
gradient both ’On’ to cases where either one is ’On’ and the other is ’Off’
(creation by reinforcement ’On’): this corresponds to comparing Figs. 10 (A),
(B) and (C). We can readily single out Fig. 10 (C) (where WSS is absent) for the
sponge-like structure of the network already noticed above. The WSS mechanism
present in Figs. 10 (A) and (B) provides a neater network with a well defined
branching structure. This may be related to the way the branch progresses by
creating a wider capillary path due to the undulatory motion of its tip as discussed
above. On the other hand, in terms of homogeneity of the oxygen perfusion, the
structure shown in Fig. 10 (C) seems to be more satisfactory as a wider surface of
the tissue seems to have access to oxygen. On the other hand, Figs. 10 (A) and
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Figure 11: Positions of the oxygen particles (red spots) and of the capillary elements (tiny
blue rods) in the domain Ω1 (see caption of Fig. 7 for details) for a realization with mesh-
size ∆x = ∆y = 5/8, the other parameters in Tables 1 and 2 being unchanged. Pictures
(A) to (D) give snapshots at increasing times: 2.5 min (A), 5 min (B), 7.5 min (C),
10 min (D) after initialization.

(B) look quite similar. A closer inspection shows that less branches are generated
and the generated ones are thicker in the absence of the oxygen gradient mechanism
(Fig. 10 (B)) than when it is present (Fig. 10 (A)). Overall, when all mechanisms
are present, the network seems to be better balanced, with a gradual decrease of
the thickness of the branches when going from the trunk to the periphery. For
this reason, we conclude that all mechanisms seem to concur to the formation of a
harmonious network.

3.1.3 Robustness of the simulations with respect to mesh size

We have realized that too coarse a mesh-size for the finite-element method may impair the
quality of the results. For all the simulations shown so far, we took ∆x = ∆y = 1.25µm as
mesh-size (see Table 2). This mesh-size resolves the scale of each capillary (tubes of length
15µm and width 4µm). By taking smaller mesh sizes we did not notice any significant
difference. Coarser mesh sizes on the other hand gave significant differences which we
attributed to a bad spatial resolution. In Fig. 11 we display the results of a realization
taking mesh size ∆x = ∆y = 0.625, i.e. half the size of the previous simulations, with
all other parameters in Tables 1 and 2 being the same as before. Figs. 11 (D) is to be
compared with Fig. 7 (E) roughly corresponding to the same time. We do observe some
differences due to stochastic nature of the model, which never provides exactly the same
results twice. But qualitatively, the features of the network are comparable, with a gradual
decrease of the thickness of the branches from trunk to tip. Hence, we concluded that the
mesh size ∆x = ∆y = 1.25µm is a good compromise to resolve the small scales without
excessive computer time.
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3.1.4 Influence of the pressure gradient and capillary element size

We first investigate the influence of the pressure gradient. Fig. 12 displays simulation
results for three different boundary values for the pressure. Fig. 12 (B) is the same as
Fig. 7 (E) while Fig. 12 (A) and (C) are for pressure gradients reduced by 10 % and
increased by 10 % respectively. All the creation/deletion mechanisms of capillary elements
are turned ’On’. All the parameter used are those given in Tables 1 (for geometry 1) and
2 except for Figs (A) and (C) where the boundary conditions for the pressure are modified
as follows:

• Fig. 12 (A): p0 is replaced by p′0 = p1 + 0.9 ∗ (p0 − p1) = 35.4 mmHg, and p1 = 14.6
mmHg is unchanged;

• Fig. 12 (C): p0 is replaced by p′′0 = p1 + 1.1 ∗ (p0 − p1) = 40.0 mmHg, and p1 = 14.6
mmHg is unchanged.

As seen in Fig. 12, the obtained capillary networks are qualitatively similar (but for differ-
ences due to the stochastic nature of the model) but their spatial extension increases with
increasing pressure gradient. These results reflect that the blood velocity is proportional
to the pressure gradient. So, a smaller pressure gradient results in a smaller blood velocity
and in a slower expansion of the network (Fig. 12 (A)) compared with the control case
Fig. 12 (B). By contrast, an increase of the pressure gradient results in a faster expansion
of the network (Fig. 12 (C)). These results also document the stability of the model with
respect to the physical parameters. A small variation of the pressure gradient gives rise to
a small variation of the network speed of expansion, without affecting the other qualitative
features of the network. It gives confidence that the model is well-posed in the Hadamard
sense, i.e. it responds continuously (in a probabilistic sense) to a small variation of its
parameters.

We next investigate the influence of capillary element size. Fig. 13 displays simulation
results for three different values of the capillary length Lc. Fig. 13 (B) is the same as Fig.
7 (D) while Fig. 13 (A) and (C) are for capillary lengths divided by 2 and multiplied by 2
respectively. All the creation/deletion mechanisms of capillary elements are turned ’On’.
All the parameter used are those given in Tables 1 (for geometry 1) and 2 except for Figs
(A) and (C) where the capillary length Lc is modified as follows:

• Fig. 13 (A): Lc is replaced by L′c = Lc/2 = 7.5 mm;

• Fig. 13 (C): Lc is replaced by L′′c = 2Lc = 30 mm.

We can see in Fig. 13 that the expansion speed of the network increases with capillary
size. Fig. 13 (A) obtained with half-sized capillary elements compared to the control case
(Fig. 13 (B)) shows a network extension roughly the same as that of Fig. 7 (C) which
corresponds to the control case at an earlier time (t = 6 min) than the one corresponding
to Fig. 13 (t = 8 min). Qualitatively the trunk and branches look thicker with a lower
number of bifurcations in the small capillary length case than in the control case (compare
Fig. 13 (B) with Fig. 7 (C)). Symmetrically, in Fig. 13 (C) which corresponds to double-
sized capillary elements compared to the control case (Fig. 13 (B)), the network extension
is comparable to an intermediate between Figs. 7 (E) and (F) which corresponds to the
control case at a later time (t ≈ 11 min). However, in Fig. 13 (C) on sees a branch that
extends up to the boundary and signals the end of the simulation, which corresponds to
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Figure 12: influence of the pressure gradient. (B) is the same as Fig. 7 (E). (A) is for
pressure gradient reduced by 10 %. (C) is for pressure gradient increased by 10 %. Posi-
tions of oxygen particles (red spots) and of capillary elements (blue rods) in the rectangular
domain Ω1 are plotted at time 10 min after initialization. All the creation/deletion mech-
anisms of capillary elements are turned ’On’. All the parameter used are those given in
Tables 1 and 2 except for Figs (A) and (C) where the boundary conditions for the pressure
are modified as detailed in the text.

time t = 12 min in the control case (Fig. 7 (F)). The morphology of the network is also
quite different with thinner trunk and branches. It has also a more well-defined network
morphology with less “foamy” structures at the tip of the branches. Thus, acting on
the capillary length allows us to tune the network morphology from moss-like to tree-llke
structures. It demonstrates the ability of the model to generate a wide range of different
network-like patterns. A more systematic parametric exploration is left to future work.

3.2 Simulations for geometry Ω2

We now consider Geometry Ω2 which represents the branching of a new capillary network
from a blood vessel in the plane parallel to itself (see Fig. 4). It is also relevant for
experimental situations such as [28, 51]. We refer to Sect. 2.6 for the description of the
geometrical setting and the boundary conditions.

A realization of the model with all capillary element creation/deletion mechanisms
turned ’On’ and with parameters given in Tables 1 and 2 is shown in Fig. 14. The graphics
are the same as in Fig. 7, i.e.: (i) the rectangle represents the domain Ω2 which is 2 mm
long in the horizontal direction and 1 mm long in the vertical direction and (ii) the red
spots are the positions of the oxygen particles and the tiny blue rods depict the capillary
elements. Again, the red spots overlay the blue rods, so there are capillary elements below
the red oxygen dots even if they are not apparent. We remind that the boundary conditions
along the horizontal boundaries are periodic. Fig. 14 shows six different snapshots of the
network evolution, 6.8 min (A), 13.6 min (B), 20.4 min (C), 27.2 min (D), 34 min (E),
46.8 min (F) after the initial time. The same instability as in geometry Ω1 takes place and
contributes to initiate the capillary network from the injection boundary Γmid

1,D . Because
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Figure 13: influence of the capillary element size. (B) is the same as Fig. 7 (D). (A) is for
capillary length Lc divided by 2. (C) is for capillary length Lc multiplied by 2. Positions of
oxygen particles (red spots) and of capillary elements (blue rods) in the rectangular domain
Ω1 are plotted at time 8 min after initialization. All the creation/deletion mechanisms of
capillary elements are turned ’On’. All the parameter used are those given in Tables 1 and
2 except for Figs (A) and (C) where the capillary length is modified as detailed in the text.

of the presence of the WSS capillary creation mechanisms, the network branches are very
distinct and of fairly constant width between two bifurcations. There is a gradual decrease
of the branch width from trunk to branch tip as already observed in Fig. 7. There are
several anastomoses. The periodic boundary conditions along the horizontal boundaries
prevent the generation of a pressure gradient in the vertical direction. The blood flow
is predominantly horizontal, from left to right and does not provide any drive for the
development of network branches in the vertical direction. Therefore, most of the network
branches develop horizontally. We also observe in Fig. 14 (F) that the early made branches
(those bifurcating away from the trunk close to the injection region) do not seem to be
used by oxygen particles. This is because most of the blood flows along the central trunk
due to its high hydraulic conductivity until it reaches the tip of the trunk. There, the
pressure gradient is large because of the short gap between the tip and the right-hand
outflow boundary. It outcompetes the low hydraulic conductivity in the gap and produces
a large blood flow resulting in a large perfusion in the whole trunk. This large blood flow
drags the oxygen particles away from the side branches which, after some time, become
depopulated. In actual tissues, unused capillaries are pruned after some time. Therefore,
the long term structure of the network would gradually become reduced to the mere trunk
itself and would be close to the structures shown in [28] or in [51, 55, 57]. We note that
the time scale is of the order of one hour to see a fully developed network, and is too fast
by at least one order of magnitude compared to actual observations. We refer to Sect.
3.1.1 for the rationale behind this discrepancy.

This geometry allows for comparisons with results of the literature using other models.
Ref. [15] considers a cell-based model for EC (based on a cellular Potts methodology)
moving along the gradient of the VEGF concentration. Motion of EC is also influenced
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by the ECM (a phenomenon known as haptotaxis) but ECM can be degraded by matrix
degrading molecules (MDM) secreted by the EC. VEGF, ECM and MDM concentrations
are described by continuum equations. Fig. 3 of [15] shows that motion of EC under
VEGF alone (with no consideration of ECM or MDM) generates a single stem. However,
when both the ECM and MDM fields are added, the network has a very similar tree-like
structure as that shown by our model in Fig. 14. In [77] similar mechanisms as in [15]
are considered but the model uses a continuum model for the EC except for the tip cells
which are kept discrete (in a similar fashion as in [44], the difference being that [77] uses a
phase-field approach). Again, the tree-like structures shown in [77] (such as e.g. Fig. 2 C
and D) are quite similar to those of our model in Fig. 14. Ref. [70] once more uses similar
mechanisms as [15, 77] but relies on a three-dimensional evolving network description of
the vascularization. Here also, the results display a tree-like structure with initial stems
gradually dividing into smaller branches (see e.g. Fig. 6 of [70]). The three-dimensional
nature of [70] does not allow further comparisons with our two-dimensional results. By
contrast, [44] produces more complex structures, where initial stems divide in smaller
branches but branches initiated from different stems may merge when they become close
(see e.g. Fig. 3 of [44]). It seems that [44] favors more mergers than [15, 70, 77] and
than the present model. In summary, different network formation mechanisms, powered
by the flow of blood in our model and by chemo- and haptotactism in [15, 70, 77] produce
qualitatively similar network structures. It would be interesting to understand if common
underpinning principles are at play which could explain this similarity. Also, it will be
difficult to decide which of the network formation mechanism is the biologically relevant
one on the basis of sole comparisons with experiments. On the other hand, although
similar mechanisms are at play in [44], the qualitative features of the generated networks
vary significantly from those obtained in [15, 70, 77]. This highlight the fact that these
models are very sensitive to small details of the modelling principles and the values of the
parameters. We should keep this in mind and avoid overstating the abilities (or inabilities)
of a model to generate specific structure types.

4 Discussion

In this model, the emergence of blood capillary networks relies on the positive feedback
between blood circulation and oxygen transport on the one hand and capillary formation
on the other hand. It is the first of this kind which gives a central role to the circulation
of blood. As new capillary branches are formed, they elongate or are reinforced as a
consequence of this positive feedback. Both the network topology (i.e. its connectivity)
and its geometry (e.g. the branch widths, the branching angles, etc.) are emerging
properties, i.e. they are not directly encoded in the capillary creation rules but rather
emerge from the interactions between the various entities of the model. This is made
possible by the main originality of the model: the description of the network through
elementary entities, the capillary elements, which are not required to connect to one
another. Rather, the connectivity is recovered when the characteristics of the tissue, its
hydraulic conductivity, is computed through the summation of the individual contributions
of each capillary element. In this way, the capillary elements are free to appear in the
adequate locations and directions in response to environmental cues, such as the local
oxygen gradient or shear stress tensor. This flexible approach, which does not require to
keep track of the network connectivity has first been proposed in the context of ant trail
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Figure 14: Positions of the oxygen particles (red spots) and of the capillary elements (tiny
blue rods) in the domain Ω2 (see caption of Fig. 7 for details) for a realization of the
model. All the creation/deletion mechanisms of capillary elements are turned ’On’. All
the parameters used are those given in Tables 1 and 2. Pictures (A) to (F) give snapshots
at increasing times: 6.8 min (A), 13.6 min (B), 20.4 min (C), 27.2 min (D), 34 min (E),
40.8 min (F) after initialization.

36



formation in [6].
There is a vast literature about angiogenesis and it is not feasible to compare our

model with all previous approaches. However, most of them focus on the migration of EC
as the main driving mechanism of capillary network formation (see e.g. [3, 5, 9, 15, 41,
44, 53, 59, 63, 76, 77, 79, 80, 82] and the review [71]). More importantly, most of them let
the tip cell play a special role. The mechanism is that an EC, in response to a chemical
signal emitted by a tumour or a hypoxic region, starts to move upwards the gradient of
this chemical. Doing so, it lays down a chemical trail like a slime trail left behind by a
snail (hence the nickname ’snail-trail model’ for this kind of models). This chemical trail
is then followed by other EC that form the stem of the blood vessel. An early model of
this type is [3], further elaborated in [9, 63]. In the multidimensional cell-based versions
of this model the rules for branching and creation of a new stem are often postulated with
characteristics borrowed from the observations. Hence, the resulting patterns cannot be
qualified as emergent in that they are directly resulting from the rules imposed to the
agents. Importantly, our model does not give any special role to the tip capillary element.
All capillary elements obey the same rules and this is enough to produce a blood vessel.
To this extent our model is more parsimonious than the snail trail model. Likewise, there
are no special instructions to tell the branches to bifurcate and how they should bifurcate.
The resulting patterns emerge in a non-direct way from the individual rules. Finally while
in most previously cited models, the driving force of network development is cell motion
upwards a chemotactic gradient, in ours, the leading role is taken by the blood flow. Likely,
both phenomena are important and the two types of mechanisms should be combined to
accurately describe the biological phenomenology. Indeed, there is evidence of both EC
motion during angiogenesis and sprouting of new blood vessels through WSS generated
by blood flow.

Another viewpoint developed in the literature is that of the optimality of the network
with respect to some cost functional. This approach dates back to [50]. Recently, inspired
by this approach and the discrete network models of [35], a series of papers derive and
analyse continuum models of network formation [1, 30, 31]. These are PDE models for a
vector quantity akin to a magnetization in ferromagnetism and which encompasses both
the density and orientation of the network. This quantity co-evolves with the hydraulic
conductivity of the porous medium generating a positive feedback loop in a very similar
fashion as in our model. There are however two important features that are needed
to generate a network in these models: network diffusion on the one hand, and more
importantly a nonlinear loss term interpreted as the metabolic cost of maintenance of the
network on the other hand. In particular it is shown in [31] that there is no network
generation unless a specific power law range is used for this nonlinear loss term. Our
model does not involve any network diffusion (however, one could view the noise carried
by the stochastic processes as a proxy for network diffusion). As reported at the beginning
of Sect. 3.1.2, it is insensitive to the presence of a nonlinear capillary pruning process,
itself being analog to the metabolic cost term of [31]. It is not surprising that continuum
models do not generate instabilities in situations where microscopic models do (see another
example in [6]). Noise involved in particle models is a powerful instability trigger which
is absent from continuum models. This also brings some questions about the validity of
the continuum models, although some rigorous results have been proved [29].

An analogy worth being made is with Diffusion-Limited Aggregation (DLA) models
[2, 32, 33] which have been used to model electrical breakdown [62]. In the DLA process,
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a network is triggered by the large gradient of a potential function satisfying Laplace’s
equation and feedbacks on this potential by changing the boundary conditions. It could
be seen as related to our model through a singular limit in which the capillary element
conductivity would be infinite. Our model bears also analogies with canalization models
in leaf venation processes (see [45, 46] and the review [68]). These models describe how
auxin transport (a hormone essential for plant development) shapes the vein network of
leaves. Similarly to our model, they are based on a diffusion equation in which the diffu-
sion coefficient evolves self-consistently with the flux of auxin. This generates a positive
feedback triggering an instability. In another domain, geosciences, models of landscape
evolution are based on a similar feedback between water flux and soil elevation [11, 12]
although in this case, soil elevation feedbacks into the advection part of the water height
equation rather than in its diffusion part.

Obviously there are many directions by which the model could be improved to better
account for biological observations. We have already commented on the need to include
growth factors such as VEGF and other signaling chemical species as well as to allow
for capillary element mobility and chemiotactic sensing ability. This would require the
addition of another convection-diffusion-reaction equations describing the transport of
these chemicals and its coupling with the capillary creation processes. Another aspect is
active migration of EC from existing vessel walls to form new blood vessels. Currently
capillary elements appear from nowhere and are immobile. In reality, EC are recruited
among those lining the existing blood vessels and move in procession (the snail trail) to
form new blood vessels. This active migration could be easily added to the model. In this
motion EC many be impeached or guided by the structure of the ECM, a process named
haptotaxis. In doing so, EC may also contribute to remodel the ECM (see [34, 44, 54] for
models of haptotaxis). In [60], the self-organization of ECM and functional cells is modeled
using a strategy similar to that presented here and the two models could be coupled to offer
a comprehensive description of capillary formation in a developing tissue. The restriction
to two-dimensions should be removed as biological reality is fully three-dimensional. Here,
the real issue is computational efficiency and fast resolution methods should be sought.
The time-scale problem already pointed out in Sect. 3 must also be addressed, by e.g.
directly looking for a stationary solution of the oxygen transport equation rather than
using its time-dependent version as in the current model. This requires the development
of robust stationary solvers able to deal with regions of zero oxygen density. One can
also dispute the validity of Darcy’s law in the tissue (see e.g. [64, 65]). One improvement
would be to consider Brinkman’s equation, i.e. adding the influence of blood viscosity.
This would allow for a larger span of possible boundary conditions for the blood velocity
and the possible emergence of more complex flow patterns. An extra step in increasing
complexity would be distinguishing between blood in the capillaries and the interstitial
fluid outside. This is needed if one wants to take specific account of oxygen transport across
the capillary walls [58]. More generally, tissues have poroelastic character (i.e. there are
interactions between tissue deformations and blood flow) which might be interesting to
take into account.

Moving towards identifying which structures are biologically relevant, there is a need
for network shape quantification. One possibility would be to skeletonize the capillary
network and extract quantifiers such as statistics of branch lengths, branch widths and
branching angles at junctions. Other shape quantifiers could involve the surface ratio
between the network and its convex envelope for instance. Once a set of relevant quan-
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tifiers are selected, a parametric exploration of the model could be attempted. However
this would first require significant algorithmic improvements as discussed below. Due to
the large dimension of parameter space, sensitivity analysis would be needed. After these
prerequisites, it would be possible to compare the model with biological images on which
the same quantifiers would have been calculated. In doing this model calibration, the use
of recent machine-learning techniques may prove necessary. Of course, these comparisons
will be limited by the two-dimension character of the model, which makes the development
of a three-dimensional model all the more necessary. Among algorithmic improvements
needed for the model to be of practical use, the first one is the development of a faster
elliptic solver. Due to the simple domain shape, a Fast Fourier Transform (FFT) solver
could be an option, provided attention is paid to the aliasing problem in view of the large
spatial inhomogeneity of the problem [4]. A possible remedy to that large inhomogen-
ity could be multi-scale elliptic methods [18]. The acceptance/rejection for the capillary
creation/deletion process could be improved by the use of Markov Chain Monte Carlo
methods such as the Metropolis-Hastings algorithm. As pointed out above, the resolution
of stationary oxygen transport would be necessary to recover time-scales compatible with
observations. Such algorithmic improvements will not resolve the computational complex-
ity bottleneck facing simulations of large tissues or organs. Here a paradigmatic shift is
necessary and consists of resorting to a continuum model for the capillary network as well.
A rigorous passage from the discrete model to the continuum one is however quite involved
(see e.g. [29]) and faces conceptual problems, such as the greater difficulty to generate
networks with a continuum model as discussed above. Without solving these difficulties,
any phenomenological continuum model of capillary network would be subject to caution.

As summarized here this new network formation model opens many different exciting
research avenues. It offers a new paradigm for capillary network creation by placing the
flow of blood at the central place in the process. This paper provides a proof of concept of
this approach and elaborates a road map by which the model can be gradually improved
towards a fully fledged simulator of blood capillary network formation. Such simulator
would have huge potential for biological or clinical applications in cancer, wound healing,
tissue engineering and regeneration. Besides biological or clinical sciences applications the
approach could also be adapted to plant biology (for leaf venation or root formation),
physics (lightnings of thunder) or engineering (dielectric breakdown).

Appendices

A Finite Element Method for blood flow

A.1 Weak formulation and approximation

Let us first consider the elliptic problem (3) posed on Ω1 with boundary conditions (17),
(18), (19). Let T h be a decomposition of the domain Ω into non-overlapping identical
rectangle elements with mesh size ∆x and ∆y in the x and y directions and let h =
max{∆x,∆y}. Let Vh be the conforming finite element space associated with the partition
T h, i.e. Vh := {v ∈ C(Ω) : v|R ∈ Q1 for all R ∈ T h}, where Q1 denotes the space
of polynomials of degree 1 in each direction in R and C(Ω) is the space of continuous
functions defined on the closure Ω of Ω. Introduce the decomposition of the boundary
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∂Ω = ΓN ∪ ΓD with ΓD = Γ1,D ∪ Γ2,D ∪ Γ3,D ∪ Γ4,D and ΓN = Γ1,N ∪ Γ2,N . The set of
test functions is given by Vh0 := {u ∈ Vh : u|ΓD

= 0}. Multiplying (3) by a test function
v ∈ Vh0 , integrating over Ω and using Green’s formula we obtain∫

Ω
K∇xp · ∇xv dx−

∫
∂Ω

(K∇xp · n̂)v dσ = 0. (30)
eq:integral

Thanks to the assumptions on the test function and the boundary condition (19), the
second term of the left-hand-side of (30) is zero. Let {ϕ1, ϕ2, . . . , ϕN} be a basis of Vh0
and introduce plift the function of Vh which interpolates the Dirichlet boundary values
(17), (18) of p at the nodes on ΓD. We introduce p̃ = p − plift and denote by p̃h an
approximation of p̃ in Vh0 satisfying∫

Ω
(K∇xp̃h) · ∇xϕj dx = −

∫
Ω

(K∇xplift) · ∇xϕj dx, ∀j ∈ {1, . . . , N} . (31)
eq:discrete

Introducing A = (Aij)i,j=1,...,N the N×N symmetric positive-definite matrix whose entries
are Aij =

∫
Ω(K∇xϕi) · ∇xϕj dx, equation (31) gives rise to the linear system

Ap = b (32)
eq:linsys

where b = (bi)i=1,...,N is the vector with entries bi = −
∫

Ω(K∇xϕi) · ∇xplift dx and where

p = (pi)i=1,...,N is the vector of unknown values pi such that p̃h =
∑N

i=1 pi ϕi. To solve (32)
we use a preconditioned conjugate gradient method using the inverse of the diagonal of
A as a preconditioner (see [14]). In order to compute an approximation for each of the
entries of the matrix A we approximate K(x) in each element R of the triangulation T h
by a constant function K̃ equal to the average of the values of K at the vertices of R.
With this approximation we compute the local stiffness matrix AR in the element R given
as (where the nodes are ordered in counterclockwise order starting from the lower left
corner):

AR =
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+
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.

For Geometry 2, we proceed following a similar procedure as for Geometry 1 tak-
ing into account the periodic boundary conditions. For more details on the theory and
implementation of the finite-element method we refer to [7, 25].

A.2 Velocity computation

We compute the gradient of the pressure using a second order finite difference method and
for the sake of completeness we state the formulas below. For the partial derivatives with
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respect to x and assuming that (xi, yj) is a node not lying on the boundary of Ω (where
Ω is Ω1 or Ω2) we use the centered difference scheme

∂p(xi, yj)

∂x
≈ p(xi+1, yj)− p(xi−1, yj)

2∆x
. (33)

centeredFDM

For nodes on the left boundary of Ω we use a forward finite difference scheme

∂p(xi, yj)

∂x
≈ −3p(xi, yj) + 4p(xi+1, yj)− p(xi+2, yj)

2∆x
, (34)

forwardFDM

and a symmetric formula for nodes on the right boundary. The partial derivatives with
respect to y are computed in a similar fashion.

B Particle approximation of the oxygen flow

We use a splitting method to solve (4). In the first splitting step, we use the Smoothed
Particle Hydrodynamics (SPH) method to solve for the advection and diffusion terms,
i.e. the left-hand side of (4). In the second step, we solve for the reaction term i.e. the
right-hand side of (4).

B.1 SPH approximation of the convection-diffusion step

Here, we give the details for the first step, i.e. we assume β = 0 throughout this section.
Supposing for a while that the vector field v in (5) is given and smooth, then the density

ρ(x, t) = m

L∑
`=1

δ(x−Y`(t)), (35)
eq:particleapprox

where δ is the Dirac delta at 0 and m > 0 is any positive constant, is a solution of Eq. (4)
if and only if Y`(t) satisfies the following ODE:

dY`

dt
= v(Y`(t), t) = u(Y`(t), t)−D(Y`(t), t)

∇xρ
ρ+ ρ̃

(Y`(t), t). (36)
particleDynamics

A measure satisfying (35), (36) is called a particle solution, Y`(t) is the position of the `-th
particle at time t and m is the particle mass (here chosen identical for all particles). There
is flexibility in choosing m and the initial particle positions Y`(0) which is used to best
approximate initial and boundary conditions. However, as such, the formula does not make
sense. Indeed, ρ being a sum of Dirac deltas, the right-hand side of (36) is not defined. The
SPH methodology consists of introducing a mollifier kernel W : x ∈ Ω 7→W (x, η) ∈ [0,∞)
where η > 0 satisfying

∫
ΩW (x, η) dx = 1 and W (·, η) → δ as η → 0 in the distributional

sense. Then ρ can be approximated by

ρ(x, t) ≈ ρη(x, t) := m

L∑
`=1

W (x−Y`(t), η) , (37)
densitySPH

which is now a smooth function. Thus, it can be composed with a nonlinear function U :
r ∈ [0,∞) 7→ U(r) ∈ R giving

U(ρ)(x, t) ≈ U(ρ)η(x, t) := U
(
m

L∑
`=1

W (x−Y`(t), η)
)
, (38)

eq:Urho

41



and it can be differentiated:

∇xρ(x, t) ≈ (∇xρ)η(x, t) := m
L∑
`=1

∇xW (x−Y`(t), η) . (39)
gradientSPH

This strategy is at the core of the SPH method [47]. Here, we use this strategy to replace
(36) by

dY`

dt
= V`(t) := u(Y`(t), t)−D(Y`(t), t)

(∇xρ)η(Y`(t), t)

ρη(Y`(t), t) + ρ̃
, (40)
eq:O2_particle

which is now completely well-defined. In the present context of diffusion equations, this
method is called the diffusion velocity method and was first introduced in [17]. Several
choices for the mollifier kernel W are possible depending on the context. We have chosen
the poly6 kernel for its simplicity and its reliability in the numerical solution of the Navier-
Stokes equations (see [48]). This kernel is defined in R2 by

W (x, η) =


4

πη8

(
η2 − |x|2

)3
if 0 ≤ |x| ≤ η ,

0 otherwise .

(41)
kernel

We solve (40) using the forward Euler scheme

Yn+1
` = Yn

` + ∆tnVn
` (42)

updatePosition

where Yn
` ; Vn

` are approximations of Y`(t
n), V`(t

n) and where tn is the n-th time dis-
cretization point. The time-step ∆tn = tn+1 − tn is chosen respecting the CFL condition

∆tn = C
η

max`|Vn
` |

(43)
CFL

to preserve the stability of the scheme, with C ≤ 1/2 (see Table 1). In addition, in
order to have a good acceptance-rejection sampling for the creation of capillaries, we also
impose the constraint ∆tn ≤ 0.01. The blood velocity u(Y`(t), t) is obtained through a
linear interpolation from the values of u given by the finite element calculation at the
nodes of the finite element mesh. The diffusivity matrix D is updated at the end of the
capillary creation-removal process (described below) through (16). For better efficiency,
it is first computed at the nodes of the finite-element mesh. Then, the diffusion coefficient
D(Y`(t), t) is recovered by linear interpolation exactly like the blood velocity u.

B.2 Death process for the reaction step

Now, we consider the right-hand side of (4), i.e. we assume v = 0 in (4). We approximate
this equation by a simple death process on the particle approximation (35). This step is
described in Algorithm 2 below.

B.3 Boundary conditions

B.3.1 Periodic boundary conditions

These are boundary conditions (29) in Case 2 of Sect. 2.6.2. If the y-coordinate of a
particle exits the range [0, Ly), it is changed to y + kLy where k is the unique integer in
Z such that y + kLy ∈ [0, Ly). The x-coordinate is unchanged.
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For ` = 1, . . . , L

Compute β(ρn` ) =
βsat

ρn` +Km
with ρn` = ρη(Yn

` , t
n)

Pick randomly p ∈ [0, 1] according to a uniform law

If (p < 1− e−β(ρn` )∆tn) then

Remove particle `

End if

End for

Algorithm 2: Algorithm for the particle death process modelling oxygen consumption
(assuming time is equal to tn)

B.3.2 Outflow boundary conditions

As described in Sect. 2.6.2, the boundary conditions (21) and (28) guarantee that the
oxygen flow is outgoing across the corresponding boundaries. They are taken into account
by removing the particles that exit the domain through these boundaries.

B.3.3 Blood vessel boundary condition

These are conditions (20) and (26). We define a ghost domain Ω(Lghost) = [−Lghost, 0]×
[Lmin, Lmax], where Lghost is changed dynamically as explained below. The ghost domain
intersects Ω along the boundaries where the Dirichlet conditions (20) or (26) need to be
enforced, i.e. Γ1,D (Case 1) or Γmid

1,D (Case 2), which here, for the ease of notation will be
collectively denoted by Γ1,D. Supposing that in Ω(Lghost) there is a density ρ0 of oxygen
particles and that their velocity in the x-direction is v, their flux j across Γ1,D is then
j = ρ0v. A sensible estimate of v is given by the blood velocity u along Γ1,D. Thus, we
take v equal to the average of u along Γ1,D (in practice, we take the average of u at the
finite-element nodes along Γ1,D). But this flux j is also given by j = N/(L∆t) where
N is the number of oxygen particles (of mass m = 1) crossing Γ1,D during a small time
interval ∆t and L = Lmax−Lmin is the length of Γ1,D. We can then estimate the number
Nn of particles to be created during time step ∆tn as Nn = ρ0 L∆tn vn (where vn is the
estimate of v at time tn). We take Lnghost (the width of the ghost domain at time tn)

to be Lnghost = ∆tn vn (we recall that ∆t(n) is determined by (43)) and put Nn particles
randomly uniformly in the corresponding ghost domain Ω(Lnghost). During the time step
∆tn, they are moved with velocity vn and end up inside the actual domain Ω. In this way,
we ensure that the flux of particles entering the domain corresponds to the density ρ0. As
Nn is in general not an integer, we insert bNnc particles if Nn ≥ 1 (where bNc denotes
the greatest integer smaller than or equal to N). If Nn < 1, we pick r in [0, 1] with
uniform probability and insert one particle in Ω(Lnghost) randomly uniformly if r ≤ Nn

and create no particle otherwise. In the unlikely event where there are no particles in the
computational domain Ω, (43) cannot be use. Instead, we set ∆t = Ch/v, where C is the
same CFL number as that used in (43).
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B.3.4 No oxygen boundary condition

This is condition 22 along Γ1,N ∪ Γ2,N in Case 1 of Sect. 2.6.2. We use the same method-
ology as in Sect. B.3.3 but with ρ0 = 0, simply meaning that we inject no particle across
this boundary.

C Acceptance-Rejection sampling method for the capillary
creation

C.1 Creation of new capillaries and modification of the tissue

We use an acceptance-rejection method in order to sample the spatio-temporal Poisson
processes involved in the creation of capillary elements. Set time equal to tn and ∆tn given
by (43). We first choose the total number of sampling points to be Nc (see Table 1 for the

value used in our simulations and Sect. 2.7 for a discussion of this choice). We set S = |Ω|
Nc

where |Ω| is the area of the full domain Ω and we define u⊥(X) to be the rotation by 90◦

in counterclockwise direction of u(X). The algorithms for capillary element creation by
oxygen gradient, by reinforcement or by WSS, (see Sect. 2.4) are respectively given at
Algorithms 3, 4, 5.

For j = 1, . . . , Nc Do:

Pick up randomly a position X ∈ Ω

Compute ρ(X) and ∇xρ(X) using formulas (37) and (39)

Compute the Poisson intensity νc(X) using formula (7)

Pick up randomly p ∈ [0, 1] (uniform law)

If p < (1− e−νcS∆t(n)
) then

Create a capillary at position X with direction
∇xρ(X)

|∇xρ(X))|
End if

End Do

Algorithm 3: Algorithm for capillary element creation along the gradient of oxygen
concentration (see 2.4.2)

C.2 Removal of unused capillaries

The capillary pruning algorithm is a Poisson time process only, not a spatio-temporal
Poisson process. So we do not need the area discretization parameter S. The capillary
pruning algorithm is given in Algorithm 6.

D Description of the videos

Videos can be found on https://doi.org/10.6084/m9.figshare.c.4287575.v1
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For j = 1, . . . , Nc Do:

Pick up randomly a position X

Compute the local blood flow and density, u(X) and ρ(X), respectively

Compute Poisson intensity νf (ρ,u) using (11)

Pick up randomly p ∈ [0, 1] (uniform law)

If p < (1− e−νfS∆t(n)
) then

Create a capillary at position X with direction
u(X)

|u(X))|
End if

End Do

Algorithm 4: Algorithm for capillary element creation by reinforcement along blood
flow (see 2.4.3)



For j = 1, . . . , Nc Do:

Pick up randomly a position X

Compute σ(X) according to (12)

Compute the leading eigenvalue λ of σ(X)

Compute the Poisson coefficient νw(λ) using (13)

Pick up randomly p ∈ [0, 1]

If p < (1− e−νwS∆t(n)
) then

Create a capillary at position X with direction
u⊥(X)

|u⊥(X)|
End if

End Do

Algorithm 5: Algorithm for capillary element creation by WSS (see 2.4.4)



Loop over all the capillaries of the network

Get the capillary position X

Compute γ(X), the Frobenius norm of K(X)

Compute the Poisson intensity νr using formula (14)

Pick up randomly p ∈ [0, 1] (uniform law)

If p < (1− e−νr∆t(n)
) then

Remove capillary

End if

End loop

Algorithm 6: Algorithm for capillary pruning (see 2.4.5)
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The videos have been obtained by running the model with the parameters set to the values
given in Tables 1 and 2 and with the following choices for the geometry and the capillary
element creation/pruning mechanisms:

1) Movies (a)-(d): Geometry Ω1. All the capillary element creation/pruning mecha-
nisms “ON”, corresponding to Figs. 7-9 and 10(A).
Movie (a) Positions of oxygen particles (red spots) and capillary elements (blue rods),
corresponding to Fig. 7.
Movie (b) Isolines and heatmap of the pressure p, corresponding to Fig. 8.
Movie (c) Heatmap of the Frobenius norm of the hydraulic conductivity tensor, cor-
responding to Fig. 9.
Movie (d) Same as movie (a) but with mesh size divided by 2, corresponding to
Fig. 11.

2) Movies (e)-(j): Geometry Ω1. Positions of oxygen (red spots) and capillary elements
(blue rods) with some capillary creation/pruning mechanisms turned off (correspond-
ing to Figs. 10(B) to (G)).
Movie (e) (corresponds to Fig.10(B))
WSS “on”, oxygen gradient “off”, reinforcement “on” and pruning “on”.
Movie (f) (corresponds to Fig.10(C))
WSS “off”, oxygen gradient “on”, reinforcement “on” and pruning “on”.
Movie (g) (corresponds to Fig.10(D))
WSS “off”, oxygen gradient “off”, reinforcement “on” and pruning “on”.
Movie (h) (corresponds to Fig.10(E))
WSS “on”, oxygen gradient “on”, reinforcement “off” and pruning “on”.
Movie (i) (corresponds to Fig.10(F))
WSS “on”, oxygen gradient “off”, reinforcement “off” and pruning “on”.
Movie (j) (corresponds to Fig.10(G))
WSS “off”, oxygen gradient “on”, reinforcement “off” and pruning“on”.

3) Movie (k): Geometry Ω1. Positions of oxygen (red spots) and capillary elements
(blue rods) with all the capillary creation mechanisms “on” and pruning turned
“off” (Correspondong figure not shown in the text).

4) Movie (l): Geometry Ω2. Positions of oxygen (red spots) and capillary elements (blue
rods) with all the capillary creation/pruning mechanisms turned “on” (corresponding
to Fig. 14).
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