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Abstract— This article explores a nonlinear, adaptive controller
aimed at increasing the stability margin of a direct-current (dc),
small-scale, electrical network containing an unknown constant
power load (CPL). Due to its negative incremental impedance,
this load reduces the effective damping of the network, which
may lead to voltage oscillations and even to voltage collapse.
To overcome this drawback, we consider the incorporation of
a controlled dc–dc power converter in parallel with the CPL.
The design of the control law for the converter is particularly
challenging due to the existence of unmeasured states and
unknown parameters. We propose a standard input–output
linearization stage, to which a suitably tailored adaptive observer
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is added. The good performance of the controller is validated
through experiments on a small-scale network.

Index Terms— Active damping, adaptive control, adaptive
observers, constant power loads (CPLs).

I. INTRODUCTION

THIS note deals with the stabilization problem for elec-
trical networks with constant power loads (CPLs). It is

well known that, due to their negative incremental impedance,
CPLs induce voltage oscillations or even voltage collapse [5].
The analysis of networks with this type of loads started in [11]
and has been an active research area since (see [1], [2], [5]).

Various techniques have been explored for the stabilization
of direct-current (dc) networks with CPLs—a survey may be
found in [14]. These techniques are categorized into passive
and active damping methods: the former is based on open-loop
hardware alterations, whereas the latter imply the modification
of existing—or added—control loops. In an active damping
strategy, the control loops can be modified at three different
network’s positions [14]: at the source’s side, the load’s side,
and a midpoint between them. In this article, we are interested
in the latter approach, which was first explored in [3], [16],
and [8], for the stabilization of a small-scale network with a
single CPL. In these references, the network’s stabilization is
achieved by adding a controlled power converter in parallel
with the load and then designing a suitable feedback control
law for it. In [3], the converter is modeled as a simple
controlled current source and a linear control law is designed
to stabilize the overall network. A similar approach, but using
a full model for the power converter, is used in [16]. Their sta-
bilization result is based on the linearization of the network’s
dynamics. Finally, in [8], a large-signal stability analysis, but
using approximate techniques, such as the Takagi–Sugeno
fuzzy model, is carried out to evaluate the performance of
a linear controller.

The main contribution of this article is described next.
Following [3] and [16], we study the stabilization problem
for a small-scale dc network supplying electrical energy to a
CPL. First, we augment the network by placing a controlled
power converter between the load and the source. Then,
for the converter’s controller design, instead of relying on
linear-feedback techniques, we propose an adaptive observer-
based nonlinear control law that provably achieves overall
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Fig. 1. DC source supplying power to an instantaneous CPL.

network’s stabilization. The control design is particularly
challenging due to the existence of unmeasured states—the
current of the dc network—and the unknown power of the
CPL. The construction of the proposed controller is based
on the use of standard input–output linearization to which
a suitably tailored adaptive observer is added; its good
performance is evaluated via experiments on a small-scale
dc network.

The stabilization problem addressed in this article, as well as
the proposed controller topology, have previously been studied
in [10], where a full state-feedback adaptive passivity-based
control has been proposed. As discussed in Section IV-A,
besides the impractical requirement of full state measurement,
the approach adopted in that paper suffers from significant
energy efficiency drawbacks, which renders the proposed
controller design practically unfeasible. Both limitations are
overcome in this article.

The rest of this article is structured as follows. In Section II,
we present the model of the system under study and summarize
its stability properties. The proposed controller configuration,
adopted from [3] and [16], is presented in Section III. The
main stabilization results are presented in Section IV. Our
results are first illustrated with some simulations in Section V,
and in Section VI, we present experimental evidence of the
successful operation of the proposed control scheme. This
article is wrapped-up with a number of concluding remarks
in Section VII.

Caveat Emptor: A preliminary version of this work has been
reported in the conference paper [9]. In contrast to [9], in the
present work, we include the proofs of all propositions and
add more detailed simulations and experimental results.

II. PROBLEM FORMULATION

A. Description of the System Without the Shunt Damper

The circuit diagram of the electrical network under study is
shown in Fig. 1. It represents a simplified model of a dc power
system and has been used in the literature, e.g., in [12], [15],
and [16], to study the stability problems associated with CPLs.
It is composed of a dc voltage source supplying energy
to an instantaneous CPL. The transmission line is simply
represented by the lossy inductor L1 > 0 and the CPL is
connected through the bus capacitor C1 > 0. The network’s
dynamics are described by

L1 ẋ1 = −r1x1 − x2 + E

C1 ẋ2 = x1 − P

x2
(1)

where x1 and x2 denote the current through L1 and the voltage
across C1, respectively. The constant parameter P corresponds

to the power extracted from, or injected to, the network by
the CPL, being positive in the former case and negative in
the latter—in the sequel, we focus our attention on the case
P ≥ 0. The state space for this system is defined as the set

{(x1, x2) ∈ R
2 : x2 > 0}.

B. Equilibrium Analysis

From [10], we enumerate the properties of this network.
P1: The system (1) has two real equilibria if and only if

E2 − 4Pr1 ≥ 0 ⇔ P ≤ E2

4r1
. (2)

P2: One equilibrium corresponds to a high-voltage/
low-current characteristic, which is stable only if

P ≤ E2C1 L1r1(
L1 + C1r2

1

)
2

(3)

whenever C1 < (L1/r2
1 ).

P3: If C1 > (4L1/r2
1 ), the strict satisfaction of (2) is

sufficient for asymptotic stability of the equilibrium
in P2.

Note that if P is negative, i.e., if the load behaves as a
constant power source, then the expressions (2) and (3) are
simultaneously satisfied; consequently, this scenario poses no
threat regarding voltage collapse nor network’s instability, and
hence, we focus on the case P > 0.1

C. Objectives and Methodology

To introduce and support our methodology, we enlist the
following remarks [10].
R1: Observe from P2 that if the capacitance C1 is not big

enough, then, in order to maintain the system’s stability,
the power extraction from the CPL must be strictly
smaller than the upper bound for existence of equilibria
given in (2).

R2: P3 suggests a passive method to enlarge the domain of
values of P for which stability is ensured. It consists
in increasing the effective capacitance C1, which can be
achieved with the open-loop parallel interconnection of
a suitable capacitor and the CPL. Some disadvantages
of this approach are reviewed in [3, Sec. III.A].

In view of these remarks, we specify our control objectives
as follows.

O1: Regulate the voltage x2 around a constant value.
O2: Relax the upper bound for P established in (3).
O3: Achieve these objectives without the knowledge of P .

Following the work [3] and [16], to achieve these objec-
tives, we add a power converter in parallel with the CPL and
design a control strategy that stabilizes the overall network to
the desired equilibrium point. The detailed description of the
augmented circuit is carried out in Section III and the presen-
tation of the control law—which is the main contribution of
this article—is done in Section IV.

1In the cases in which P ≤ 0 stabilization may still be desired to improve
system damping or to avoid tripping the system due to undervoltage or
overvoltage caused by, e.g., disturbances in the source voltage, we refer
the reader to [18], where an equilibria analysis is conducted for resistive dc
networks containing both constant power sources and loads.
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Fig. 2. Network of Fig. 1 is augmented by adding a power converter in
parallel with the load.

III. AUGMENTED CIRCUIT MODEL

As proposed in [3] and [16], we augment the network of
Fig. 1 by adding a controlled dc–dc power converter in parallel
with the load, which results in the circuit shown in Fig. 2.
The converter, which in the sequel is referred to as shunt
damper, is composed of two complementary switches u and
(1 − u), a lossy inductor L2 > 0, a capacitor C2 > 0, and a
resistor r3 > 0; the latter models the losses associated with
the switching devices.

The averaged dynamic model of the augmented system is
given by

L1 ẋ1 = −r1x1 − x2 + E

C1 ẋ2 = x1 − P

x2
− x3

L2 ẋ3 = −r2x3 + x2 − x4u

C2 ẋ4 = − 1

r3
x4 + x3u (4)

where x3 is the current through L2, x4 is the voltage across C2,
and u ∈ (0, 1)—which is the system’s control variable—
represents a duty cycle. The state space of the system is
given as

X := {x ∈ R
4 : x2 > 0, x4 > 0}.

We make the important observations that x1—being the current
of a reduced model of the network—is not measurable, and
the power P is unknown.

For future reference, we write the system (4) in the standard
input-affine form, ẋ = f (x) + g(x)u, by defining

f (x) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− r1

L1
x1 − x2

L1
+ E

L1
x1

C1
− P

C1 x2
− x3

C1

− r2

L2
x3 + x2

L2

− 1

r3

x4

C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g(x) :=

⎡
⎢⎢⎢⎢⎢⎣

0
0

− x4

L2
x3

C2

⎤
⎥⎥⎥⎥⎥⎦ (5)

the i th entries of which are denoted as fi or gi .

IV. MAIN RESULTS

In this section, we propose a nonlinear, adaptive, state-
feedback controller that is such that the augmented network

of Fig. 2 complies with the control objectives described in
Section II-C. Toward this end, first, we analyze the equilibria
of (4) and establish constraints, on the system’s parameters,
for their physical feasibility. Second, under the assumption that
x1 can be measured and the constant parameter P is known,
we present a full-information input–output linearization con-
troller [7] that asymptotically stabilizes a specified equilibrium
state. Finally, this controller is complemented with an observer
for x1 and an online estimator for P—yielding an adaptive,
output-feedback controller design.

A. Existence of Equilibria

A pair (x̄, ū) ∈ X × (0, 1) is an equilibrium of (4) if and
only if it belongs to the set

E := {(x̄, ū) ∈ X × R : f (x̄) + g(x̄)ū = 0}
where the mappings f and g are given in (5). An important
issue in the design is to ensure that the power consumption
of the shunt damper is minimal. In order to carry-out this
analysis, we find convenient to parameterize x̄ in terms of ū
as follows.

Proposition 1: Consider the augmented circuit model (4).
Fix 0 < ū < 1 as the desired steady state duty cycle. The
following conditions hold true.

C1: (x̄, ū) ∈ E if and only if

�(P) := E2�2 − 4Pr1�1 ≥ 0 (6)

where

�1 := r3ū2 + r1 + r2, �2 := r3ū2 + r2

and

x̄1 = 1

2r1�1
[E(�2 + 2r1) −

√
�2
√

�(P)]

x̄2 = 1

2�1
[√�2

√
�(P) + E�2]

x̄3 = 1

2�1

(√
�(P)√

�2
+ E

)

x̄4 = r3ū

2�1

(√
�(P)√

�2
+ E

)
. (7)

C2: The power dissipated at the shunt damper in steady state,
i.e., the quantity

PL(P) := r2 x̄2
3 + 1

r3
x̄2

4 ,

= 1

4�2
1

(r2 + r3ū2︸ ︷︷ ︸
�2

)

(√
�(P)√

�2
+ E

)2

attains a maximum at P = 0 if and only if �(P) > 0.
Proof: The proof of the first claim follows from straight-

forward algebraic calculations. For the second claim, we
compute

dPL(P)

d P
= − r1

√
�2

�1
√

�(P)

(√
�(P)√

�2
+ E

)
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which is strictly negative if and only if �(P) > 0, implying
that PL(P) is monotonically decreasing in its domain of out
[0, (�2/�1)(E2/4r1)], hence the claim. �

Note that condition (6) is equivalent to

P ≤ �2

�1

E2

4r1
(8)

which is more restrictive than the necessary and sufficient
condition given in (2) for the existence of equilibria of the
dc network without the shunt damper (see Fig. 1) since
(�2/�1) < 1. In Proposition 5, we will establish that, through
the proposed control scheme, the equilibrium x̄ can be ren-
dered (locally) asymptotically stable, provided that it exists,
i.e., as long as (8) is fulfilled; observe that no further
conditions on P are imposed therein. Then, the constraint (8)
becomes a necessary and sufficient condition for the existence
and asymptotic stability of x̄ . In Lemma 1, we show that, under
certain conditions on the system parameters, ū can be chosen
such that (8) is less restrictive than the stability constraint (3)
for the network without the shunt damper.

Lemma 1: Assume that C1 < (L1/r2
1 ). Then, the con-

straint (8) is less restrictive than (3) if either one of the
following conditions is satisfied:

1) (4C1 L1r3
1/(L1 − C1r2

1 )2) ≤ r2 and 0 < ū < 1.
2) (4C1 L1r3

1/(L1 − C1r2
1 )2) − r3 < r2 < (4C1 L1r3

1/(L1 −
C1r2

1 )2) and ((4C1 L1r3
1 − (L1 − C1r2

1 )2r2)/(L1 −
C1r2

1 )2r3)
1/2 < ū < 1.

Proof: We consider that (8) is less restrictive than (3) if
and only if

E2C1 L1r1

(L1 + C1r2
1 )2

<
�2

�1

E2

4r1
= r3ū2 + r2

r3ū2 + r1 + r2

E2

4r1
.

The latter inequality is equivalent to(
L1 − C1r2

1

)2
r3ū2 + r2

(
L1 − C1r2

1

)2 − 4C1 L1r3
1 > 0. (9)

On the one hand, we observe that if r2(L1 − C1r2
1 )2 −

4C1 L1r3
1 ≥ 0, or equivalently, 4C1 L1r3

1/(L1 − C1r2
1 )2 ≤ r2,

then (9) is satisfied if 0 < ū < 1. Hence, the conditions in 1)
are sufficient for (9) to hold.

On the other hand, if r2(L1 − C1r2
1 )2 − 4C1 L1r3

1 < 0,
or equivalently, r2 < (4C1L1r3

1 /(L1 − C1r2
1 )2), then (9)

would be satisfied if ((4C1 L1r3
1 − (L1 − C1r2

1 )2r2)/
(L1 − C1r2

1 )2r3)
1/2 < ū. The constraint (4C1 L1r3

1 /
(L1 − C1r2

1 )2) − r3 < r2 guarantees that ū can be smaller
than one. Thus, the conditions in 2) are sufficient for (8) to
be less restrictive than (3). �

In [10], the equilibria (x̄, ū) ∈ E are parameterized in terms
of x̄2, not in terms of ū, as follows:

x̄1 = E − x̄2

r1

x̄3 = − Pr1 − Ex̄2 + x̄2
2

r1 x̄2

x̄4 = 1

r1 x̄2

√
r3κ1(x̄2, P)κ2(x̄2, P) (10)

where

κ1(x̄2, P) := −[Pr1 + x̄2(−E + x̄2)
]

κ2(x̄2, P) := Pr1 r2 + x̄2[−Er2 + (r1 + r2)x̄2].

Fig. 3. Block diagram for the cascaded interconnection between the
subsystems (11) and (12).

Then, the equilibrium x̄ , associated with x̄2 = (E/2), is
singled out for stabilization. This choice allows the stable
operation of the network in a wide range of values of P .
Unfortunately, the steady-state shunt-damper’s power dissipa-
tion is given in this case by E2/4 r1 − P , which implies a
very low energetic efficiency when P is small.

The parameterization that we propose in (7) implies a more
involved algebraic expression for the damper’s power losses;
nonetheless, with an appropriate selection of ū, these losses
can be made considerable inferior with respect to the approach
adopted in [10]. The effectiveness of this choice is illustrated
in the experimental results that are reported in Section VI.

B. Design of a Full-Information Stabilizing Control Law

In this section, we present a static, state-feedback, con-
trol law that renders asymptotically stable the equilibrium
point (7). For its design, we assume that P ≥ 0 is known and
fix ū ∈ (0, 1) such that (6) holds.

Following the ideas presented in [4, Section IV], we intro-
duce the new input:

w = x4u

which allows rewriting the system (4) in the cascade form
shown in Fig 3, where

�13 :
L1 ẋ1 = −r1x1 − x2 + E

C1 ẋ2 = x1 − P

x2
− x3

L2 ẋ3 = −r2x3 + x2 − w

(11)

and

�4 : C2 ẋ4 = −
(

1

r3

)
x4 + 1

x4
x3w. (12)

Proposition 2 presents a control law that ensures voltage
regulation and exponential stability of an equilibrium point
of �13.

Proposition 2: Fix the constant desired voltage x̄2 > 0.
Consider the system (11) in closed loop with the static state
feedback

w(x1, x2, x3, P)

= −L2C1[β(x2 − x̄2) + α f2(x1, x2, x3)]
+ x2 − r2x3 − L2

[
f1(x1, x2) + P

x2
2

f2(x1, x2, x3)

]
(13)

where α > 0 and β > 0 are design parameters, and the
mappings fi are defined in (5).

Then, the output voltage error

y := x2 − x̄2. (14)
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verifies

ÿ + α ẏ + βy = 0 (15)

ensuring limt→∞ y(t) = 0 (exp.) Moreover, the equilibrium
point (x̄1, x̄2, x̄3) defined in (10) is exponentially stable.

Proof: See Appendix A. �
Proposition 3 establishes the stability of the overall system.
Proposition 3: Fix the constant desired voltage x̄2 > 0.

Consider the system (11) and (12) in closed loop with the static
state feedback (13). Assume that the system’s initial condition
is sufficiently close to the equilibrium x̄ defined in (10). Then,
x4(t) > 0, for all t ≥ 0 and limt→∞ x(t) = x̄ (exp.).

Proof: See Appendix B. �
As a direct application of Propositions 2 and 3,

the full-information input–output linearizing controller of the
overall dynamics (4) is presented next.

Corollary 1: Consider the system (4) in closed loop with
the static state-feedback control law

u = 1

x4
w(x1, x2, x3, P) (16)

where w is given in (13). Then, x̄ ∈ E is a locally, exponen-
tially stable equilibrium point of the closed-loop system.

C. Output-Feedback Stabilization With Unknown CPL Power

An adaptive output-feedback version of the controller (16)
is proposed now by adding an observer for x1 and an online
estimator for P , which are now assumed to be unmeasured
and unknown, respectively.

Proposition 4: Consider the system (1) and assume that x2
is positive and belongs to the interval [xmin

2 , xmax
2 ]. Define the

adaptive observer

q̇1 = E

L1
− x2

L1
− r1

L1
x̂1 + k1 P̂ − k1x2x̂1 + k1x2x3

q̇2 = −k2 P̂ + k2x2 x̂1 − k2x2x3

x̂1 = q1 + 1

2
k1C1x2

2

P̂ = q2 − 1

2
k2C1x2

2 (17)

where k1 and k2 are such that

0 < k1 < 8
k2
(
xmin

2 + xmax
2

)
(
xmax

2 − xmin
2

)2
0 < k2. (18)

Then

lim
t→∞ |x̂1(t) − x1(t)| = 0

lim
t→∞ P̂(t) = P

exponentially.
Proof: See Appendix C. �

Remark 1: The design of the adaptive observer in (17)
follows the immersion and invariance (I&I) methodology. The
rationale behind this technique, the core mathematical results
that define it, as well as its practical application on the adaptive
control of electrical systems—including the dc–dc Ćuk and
Boost converters—is reported in [17, Ch. 1.3.5, 5, and 8].

TABLE I

PARAMETERS FOR THE CIRCUIT IN FIG. 2

The stability of the system (4) with an adaptive version of
the control law (16) is established next.

Proposition 5: Let k1 and k2 be such that (18) hold. Fix ū
and compute x̄ from (7). Define the output-feedback adaptive
control law

u = 1

x4
w(x̂1, x2, x3, P̂) (19)

where w is given in (13), and x̂1 and P̂ are generated by the
adaptive observer (17). Then, (x, x̂1, P̂) = (x̄, x̄1, P) is an
asymptotically stable equilibrium point of the overall system.

Proof: See Appendix D. �
Remark 2: A key extension with respect to the research

in [10] is the use of an adaptive observer-based feedback law,
the implementation of which requires only the measurement
of x2 and x3, which is easy to obtain in a physical setup.

Remark 3: The computation of the control law (13)
and (19) requires the knowledge of x̄2, which is dependent
on the unknown P [see (7)]. In the experiments reported in
Section VI, the value of x̄2 is computed from the estimate of P ,
i.e. P̂ , discretely, not continuously in time. This approach is
common in hierarchical and supervisory control of ac and dc
microgrids [6] and prevents introducing x̄2 to the controller if
an overshoot of the time-varying signal P̂ occurs, and it also
simplifies the controller design.

V. NUMERICAL SIMULATIONS

In this section, we present two simulations to illustrate the
performance of the proposed controller. The physical parame-
ters of the system (4) are given in Table I, and the parameters
for the adaptive output-feedback controller of (13), (17),
and (19) are selected as

α = 3 × 104, β = α2

4
, k1 = 10, k2 = 104.

In all simulations, a saturation function has been used to keep
u ∈ (0, 1).

A. Simulation 1

We fix ū = 0.5 and compute the equilibrium point x̄ to
be stabilized via (7) for P = 0.2 The initial conditions have
been fixed at that equilibrium point. Then, at t = 3 s, a step
change in the CPL power, from P = 0 W to P = 479 W,
is introduced, and this yields a new equilibrium point to be
stabilized: x̄ |P=479. In addition, at t = 6 s, the CPL is stepped
down to 0 W once again. We note that P = 479 W verifies

2By fixing ū = 0.5, from Proposition 1, bullet C2, we get that max{PL} =
2.29 W, which is attained when P = 0. Moreover, the maximum value for the
CPL’s power for which the controlled network admits an equilibrium, obtained
from inequality (6), is approximately 479.82 W. These values represent,
respectively, 0.47% and 99.96% of the maximum power for which the
network, without the shunt damper, admits an equilibrium [see inequality (2)].
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Fig. 4. Time history of the components of x (blue curves) against their
reference values (in red dashed line) for Simulation 1. Convergence is achieved
despite the step change in the CPL’s power.

the new necessary and sufficient condition for the existence
and asymptotic stability of an equilibrium (see Proposition 1
and the discussion thereafter). Moreover, it is well above the
upper bound for stability given in (3), which reads as follows:

E2 C1 L1 r1(
L1 + C1 r2

1

)
2

= 276.9 W.

Hence, without the shunt damper, the equilibria are unstable.
In Fig. 4, we show the time history of each component

of the state x against their equilibrium values; a zoom of
these plots around the second transient is shown in Fig. 5.
It is clear from these figures that fast convergence is achieved.
In Figs. 6 and 7, we plot the control variable u. From these
figures, we see that, except for some peaks at the instants of
power change where the saturation enters into play, the control
signal remains all the time within the admissible bounds.
In Fig. 6, we also plot the time histories of the estimates
x̂1 and P̂ against their respective reference values, where a
fast convergence is evident. Moreover, the plots of u, P̃ , x̃1,
and the shunt damper’s—very low—power consumption PL,
zoomed around the second transient, are shown in Fig. 7.

B. Simulation 2

This simulation shows in detail the performance of the adap-
tive observer. The simulation starts from the initial condition
x(0) = x̄ |P=10, and then, at t = 3 s, a large step change in the
CPL power, from P = 10 W to P = 300 W, is introduced.
In Figs. 8 and 9, we show the excellent performance of the
state observer and the slightly slower tracking of the power
estimator.

VI. EXPERIMENTAL VALIDATION

In order to investigate the practical feasibility of the
proposed control scheme, an experimental setup has been

Fig. 5. Zoom around the second transient of the plots in Fig. 4.

Fig. 6. Time history of u, the power estimation P̂, and the current observer
x̂1 (blue line) and their respective reference values (red dashed line) for
Simulation 1.

designed and built according to the electrical scheme shown
in Fig. 2. The test bench is composed of a dc voltage source
Delta Elektronika SM-52-AR-60, the passive components of
the RLC circuit (r1, L1, and C1), a dc boost converter, and
a custom-designed and built CPL. The CPL has a maximum
allowed current Imax = 40 A and a maximum power in steady
state of Pmax = 900 W. The physical setup of the experiments
is shown in Fig. 10.

The measured parameters of the system are the same
as in Table I, except for r1 that in the physical setup is
r1 = 0.314 �. The gains of the adaptive output-feedback
controller are the same as in Section V.
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Fig. 7. Zoom around the second transient of the plots in Fig. 6.

Fig. 8. Time history of x̂1 and P̂ (blue line) against their respective reference
values, x1 and P (red dashed line), in Simulation 2. Fast convergence is
achieved after the step change in the CPL’s power.

It is underscored that the CPL has been designed to approx-
imate an ideal algebraic behavior, i.e., with a much wider
bandwidth than the expected dynamics of the whole system.
In particular, in a LTspice simulation with an ideal dc voltage
source, the CPL settling time for a power step change is
ts = 7 μs. In an experimental test, with the CPL directly
connected to the dc voltage source, the time response to
a power step change is underdamped, with an approximate
settling time of ts = 75 μs. This change in the load dynamics
stems from the nonideal behavior of the dc voltage source,
particularly due to its controlled output impedance.

Fig. 9. Zoom around the transient, now of the estimation errors, of the plots
in Fig. 8.

Fig. 10. Experimental test bench. The dc voltage source is not shown here.

The adaptive control law of (19) has been discretized in
time using the bilinear transformation (trapezoidal integration)
and implemented in a digital signal processor (DSP) TI
TMS320F28379D using the automatic code generation tools
of Simulink.3

A. Experiment 1: System Without the Shunt Damper

The electrical system without shunt damper is tested first.
The objective of this experiment is twofold: 1) to analyze the
maximum power that can be demanded by the CPL before the
system turns unstable and 2) to illustrate a reduced region of
attraction with respect to the system with the controlled shunt
damper.

3The algebraic loops that appear in the equations after the discretization in
time have been solved analytically before doing the automatic code generation.
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Fig. 11. System response to a step from P = 250 W to P = 328 W without
the controlled shunt damper. Red curve (top) corresponds to the voltage x2
(5 V/div) and yellow curve (bottom) corresponds to the current x1 (5 A/div).
Time scale is 10 ms/div.

Fig. 12. System response to a step from P = 250 W to P = 330 W without
the controlled shunt damper. Red curve (top) corresponds to the voltage x2
(5 V/div) and yellow curve (bottom) corresponds to the current x1 (5 A/div).
Time scale is 2 ms/div.

In Fig. 11, we show the response of the system without
the shunt damper to a step change of the load’s power from
P = 250 W to P = 328 W. The behavior is highly oscillatory
but stable, contradicting the predicted necessary bound for
stability that is presented in (3), which reads as P < 276.9 W.
This discrepancy is explained due to the finite bandwidth of
the real CPL.

In Fig. 12, the system response is shown for a step change
of the CPL from P = 250 W to P = 330 W, where an
unstable behavior is observed.4 It is then concluded that the
upper bound for the system’s stability is within the interval
[328, 330] W.

4In all the unstable experiments, the CPL stops, i.e., abruptly goes to zero,
either because the current goes outside of the operating range, which we recall
is [0, 40] A, or because the voltage at the CPL input terminals falls below
the safety limit, which has been situated at a value considerably lower than
that corresponding to the maximum power (≈ 12 V).

Fig. 13. System response to a step from P = 10 W to P = 300 W without
the controlled shunt damper. Red curve (top) corresponds to the voltage x2
(5 V/div) and yellow curve (bottom) corresponds to the current x1 (5 A/div).
Time scale is 1 ms/div.

Fig. 14. System response to a step from P = 250 W to P = 380 W with
the controlled shunt damper. Red curve (top) corresponds to the voltage x2
(5 V/div) and yellow curve (bottom) corresponds to the current x1 (5 A/div).
Time scale is 20 ms/div.

The unstable behavior of the system without the shunt
damper to a power step change from P = 10 W to P = 300 W
can be observed in Fig. 13. Note that even if the load’s power
is lower than the experimentally determined upper bound for
stability, a drastic load change can also destabilize the system.
Clearly, in this scenario, the former system’s equilibrium lies
outside the domain of attraction of the latter one. This behavior
is to be contrasted with respect to the operation with the
controlled shunt damper discussed next.

B. Experiment 2: System With the Controlled Shunt Damper

The stable response of the system with the controlled shunt
damper in the presence of a step change in the CPL’s power,
from P = 250 W to P = 380 W, is shown in Fig. 14. This
behavior supports our theoretical and simulation predictions
about the system’s ability to operate in a stable manner with
the proposed control scheme and for values of P beyond the
theoretically and experimentally determined upper bounds for
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Fig. 15. System response to a step from P = 10 W to P = 300 W with
the controlled shunt damper. Red curve (top) corresponds to the voltage x2
(5 V/div) and yellow curve (bottom) corresponds to the current x1 (5 A/div).
Time scale is 2 ms/div.

Fig. 16. Measured power consumption of the shunt damper. The system with
the controlled shunt damper is subject to a step change in the load’s power
from P = 10 W to P = 300 W. Red curve (top) corresponds to the voltage
x2 (5 V/div), purple curve (middle) corresponds to the current x3 (10 A/div),
and blue curve (bottom) corresponds to the instantaneous power (50 W/div).
Time scale is 1 ms/div.

stability for the network without the shunt damper, which are
approximately 276 W and 330 W, respectively.

The system response to a CPL step change from P = 10 W
to P = 300 W is shown in Fig. 15, where a stable behavior is
observed. By making a comparison with the results reported
in Fig. 13, it can be concluded that the domain of attraction
of the system with the controlled shunt damper has been
successfully increased with respect to its operation without
the shunt damper.

To study the energetic efficiency of the proposed active
damping scheme, in Fig. 16, we report the measured power
consumption of the shunt damper during its operation and
in the presence of a step change in the CPL’s power from
P = 10 W to P = 300 W. Clearly, a low power consumption
is evidenced. Before the change in the CPL’s power, when
the system is in steady state, we can appreciate that the
power losses are nearly zero (approximately 4 W), and these
losses are due to the passive components of the converter
and the mosfets switching losses. During the first 2 ms of
the transient, the average power is negative, that is, the shunt
damper injects power into the system to stabilize it. After the
transient, the system reaches another stable equilibrium and
the average power losses of the damper return to a minimum.

Finally, from successive experiments with different power
steps in the CPL, it has been determined that the experimental
limit for the stable operation of the system with the controlled
shunt damper is in the range [410, 420] W. This value
represents, approximately, 90% of the range of power for
existence of equilibrium in the system, which from (2) reads
as P < 458.6 W.5 Clearly, the former value is drastically
superior with respect to the operation of the network without
the shunt damper.

VII. CONCLUSION AND FUTURE WORK

In this article, we have proposed a nonlinear stabilization
method for a dc small-scale power system supplying electric
energy to a CPL. By adding a controlled dc–dc power con-
verter in parallel with the load, we have been able to design,
using standard input–output linearization, and a suitably tai-
lored adaptive state observer, a nonlinear output-feedback
adaptive control law for the stabilization of the overall net-
work. Furthermore, the proposed design permits the stable
operation of the network for a wide range of values of the CPL
and is able to relax, under certain conditions, some stability
bounds that are imposed if the system were to be operated
without the shunt damper. Finally, the good performance of
the controller has been validated through experiments on a
small-scale dc network built in our laboratory.

The results of this article can be extended in the following
directions.

1) Explicitly compute estimates for the region of attraction
of the equilibrium of the closed-loop system.

2) Theoretically evaluate the robustness, against parameter
uncertainty, of the proposed adaptive control.

3) Extend our analysis to multiport networks and with a
distributed array of CPLs.

APPENDIX A
PROOF OF PROPOSITION 2

From (11) a and (14), we have

ẏ = ẋ2 = 1

C1

(
x1 − P

x2
− x3

)
=: F2(x1, x2, x3)

and

ÿ = ∇F�
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1

L1
(−r1x1 − x2 + E)

1

C1

(
x1 − P

x2
− x3

)
1

L2
(−r2x3 + x2 − w)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (20)

If we substitute w(x1, x2, x3) from (13) into (20), we get (15),
which is clearly an asymptotically stable system.

To show that the equilibrium (x̄1, x̄2, x̄3) is asymptotically
stable, we proceed to analyze the zero dynamics of �13 with
output y, which is the dynamics of �13 restricted to the set

Z := {(x1, x2, x3) : y = 0 ∧ ẏ = 0}
=
{
(x1, x2, x3) : x2 = x̄2 ∧ x3 = x1 − P

x̄2

}
.

5Without considering the power needed to supply the operating losses of
the boost converter.
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Restricting the dynamics of x1 to Z yields

L1 ẋ1 = −r1x1 − x̄2 + E

= −r1(x1 − x̄1).

Therefore, x1 → x̄1. Now, in Z , we have that x3 = x1 −
(P/x̄2), and hence, x3 → x̄1 − (P/x̄2) = x̄3.

APPENDIX B
PROOF OF PROPOSITION 3

With the change of coordinates z = (1/2)C2x2
4 , the system

�4 is equivalent to

ż = − 2

r3C2
z + wx3. (21)

From Proposition 2, we have that (x̄1, x̄2, x̄3) is an exponen-
tially stable equilibrium point of �13 in closed loop with (13).
Then, the term wx3 remains bounded and converges, exponen-
tially, to the value ū x̄3x̄4. The latter limit is computed from
the steady-state expression

−r2 x̄3 − ū x̄4 + x̄2 = 0.

It follows trivially from (21) that:

z → r3C2

2
(wx3) → r3C2

2
(ū x̄4 x̄3)

at an exponential rate. Using the steady-state expression

ū x̄3 − 1

r3
x̄4 = 0

we conclude that any solution x4 of �4 is positive for all time
and converges exponentially to x̄4 > 0 as long as it starts
sufficiently close to x̄4.

APPENDIX C
PROOF OF PROPOSITION 4

The derivatives of the errors x̃1 := x̂1 − x1 and P̃ := P̂ − P
are given by

˙̃x1 = − r1

L1
x̃1 − k1x2 x̃1 + k1 P̃

˙̃P = −k2 P̃ + k2x2x̃1 (22)

which can be equivalently written as

d

dt

[
x̃1

P̃

]
= −A

[
x̃1

P̃

]
(23)

where

A =
⎡
⎣ r1

L1
+ k1x2 −k1

−k2x2 k2

⎤
⎦ . (24)

Next, we show that the origin of the nonautonomous sys-
tem (23) is exponentially stable. Consider the Lyapunov func-
tion candidate

V := 1

2

[
x̃1

P̃

]�
S

[
x̃1

P̃

]

where

S :=

⎡
⎢⎢⎣

1
k1

k2
k1

k2
s2,2

⎤
⎥⎥⎦

and s2,2 is a positive constant to be determined. Computing
the time derivative of V along the trajectories of system (22)
yields

V̇ = −
[

x̃1

P̃

]�
M
[

x̃1

P̃

]
where M = 1/2(S A + A�S), as shown at the top of the next
page. Clearly, V is a strict Lyapunov function for (23) if and
only if ∃s̄2,2 constant such that M|s2,2=s̄2,2 > 0 and S > 0 or
equivalently

det(M)|s2,2=s̄2,2 > 0 ∀x2 ∈ [xmin
2 , xmax

2

]
(25a)

s̄2,2 >
k2

1

k2
2

(25b)

hold simultaneously. To provide evidence of the existence of
such s̄2,2, we note that det(M) can be written as a quadratic
function of s2,2 as follows:

det(M) = as2
2,2 + bs2,2 + c

where

a = −1

4
k2

2 x2
2

b = 2 k2 r1 + k1 x2(r1 + k1 L1 x2)

2 L1

c = −k2
1(4 k2 L1 r1 + (r1 + k1 L1 x2)

2)

4 k2
2 L2

1

.

Due to our assumptions

b2 − 4ac = k2 r2
1 (k2 + k1 x2)

L2
1

> 0

then

det(M) = 0 ⇔ s2,2 ∈ {ω1, ω2}
where

ω1 = −b + √
b2 − 4ac

2a

ω2 = −b − √
b2 − 4ac

2a
which satisfy ω1 < ω2. For, if we can find s̄2,2, constant, such
that

min

{
ω1,

k2
1

k2
2

}
< s̄2,2 < ω2 ∀x2 ∈ [xmin

2 , xmax
2

]
(26)

then V would be a Lyapunov function of the error dynam-
ics (23). Indeed, note that k2

1/k2
2 < s̄2,2 implies that V

is positive definite with respect to x̃1 = P̃ = 0. More-
over, ω1 < s̄2,2 < ω2, ∀x2 ∈ [xmin

2 , xmax
2 ], implies that

det(M|s2,2=s̄2,2) > 0 for all x2 ∈ [xmin
2 , xmax

2 ], making V
monotonically decreasing along solutions of the system (23).
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M = 1

2
(S A + A�S)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r1

L1

1

2

⎛
⎝k1

(
r1
L1

+ k1x2

)
k2

− k2x2s2,2

⎞
⎠

1

2

⎛
⎝k1

(
r1
L1

+ k1x2

)
k2

− k2x2s2,2

⎞
⎠ −k2

1

k2
+ k2s2,2

⎤
⎥⎥⎥⎥⎥⎥⎦

Now, both ω1 and ω2 can be shown to be monotonically
decreasing functions of x2, and then

ω1 ≤ ω1|x2=xmin
2

∀x2 ∈ [xmin
2 , xmax

2

]
(27)

and

ω2|x2=xmax
2

≤ ω2 ∀x2 ∈ [xmin
2 , xmax

2

]
. (28)

Moreover, the following inequality can be verified through
direct algebraic manipulations:

k2
1

k2
2

< ω1 ∀x2 ∈ [xmin
2 , xmax

2

]
. (29)

Under (27)–(29), it is possible to claim that if

ω1|x2=xmin
2

< ω2|x2=xmax
2

(30)

then there exists s̄2,2 constant such that (26) is satisfied.
Through direct computations, it can be verified that a sufficient
condition for (30) to hold is given by (18). This concludes
the proof.6

APPENDIX D
PROOF OF PROPOSITION 5

Recall from the proof of Proposition 4 that the observer’s
error dynamics is given by (22). On the other hand, it can
be shown through lengthy (but straightforward) computations
that (4) in closed loop with (19) has the form

ẋ =
[

f (x) + g(x)
w(x1, x2, x3, P)

x4

]
+ g(x)ε(x, x̃1, P̃) (31)

where the mapping ε is such that ε(x, 0, 0) = 0 for all x .
From Proposition 1, it follows that if ε ≡ 0 for all t , then x̄

is an asymptotically stable equilibrium of (31). Furthermore,
Proposition 4 establishes that the origin of the observer’s
error dynamics is exponentially stable. Consequently, invoking
[13, Proposition 4.1], it is concluded that (x, x̃1, P̃) = (x̄, 0, 0)
is an asymptotically stable equilibrium point of the overall
system.

6The proofs of inequalities (27)–(29) and the implication [(18) ⇒ (30)]
have been omitted to enhance readability.
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