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Abstract
Transit operators need vulnerability measures to understand the level of service degrada-
tion under disruptions. This paper contributes to the literature with a novel causal inference 
approach for estimating station-level vulnerability in metro systems. The empirical analysis 
is based on large-scale data on historical incidents and population-level passenger demand. 
This analysis thus obviates the need for assumptions made by previous studies on human 
behaviour and disruption scenarios. We develop four empirical vulnerability metrics based 
on the causal impact of disruptions on travel demand, average travel speed and passenger 
flow distribution. Specifically, the proposed metrics based on the irregularity in passenger 
flow distribution extends the scope of vulnerability measurement to the entire trip distribu-
tion, instead of just analysing the disruption impact on the entry or exit demand (that is, 
moments of the trip distribution). The unbiased estimates of disruption impact are obtained 
by adopting a propensity score matching method, which adjusts for the confounding 
biases caused by non-random occurrence of disruptions. An application of the proposed 
framework to the London Underground indicates that the vulnerability of a metro station 
depends on the location, topology, and other characteristics. We find that, in 2013, central 
London stations are more vulnerable in terms of travel demand loss. However, the loss of 
average travel speed and irregularity in relative passenger flows reveal that passengers from 
outer London stations suffer from longer individual delays due to lack of alternative routes.
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Introduction

Metros, also known as subways or rapid transit, have become a vital component of public 
transport. With the advantage of large capacity and high-frequency services, 178 metro 
systems worldwide carried a total of 53,768 million trips in 2017 (International Union of 
Public Transport 2018). Incidents occur frequently in urban metro systems, mainly due to 
supply-side failures (e.g., signal failures), sudden increase in travel demand (e.g., public 
concert or football matches) and change in weather conditions (Brazil et  al. 2017; Melo 
et al. 2011; Wan et al. 2015). These incidents can cause service delays and overcrowding, 
which in turn lead to safety concerns and potential losses in social welfare. For instance, 
the London Underground encountered 7973 service disrupting incidents of above 2 min 
duration between April 2016 and April 2017, causing a total loss of around 34 million cus-
tomer hours (Transport for London 2017, 2019). The Singapore Mass Rapid Transit expe-
rienced 47 severe delays that lasted over 30 min between 2015 and 2017 (Land Transport 
Authority 2017).

Operators may consider investing in new technologies to improve metro facilities and 
mitigate the effect of incidents. For instance, the New York City Subway was in a state of 
emergency in June 2017 after a series of derailments, track fires and overcrowding inci-
dents. The Metropolitan Transportation Authority invested over $8 billion to stabilise and 
modernise the incident-plagued metro system (Metropolitan Transportation Authority 
2019). It is apparent that metros are willing to invest in their infrastructure systems, but it is 
often not known how those investments compare in achieving improvements. To facilitate 
project selection, metros are increasingly relying on disaggregate performance metrics that 
reveal the most vulnerable parts of the network. Performance can be measured in various 
ways. Popular examples are risk, resilience, reliability and vulnerability related metrics. 
These concepts are often confused by researchers as well as well as practitioners. Inter-
ested readers can refer to Faturechi and Miller-Hooks (2015) and Reggiani et al. (2015) to 
understand the most agreed relationship among these concepts. In this paper, we focus on 
the vulnerability of urban metro systems, where the performance measures of interest are 
passenger demand, average travel speed and passenger flow distribution.

Since the 1990s, the concept of vulnerability has been widely used to character-
ise the performance of transport systems (Mattsson and Jenelius 2015; Reggiani et al. 
2015), which is often defined as a measure of susceptibility of the transport system to 
incidents (Berdica 2002; Jenelius et  al. 2006; O’Kelly 2015). In this study, the vul-
nerability of metro systems refers to the extent of degradation in the level of service 
due to service disruptions. Service disruptions are defined as events that interrupt nor-
mal train operations for a specific period of time.1 Disruptions should be distinguished 
from the broader term “incidents”, as incidents might not always affect services. Exam-
ples of such incidents include elevator failure or corridor congestion in metro stations. 
Vulnerability metrics can measure the consequences of service interruptions, in the 
form of performance outputs such as train kilometres, passenger volumes or the qual-
ity of travelling. For operators, such metrics have important implications in identifying 
weak stations or links in metro systems and efficiently allocating resources to the most 

1  Five minutes to ten minutes are commonly used thresholds to define disruptions (Zhang et al. 2016). Dif-
ferent metro systems around the world adopt several thresholds, primarily on the basis of the regular fre-
quency of operations.
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affected areas. Given the rising interest in utilising vulnerability metrics in disruption 
prevention and management, obtaining an accurate measure of such metrics is crucial.

Traditionally, vulnerability in urban metros is investigated based on complex net-
work theory and graph theory. Complex network theory converts metro networks into 
graphs, which enables the quantitative measurement of vulnerability in metro systems 
(Chopra et  al. 2016; Derrible and Kennedy 2010; Yang et  al. 2015). The adoption of 
graph theory has facilitated the evolution of vulnerability indicators from simply captur-
ing the characteristics of network topology to also considering travel demand patterns 
and their land use dependencies (Jiang et al. 2018). However, most of these studies rely 
on simulation-based approaches to quantify vulnerability under hypothetical scenarios 
of disruptions. These simulation experiments are based on assumptions, both in terms 
of passenger behaviour and the type and scale of disruptions (Lu 2018; Sun and Guan 
2016; Sun et  al. 2015, 2018). With an empirical approach, such assumptions can be 
avoided, and thus more reliable metrics of vulnerability can be achieved using historical 
evidence.

The empirical approach is rare but not unique in the literature. The exception we are 
aware of is Sun et al. (2016), who first detect incidents based on abnormal ridership and 
use the real incidents data to assess the vulnerability of the metro system. However, 
their method has some limitations. First, they assume the occurrence of incidents to be 
random, which is a strict and unrealistic assumption as we demonstrate in this study. 
Also, the abnormal ridership may not be a good indicator of incidents if the fluctua-
tion in ridership are merely manifestations of changes in travel demand due to external 
factors.

This paper proposes a novel alternative methodology to quantify vulnerability, by 
empirically estimating the causal impact of service disruptions on travel demand, aver-
age travel speed and passenger flow distribution at station-level. The application of a 
propensity score matching method accounts for the non-randomness of disruptions and 
ensures unbiasedness of the causal estimates. We make this approach comprehensive for 
the entire network, including stations where disruptions are not observed, by predicting 
the level of vulnerability at these stations with a random forest algorithm. In this way, 
we eliminate the need for ad hoc assumptions on passenger behaviour and the nature of 
disruptions.

We use London Underground as a case study and apply the methodology with large-
scale automated fare collection and incident data. The station-level vulnerability is het-
erogeneous among the network, depending on the considered performance metrics. In 
terms of the demand loss and gross speed loss (overall delay), the most affected stations 
are more likely to be found in Central London areas. When considering average speed 
loss (individual delay) and irregularity in relative passenger flows, the most affected 
stations are scattered around outer London areas due to lack of alternative routes. These 
results can potentially aid investment decisions of metro operators.

The rest of paper is organised as follows. Section  “Literature review” reviews the 
literature on vulnerability measurement and disruption impact analysis in urban metro 
systems. Section 3 presents our empirical framework to compute vulnerability metrics. 
This section discusses the proposed causal inference approach to estimate the unbiased 
disruption impact, which is the key input in building vulnerability metrics. In “Case 
study: London underground” section, we analyse the vulnerability of London Under-
ground as a case study. Results are discussed in “Results and discussions” section. 
Finally, “Conclusions and future work” section concludes and highlights the potential 
avenues for future research.
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Literature review

Below we provide a contextual review of previous studies related to vulnerability meas-
urement. In “Measuring the vulnerability of metro systems” section, we review the litera-
ture on vulnerability quantification in rail transit networks, while “Estimating disruption 
impact” section investigates previous attempts to estimate the impact of disruptions.

Measuring the vulnerability of metro systems

There are two traditional methods used to build vulnerability indicators of metro systems—
topology-based and system-performance-based analysis.

The topological methods rely on complex network theory to convert the metro network 
into a scale-free graph, in which nodes represent metro stations, edges represent links 
between directly connected stations and the weight associated with each edge is computed 
based on travel time or distance (Derrible and Kennedy 2010; Mattsson and Jenelius 2015; 
Zhang et  al. 2011). The changes in the system’s connectivity are reflected on graphs by 
removing nodes or links and vulnerability is entirely governed by the topological struc-
ture. For instance, the location importance of metro stations or links is indicated by the 
number of edges connected to a specific node and the fraction of shortest paths passing 
through the given node/edge (Sun and Guan 2016; Sun et al. 2018; Yang et al. 2015; Zhang 
et  al. 2018b). Network-level efficiency is indicated by the average of reciprocal shortest 
path length between any origin–destination (OD) pair. Such global indicators capture the 
overall reachability as well as the service size of a metro system (Sun et al. 2015; Yang 
et al. 2015).

System-performance-based analyses not only consider the network topology but also 
incorporate real data on metro operations (e.g., ridership distribution) into vulnerability 
measurement (M’cleod et al. 2017; Mattsson and Jenelius 2015). For instance, Sun et al. 
(2018) use a ridership-based indicator—a sum of flows in edges connected with the given 
node—to complement the topological measures by integrating passengers’ travel prefer-
ences. Other studies use passenger delay and demand loss as vulnerability indicators 
(Adjetey-Bahun et al. 2016; M’cleod et al. 2017; Nian et al. 2019; Rodríguez-Núñez and 
García-Palomares 2014). Specifically, passenger delay is summarised by changes in the 
weighted average of travel time between all OD pairs due to disruptions where weights are 
station-level passenger loads. Jiang et al. (2018) suggest integrating land use characteristics 
around stations into vulnerability measurement because metro systems interact with the 
external environment during incidents.

To quantify vulnerability based on the aforementioned indicators of the system’s perfor-
mance, almost all previous studies adopt simulation-based approaches and assume hypo-
thetical disruption scenarios. The simplest disruption scenario involves a single station or 
link closure, assuming one node or edge in the graph is out of service. This incident affects 
the topology structure and passengers’ route choice and the differences in the correspond-
ing performance indicators under normal and disrupted scenarios are quantified to measure 
vulnerability (Sun et al. 2015). More complex disruption scenarios include the closure of 
two or more non-adjacent stations, failure of an entire line, and sequential closure of sta-
tions until the network crashes (Adjetey-Bahun et al. 2016; Chopra et al. 2016; Sun and 
Guan 2016; Zhang et al. 2018a, b). Ye and Kim (2019) also discuss the case of partial sta-
tion closure.
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Simulation-based studies gained popularity because they do not require incident data 
and can flexibly control simulation settings to imitate a wider range of possible situations. 
However, researchers have to make many assumptions to infer passengers’ response to 
virtual disruptions. Without observing passengers’ movements during real incidents, the 
validity of the simulation assumptions is questionable. For example, while quantifying 
passenger delay indicators, Rodríguez-Núñez and García-Palomares (2014) and Adjetey-
Bahun et  al. (2016) assume that all passengers have the same travel speed and they do 
not change their destinations under disruptions unless there is no available route. However, 
in reality, passengers can travel at different speeds, leave the metro system, change their 
destinations, or reroute during disruptions. As a result, especially for system-based analy-
ses, vulnerability metrics obtained from simulation-based studies may not reflect the true 
changes in the level of service due to disruptions. There is, therefore, scope to improve vul-
nerability measurement by empirically estimating the impact of disruptions. The advantage 
of empirical-based methods is that the aforementioned assumptions are no longer needed, 
and the estimated impacts of disruptions are more reliable. However, the need for large-
scale datasets is the main drawback of empirical studies.

Estimating disruption impact

In an urban rail transit context, early attempts to analyse disruption impact relied on sur-
veys. Rubin et al. (2005) conducted a stated preference survey to understand the psycho-
logical and behavioural reactions of travellers to the bombing incident, which happened 
in London during July 2005. They consider passenger’s reduced intention of travelling by 
the London Underground after the attack as the key indicator. Since stated willingness may 
not reflect real travel behaviour, Zhu et al. (2017) performed a revealed preference survey 
to investigate travellers’ reactions to transit service disruptions in Washington D.C. Metro. 
By comparing their actual travel choices before and during the metro shutdown, they find 
a 20% reduction in demand. Results from such surveys are usually presented as the per-
centage change in passengers’ preferences for travel modes, departure time, and destina-
tions. Although this information is useful, we still need detailed information about delays 
or demand losses to quantify true disruption impacts. Furthermore, there are inherent limi-
tations of survey-based studies. For instance, repeated observations of a respondent are dif-
ficult to collect for a long period because of constraints associated with cost, manpower, 
recording accuracy, and privacy protection of respondents (Kusakabe and Asakura 2014). 
A survey sample also cannot cover all passengers, which may lead to biased estimates of 
disruption impact if the sample is not representative of the population.

With the wide use of automated fare collection facilities in metro systems, smart card 
data have become a powerful tool for research related to transit operations and travel behav-
iour (Pelletier et al. 2011). Compared to survey data, the key advantages of smart card data 
are cost-effectiveness, continuous long-term recording and accurate travel information for 
each passenger within the system (Kusakabe and Asakura 2014). Therefore, researchers 
have started using smart card data to analyse disruption impacts. For instance, Sun et al. 
(2016) develop a method to identify incidents and conduct trip assignments with/without 
incidents. They estimate the disruption impact by computing the differences between two 
assignments in terms of ridership distribution and travel time across all OD pairs. This 
study does not require extra assumption about passengers’ reaction because their actual 
locations and movements are revealed from smart card data. However, they assume 
that metro disruptions occur randomly, while in reality, factors such as travel demand, 



3274	 Transportation (2021) 48:3269–3300

1 3

signalling type, passenger behaviour, operating years, rolling stock characteristics and 
weather conditions have a significant influence on the likelihood of metro failures (Brazil 
et al. 2017; Melo et al. 2011; Wan et al. 2015). This is a particularly important considera-
tion because the impact estimated from direct comparison of performance indicators before 
and after disruptions will be biased under non-random occurrence of disruptions. Spe-
cifically, a few factors affecting the impact of disruptions (e.g., passenger behaviour and 
weather conditions) may also affect the occurrence of disruptions, leading to confounding 
bias in pre-post comparison estimates (Imbens and Rubin 2015). Some researchers also 
adopt prediction-based approaches to quantify disruption impact using smart card data. For 
instance, Silva et al. (2015) propose a framework to predict the exit ridership and model 
behaviours of passengers under station closure and line segment closure. In a very recent 
study, Yap and Cats (2020) apply supervised learning approaches to predict the passenger 
delay caused by incidents. However, these prediction-based studies also cannot disentangle 
the causal effect of disruptions and can result into biased estimates due to the existence of 
confounding factors.

Table 1 shows a comparison of recent vulnerability studies and also illustrates the con-
tribution of this research. We conclude this section with a summary of gaps in the literature 
that we address to obtain more accurate measures of vulnerability:

1.	 Previous studies on vulnerability metrics of transit systems are largely based on simula-
tion approaches. These studies do not account for the actual behaviour of passengers 
under disruptions. Basing analyses on empirical data, rather than simulations, obviates 
the need for making potentially unrealistic assumptions on passengers’ movement.

2.	 In urban metro systems, disruption occurrences can be non-random. Therefore, empiri-
cal studies on quantifying disruption impacts should account for this non-randomness 
to eliminate confounding biases in estimation.

In this paper, we show that both improvements can be made by adopting causal infer-
ence methods and calibrating them using large-scale smart card data and incident data. 
Specifically, the proposed method allows for the non-random occurrence of disruptions and 
adjusts for potential bias caused by confounding factors. Subsequently, unbiased empiri-
cal estimates of disruption impact are used to accurately compute vulnerability metrics of 
metro systems.

Methodology

From a methodological point of view, our empirical approach has three stages: first, we 
apply a causal inference method to estimate the impact of disruptions on station-level 
travel demand and travel speed (see Sect. 3.1). Then, in Sect. 3.2 we construct vulnerability 
metrics based on the disruption impact estimated in the first stage. Finally, the third stage 
imputes2 missing vulnerability metrics for non-disrupted stations using machine learning 
algorithms. Figure 1 illustrates all steps of the proposed empirical framework.

2  In Statistics, “imputation” is the process of replacing missing data with substituted values. Here we 
retrieve these missing values based on a relationship between vulnerability metrics and covariates of the 
disrupted stations.



3275Transportation (2021) 48:3269–3300	

1 3

Ta
bl

e 
1  

A
 c

om
pa

ris
on

 o
f r

ec
en

t r
es

ea
rc

h 
on

 m
et

ro
 v

ul
ne

ra
bi

lit
y

Re
se

ar
ch

V
ul

ne
ra

bi
lit

y 
m

et
ric

s o
r d

is
ru

pt
io

n 
im

pa
ct

s
A

na
ly

si
s a

pp
ro

ac
h

Sm
ar

t c
ar

d 
or

 O
D

 
da

ta
La

nd
-u

se
N

on
-

ra
nd

om
 

di
sr

up
tio

ns
To

po
lo

gy
-b

as
ed

Sy
ste

m
 p

er
fo

r-
m

an
ce

-b
as

ed
Si

m
ul

at
io

n-
ba

se
d

Em
pi

ric
al

 (r
ea

l 
in

ci
de

nt
s)

D
er

rib
le

 a
nd

 K
en

ne
dy

 (2
01

0)
√

√

Zh
an

g 
et

 a
l. 

(2
01

1)
√

√

Ya
ng

 e
t a

l. 
(2

01
5)

√
√

C
ho

pr
a 

et
 a

l. 
(2

01
6)

√
√

Zh
an

g 
et

 a
l. 

(2
01

8a
)

√
√

Zh
an

g 
et

 a
l. 

(2
01

8b
)

√
√

Ye
 a

nd
 K

im
 (2

01
9)

√
√

Ro
dr

íg
ue

z-
N

úñ
ez

 a
nd

 G
ar

cí
a-

Pa
lo

-
m

ar
es

 (2
01

4)

√
√

√

A
dj

et
ey

-B
ah

un
 e

t a
l. 

(2
01

6)
√

√
√

M
’c

le
od

 e
t a

l. 
(2

01
7)

√
√

√

Su
n 

et
 a

l. 
(2

01
5)

√
√

√
√

Su
n 

an
d 

G
ua

n 
(2

01
6)

√
√

√
√

Su
n 

et
 a

l. 
(2

01
8)

√
√

√
√

Lu
 (2

01
8)

√
√

√
√

Jia
ng

 e
t a

l. 
(2

01
8)

√
√

√
√

Su
n 

et
 a

l. 
(2

01
6)

√
√

√

O
ur

 a
pp

ro
ac

h
√

√
√

√
√



3276	 Transportation (2021) 48:3269–3300

1 3

Stage 1: Causal inference method to estimate disruption impact

To evaluate the impact of a disruption on a metro system, we use Rubin’s potential out-
come framework to establish causality (Rubin 1974). We define metro disruptions as 
‘treatments’ and the objective of our analysis is to quantify the causal effect of treat-
ments on ‘outcomes’ related to system performance.3 Specifically, we are interested in 
estimating station-level causal effects of disruptions on (1) travel demand, (2) travel 
speed of passengers, and (3) passenger flow distributions from/to a station. From the 
literature, we know that factors such as passenger demand, weather conditions, network 
topology and engineering design influence the likelihood of disruption occurrence (Bra-
zil et  al. 2017; Melo et  al. 2011; Wan et  al. 2015). Therefore, the assignment of the 
treatment is not random. This is important in our context because the factors associ-
ated with the assignment of the treatment are also likely to affect the outcomes of inter-
est, and are thus potential confounders in estimation of impacts. Since previous studies 

Fig. 1   Flowchart of the paper’s methodological framework

3  In causal inference, ‘treatment’ means the intervention or exposure assigned to (or encountered by) study 
units, and ‘outcomes’ means the observed results or effects of the intervention on a response variable of 
interest. In the context of this study, service disruptions that occurred at metro stations are the ‘treatment’, 
and ‘outcomes’ are the performance of metro services such as travel demand, journey speed, and passenger 
flow distribution.
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on disruption impact have ignored the non-randomness of treatments, their estimated 
impact may be biased.

We adopt propensity score matching (PSM) methods to address this issue, which 
potentially eliminates such confounding biases. The propensity score is defined as the 
conditional probability that a unit receives treatment given its baseline confounding 
characteristics. If the observed characteristics sufficiently capture the sources of con-
founding, then the propensity score can be used to consistently estimate impacts given 
conditional independence between treatment assignment and outcomes (e.g. conditional 
on the propensity score) (Imbens and Rubin 2015). This index is obtained by estimating 
a relationship between treatment assignment and baseline confounding characteristics 
using a regression model. The estimated propensity score is then used to form various 
semi-parametric estimators of the treatment effect such as weighting, regression, and 
matching. In this section, we first provide a contextual formulation of PSM and then 
describe how we apply PSM to quantify the causal impact of metro disruptions on the 
performance of metro systems.

Propensity score matching (PSM) methods

The system-level impact, which averages the impact of all disruptions occurred within the 
metro system, is too generic to represent network vulnerability. Thus, we focus instead on 
estimating station-level disruption impacts. We define study unit i as the observation of a 
metro station within a 15-min interval. The treatment variable, denoted by Wit ∈ {0, 1} , 
records whether study unit i at time t is observed in a disrupted 

(

Wit = 1
)

 or undisrupted 
state ( Wit = 0 ). To quantify disruption impacts, we define outcomes of interest as the 
changed travel demand and average speed of trips that start from the given study unit, 
denoted by Yit.

where n is the total number of stations within the metro system, and T  is the total num-
ber of time intervals during the study period (for example, T = 4 if study period is 1 h). 
Yit(0) and Yit(1) are counterfactual potential outcomes, only one of which is observed. The 
propensity score, denoted by e

(

Xit

)

 , is obtained by regressing Wit on confounding factors, 
denoted by Xit . We discuss potential confounding factors in the empirical study in “Case 
study: London underground” section.

To derive valid causal inference using PSM we need our model to satisfy three key 
assumptions. The first one is the conditional independence assumption (CIA),

which states that conditional on the observed confounding factors Xit , the treatment assign-
ment should be independent of the potential outcomes. The advantages of the propensity 
score stems from a property that this conditional independence can be achieved by just 
conditioning on a scalar rather than high-dimensional baseline covariates (Rosenbaum and 
Rubin 1983). Thus, the CIA based on the propensity score can be written as:

(1)

Yit
(

Wit

)

= Yit(0) ×
(

1 −Wit

)

+ Yit(1) ×Wit

Yit =

{

Yit(0) if Wit = 0

Yit(1) if Wit = 1

i = 1,… , n t = 1,… , T ,

(2)Wit⊥
(

Yit(0), Yit(1)
)

| Xit,
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The second assumption requires common support in the covariate distributions by treat-
ment status:

which states that the conditional distribution of Xit given Wit = 1 should overlap with that 
of the conditional distribution of Xit given Wit = 0 . This assumption can be tested by com-
paring the distributions of propensity scores between treatment and control groups.

The third assumption, also known as the stable unit treatment value assumption 
(SUTVA), requires that the outcome for each unit should be independent of the treatment 
status of other units (Graham et al. 2014).

If all three assumptions hold and the outcome variable is entry demand or travel speed, 
the average treatment effect (ATE) of disruptions on a station i can be derived using the 
following equations (Imbens and Wooldridge 2009):

where t ∈
{

1,… , Td
}

 denotes all the disrupted time intervals of station i during the study 
period and Yitc is the outcome of the control unit tc corresponding to station i disrupted or 
treated at time t . JM(it) is a set of indices of the closest M control units (in terms of pro-
pensity scores) for station i disrupted at time t during the same 15-min interval, but on a 
different day.4 Thus, 𝜏 i

match
 represents the average of the difference between the outcomes of 

treated and matched control units.
When the outcome variable is trip distribution, ATE can be expressed as:

(3)Wit⊥
(

Yit(0), Yit(1)
)

| e
(

Xit

)

.

(4)0 < pr(Wit = 1|Xit = x) < 1 for all x,

(5)𝜏 i
ATE

= 𝜏 i
match

=
1

Td

Td
∑

t=1

(

Ŷ i
t
(1) − Ŷ i

t
(0)

)

,

Ŷ i
t
(1) = Yit,

Ŷ i
t
(0) =

1

M

∑

tc∈JM (it)

Yitc ,

i = 1,… , n t = 1,… , Td

(6)𝜏 i
ATE

= 𝜏 i
match

=
1

Td

Td
∑

t=1

[

dif
(

Ŷ i
t
(1), Ŷ i

t
(0)

)]

,

Ŷ i
t
(1) = Yit =

(

r1
1it
, r2

1it
,… , rk

1it

)

,

Ŷ i
t
(0) =

1

M

∑

tc∈JM (it)

Yitc =

[

1

M

∑

tc∈JM (it)

(

r1
0itc

)

,… ,
1

M

∑

tc∈JM (it)

(

rk
0itc

)

]

,

i = 1,… , n k = 1,… , n t = 1,… ,Td,

4  Please note that the study period of this study is 35 days. Therefore, we observe the same station across 
multiple days (see “Case study: London underground” section for details).
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where for a treated or disrupted unit, Yit denotes the distribution of trips made from (out-
ward) and to (inward) station i at time t , rk

1it
 denotes the ridership from the disrupted station 

i to station k in case of outward flow (or from station k to station i in case of inward flow) at 
time t . Correspondingly, Yitc denotes a composite distribution which averages the ridership 
distribution of all closest M control units during the same 15-min duration, but on a differ-
ent day. rk

0itc
 denotes the ridership between station i and station k for a non-disrupted period 

tc in the control group. dif (a, b) is a function to calculate the distance between discrete dis-
tributions a and b . In the context of this study, we consider three distance functions:

where dif1(.) represents the Euclidean distance, which directly aggregates the difference 
between each element of the input distributions without normalising. The latter two func-
tions compare the probability mass functions P

(

Ŷ i
t
(1)

)

 and P
(

Ŷ i
t
(0)

)

. dif2(.) represents the 
Hellinger distance and dif3(.) represents Kullback–Leibler divergence (also known as rela-
tive entropy). Each distance function has its strength and weakness, which we highlight in 
Sect. 5.4 while discussing results of the empirical study.

In the next subsection, we explain how the causal inference framework introduced 
in Eqs.  (1), (5) and (6) can be implemented in the present application. Following the 
framework summarised in Fig. 1, we first provide details of the propensity score model, 
followed by description of our matching algorithms and the estimation of disruption 
impacts.

Application of PSM methods

To predict the propensity score, i.e. probability of encountering disruptions at a metro sta-
tion within 15-min interval conditional on the baseline confounding characteristics, we use 
the logistic regression model with a linear link function:
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where � is the intercept and � is the vector of regression coefficients related to the vec-
tor of confounding factors x{c} . In our empirical study, a station with a higher number of 
incidents in the past is more likely to encounter a new disruption in the future, just like the 
black spot on highways. To account for this temporal correlation among disruption occur-
rence, we ensure that confounding factors contain the history of past disruptions happened 
on the same day.

Additionally, we also consider a more advanced generalised additive model (GAM), in 
which the logarithm of the odds ratio is modelled via semi-parametric smoothing splines. 
A GAM has potential to uncover flexible relationships between the likelihood of disruption 
occurrence and confounding factors. The GAM with temporal correlation is presented in 
Eq. (11):

where f
(

x{c};�
)

 is a flexible spline function of baseline characteristics. After estimating 
propensity scores, we check the common support (overlap) assumption to ensure the effec-
tive matching and reliability of the propensity score estimates (Lechner 2001).

The next step is matching. Every treated unit i at time t is paired with M similar control 
units based on the value of their propensity scores and time-of-day characteristics. Since 
there is no theoretical consensus on the superiority of matching algorithms, we adopt two 
commonly used approaches: Subclassification Matching and Nearest Neighbour Match-
ing. We then compare them with different replacement conditions and pairing ratios and 
select the one that balances the greatest disparity among the mean of confounding factors. 
It is also necessary to check the conditional independence assumption after matching. We 
conduct balancing tests to check whether the disrupted units and the matched units are 
statistically similar across the domain of confounders. If significant differences are found, 
we try another specification of the propensity score model and repeat the above-discussed 
procedure.

In the last step, we estimate station-level disruption impact using Eqs. (5) and (6). Given 
the matched pairs, the treatment effect for a station at a specific period is estimated as the 
difference between outcomes of the treated unit and its matched control units. Then the 
average station-level disruption impact is obtained by averaging these differences across all 
disrupted periods. We separately estimate the average treatment effects for three measures 
of metro performance:

1.	 Entry ridership: the number of passengers who enter the study unit.
2.	 Average travel speed: average of the speed of all trips that start from the study unit. 

For each trip, speed is computed as travel distance divided by observed journey time. 
Whereas journey time is directly obtained using the smart card data, travel distance 

(10)e
(

Xit

)

= pr
(

Wit = 1|Xit = x{c}
)

= p(it)

log

[

p(it)

1 − p(it)

]

= � + �x{c} i = 1,… , n t = 1,… , T,

(11)e
(

Xit

)

= pr
(

Wit = 1|Xit = x{c}
)

= p(it),

log

[

p(it)

1 − p(it)

]

= � + f
(

x{c};�
)

i = 1,… , n t = 1,… , T,
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(track length) of the most probable route is derived using the shortest path algorithm.5 
Passengers who had left the system and used other transport modes to reach the final 
destination are not included in the computation of this metrics. If the origin station is 
entirely closed and no passenger can continue trips by metro, then the average speed will 
be zero. If the origin station is partially closed, this metrics reflects the average speed 
of passengers who remain in the system.

3.	 Distribution of passenger flow: the distribution of completed trips that start from (out-
ward flow) and arrive to (inward flow) the study units.

Stage 2: Constructing vulnerability metrics

We propose four station-level vulnerability metrics that are constructed from the empirical 
estimates of disruption impacts on the above-discussed performance measures.

	 (i)	 The loss of travel demand is expressed as: 

where � i
ATE

(entry) (calculated using Eq. 5) denotes the station-level change in the 
number of entry passengers due to service disruptions. di is the loss of demand 
from external passengers who have not entered the metro system during a 15-min 
interval due to disruption.

	 (ii)	 The loss of average travel speed quantifies the decline in level of service experienced 
by each passenger at a metro station (individual delay), which is expressed as: 

where � i
ATE

(speed) (calculated using Eq. 5) denotes the decrease in average travel 
speed of trips starting from station i during a 15-min disruption period. By def-
inition, si

avg
 accounts for the changes in both travel distance and journey time of 

passengers.
	 (iii)	 The loss of gross travel speed reflects the loss of passenger kilometres per unit time, 

which is expressed as: 

 where ri denotes the average entry ridership of all disrupted 15-min intervals at the 
corresponding station. Thus, si

gross
 denotes the total decrease in average travel speed 

for all passengers who start their journeys from station i during a 15-min service 
disruption.

	 (iv)	 The irregularity in passenger flow reflects the degree of deviation in the distribution 
of trips from/to the disrupted station as compared to regular conditions, which is 
expressed as: 

(12)di = −� i
ATE

(entry),

(13)si
avg

= � i
ATE

(speed),

(14)si
gross

= � i
ATE

(speed) × ri,

(15)fi = � i
ATE

(flow)

5  For future research, conditional on the availability of vehicle location data, the shortest path algorithm 
can be replaced by the passenger-train assignment algorithm (Hörcher et al. 2017; Zhu and Goverde 2019) 
to infer the most likely path chosen by passengers.
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where � i
ATE

(flow) (calculated using Eq. 6) denotes the average irregularity in flows 
that start from or arrive at station i during a 15-min disruption period. This metrics 
extends the scope of vulnerability measurement in terms of the entire distribution 
of entry/exit ridership, instead of just analysing the disruption impact on the entry 
or exit demand (that is, moments of the trip distribution).

Stage 3: Imputing missing vulnerability metrics

Some stations may not encounter any incidents within the study period. Thus, the empiri-
cal disruption impact and the vulnerability metrics cannot be estimated directly for these 
stations. To predict the missing metrics of non-disrupted stations, we estimate a random 
forest regression model (Hastie et al. 2009):

where f̂ B
rf

(

x{s}
)

 denotes the random forest predictor. In the equation above, B is the number 
of trees, x{s} is a vector of input features (see Table 2 for details). Furthermore, T

(

x{s};�b
)

 
is the output of the bth random forest tree, and �b characterizes the bth random forest tree. 
The random forest regression that we apply here is a combination of a bagging algorithm 
and ensemble learning techniques. By averaging the output of several trees (or weak learn-
ers in boosting terminology), it reduces the overfitting problem.

For this study, random forest (RF) is an appropriate prediction method. Interested 
readers are referred to Hastie et  al. (2009) for details of RF regression algorithms, who 
explain the reasons behind its superior prediction accuracy as compared to other competing 
machine learning methods (Khalilia et al. 2011; Couronné et al. 2018). However, consid-
ering that the field of machine learning is evolving rapidly, we also encourage readers to 
explore state-of-the-art alternatives to RF and test different prediction algorithms to find 
the most suitable algorithm for their data.

Case study: London underground

In 2013, the London Underground (LU) had 270 stations and 11 lines, with a total length 
of 402  km stretching deep into Greater London. The circle-radial network structure, as 
shown in Fig. 2 (Wikimedia Commons 2013), is one of the largest and most complex metro 
systems in the world. Of all lines within the network, one is circular (Circle Line) cover-
ing Central London, and the remaining 10 are radial routes converging at the centre of the 
system. For connectivity among stations, LU has 56 stations connecting 2 lines, 16 stations 
connecting 3 lines and 8 stations connecting more than 4 lines. LU is also one of the busi-
est metro systems, with 1.265 billion journeys by the end of 2013 (Transport for London 
2019). Due to over 150 years old operations and enormous passenger demand, disruptions 
occur frequently in LU.

We use the following data to analyse the station-level vulnerability of the LU system. 
We conducted data processing and analysis using open-source R software (version 4.0.3).

Pseudonymised smart card data  Transport for London (TfL) provided automated fare 
collection data from 28/10/2013 to 13/12/2013 (35 weekdays) between 6:00 and 24:00. 

(16)f̂ B
rf

(

x{s}
)

=
1

B

B
∑

b=1

T(x{s}; 𝜃b),
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We consider this duration as our study period. The smart card data contain information on 
transaction date and time, entry and exit locations, encrypted card ID and ticket type (pay 
as you go/season ticket). The resolution of time stamps exacts to 1 min. By using smart 
card data, we compute entry/exit ridership of each station and obtain passengers’ journey 
time and travel speed.

Incidents and service disruption information  TfL also provided incident information data 
for our study period. By mining provided incidents logs, we construct an accurate data-
base of service disruptions, which includes the occurrence time, location and duration of 
disruptions.

LU network topology information  We collect data on station coordinates, topology struc-
ture and the length of tracks between adjacent stations from open databases authorised by 
TfL.6

Weather data  We collect temperature (°C), wind speed (km/h) and rain status from the 
Weather Underground web portal.7 Based on the observations of over 1000 weather sta-
tions around London, we estimate weather conditions for all LU stations at 15-min resolu-
tion for our study period.

Fig. 2   London Underground network. Adapted from (Wikimedia Commons, 2013)

6  Source: https​://www.whatd​othey​know.com.
7  Weather information web portal: https​://www.wunde​rgrou​nd.com/.

https://www.whatdotheyknow.com
https://www.wunderground.com/
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LU station characteristics  These station-level features include daily ridership, station age, 
rolling stock age, sub-surface/deep-tube stations, terminal stations and screen doors. We 
also calculate supplementary factors, which capture the characteristics of the affected areas 
around metro stations. To compute these factors, we define the affected area as a circu-
lar area with the radius of 500 metres around the station. We use 2011 UK Census data 
at Lower Super Output Area (LSOA) level8 to calculate these supplementary factors. We 
select all LSOAs whose centroids are within the 500 metres radius of the affected area. We 
then average the related statistics of the selected LSOAs according to their areas in the cir-
cle. Figure 3 illustrates the above process of calculations.

To construct the causal inference framework for LU, our study unit is the observation of 
metro stations during each 15-min interval within the system service time. We define metro 
disruption as the state when scheduled train services are interrupted for at least 10 min at 
a station. Over the study period, LU encountered 2894 disruptions lasting from 10 min to 
11 h. The aim of causal inference is to estimate the unbiased impact of these observed dis-
ruptions (i.e., treatment) on system-performance measures (outcome). The treatment status 
Wit is constructed according to the disruption database mentioned in “Case study: London 
underground” section. To match the disruption duration with the timeframe of study units, 
we define the following rule to assign the treatment status: if a disruption occurs within a 
15-min interval t of a given station i , we regard this study unit as disrupted (i.e., Wit = 1 ), 
no matter whether disruptions start or end in the middle or last for the entire 15-min inter-
val. Conversely, if the station is under normal service during entire 15-min interval, we 
regard this study unit as un-disrupted (i.e., Wit = 0 ). The treatment outcomes Yit are pre-
sented as three station-level performance indicators: entry ridership, exit ridership, and 
average travel speed.

As discussed earlier, metro disruptions may not occur randomly. We list all potential 
confounding factors for LU in Table 2, which we use in estimating the propensity score 
model (Sect.  3.1). These confounders are selected according to the literature and exper-
tise, including travel demand, weather conditions, engineering design, time of day and 
past disruptions (Brazil et  al. 2017; Melo et  al. 2011; Wan et  al. 2015). Table  2 also 

(a) Station affected areas (b) An example of LSOA data

500m

Metro Station

Fig. 3   The illustration of calculating station-level supplementary factors

8  Source: London Datastore, published by Greater London Authority: https​://data.londo​n.gov.uk/censu​s/.

https://data.london.gov.uk/census/
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shows available covariates for the imputation of missing vulnerability metrics in Stage 3 
(Sect. 3.3), which not only include some of confounders, but also include supplementary 
factors of LU station characteristics.

Results and discussions

Out of 270 stations of the LU system, TfL provided the required datasets for 265 stations 
during the study period (28/10/2013–13/12/2013). Smart card data were missing for the 
remaining five stations. Our analysis only covers weekdays, during which the system is 
open for 18 h per day, starting from 6:00 a.m. to midnight. Based on the assumption of 
exchangeability of weekdays (Silva et al. 2015), we generate a panel dataset with a total of 
265 × 35 × 18 × 60/15 = 667,800 study units. Although the PSM method is a data-hungry 
method, the untreated pool (control group) is large enough to ensure adequate matches for 
treated units. Specifically, the ratio of the number of control and treatment units is around 
15:1.

Propensity score models

We initially include three key baseline covariates—past disruptions, time of day and real-
time travel demand—in the logistic regression. We then iteratively add one of the remain-
ing covariates at a time from covariates listed in Table 2 and conduct the likelihood ratio 
test to decide whether the additional covariate should be included in the final specification 
or not. We also test Generalised Additive Models (GAM), but we do not observe any gains 
in the model fit. A high proportion of dummy variables (11 out of 19) may limit the gains 
from a flexible spline specification of the link function. The estimation results of the logis-
tic regression model are summarised in Table 3.

The role of propensity score models is to establish a comprehensive index to represent 
all confounding factors, rather than predicting treatment assignment. While noting that the 
logistic regression model does not reveal the causal effect of covariates on the likelihood of 
incident occurrence, we succinctly discuss the multivariate correlations uncovered by this 
model. The coefficients of time dummies indicate that incidents are more likely to occur in 
morning peak hours. Positive signs on coefficients of the remaining confounders (except 
Rail dummy) confirm that all these factors increase the probability of encountering a dis-
ruption. Specifically, surface stations are more susceptible to the surrounding environment 
than those in tubes. We find statistically significant interaction effects between wind speed 
and Overground dummy. The accumulated number of past disruptions happened on the 
same day increases the probability of encountering another incident. Conclusively, the pro-
pensity score model reveals that the occurrence of metro disruptions is non-random, which, 
in turn, also justifies the application of causal inference methods in estimating disruption 
impacts.

Alternatively, the estimated propensity score model can also be viewed as a binary clas-
sifier that predicts whether metro disruptions occur or not. To illustrate its diagnostic abil-
ity, we compute the area under the receiver operating characteristic curve: AUC = 0.796, 
which again indicates that the occurrence of metro disruptions is non-random.
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Matching results

Before the estimated propensity scores are utilised for matching, we inspect the common 
support condition (assumption 2 of the PSM method). Figure  4 presents the propensity 
score distributions for both disrupted and normal observations. The histograms display 
apparent overlap between the treatment and control groups, even for large propensity 
scores. There is no treated unit outside the range of common support, which means we do 
not need to discard any observations. We thus conclude that the overlap assumption is ten-
able in our empirical study.

The PSM method aims to balance the distribution of confounders between the treatment 
and control groups after the matching stage. To assess the quality of matching, we perform 
balance tests for four algorithms: subclassification matching, nearest neighbour matching 
without replacement ( M = 1 ), nearest neighbour matching with replacement ( M = 1 ) and 
nearest neighbour matching with replacement ( M = 2 ), where M is the number of matched 
control units for each treatment unit. It is worth noting that the proposed matching scheme 
not only conditions on the estimated propensity scores, but also condition on the time-of-
day of the treatment (disruption). We find that nearest neighbour matching with replace-
ment ( M = 2 ) performs the best, improving the overall balance of all confounding fac-
tors by 99.95%. This improvement indicates that within matched pairs, the difference of 

Table 3   The results of propensity 
score model (logistic regression)

(1) represents dummy variables
The base dummy for time of the day is Time8 (19:00–24:00)
*p < 0.1; **p < 0.05; ***p < 0.01

Confounders Coef. SE

Intercept − 4.547*** 0.036
Past disruptions 0.271*** 1.634e–03
Time0 (6:00–6:30) (1) 1.883*** 0.027
Time1 (6:30–7:45) (1) 1.631*** 0.021
Time2 (7:45–8:45) (1) 1.607*** 0.022
Time3 (8:45–9:30) (1) 1.252*** 0.026
Time4 (9:30–16:00) (1) 0.801*** 0.016
Time5 (16:00–17:15) (1) 0.224*** 0.026
Time6 (17:15–18:15) (1) 0.193*** 0.028
Time7 (18:15–19:00) (1) 0.438*** 0.029
Temperature (°C) 0.035*** 1.926e–03
Wind speed (km/h) 0.017*** 1.853e–03
Rain (1) 0.329*** 0.015
Rail (1) − 0.179*** 0.013
Overground (1) 0.219*** 0.023
Ave distance (km) 0.042*** 4.748e–03
Station age (max) 5.714e–04** 2.005e–04
Pre 15-min entry ridership 1.969e–04*** 2.098e–05
Rolling stock age (mean) 4.514e–03*** 4.666e–04
Overground*Wind speed 0.014*** 2.352e–03
McFadden’s pseudo R-squared 0.184
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propensity scores and time-of-day characteristics between treatment and control units has 
been reduced by 99.95%, compared with the original data before matching.

Imputation of missing vulnerability metrics

During the study period, 21 out of 265 stations did not encounter any service disruptions. 
We apply the random forest regression model to predict the missing vulnerability metrics 
of these stations. The input features of the model are indicated in “Stage 3” column of 
Table 2, consisting of station-level supplementary factors and a subset of confounding fac-
tors. For each vulnerability metrics, we estimate the random forest regression model using 
the ‘randomForest’ package of R (Liaw and Wiener 2002). In terms of model settings, we 
consider the maximum number of trees to be 5000, randomly sample seven variables as 
candidates at each split, and assume the minimum size of terminal nodes to be two. The 
results show that more than 67% of the variance can be explained by input features for all 
vulnerability metrics. We summarize the prediction performance of random forest regres-
sion in Table 4 and benchmark it against two competing methods: linear regression and 
support vector machines.

Four measures are considered to benchmark the performance of random forest regres-
sion against other methods—mean absolute error (MAE), root mean squared error 
(RMSE), relative absolute error (RAE), and relative squared error (RSE). Whereas MAE 
measures the average magnitude of the errors in predictions, RMSE represents the stand-
ard deviation of the unexplained variance (Willmott and Matsuura 2005). A better predic-
tion model produces lower values of these performance measures. The results in Table 4 

Fig. 4   Histogram of propensity scores to test the common support condition (Due to higher share of the 
control group, the frequency in Fig. 4 ranges up to 60,000 for lower propensity scores. However, we trun-
cate frequency at 2000 to clearly show the validity of overlap condition across the entire domain of the 
propensity score.)
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indicate that the random forest regression outperforms other competing methods with the 
lowest MAE, RMSE, RAE and RSE for all vulnerability metrics.

LU vulnerability metrics

The estimated vulnerability metrics vary across stations in the LU system. We first dis-
cuss results for loss of entry demand, loss of average travel speed, and loss of gross 
travel speed metrics. For 265 operated stations in 2013, during a 15-min period of ser-
vice disruption, the loss of station entry demand ranges from 0 to 103.4 passengers, the 
loss of average travel speed ranges from 0 to 21.76 km/h, and the loss of gross travel 
speed ranges from 0 to 2032.3 passenger-km/h. The spatial distributions of these vulner-
ability metrics are visualised in Fig. 5a–c. For the demand loss and gross speed loss, the 
large proportion of vulnerable stations are in inner London areas, while a small number 
of vulnerable stations are also located in suburban areas. Conversely, for the loss of 
average travel speed, the most vulnerable stations are scattered around outer London 
areas. These stations usually have only one metro line (internal alternatives) and have 

Table 4   Prediction accuracy of different regression methods

Vulnerability metrics Performance 
measures

Imputation methods

Random forest Linear regression Support vec-
tor machines

Demand loss MAE 2.794 33.089 5.181
RMSE 4.285 37.342 9.766
RAE 0.29 44.556 0.538
RSE 0.095 330.181 0.493

Avg. travel speed loss MAE 0.236 11.081 0.468
RMSE 0.684 16.848 1.892
RAE 0.318 1.151 0.63
RSE 0.111 1.468 0.848

Gross travel speed loss MAE 62.416 979.91 114.554
RMSE 96.461 1224.723 216.472
RAE 0.314 4.932 0.577
RSE 0.107 17.18 0.537

Irregularity in flow (Euclidean-entry) MAE 1.405 3.514 2.213
RMSE 1.935 4.575 3.474
RAE 0.23 0.574 0.362
RSE 0.058 0.326 0.188

Irregularity in flow (Hellinger-entry) MAE 0.02 0.051 0.034
RMSE 0.025 0.064 0.048
RAE 0.246 0.625 0.417
RSE 0.066 0.418 0.234

Irregularity in flow (KL-entry) MAE 0.276 0.498 0.333
RMSE 0.184 0.72 0.613
RAE 0.241 0.654 0.436
RSE 0.074 0.506 0.366
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very limited access to other transport modes (external alternatives) compared to Central 
London areas. When passengers encounter disruptions, to continue their trips they need 
to wait for longer time in the system until train services are recovered. In other words, 
due to of lack of alternative routes,9 passengers at these stations tend to experience more 
individual delays.

Fig. 5   Spatial distribution of 
station-level vulnerability metrics 
in London underground

9  There can be two types of alternative routes under disruptions—within the metro system (interchange to 
use other operated lines) and outside of it (in the form of other modes).
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We firstly sort all 265 stations based on demand and speed loss metrics, and the top 15 
stations are presented in Table 5. Victoria is the most vulnerable station based on demand 
loss and gross speed loss metrics. Other stations such as Hammersmith, London Bridge, 
Kenton, Brixton are also among the top vulnerable stations based on both metrics. How-
ever, based on only the loss of average travel speed metrics, the most vulnerable stations 
are South Kenton, Kenton and North Wembley in outer London areas, where each pas-
senger suffers the longest delay due to lack of alternative routes. The above rankings based 

Fig. 5   (continued)



3293Transportation (2021) 48:3269–3300	

1 3

Ta
bl

e 
5  

T
op

 1
5 

vu
ln

er
ab

le
 st

at
io

ns
 b

as
ed

 o
n 

de
m

an
d 

lo
ss

 a
nd

 sp
ee

d 
lo

ss
 v

ul
ne

ra
bi

lit
y 

m
et

ric
s

St
at

io
n

D
em

an
d 

lo
ss

 in
 p

as
se

ng
er

/1
5-

m
in

 (%
 o

f b
as

el
in

e)
St

at
io

n
A

vg
. t

ra
ve

l s
pe

ed
 lo

ss
 in

 
km

/h
 (%

 o
f b

as
el

in
e)

St
at

io
n

G
ro

ss
 tr

av
el

 sp
ee

d 
lo

ss
 

in
 p

as
se

ng
er

-k
m

/h
(%

 o
f b

as
el

in
e)

V
ic

to
ria

10
3.

4 
(1

3.
0%

)
So

ut
h 

K
en

to
n

21
.7

6 
(1

08
.9

%
)

V
ic

to
ria

20
32

.3
 (1

3.
6%

)
H

am
m

er
sm

ith
66

.8
 (1

5.
4%

)
K

en
to

n
20

.3
5 

(9
2.

8%
)

W
al

th
am

sto
w

 C
en

tra
l

14
80

.2
 (1

8.
6%

)
Lo

nd
on

 B
rid

ge
60

.0
 (8

.6
%

)
N

or
th

 W
em

bl
ey

7.
10

 (3
6.

1%
)

B
rix

to
n

14
39

.0
 (1

2.
4%

)
So

ut
h 

K
en

si
ng

to
n

59
.8

 (1
2.

3%
)

Th
ey

do
n 

B
oi

s
6.

72
 (2

3.
3%

)
K

en
to

n
13

76
.9

 (1
52

.4
%

)
K

en
to

n
58

.8
 (1

36
.4

%
)

H
ar

le
sd

en
5.

22
 (2

4.
4%

)
H

am
m

er
sm

ith
13

26
.9

 (1
5.

0%
)

St
. J

am
es

’s
 P

ar
k

56
.6

 (2
2.

3%
)

K
en

sa
l G

re
en

4.
64

 (2
4.

0%
)

Se
ve

n 
Si

ste
rs

11
76

.0
 (1

6.
6%

)
B

rix
to

n
53

.8
 (1

1.
0%

)
A

lp
er

to
n

4.
62

 (2
1.

4%
)

Lo
nd

on
 B

rid
ge

11
52

.6
 (8

.7
%

)
Li

ve
rp

oo
l S

tre
et

52
.2

 (6
.7

%
)

Su
db

ur
y 

H
ill

4.
54

 (2
1.

2%
)

Fi
ns

bu
ry

 P
ar

k
11

48
.9

 (1
4.

0%
)

W
al

th
am

sto
w

 C
en

tra
l

51
.4

 (1
7.

8%
)

N
or

th
 E

al
in

g
4.

45
 (2

1.
9%

)
St

. J
am

es
’s

 P
ar

k
10

15
.9

 (2
1.

9%
)

Fi
ns

bu
ry

 P
ar

k
48

.5
 (1

4.
2%

)
So

ut
h 

H
ar

ro
w

4.
44

 (2
0.

2%
)

Li
ve

rp
oo

l S
tre

et
99

3.
3 

(6
.8

%
)

Se
ve

n 
Si

ste
rs

47
.9

 (1
8.

3%
)

Su
db

ur
y 

To
w

n
4.

26
 (1

9.
0%

)
So

ut
h 

K
en

si
ng

to
n

97
8.

1 
(1

1.
3%

)
Ea

rl’
s C

ou
rt

41
.3

 (1
2.

9%
)

Pa
rk

 R
oy

al
4.

20
 (2

0.
4%

)
Ea

lin
g 

B
ro

ad
w

ay
81

3.
5 

(1
2.

7%
)

W
es

tm
in

ste
r

39
.3

 (1
3.

4%
)

Ro
di

ng
 V

al
le

y
3.

27
 (2

0.
6%

)
C

an
ar

y 
W

ha
rf

77
1.

7 
(4

.7
%

)
To

tte
nh

am
 C

ou
rt 

Ro
ad

37
.8

 (6
.8

%
)

Ru
is

lip
 G

ar
de

ns
3.

08
 (1

2.
5%

)
W

es
tm

in
ste

r
75

5.
7 

(1
4.

2%
)

Ea
lin

g 
B

ro
ad

w
ay

36
.6

 (1
2.

6%
)

M
oo

r P
ar

k
2.

90
 (1

1.
0%

)
Sh

ep
he

rd
’s

 B
us

h
72

7.
9 

(1
0.

1%
)



3294	 Transportation (2021) 48:3269–3300

1 3

on different vulnerability metrics can assist metro operators in preparing effective plans for 
ridership evacuation and service recovery.

Table 5 also presents normalised vulnerability metrics for these top 15 stations, which 
is the relative percentage change as compared to the undisrupted performance measure 
(baseline). Note that all baseline situations for these three metrics are calculated by using 
average across undisrupted observations. We find that the rankings based on relative vul-
nerability metrics can be different than those based on absolute metrics, especially for the 
loss of travel demand. In more isolated parts of the network, where alternative routes may 
not be available, stations can lose up to 136.4% of their normal demand due to service 
interruption (e.g. Kenton Station in Zone 4 with no intersection metro line). This implies 
that more connected stations are actually less vulnerable in this respect, as passenger can 
find alternative routes if one of the lines becomes disrupted. This result also highlights 
potentially important distinctions about the interpretation of the proposed metrics. In 
terms of relative metrics of average travel speed, the same top three vulnerable stations—
South Kenton, Kenton and North Wembley—experienced decrease in average travel speed 
by 108.9%, 92.8% and 36.1%, respectively, due to disruption. Kenton station is also the 
most vulnerable stations based on the relative loss of gross trip speed, which is reduced by 
152.4%.

We propose three distance measures for the irregularity in flow metrics: Euclidean dis-
tance (ED), Hellinger distance (HD) and Kullback–Leibler (KL) divergence for both out-
ward (from) and inward (to) flows. Euclidean distance directly compares the difference of 
each element of the trip distribution, where the element represents the ridership between a 
specific station and the disrupted station. ED reflects changes in the magnitude as well as 
the proportion of the flow of each element because it is not normalised. HD and KL diver-
gence are normalised measures as they compare the difference between probability mass 
function of trip distributions, which capture only change in the proportion of trips com-
pleted between the disrupted and other stations. Unlike ED, HD and KL divergence would 
not be useful measures if disruption leads to a decrease in ridership across all stations by 
the same proportion. HD and KL divergence are close in principle, but the latter can be 
interpreted as the change in relative entropy, which is meaningful in the context of disrup-
tions in metro systems. As an analogy with the concept of entropy in thermodynamics, we 
may interpret the extra entropy in metro systems as an additional generalised cost (in terms 
of time and congestion costs) that passengers have to pay under disruptions.

We plot the spatial distribution of all these distance measures in Fig. 5d–f. We also sort 
all 265 stations based on ED, HD and KL divergence, and the top 15 vulnerable stations 
are presented in Table 6. We find that the station rankings for outward flow (i.e., the entry 
ridership distribution) based on ED are similar to those obtained based on demand loss and 
gross speed loss metrics. They also share a similar spatial distribution of vulnerable sta-
tions. As for the distribution of inward flow (i.e., the exit ridership distribution), the most 
affected stations are mostly busy stations in Central London areas. As expected, station 
rankings based on HD and KL divergence are similar. For both inward (exit) and outward 
(entry) flow distributions, suburban stations are more severely affected than Central Lon-
don stations on a normalised scale. The top 3 stations based on HD and KL divergence are 
South Kenton, Chesham and Heathrow Terminal 4.
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Conclusions and future work

Incidents occur frequently in urban metro systems, causing delays, crowding and substan-
tial loss of social welfare. Operators need accurate estimates of vulnerability measures to 
identify the bottlenecks in the network. We propose a novel causal inference framework to 
estimate station-level vulnerability metrics in urban mero systems and empirically validate 
it for the London Underground system. In contrast to previous simulation-based studies, 
which largely assume virtual incident scenarios and necessitate the adoption of unrealistic 
assumptions on passenger behaviour, our approach relies on real incident data and avoids 
making behavioural assumptions by leveraging automated fare collection (smart card) data. 
We also illustrate that incidents can occur non-randomly, which further justifies the impor-
tance of the proposed causal inference framework in obtaining the unbiased estimate of 
disruption impacts.

The proposed empirical framework consists of three stages. First, we conduct propen-
sity score matching methods and estimate unbiased disruption impacts at the station level. 
The estimated impacts are subsequently used to establish vulnerability metrics. In the 
last stage, for non-disrupted stations, we impute their vulnerability metrics by using the 
random forest regression model. We propose three empirical vulnerability metrics at sta-
tion level, which are loss of travel demand, loss of average travel speed and loss of gross 
travel speed. The demand loss metrics reflects the amount of passenger who (1) switched 
to other transport modes, (2) switched their departure time, trip origin or destination, (3) 
ended their trip, before entering the disrupted metro system. In other words, it implies the 
demand for alternative transport services during disruptions, which can guide metro opera-
tors to prepare effective service replacement plans. The two speed related metrics reflect 
the degradation in the level of service for passengers who still use the metro system under 
disruptions. These metrics provide essential information for service recovery to mitigate 
the adverse influence on passengers and the overall performance of stations. The proposed 
irregularity in flow metrics extends the scope of vulnerability measurement to the changes 
in trip distribution. This irregularity metrics can be used to reflect the level of disorder 
within metro systems.

The results of the case study of London Underground in 2013 indicate that the effect of 
service disruption is heterogeneous across metro stations and it depends on the location 
of a station in the network and other station-level characteristics. In terms of the travel 
demand loss and gross speed loss (overall delay), the most affected stations are more likely 
to be found in Central London areas, such as Victoria, London Bridge and Liverpool Street. 
On the other hand, considering average speed loss (individual delay), the most affected sta-
tions are scattered around outer London areas (e.g., South Kenton and Kenton) due to lack 
of alternative routes.

Disruption impact estimates are probabilistic relative to the sample data, that is, causal 
estimates and vulnerability metrics estimates have sampling distribution. Since our analy-
sis is based on the data of LU from October 28 to December 13, 2013, the results of our 
case study reflect the vulnerability status of LU for this specific period. If we use data from 
other periods, the estimates of vulnerability metrics might change due to inherent temporal 
variations in travel demand and incidents. Therefore, to improve the generalisability of vul-
nerability metrics estimates, the study period needs to be long enough such that the sample 
is representative of the population. That is, a sample should capture supply-side interrup-
tions as much as possible, including service disruptions due to maintenance. In addition, 
the sample should also reflect the possible fluctuations of travel demand.
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The proposed methodology to obtain the unbiased estimates of disruption impact thus 
provides crucial information to metro operators for disruption management. It helps in 
identifying the bottlenecks in the network and in preparing targeted plans to evacuate rider-
ship as well as to recover services in case of incidents. The direct integration of the esti-
mated vulnerability metrics in preparing these target plans remains an avenue for future 
research. It is worth noting that the proposed framework can be applied to other metro 
systems conditional on the availability of the required data on incident logs, confounding 
characteristics and performance outcomes. Future empirical studies can also incorporate 
other context-specific and relevant confounders or outcome indicators in their analysis. For 
example, they can explore the disruption impacts on interchange passengers if the required 
datasets are available. We do not include this part of ridership in our LU case study because 
it cannot be directly derived from smart card data. More advanced assignment algorithm is 
required to identify passengers’ routes by matching smart card data with vehicle location 
data and reproduce the spatiotemporal flow distribution in the metro network.

In line with the limitations of this study, there are three potential directions for future 
research. First, stations surrounding the disrupted stations may also be affected due to indi-
rect propagation, but this study does not account for such spillover effects. Modelling spa-
tiotemporal propagation disruption impacts requires significant methodological develop-
ments, which would be an important improvement over the current method. For instance, 
recent developments in Bayesian nonparametric sparse vector autoregressive models (Bil-
lio et al. 2019) can be adapted to model the spatiotemporal effect of service disruptions in 
transit networks. Second, the proposed vulnerability metrics can reveal static disruption 
impacts at different stations, but passengers need real-time service information to resched-
ule their trips. Thus, the current framework can be extended to update the vulnerability 
metrics dynamically. Considering the interaction between information provision and how 
it influences passengers’ decision under disruptions, this advancement would improve the 
dissemination of the incident alerts to passengers in real-time. Finally, by merging data 
from other travel modes (e.g., bus, urban rails, shared bike or taxi) with metro datasets, we 
can estimate multi-modal vulnerability metrics in the same causal inference framework and 
understand the characteristics of the mode shift due to disruptions. In a potential exten-
sion of our method to multi-modal transport systems, the lost demand would not include 
passengers who shift to other public transport modes due to metro disruptions. Compared 
to metro-only vulnerability metrics, multi-modal demand loss metrics would focus on pas-
sengers who give up their trips entirely or switch to private transport modes. Therefore, for 
metro stations linked to multi-modal hubs, the multi-model demand loss metrics might be 
lower than the metro-only metrics. The magnitude of this gap would depend on the attrac-
tiveness of alternative public transport services compared to private modes.
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