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Abstract

The paper deals with the distributed minimum sharing problem, in which a network of decision-makers – exchanging in-
formation through a communication network – computes the minimum of some local quantities of interest in a distributed
and decentralized way. The problem is equivalently cast into a cost-coupled distributed optimization problem, and an
adjustable approximate (or sub-optimal) solution is presented which enjoys several properties of crucial importance in
applications. In particular, the proposed solution is scalable in that the dimension of the state space does not grow
with the size or topology of the communication network. Moreover, a global and uniform (both in the initial time and
in the initial condition) asymptotic stability result is provided, as well as an attractiveness property towards a steady
state which can be made arbitrarily close to the sought minimum. Exact asymptotic convergence is also recovered at
the price, however, of loosing uniformity of the convergence with respect to the initial time.

1. Introduction

1.1. Problem Description, Objectives and Context

We consider the problem of computing the minimum of
a set of numbers over a network, and we propose a dis-
tributed, iterative solution achieving global and uniform,
albeit approximate, asymptotic stability. We are given a
set N of N decision makers (or agents), where each agent
i ∈ N is provided with a number Mi ∈ R not known
a priori by the others. The agents exchange information
over a communication network with only a subset of other
agents (called their neighborhood). The approximate min-
imum sharing problem consists in the design of an algo-
rithm guaranteeing that each agent asymptotically obtains
a “sufficiently good” estimate of the quantity

M⋆ := min
i∈N

Mi. (1)

Clearly, “xi = M⋆, ∀i ∈ N” is also the unique solution to
every constrained optimization problem of the form

max
∑

i∈N

ψi(xi)

xi ≤ Mi, ∀i ∈ N

xi = xj , ∀i, j ∈ N

(2)

obtained with ψi, i ∈ N , continuous and strictly increas-
ing functions. Therefore, the minimum sharing problem
is equivalent to the constrained distributed optimization
problem (2), thus intersecting the wide research field of
distributed optimization [1].
The problem of computing a minimum (or, equiva-

lently, a maximum) over a network of decision makers is

a classical problem in multi-agent control, with applica-
tions in distributed estimation and filtering, synchroniza-
tion, leader election, and computation of network size and
connectivity (see, e.g., [2–6] and the references therein).
Perhaps the most elementary existing algorithms solving
the minimum sharing problem are the FloodMax [2] and
the Max-Consensus [4–6]. In its simplest form, Max-
Consensus1 requires each agent i ∈ N to store an estimate
xi ∈ R of M⋆ which is updated iteratively on the basis of
the following update rule

xt+1
i = min

j∈[i]
xtj , xt0i = Mi, ∀i ∈ N , (3)

where t is the iteration variable, t0 its initial value, and
[i] ⊂ N denotes the neighborhood of agent i (we assume
i ∈ [i]). The update law (3) is decentralized and scalable,
in that each agent needs only information coming from its
neighbors. However, although (3) guarantees convergence
of each xi to M⋆ when the estimates xi are initialized as
specified, convergence is not guaranteed for an arbitrary
initialization. Namely, (3) is not globally convergent. In
fact, under the action of the same update law, if

∃i ∈ N s.t. xt0i < M⋆, (4)

then xti < M⋆ holds true for all subsequent t, so that
xti → M⋆ cannot hold2. While there are application do-
mains for which attaining global convergence is not strictly

1For brevity, we only focus on Max-Consensus. However, the
same conclusions applies also to the FloodMax.

2In this specific case, we also observe that any consensual config-
uration (i.e., xi = xj for all i, j ∈ N ) is an equilibrium of (3). This,
in turn, is intimately linked to the unfeasibility result of [3, Theo-
rem 3.1.1], and to the detectability issues appearing in many control
problems, such as Extremum Seeking [7, 8].
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necessary, there are many others in which it is a crucial re-
quirement. This is the case, for instance, when the quan-
tities Mi can change at run time (see the two use-cases
illustrated in Section 1.2). To see how this may be a prob-
lem for the update law (3), assume by way of example that
the estimates xti have reached at a given t1 the value M⋆,
i.e. xt1i = M⋆ for all i ∈ N , and assume that there is a
unique k ∈ N such that M⋆ = Mk. Now, suppose that at
some t2 > t1 the value of Mk increases. Then, in view of
the discussion above, the update law (3) fails to track the
new minimum, since (4) holds with t0 = t1.
Global attractiveness is not the only desirable property

one may be interested in when the minimum sharing prob-
lem is considered over large networks with possibly chang-
ing conditions. In fact, a crucial role is also played by

1. Uniformity of the convergence: the convergence rate
does not depend on the initial value t0 of the iteration
variable and is constant over compact subsets of initial
conditions.

2. Stability of the steady state, ensuring that small vari-
ations in the parameters and initial conditions map
into small deviations from the unperturbed trajecto-
ries.

3. Scalability: the number of variables stored by each
agent does not grow with the network size or the num-
ber of interconnections.

4. Decentralization of the updates : the update law of
each agent uses only local information and depends
on parameters that are independent from those of the
other agents.

Indeed, uniform global attractiveness and stability of the
steady state confer robustness against uncertain and time-
varying conditions and parameters (see e.g. [9, Section 7]),
making the minimum sharing method suitable for applica-
tions in which time-varying target steady states have to be
tracked. Moreover, scalability and decentralization enable
the application to large-scale networks. In this direction,
in this paper we look for a novel solution to the mini-
mum sharing problem having scalability and decentraliza-
tion properties similar to those of Max-Consensus (3), but,
in addition, possessing the aforementioned globality, uni-
formity and stability properties.

1.2. Motivating Applications

Our methodology is inspired and motivated by two ap-
plication contexts described below. In both cases, a key
element consists in solving an instance of the minimum-
sharing problem (2) in which the parameters Mi, hence
the minimum M⋆, may change over time. In this contexts,
(i) global attractiveness allows to track the changing min-
imum M⋆, (ii) uniformity of convergence guarantees that
the convergence rate is always the same and does not grow
unbounded with time, and (iii) stability guarantees that
relatively small variations of the parameters lead to small
transitory deviations from the optimal steady state.

1.2.1. Cooperative Control of Traffic Networks

Consider a traffic network consisting of a set of vehi-
cles driving on a highway in an intense traffic situation.
Some of the vehicles have self-driving capabilities, and we
can assign their driving policies. The other vehicles are
instead human-driven and, thus, they are not controlled.
The whole traffic network is seen as a plant that, when
not properly controlled, may exhibit undesired behaviors,
such as congestion, ghost jams, and delays. The con-
trol goal consists in finding a control policy, distributed
among the self-driving vehicles, which guarantees that the
“closed-loop” traffic network behaves properly, leading to
a smooth traffic flow where all the vehicles hold a common
maximum cruise speed. At each time, the maximum at-
tainable cruise speed of each vehicle i is constrained by a
personal maximum value, denoted by Mi, which may de-
pend on mechanical constraints, on the traffic conditions,
on standing speed limitations, or other exogenous factors.
A key part of the control task consists in the distributed
computation of the maximum common cruise speed, M⋆,
compatible with all the personal velocity constraints. At
each time, the problem of estimating M⋆ is an instance
of (2), whose solution is precisely (1).

1.2.2. Dynamic Leader Election

Another important motivating application is the dis-
tributed leader election problem in dynamic networks,
which shares many similarities with the previous applica-
tion. Single-leader election has been proved to be an un-
solvable problem in general, even under bi-directionality,
connectivity, and total reliability assumptions on the com-
munication networks [3, Theorem 3.1.1]. A standard addi-
tional assumption making the problem well-posed is that
each agent is characterized by a unique identifier Mi.
Hence, the problem of leader election can be cast as find-
ing the minimum, M⋆, of such identifiers. The agent whose
identifier coincides with M⋆ declares itself the leader, the
others the followers.

1.3. Related Works and State of the Art

Classical algorithmic approaches to the minimum shar-
ing problem in arbitrary networks have been developed
in the context of distributed algorithms and robotic ap-
plications. They include the FloodMax [2], the Max-
Consensus [4–6] (see (3)), the MegaMerger [10], and
the Yo-Yo algorithm. See [2, 3] for a more detailed
overview. Some of these approaches, such as the basic
Max-Consensus (3), have nice scalability and decentral-
ization properties: the update laws employ a number of
variables which does not grow with the network size or
topology, and do not depend on centralized quantities such
as parameters that need to be known in advance by all the
agents. However, all such approaches require a correct
initialization or a pre-processing synchronization phase,
which are undesired limitations in applications of interest
such as, for example, the ones discussed in Section 1.2.
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If the minimum sharing problem is cast in terms of the
optimization problem (2), then one can rely on a well-
developed literature on discrete-time distributed optimiza-
tion (see [1] for a recent overview). If the functions ψi

in (2) are convex, indeed, different approaches can be used,
such as consensus-based (sub)gradient methods [11–16],
second-order methods [17, 18], projected [19] and primal-
dual [20, 21] methods with inequality constraints, meth-
ods based on the distributed Alternate Direction Method
of Multipliers (ADMM) [1, 22–29], and methods based
on gradient tracking [30–35]. Gradient methods typically
achieve global attractiveness. However, among the cited
references only [12] deals with constrained problems with
different local constraints such as (2). Yet, [12] requires a
vanishing stepsize, which makes convergence not uniform.
Gradient methods employing a fixed stepsize thus guar-
anteeing uniformity are given in [11, 13–18]. However,
they do not cover constrained problems of the kind (2).
Moreover, the first-order methods in [11, 13, 16] lead to
an approximate convergence result in which the conver-
gence speed and the approximation error need to be traded
off. This, in turn, is consistent with our results in which
a trade off is more generally established between uni-
formity, approximation error and convergence rate. Ap-
proaches [19–21] deal with inequality constraints includ-
ing Problem (2). Nevertheless, they require a correct
initialization and, hence, they do not provide global at-
tractiveness. The same issue applies to gradient-tracking
methods [30–35] (which, anyway, are developed for uncon-
strained problems), and also for the “node-based” formu-
lations of ADMM [23–26, 28]. Instead, the “edge-based”
formulations of ADMM (e.g. [1, Section 3.3], [29]) do not
suffer from this initialization issue, and they provide a so-
lution which is global and uniform. Nevertheless, the num-
ber of variables that each agent has to store grows with the
dimension of its neighborhood, thus incurring in scalabil-
ity issues. Moreover, stability is not proved for any of the
aforementioned approaches and typically the update laws
employ coefficients (e.g. stepsizes) which must be com-
mon3 to each agent (i.e., they are centralized quantities).

1.4. Contributions & Organization of the Paper

We propose a new approach to the minimum sharing
problem that provides an adjustable approximate (or sub-
optimal in terms of (2)) solution enjoying all the global-
ity, uniformity, scalability and decentralization properties
stated in Section 1.1, which do not seem to be possessed al-
together by any existing algorithm. The proposed update
laws have the form

xt+1
i = fi(t, x

t), (5)

3Exceptions are given in the gradient-tracking designs of [30, 32],
where agents employ uncoordinated stepsizes. In both the designs,
the discrepancy between the stepsizes must be small enough. Hence,
these results may be seen as a “robustness” property relative to vari-
ations of the stepsizes with respect to their average. In turn, this
property comes for free if the algorithm is proved to be asymptoti-

cally stable with a common stepsize (see, e.g., [9, Chapter 7]).

for some suitable functions fi, where xi ∈ R represents the
estimate of M⋆ stored by agent i. We show that all the
estimates xi converge, globally and uniformly, to a stable
neighborhood of M⋆ whose size can be reduced arbitrarily
around M⋆ by suitably tuning some control parameters.
More precisely, the proposed approach enjoys the following
properties:

(a) The algorithm is distributed, decentralized and scal-
able, since only one variable is stored for each agent.

(b) It provides a global, uniform, approximate conver-
gence result, in which the agents estimates xi converge
to a stable steady state that can be made arbitrarily
close to M⋆.

(c) An exact convergence result (i.e., the local estimates
all converge to M⋆) can be achieved, at the price, how-
ever, of losing uniformity.

The paper is organized as follows. After providing pre-
liminary concepts, definitions, and remarks in Section 2, in
Section 3 we formulate the minimum-sharing problem and
we describe the proposed solution methodology. The main
convergence results are given in Section 4 where details on
the design of the algorithms are provided as well. Numeri-
cal results showing the effectiveness of the proposed mini-
mum sharing technique are reported in Section 5. Finally,
Section 6 delivers some concluding remarks, followed by
Section 7 and the Appendix where the proofs of the main
theoretical results are provided.

2. Preliminaries

2.1. Notation

We denote by R and N the set of real and natural num-
bers respectively. If a ∈ R, R≥a denotes the set of all
real numbers larger or equal to a, and similar definitions
apply to other ordered sets and ordering relations. We de-
note by cardA the cardinality of a set A. If A,B ⊂ R,
A \ B := {a ∈ A | a /∈ B} denotes the set difference be-
tween A and B. We identify singletons with their unique
element and, for a b ∈ R, we thus write A \ b in place of
A \ {b}. We denote norms by | · | whenever they are clear
from the context. With A ⊂ R

n and x ∈ R
n, dist (x, A) :=

infa∈A |x−a| denotes the distance from x to A. Sequences
indexed by a set S are denoted as (xs)s∈S . For a non-
empty interval [a, b] ⊂ R, we define the projection map
Π[a,b] : R → [a, b] as Π[a,b](s) := min{max{s, a}, b}. A
function f : R

n → R
m, n,m ∈ N is locally bounded if

f(K) is bounded for each compact set K ⊂ R
n. In this

paper, we consider discrete-time systems whose solutions
are signals defined on a non-empty subset domx of N. For
ease of notation, we will use xt in place of x(t) to denote
the values of a signal x : N → R

n. With t0 ∈ N, we say
that x starts at t0 if min domx = t0.
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2.2. Communication Networks

Throughout the paper, N denotes the (finite) set of
agents in the network, and we let N := cardN . The net-
work communication constraints are formally captured by
the concept of “communication structure” defined below4.

Definition 1. A communication structure on N is a fam-
ily C = {[i]}i∈N of subsets [i] of N satisfying i ∈ [i]. ⊳

For each i ∈ N the set [i] ∈ C is called the neighborhood
of i. A communication network is a pair (N , C), in which
N is a set and C is a communication structure on N .
For a given I ⊂ N , we define the sequence of sets

[I]0 := I
[I]n :=

⋃

j∈[I]n−1 [j], n ∈ N≥1
(6)

so as, in particular, [{i}]1 = [i]. If I = {i} is a singleton,
we use the short notation [{i}]n = [i]n. Moreover, for
n,m ∈ N we let

[I]nm := [I]n \ [I]m.

We consider networks that are connected according to
the following definition.

Definition 2. With I ⊂ N , a communication network
(N , C) is said to be I-connected if there exists nI ≤ N
such that [I]nI = N . ⊳

The notion of I-connectedness is in general weaker than
usual strong connectedness, which requires the existence
of a path between any two agents. Later on, we shall as-
sume that N is given a communication structure C which
is I⋆-connected for a specific subset I⋆ ⊂ N . For the pur-
pose of analysis, this communication structure is assumed
static. Likewise also the quantities Mi are supposed con-
stant. In fact, this corresponds to a well-defined “nom-
inal setting” for the proposed method in which we can
prove the desired uniform global attractiveness and sta-
bility properties. Proving such properties in the nominal
case, in turn, guarantees that the proposed method can
be applied also to relevant classes of problems where the
communication structure and the parameters Mi (hence,
their minimum M⋆) may change over time. Indeed, as al-
ready mentioned in Section 1.1, uniform global attractive-
ness and stability ensure a proper approximate tracking of
a time-varying minimum M⋆ provided that its dynamics is
sufficiently slow. Moreover, classical results in the context
of control under different time-scales (see, e.g., [8, 36–38])
also guarantee that approximate asymptotic stability is
preserved under arbitrary changes of the communication
structure C that are, on average, sufficiently slow with re-
spect to the dynamics of the update laws. In this respect,

4A common way to define a communication structure on N is to
consider an undirected graph (N , E) with vertices set equal to N and
edges set E ⊂ N ×N such that if (i, j) ∈ E then agents i and j can
communicate. In this case, [i] := {i} ∪ {j ∈ N | (j, i) ∈ E}.

Section 5 provides numerical results in a scenario in which
the communication structure and the numbers Mi are sub-
ject to few impulsive changes separated by relatively large
intervals of time.

2.3. Stability and Convergence Notions

We consider discrete-time systems of the form

xt+1 = f(t, xt), (7)

with state xt ∈ R
n, n ∈ N. Given a closed set A ⊂ R

n, we
say that A is stable if for each ǫ > 0 there exists δ(ǫ) > 0
such that every solution of (7) satisfying dist (xt0 , A) ≤
δ(ǫ) also satisfies dist (xt, A) ≤ ǫ, for all t ≥ t0.

We say that the set A is attractive for (7) if there exists
an open superset O of A and, for every t0 ∈ N, every
solution x to (7) with xt0 ∈ O, and every ǫ > 0, there
exists t⋆(t0, x

t0 , ǫ) ∈ N, such that dist (xt, A) ≤ ǫ holds
for all t ≥ t0 + t⋆(t0, x

t0 , ǫ). Different qualifiers can enrich
this attractiveness property. In particular, the set A is
said to be:

• Globally attractive if O = R
n.

• Finite-time attractive if the condition “ǫ > 0” can be
replaced by “ǫ ≥ 0”.

• Uniformly attractive in the initial time t0 if the map
t⋆(·) does not depend on t0.

• Uniformly attractive in the initial conditions xt0 if for
each (t0, ǫ) ∈ N × R≥0, the map t⋆(t0, ·, ǫ) is locally
bounded.

• Uniformly attractive if it is both uniformly attractive
in the initial time and in the initial conditions.

• ε-approximately attractive (with ε > 0) if the set {x ∈
R

n | dist (x, A) ≤ ε} is attractive.

If A is both stable and attractive, it is said to be asymptot-
ically stable. Moreover, with (fγ)γ∈Γ representing a family
of functions fγ : N×R

n → R
n indexed by a set Γ, consider

the family of systems

xt+1 = fγ(t, x
t), γ ∈ Γ. (8)

Then, we say that the set A is practically attractive for
the family (8), if for each ε > 0, there exists γ⋆(ε) ∈ Γ
such that the set A is ε-approximately attractive for the
system (8) obtained with γ = γ⋆(ε).

Finally, we remark that attractiveness implies finite-
time ε-approximate attractiveness for each ε > 0, and
practical attractiveness implies finite-time practical attrac-
tiveness.
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3. Distributed Minimum Sharing

3.1. Problem Formulation

We are given a communication network (N , C). Each
agent i ∈ N is provided with a number Mi, not known
a priori by the others, and it stores and updates a local
estimate xi ∈ R of the quantity M⋆ defined in (1). Thus,
the problem at hand consists in designing an update law
for each agent i ∈ N of the form

xt+1
i = fi(t, x

t), (9)

such that the resulting estimates xti converge to M⋆, in
some of the senses defined in Section 2.3. The resulting
family f := (fi)i∈N is called the distributed methodology.
In the following, we let x := (xi)i∈N and we compactly
rewrite (9) as

xt+1 = f(t, xt). (10)

As each agent is allowed to exchange information only with
the agents belonging to its neighborhood [i] ∈ C, the func-
tions fi must respect this constraint. This is formally ex-
pressed by the following definitions.

Definition 3. With V ⊂ N , a function g on N × R
N is

said to be adapted to V if it satisfies g(t, x) = g(t, z) for
every t ∈ N, and every x, z ∈ R

N satisfying xi = zi for all
i ∈ V . ⊳

Definition 4. The function f = (fi)i∈N is said to be C-
decentralized if, for each i ∈ N , the map fi is adapted
to [i]. ⊳

Then, the distributed minimum sharing problem is defined
as follows.

Problem 1. Design a C-decentralized function f , such
that the set

A := {M⋆}N (11)

is globally attractive for (10). ⊳

Remark 1. We stress that, if f is C-decentralized in the
sense of Definition 4, then each function fi in (9) depends
only on (xj)j∈[i] and not on the whole state x. ⊳

Remark 2. Depending on the additional qualifiers that
may characterize the attractiveness property of A in Prob-
lem 1, we may have solutions to Problem 1 in “different
senses”. In the forthcoming section, we propose a method-
ology obtaining both global attractiveness and global, uni-
form, practical attractiveness of A, depending on the value
of some user-decided control parameters. We will show
that a compromise between how close we can get to A and
uniformity in the initial time is necessary; in particular,
we show that attractiveness is possible only at the price of
losing uniformity in the initial time, and that, if such prop-
erty is needed, then global practical uniform attractiveness
is the best we can achieve. ⊳

3.2. Standing Assumptions

We consider Problem 1 under two additional main as-
sumptions specified hereafter. In the following we let

I⋆ := argmin
i∈N

Mi. (12)

With the following assumption, we require the communi-
cation network to be connected with respect to I⋆.

Assumption 1 (Connectedness). The communication
network (N , C) is I⋆-connected (in the sense of Definition
2). ⊳

The second assumption, instead, requires each agent to
know a lower-bound on M⋆.

Assumption 2 (Consistency). Each agent i ∈ N
knows a number µi ∈ R>0 such that µi ≤ M⋆. ⊳

It is worth noting that Assumption 2 is a “centralized” as-
sumption, in that it asks each agent to know a lower bound
on the common, unknown quantity M⋆. Nevertheless, it
introduces almost no loss of generality in different applica-
tions of interest, including those mentioned in Section 1.2,
where knowing a lower-bound on M⋆ is a mild requirement.
For instance, in both the traffic control and leader election
problems we can assume that the quantities Mi are inte-
gers, so that “µi ∈ (0, 1) for all i ∈ N” is a feasible choice
requiring no further knowledge on M⋆. Furthermore, this
assumption is not in principle needed if an approximate
or practical attractiveness result is sought. In fact, if for
some I ⊂ N , ε := maxi∈I µi > M⋆, then M⋆ ∈ (0, ε),
and, as clarified later on by the asymptotic analysis, we
are able to claim that the set [0, ε]N (which includes M⋆)
is practically attractive for x, with ε, however, that can be
made arbitrarily small by choosing µi accordingly.
In the following we let

µ := min
i∈N

µi. (13)

3.3. The Update Laws

The proposed update law is obtained by choosing f so
that, for each i ∈ N , Equation (9) reads as follows5

x+i = Π[µi,Mi]



eh
t
ixi + ki

∑

j∈[i]

(

xj − xi
)



 , (14)

in which µi > 0 is the same quantity of Assumption 2,
ki > 0 is a free control gain chosen to satisfy

0 < ki ≤
1

card([i] \ i)
(15)

and hi : N → R≥0 is a time signal to be designed later on.

5Recall that Π[a,b](s) := min{max{s, a}, b}.
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Notice that, as in [12], the update laws (14) have the
form of a projected (onto the interval [µi, Mi]) consensus-
like protocol. Unlike [12], however, the resulting consensus
matrix needs not be column- or row-stochastic, and the co-
efficients ki are only constrained by (15) and, hence, they
can be chosen in a completely decentralized way. More-
over, unlike all the aforementioned distributed optimiza-
tion approaches, the restriction of the dynamics onto the
consensus manifold6 is not marginally stable. Rather, it
is deliberately made unstable by the terms eh

t
i .

3.4. Excitation Properties

The signals hi will be chosen to guarantee one of the
following excitation properties.

Definition 5 (Sufficiency of Excitation). With t0 ∈
N, the family (hi)i∈N , is said to be sufficiently exciting
from t0 if there exist h(t0) > 0 and ∆(t0) ∈ N≥1 such
that, for each m ∈ N≥1 satisfying

m ≤
1

h(t0)
log

(

M⋆

µ

)

(16)

and each i ∈ N , there exists at least one si ∈ {t0 + 1 +
(m− 1)∆(t0), . . . , t0 +m∆(t0)} such that hsii ≥ h(t0). ⊳

In qualitative terms, given an initial time t0, sufficiency
of excitation implies that the signals hi are positive “fre-
quently enough” for a “large enough” amount of time suc-
ceeding t0. When (hi)i∈N is sufficiently exciting from ev-
ery t0, and independently on it, then we say that (hi)i∈N

enjoys the persistence of excitation property.

Definition 6 (Persistence of Excitation). The family
(hi)i∈N is said to be persistently exciting if it is sufficiently
exciting from every t0, with h and ∆ not dependent on t0.

⊳

Persistence of excitation can be seen as a “uniform in t0”
version of sufficiency of excitation and, in particular, it im-
plies that all the signals hi take positive values infinitely
often. Defined in this way, both these properties are “cen-
tralized”, in that they employ quantities common to all the
agents. However, both can be easily obtained by means of
decentralized design policies in which the signals hi are
chosen independently on each other. This is the case, for
instance, when the signals hi are periodic (with possibly
different periods) and not identically zero, as formalized
in the following lemma.

Lemma 1. Suppose that, for each i ∈ N , hi is periodic
and there exists t ∈ N for which hti > 0. Then, the family
(hi)i∈N is persistently exciting. ⊳

Lemma 1 is proved in Appendix A.

6That is, the set {x ∈ R
N | xi = xj , ∀i, j ∈ N}.

Remark 3. If hti = 0 for all i ∈ N and t ∈ N, each
of the infinite points of the consensus manifold M is an
equilibrium for (14). Since M⋆ ∈ M, this implies that
M⋆ is a well-defined steady state for (14). However, in
this case M⋆ cannot be reached by any of the initial con-
ditions in M, as they are indeed equilibria. This, in turn,
is intimately linked with the impossibility result [3, The-
orem 3.1.1] in the leader election problem in absence of
unique identifiers, and is at the basis of the non-globality
of the FloodMax and Max-Consensus algorithms (see Sec-
tion 1.1). In order to prevent the consensual states in M
to be equilibria, the signals hti must carry enough excita-
tion, in the sense of Definitions 5 or 6. As formally stated
later on in Theorem 1, indeed, this permits to recover glob-
ality, although it ruins “exactness” of convergence of each
estimate xi to M⋆, being it a consensual state. In these
terms, the signals hi play the same role of the dithering
signals in Extremum Seeking approaches [7, 8]. ⊳

4. Convergence Results

4.1. Main result

For ease of notation, we write the update laws (14) in
the compact form (10). The following theorem – which
is the main fundamental result of the paper – relates the
excitation properties the signals hi to the asymptotic con-
vergence to M⋆ of the estimates xi produced by the update
laws (14). In particular, it shows that sufficiency of excita-
tion implies convergence (possibly exact) and persistence
of excitation implies uniform convergence, but ruins exact-
ness. Further remarks and insights on the results given in
the theorem follow thereafter in Section 4.2.

Theorem 1. Under Assumptions 1 and 2, consider the
update laws (14), in which ki satisfies (15). Suppose that,
for a given t0 ∈ N, the family (hi)i∈N is sufficiently excit-
ing from t0 in the sense of Definition 5. Then, the follow-
ing claims hold:

1. There exists t⋆ = t⋆(t0) such that every solution x to
(10) starting at t0 satisfies

xti ≥ M⋆, ∀t ≥ t⋆(t0), ∀i ∈ N \ I⋆

xti = M⋆, ∀t ≥ t⋆(t0), ∀i ∈ I⋆,

with I⋆ given by (12).

2. For each ǫ > 0, there exists δ(ǫ) > 0 such that, if

lim sup
t→∞

hti ≤ δ(ǫ), ∀i ∈ N , (17)

then each solution x starting at t0 satisfies

lim
t→∞

|xti −M⋆| ≤ ǫ, ∀i ∈ N . (18)

In particular, the set

Aǫ :=
∏

i∈N

[

M⋆, min{M⋆ + ǫ, Mi}
]

is globally attractive for (10).
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3. If the family (hi)i∈N is persistently exciting in the
sense of Definition 6, then Aε is globally uniformly
attractive.

4. If all the signals hi are non-zero and periodic (with
possibly different period), then there exists a compact
set Au

ε ⊂ Aε which is globally uniformly attractive and
stable, hence, globally uniformly asymptotically stable.

5. If
lim
t→∞

hti = 0, ∀i ∈ N

then, the set A, given by (11), is globally attractive
for (10), i.e.

lim
t→∞

xti = M⋆, ∀i ∈ N .

⊳

For the reader’s convenience, the proof of Theorem 1 is
postponed to Section 7.

4.2. Remarks on the Result

Claim 1 of Theorem 1 states that, if the family (hi)i∈N

carries enough excitation (in the sense of Definition 5),
then, in finite time t⋆, the estimates xi of the agents i ∈ I⋆

satisfying Mi = M⋆ reach the target value M⋆, while all
the other estimates xi of the remaining agents i ∈ N \ I⋆

become larger than M⋆. The time t⋆ is, however, a central-
ized quantity which depends on the excitation properties
of all the signals hi.
Claim 2 characterizes the asymptotic behavior of the

remaining agents, by stating that the update laws (14)
are able to drive the estimates xi arbitrarily close to M⋆,
provided that the amplitude of the signals hti is eventu-
ally reduced accordingly. As the approximation Aǫ can
be made arbitrarily tight, by acting on the asymptotic
bounds of hi accordingly, it turns out that this is a global
practical attractiveness result of the target set A (defined
in (11)). More precisely, let Γ be the set of all the fami-
lies γ := (hi)i∈N of functions hi : N → R≥0, and consider
a family of systems of the form (8), with xt ∈ R

N and
fγ := (f i

γ)i∈N satisfying

f i
γ(t, x) := Π[µi,Mi]



eh
t
ixi + ki

∑

j∈[i]

(

xj − xi
)



 . (19)

Then, the second claim of the theorem can be restated as
follows.

Corollary 1. Under the assumptions of Theorem 1, the
set A is globally practically attractive for the family (19).

⊳

Claim 3 of the theorem further strengthen (1) to a uni-
form global practical stability property of A in presence of
persistence of excitation. Claim 4, moreover, also states
that, in the relevant case in which the signals hi are pe-
riodic, with possibly different periods, there exists a com-
pact set included in the approximationAǫ which is globally
uniformly asymptotically stable.

Finally, Claim 5 states that, if all the signals hti con-
verge to zero, then a global attractiveness result of the
target set A holds (i.e. xti → M⋆ for all i ∈ N ). How-
ever, we observe that, if hti → 0 for some i ∈ N , then the
family (hi)i∈N fails to be persistently exciting, and thus
the convergence of the estimates xi to M⋆ is not in general
uniform in the initial time t0. This underlines an impor-
tant difference between sufficiency and persistence of exci-
tation: sufficiency of excitation allows exact convergence,
but prevents uniformity in the initial time. Persistence of
excitation, instead guarantees uniformity and stability. It,
however, frustrates exact convergence, guaranteeing only
a weaker practical result. This, in turn, reveals a somehow
necessary compromise between complexity, uniformity and
convergence performance which is an interesting insight.

4.3. On the Design of the Signals hi
The signals hi are the only degrees of freedom left to be

chosen in the update laws (14). In this respect, Theorem 1
links their amplitude and excitation properties to the cor-
responding asymptotic behavior of the estimates xi, thus
providing guidelines for their design. Based on the claims
of Theorem 1, in this section we discuss some possible de-
signs guaranteeing sufficiency or persistence of excitation.

4.3.1. Sufficiently Exciting Designs

Sufficiency of excitation of the family (hi)i∈N (in the
sense of Definition 5) is guaranteed if each hi takes
“enough” positive values. According to Definition 5, and
in particular to (16), how much is “enough” depends on
centralized quantities. In turn, a design of the signals hi
based on the knowledge of t0 and of the quantities appear-
ing in (16) is undesirable as inevitably centralized and not
robust. A simple decentralized way to design a sufficiently
exciting family (hi)i∈N is rather to choose the signals hi
so as each hi is bounded and

∑

t∈N

hti = ∞, ∀i ∈ N . (20)

This, for instance, can be achieved by simply letting hti =
ai/(1 + t) for some arbitrary ai > 0.

Lemma 2. Suppose that, for each i ∈ N , the signal hi
is bounded and satisfies (20). Then, the family (hi)i∈N is
sufficiently exciting in the sense of Definition 5. ⊳

The proof of Lemma 2 follows directly from (20), hence it
is omitted.

In view of Claim 5 of Theorem 1, exact convergence of
the estimates xi to M⋆ is obtained if limt→∞ hti = 0 for all
i ∈ N . Moreover, convergence of hi to zero is implied by
(although not equivalent to) the following property

∑

t∈N

(

hti
)2
<∞. (21)

It is interesting to notice that Properties (20)-(21) are
standard assumptions asked to the step size in classical
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stochastic approximation algorithms [39, 40], as well as in
modern distributed optimization algorithms using vanish-
ing step sizes [1, 12, 41]. In the context of this paper,
these two conditions are simply sufficient conditions for
sufficiency of excitation, which can be easily satisfied by
decentralized designs of the signals hi.

4.3.2. Persistently Exciting Designs

In view of Lemma 6, if every signal hi is periodic, then
(hi)i∈N is persistently exciting in the sense of Definition 6.
While periodicity is not necessary for persistence of ex-
citation, it certainly is a relevant design choice due its
simplicity and effectiveness. Possible decentralized design
choices for periodic signals hi leading to a persistently ex-
citing family (hi)i∈N are listed below, where the quan-
tities Ai, Ti, ρi > 0 are arbitrary. From the theoretical
viewpoint, all the following options are equally fine. De-
pending on the application domain, however, some choices
may be more convenient than others.

1. Constant signals : is the simplest design choice and
consists in choosing hti = Ai for all i ∈ N .

2. Rectified sinusoids : different versions can be de-
fined, for instance hti = Ai| sin(πt/Ti)| and hi =
Ai max{0, sin(2πt/Ti)} both have period Ti.

3. Square waves: with ρi ∈ (0, 1] playing the role of a
duty cycle, square waves have the form

hti = Aistep (mod(t, Ti)− (1− ρi)(Ti)) (22)

in which mod(s) := s − max{n ∈ N | n(Ti + 1) ≤
s}, and step(·) denotes the step function satisfying
step(s) = 0 for s < 0 and step(s) = 1 for s ≥ 0. The
signal (22) has period Ti and h

t
i = Ai holds for ρiTi

seconds each period.

5. Numerical Simulations

(a)

1
2

3 4

(b)

1
2

3 4

56

(c)

1

4

56

Figure 1: Communication structure of Simulation 1 (a) for 0 ≤ t <

500, (b) for 500 ≤ t < 1500, and (c) for t ≥ 1500.

In this section, we present two illustrative numerical
simulation scenarios of the proposed methodology. In Sce-
nario 1, a network with a time-changing topology (see Fig-
ure 1) is considered while in Scenario 2, for a fixed network
topology, the use of different signals hi is evaluated.

5.1. Scenario 1: Uniform Convergence

The first simulation, shown in Figure 2, is obtained as
follows:

• The simulation starts with a network of 4 agents
(Agents 1, 2, 3, and 4), provided with a communi-
cation structure shown in Figure 1-(a) and given by
[1] = {1, 3, 4}, [2] = {2, 3, 4}, [3] = {1, 2, 3}, [4] =
{1, 2, 4}, and with numbers (M1, M2, M3, M4) =
(10, 12, 13, 13), implying M⋆ = M1 = 10. The
update laws (14) are implemented with µi = 1/2
for all i ∈ {1, . . . , 4}, with (k1, k2, k3, k4) =
(0.1, 0.08, 0.05, 0.09), and with the signals hi chosen
as the square waves discussed in Section 4.3.2 with pa-
rameters (T1, A1, ρ1) = (15, 10−3, 0.2), (T2, A2, ρ2) =
(10, 5 · 10−4, 0.5), (T3, A3, ρ3) = (5, 10−3, 0.3),
(T4, A4, ρ4) = (10, 5 · 10−4, 0.5).

• At time t = 500, two new agents (Agents 5 and 6)
are added to the network, and the communication
structure is changed to the one shown in Figure 1-
(b), and given by [1] = {1, 3, 4}, [2] = {2, 4},
[3] = {1, 3, 5, 6}, [4] = {1, 2, 4, 5}, [5] = {3, 4, 5}
and [6] = {3, 6}. The new agents have numbers
(M5,M6) = (7, 11), lower bounds µ5 = µ6 = 1/2,
coefficients (k5, k6) = (0.07, 0.1), and signals hi given
by the square waves presented in Section 4.3.2 with
(T5, A5, ρ5) = (5, 10−3, 0.4) and (T6, A6, ρ6) = (7, 25 ·
10−4, 0.1). Furthermore, the numbers of agents 1
and 3 are changed to (M1,M3) = (11, 13). The new
optimum is thus M⋆ = M5 = 7.

• At time t = 1500, agents 2 and 3 leave the net-
work, and the communication structure is changed
to that depicted in Figure 1-(c), i.e. [1] = {1, 4},
[4] = {1, 4, 5, 6}, [5] = {4, 5} and [6] = {4, 6}.
Moreover, the numbers of the agents are changed to
(M1,M4,M5,M6) = (12, 16, 11, 16), leading to M⋆ =
M5 = 11.

• Finally, at time t = 5000, the numbers of Agent 4 is
changed to M4 = 8, so as M⋆ = M4 = 8.

As Figure 2 shows, the convergence to the (time-varying)
optimum M⋆ is approximate, with the trajectories of the
agents which show residual oscillations. Figure 2 also un-
derlines that the convergence to M⋆ “from below” (i.e.
when the initial values of the agent are smaller than M⋆)
is slower than convergence “from above” (i.e. when the
initial values of the agent are larger than M⋆). As shown
in the analysis of Section 7, this is due to the fact that (i)
the convergence rate “from below”, proved in Section 7.1
in the contest of Claim 1 of Theorem 1, is determined by
the values of the signals hti, while (ii) the convergence rate
“from above”, proved in Sections 7.2-7.3 in the contest of
Claims 2 and 3 of Theorem 1, is determined by the values
of the coefficients ki.
Finally, for the sake of comparison, Figure 3 shows a

simulation in which the Max-Consensus (3) is employed in
the same setting described above (see Figure 2). As shown
in Figure 3, although showing a faster convergence within
the first two changes of M⋆, the Max-Consensus fails in
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Figure 2: Evolution of the estimates xi in Scenario 1. The trajectory of the optimal value M⋆ is shown in dashed, gray line. Colored lines
depicts instead the trajectory of the estimates xi, i = 1, . . . , 6. In abscissa: iteration variable t.
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Figure 3: Evolution of the Max-Consensus estimates (update law (3))
in the setting of Scenario 1 (cf. Figure 2). In abscissa: iteration
variable t.

tracking the other changes. As illustrated in Section 1.1,
this is due to the fact that it is not globally attractive.

5.2. Scenario 2: Non-Uniform Convergence

In the second scenario, we compare two simple networks
having the same data and communication structures, but
different signals hi. The first network, N , includes Agents
1, 2, 3 and 4, and it is given the communication struc-
ture depicted in Figure 1-(a), i.e. [1] = {1, 3, 4}, [2] =
{2, 3, 4}, [3] = {1, 2, 3}, [4] = {1, 2, 4}. Initially, the agents
are given numbers (M1,M2,M3,M4) = (3, 6, 9, 15), so as
M⋆ = M1 = 3. At time t = 500, M1 is changed to 15, so
as M⋆ = M2 = 6. At time t = 20000, M2 is changed to 15,
so as M⋆ = M3 = 9. At time t = 35000, M3 is changed to
12, do as M⋆ =M3 = 12. Finally, at time t = 150000, M3

is changed to 15, so as M⋆ = M1 = M2 = M3 = M4 = 15.
The update laws are implemented with (k1, k2, k3, k4) =
(0.1, 0.08, 0.05, 0.09), µ1 = µ2 = µ3 = µ4 = 1/2, and with
a family (hi)i∈N1 of persistently exciting (in the sense of
Definition 6) signals defined as square waves with param-
eters (T1, A1, ρ1) = (15, 10−3, 0.2), (T2, A2, ρ2) = (10, 5 ·
10−4, 0.5), (T3, A3, ρ3) = (5, 10−3, 0.3), (T4, A4, ρ4) =
(10, 5 · 10−4, 0.5).

The second network,N ′, includes Agents 1′, 2′, 3′ and 4′

and has the same communication structure and data of N .
The update laws have the same parameters ki′ = ki and
µi′ = µi, i ∈ N , except for the family (hi′)i′∈N ′ which is
given by hti′ = (1+ t)−1 for all i′ ∈ N ′. The signals hi′ sat-
isfy (20)-(21) and, thus, (hi′)i′∈N ′ is sufficiently exciting
in the sense of Definition 5. However, it fails to be persis-
tently exciting in the sense of Definition 6. The simulation
shown in Figure 4 compares the time behavior of the up-
date laws xi, i ∈ N and xi′ , i

′ ∈ N ′. As shown in the fig-
ure, each “step” of M⋆ is followed by the estimates xi with
the same convergence rate. On the contrary, M⋆′ = M⋆

is followed by the estimates xi′ with a convergence rate
which degrades in time. This is due to the fact that the
family (hi)i∈N is persistently exciting, while the family
(hi′)i′∈N ′ is only sufficiently exciting. Thus, uniformity of
convergence is not guaranteed for the estimates xi′ . Never-
theless, the zoomed part of the plot clearly shows that the
estimates xi′ reach M⋆′ with higher precision (by Claim 5
of Theorem 1, indeed, since hti′ → 0, the convergence of
the estimates xi′ is asymptotic if M⋆′ remains constant),
whereas the estimates xi keep a non-diminishing conver-
gence error. The above simulations underline the neces-
sary compromise, already mentioned in different parts of
the paper, and formally characterized by Claims 3 and 5
of Theorem 1, between exact convergence and uniformity
in time, which characterizes the proposed methodology.
Finally, Figure 5 shows a simulation of the Max-

Consensus (3) in this second setting (cf. Figure 4). Again,
the Max-Consensus fails in tracking the time-varying M⋆.

6. Concluding Remarks

In this paper, we proposed a novel methodology for the
problem of distributed minimum sharing or, equivalently,
for the class of distributed optimization problems (2). The
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Figure 4: Evolution of the estimates xi in Scenario 2. The trajectory of the optimal value M⋆ is shown in dashed, gray line. Dark to light
orange lines depicts the trajectory of the estimates xi, i = 1, . . . , 4 of the first network. Dark to light blue lines depicts the trajectory of the
estimates xi, i = 1′, . . . , 4′ of the second network. In abscissa: iteration variable t.
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Figure 5: Evolution of the Max-Consensus estimates (update law (3))
in the setting of Scenario 2 (cf. Figure 4). In abscissa: iteration
variable t.

proposed solution has many desirable properties: it is dis-
tributed, decentralized, scalable, global in the initial con-
ditions, stable, and possibly asymptotically convergent or
uniform in time. In particular, by Theorem 1 and Sec-
tion 4.3.2, constructive conditions for global uniform prac-
tical, or global non-uniform exact, asymptotic stability are
given, and numerical simulations are presented to illustrate
the result. The entire analysis has been carried out under
the assumption that the communication structure and the
parameters remain constant during the execution time.
Although the aforementioned stability, globality, and

uniformity properties guarantee a good behavior for
“slowly varying” structures (shown also by the numerical
simulations), additional work is needed to extend the pro-
posed approach to structurally handle time varying net-
works with communication delays and noise. This exten-
sion, in turn, calls for a stochastic framework in which the
aleatory nature of those phenomena is fully captured, and
future research directions are towards this aim.

7. Proof of Theorem 1

For the sake of clarity, we organize the proof in five
subsections, one for each of the claims of the Theorem.

7.1. Proof of Claim 1

In this subsection we prove Claim 1. In particular, we
show that if the family (hi)i∈N is sufficiently exciting from
some t0 ∈ N (in the sense of Definition 5), and if for each
i ∈ N , (15) holds, then there exists t⋆ = t⋆(t0) > t0 such
that, for each i ∈ N , xti ≥ M⋆ holds for all t ≥ t⋆ and, for
each i ∈ I⋆, xti = M⋆ holds for all t ≥ t⋆.
Define the function

i : X → N , x 7→ i(x) := argmin
i∈N

xi.

Then, xj ≥ xi(x) holds for all j ∈ N . Moreover, hti ≥ 0
and (15) imply

eh
t
i − card([i] \ i)ki ≥ 0, ∀i ∈ N .

Since Π[µi,Mi] is increasing
7 we have

xt+1
i = Π[µi,Mi]





(

eh
t
i − card([i] \ i)ki

)

xti + ki
∑

j∈[i]\i

xtj





≥ Π[µi,Mi]

[

(

eh
t
i − card([i] \ i)ki

)

xti(xt)

+ card([i] \ i)kix
t
i(xt)

]

= Π[µi,Mi]

[

eh
t
ixti(xt)

]

= max
{

µi,min
{

eh
t
ixti(xt), Mi

}}

≥ min
{

eh
t
ixti(xt), Mi

}

≥ min
{

eh
t
ixti(xt), M

⋆
}

(23)
for all t ≥ t0 and all i ∈ N .

7Recall that Π[a,b](s) := min{max{s, a}, b}.
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First, notice that, if for some t̄ ∈ N, xt̄
i(xt̄)

≥ M⋆, then

(23) implies xt̄+1
i(xt̄+1)

≥ M⋆, so that by induction it is pos-

sible to conclude that xti ≥ M⋆ holds for all t ≥ t̄. Namely,
the claim holds with t⋆ = t̄. It thus suffices to show that
such t̄ exists. In doing so, we proceed by contradiction.
We first assume that

xti(xt) < M⋆, ∀t ≥ t0. (24)

Then, we show that, if the signals hi are sufficiently excit-
ing from t0 (in the sense of Definition 5), then (24) leads
to a contradiction, in this way proving the claim.
Thus, assume that (24) holds. Then, since hti ≥ 0 for all

i ∈ N , (23) yields

xt+s
i ≥ eh

t
ixti(xt), ∀t ≥ t0, s ≥ 1. (25)

Suppose that the signals hi are sufficiently exciting from
t0, for some parameters h(t0) and ∆(t0). Then, for each
i ∈ N , there exists si ∈ {t0+1, . . . , t0+∆(t0)}, such that
hsii ≥ h(t0). In view of (25), this yields

x
t0+1+∆(t0)
i ≥ eh(t0) xt0+1

i(xt0+1)
, ∀i ∈ N ,

and thus, in particular,

x
t0+1+∆(t0)

i

(

xt0+1+∆(t0)
) ≥ eh(t0) xt0+1

i(xt0+1)
.

In the same way, in view of sufficiency of excitation of the
signals hi, for each i ∈ N , there exists si ∈ {t0 + 1 +
∆(t0), . . . , t0 + 2∆(t0)}, such that hsii ≥ h(t0). Then, in
view of (25), one has

x
t0+1+2∆(t0)

i
(

xt0+1+2∆(t0)
) ≥ eh(t0) x

t0+1+∆(t0)

i
(

xt0+1+∆(t0)
) ≥ e2h(t0) xt0+1

i(xt0+1)
.

By repeating the same arguments, it is thus possible to
conclude that, for each m ∈ N satisfying (16), one has

x
t0+1+m∆(t0)

i
(

xt0+1+m∆(t0)
) ≥ emh(t0) xt0+1

i(xt0+1)
≥ emh(t0)µ, (26)

in which we used the fact that, by definition of Π[µ
i
,Mi],

xti ≥ µi ≥ µ for all i ∈ N and all t ≥ t0+1. Since by suffi-
ciency of excitation the latter relation holds in particular
for

m⋆(t0) =
1

h(t0)
log

(

M⋆

µ

)

.

Then, with t̄ := t0 +1+m⋆(t0)∆(t0), from (26) we obtain

xt̄i ≥ xt̄
i(xt̄) ≥ em

⋆(t0)h(t0)µ = M⋆, ∀i ∈ N

which contradicts (24) and, thus, proves that xti ≥ M⋆

holds for all i ∈ N and all t ≥ t⋆ := t̄.
Finally, for all i ∈ I⋆, we have xti ∈ [µ,Mi] ≤ M⋆ for

all t ≥ t0 + 1 and this, together with the bound xti ≥ M⋆

above, implies xti = M⋆ for all t ≥ t⋆.

7.2. Proof of Claim 2

In this subsection, we prove the second claim of the the-
orem. We first show that all the estimates xi are asymp-
totically bounded by a function of M⋆ and lim supt→∞ hti.
Then, we show that this bound can be reduced arbitrarily
by reducing lim supt→∞ hti, for all i ∈ N , accordingly.
Since by Claim 1 each xi satisfies x

t
i ≥ M⋆ for all t ≥ t⋆,

then, in view of Assumption 2, each xi also satisfies x
t
i ≥ µi

for all t ≥ t⋆. This, in turn, allows us to write

xt+1
i = min







Mi, e
ht
ixti + ki

∑

j∈[i]

(

xtj − xti
)







for all i ∈ N and all t ≥ t⋆, which implies both

xti ≤ Mi (27)

and
xt+1
i ≤ eh

t
ixti + ki

∑

j∈[i]

(

xtj − xti
)

(28)

for all i ∈ N and all t ≥ t⋆. From (27) we also obtain

lim sup
t→∞

|xti| ≤ Mi <∞, ∀i ∈ N . (29)

In the following we rely on the forthcoming lemma, whose
proof is postponed to Appendix B.

Lemma 3. With n ∈ N, let x, y : N → R
n. Suppose

that y is bounded and that, for some t0 ∈ N and some
λ : N → R≥0 fulfilling λt ≤ ν ∈ [0, 1) for all t ≥ t0, x and
y satisfy

xt+1 ≤ λtxt + yt (30)

for all t ≥ t0. Then

lim sup
t→∞

|xt| ≤
1

1− lim supt→∞ λt
lim sup
t→∞

|yt|. (31)

⊳

With I⋆ defined in (12), let n⋆ be the least integer such
that [I⋆]n

⋆

= N (which exists finite in view of Assumption
1). The case in which n⋆ = 0 (i.e. I⋆ = N ) directly follows
from Claim 1. Hence, we focus on the case in which n⋆ > 0.
Assume that, for some m ∈ {0, . . . , n⋆ − 1}, there exist

αm ∈ [0, 1) and βm > 0 such that8

max
i∈[I⋆]mm−1

lim sup
t→∞

|xti| ≤ αm max
j∈[I⋆]m+1

m

lim sup
t→∞

|xtj |+ βmM⋆.

(32)
We will now prove that, if this is the case, then a similar
property holds also for m+ 1.
First notice that, for each i ∈ [I⋆]m+1

m , every j ∈ [i]
belongs to exactly one among the sets [I⋆]m+2

m+1, [I
⋆]m+1

m ,
and [I⋆]mm−1. Hence, in view of (28), we can write

xt+1
i ≤

(

eh
t
i − ki card([i] \ i)

)

xti + ki
∑

j∈[i]∩[I⋆]m

xtj

+ ki
∑

j∈([i]\i)∩[I⋆]m+1
m

xtj + ki
∑

j∈[i]∩[I⋆]m+2
m+1

xtj
(33)

8Here we let [I⋆]−1 := ∅.
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for all i ∈ [I⋆]m+1
m and all t ≥ t⋆, in which we used the fact

that [i] ∩ [I⋆]mm−1 = [i] ∩ [I⋆]m, for all i ∈ [I⋆]m+1
m . If (15)

holds, then 1+ki card([i]\ i) > 1. With ν1 > 0 sufficiently
small so that log(1 + ki card([i] \ i))− 2ν1 > 0, let

h̄i,1 := log(1 + ki card([i] \ i))− 2ν1.

If
lim sup
t→∞

hti ≤ h̄i,1,

for all i ∈ N , then there exists T ⋆ > t⋆ such that

hti ≤ h̄i,1 + ν1 = log(1 + ki card([i] \ i))− ν1 (34)

for all t ≥ T ⋆ and all i ∈ N . Thus, (15) and (34) imply

0 ≤ eh
t
i − ki card([i] \ i) ≤ eh̄i,1+ν1 − ki card([i] \ i) < 1,

for all t ≥ T ⋆ and all i ∈ N , so that (29), (33) and
Lemma 3 imply

lim sup
t→∞

|xti| ≤ γi
∑

j∈[i]∩[I⋆]m

lim sup
t→∞

|xtj |

+ γi
∑

j∈([i]\i)∩[I⋆]m+1
m

lim sup
t→∞

|xtj |

+ γi
∑

j∈[i]∩[I⋆]m+2
m+1

lim sup
t→∞

|xtj |

(35)

for all i ∈ [I⋆]m+1
m , in which we let

γi :=
ki

1− lim supt→∞

(

eh
t
i − ki card([i] \ i)

) (36)

which exists finite in view of Lemma 3. In view of (32),
equation (35) implies

lim sup
t→∞

|xti| ≤
(

ci,1αm + ci,2
)

max
j∈[I⋆]m+1

m

lim sup
t→∞

|xtj |

+ ci,3 max
j∈[I⋆]m+2

m+1

lim sup
t→∞

|xtj |+ ci,1βmM⋆.

(37)
for all i ∈ [I⋆]m+1

m , in which we let for convenience

ci,1 := γi card ([i] ∩ [I⋆]m)

ci,2 := γi card
(

([i] \ i) ∩ [I⋆]m+1
m

)

ci,3 := γi card
(

[i] ∩ [I⋆]m+2
m+1

)

.

(38)

With ν2 > 0 sufficiently small so that ki(1−αm)− ν2 > 0
for all i ∈ N (recall that αm < 1 by assumption), define

h̄i := min
{

h̄i,1, log
(

1 + ki(1− αm)− ν2
)

}

.

If
lim sup
t→∞

hti ≤ h̄i (39)

for all i ∈ [I⋆]m+1
m , then, since card([i] ∩ [I⋆]m) ≥ 1, it

holds that

1− elim supt→∞
ht
i ≥ 1− eh̄i ≥ −ki(1− αm) + ν2

≥ −ki(1− αm) card([i] ∩ [I⋆]m) + ν2
(40)

for all i ∈ [I⋆]m+1
m . Since for all i ∈ [I⋆]m+1

m ,

card
(

([i] \ i) ∩ [I⋆]m+1
m

)

= card ([i] \ i)− card ([i] ∩ [I⋆]m)− card
(

[i] ∩ [I⋆]m+2
m+1

)

≤ card ([i] \ i)− card ([i] ∩ [I⋆]m) ,

then, we conclude that

ci,1αm + ci,2

≤
ki(αm − 1) card ([i] ∩ [I⋆]m) + ki card ([i] \ i)

1− eh̄i + ki card([i] \ i)

≤
(αm − 1)ki card ([i] ∩ [I⋆]m) + ki card([i] \ i)

(αm − 1)ki card ([i] ∩ [I⋆]m) + ki card([i] \ i) + ν2

< 1.
(41)

for all i ∈ [I⋆]m+1
m .

Now, since (37) holds for each i ∈ [I⋆]m+1
m , it in partic-

ular holds for ī satisfying

ī ∈ argmax
i∈[I⋆]m+1

m

lim sup
t→∞

|xti|, (42)

so that (37) implies

max
i∈[I⋆]m+1

m

lim sup
t→∞

|xti| ≤ (cī,1αm + cī,2) max
i∈[I⋆]m+1

m

lim sup
t→∞

|xti|

+ cī,3 max
j∈[I⋆]m+2

m+1

lim sup
t→∞

|xtj |+ cī,1βmM⋆.

which, in view of (41), yields

max
i∈[I⋆]m+1

m

lim sup
t→∞

|xti| ≤ αm+1 max
j∈[I⋆]m+2

m+1

lim sup
t→∞

|xtj |

+ βm+1M
⋆

(43)

with

αm+1 =
cī,3

1−
(

cī,1αm + cī,2
) ,

βm+1 =
cī,1

1−
(

cī,1αm + cī,2
)βm.

(44)

Furthermore, since lim supt→∞ hti ≤ h̄i, in view of (40),
αm+1 satisfies

αm+1 ≤
kī card

(

[̄i] ∩ [I⋆]m+2
m+1

)

kī card([̄i] \ ī)− kī card(([̄i] \ ī) ∩ [I⋆]m+1) + ν2

≤
kī card

(

[̄i] ∩ [I⋆]m+2
m+1

)

kī card
(

[̄i] ∩ [I⋆]m+2
m+1

)

+ ν2
< 1.

Therefore, we claim that if (32) holds for some m ∈
{0, . . . , n⋆ − 1} with αm < 1 and βm ≥ 0, then (43) holds
as well for m+ 1 with αm+1 < 1 and βm+1 given above.
Since by Claim 1, Equation (32) trivially holds form = 0

with β0 = 1 and α0 = 0, then we claim by induction that,
if

lim sup
t→∞

hti ≤ h̄ := min
i∈N

h̄i, ∀i ∈ N , (45)

then Equation (32) holds for each m ∈ {0, . . . , n⋆}.

12



Now, for m = n⋆, we have [I⋆]m+1 \ [I⋆]m = ∅, so that
(32) yields

lim sup
t→∞

xti ≤ βn⋆M⋆, ∀i ∈ [I⋆]n
⋆

n⋆−1.

Thus, iterating (32) backwards and using (27) yield

lim sup
t→∞

xti ≤ min
{

Mi, (1 + εi)M
⋆
}

(46)

in which
εi = 0, ∀i ∈ I⋆

and

εi =

n⋆−m
∑

ℓ=0

(

n⋆−m
∏

k=ℓ+1

αn⋆−k

)

βn⋆−ℓ − 1, (47)

for all i ∈ [I⋆]mm−1 and all m = 1, . . . , n⋆. Moreover, by
using (46), we deduce from (32) that the quantities εi also
satisfy the recursion

max
i∈[I⋆]m

m−1

εi ≤ αm

(

1 + max
i∈[I⋆]m+1

m

εi

)

+ βm − 1. (48)

We now prove that εi in (46)-(47) can be reduced ar-
bitrarily by reducing lim supt→∞ hti accordingly for each
i ∈ N . For convenience, let

υi := lim sup
t→∞

hti ∈ [0, h̄i]. (49)

Then, the quantities γi, defined in (36), depend on υi as
follows

γi(υi) =
ki

1− eυi + ki card([i] \ i)
.

Thus, γi is continuous in [0,∞), and

lim
υi→0

γi(υi) =
1

card([i] \ i)
.

In view of the definitions (38), also the quantities αm and
βm, as defined in (44), depend on υī through γī, in which ī
satisfies (42). We now prove by induction that, by letting
υ := (υ1, . . . , υN ), the following holds

lim
υ→0

αm(υ) + βm(υ) = 1, ∀m = 0, . . . , n⋆. (50)

First notice that (50) trivially holds for m = 0, as indeed
αm = 0 and βm = 1 despite the value of υ. It thus suffices
to show that if (50) holds for a given m ∈ {0, . . . , n⋆ − 1},
then the same relation holds as well for m+1. For, assume
that (50) holds for a given m ∈ {0, . . . , n⋆ − 1}. Then,
we can write limυ→0 βm(υ) = 1 − limυ→0 αm(υ). Thus,
by letting for convenience ρ1 := card([̄i] ∩ [I⋆]m), ρ2 :=
card(([̄i] \ ī) ∩ ([I⋆]m+1

m )), ρ3 := card([̄i] ∩ ([I⋆]m+2
m+1)), and

noting that card([̄i] \ ī)− ρ2 = ρ1 + ρ3, we obtain

lim
υ→0

αm+1(υ) + βm+1(υ)

=
ρ3 + (1− limυ→0 αm(υ)) ρ1

card([̄i] \ ī)− limυ→0 αm(υ)ρ1 − ρ2

=
ρ3 + (1− limυ→0 αm(υ)) ρ1
ρ3 + (1− limυ→0 αm(υ)) ρ1

= 1.

Thus, by induction, we claim (50) for all m ∈ {0, . . . , n⋆}.

Since for every i ∈ [I⋆]n
⋆

n⋆−1, ci,3 = 0 (in fact [I⋆]n
⋆+1

n⋆ =
∅), then αn⋆ = 0. Thus,

lim
υ→0

βn⋆(υ) = 1.

In view of (47), this implies

lim
υ→0

max
i∈[I⋆]n

⋆
−1

n⋆

εi(υ) = 0.

In view of (48), limυ→0 maxi∈[I⋆]m−1
m

εi(υ) = 0 implies

lim
υ→0

max
i∈[I⋆]m−1

m−2

εi(υ) = lim
υ→0

(αm−1(υ) + βm(υ)) − 1 = 0,

so that, by induction, we conclude that

lim
υ→0

max
i∈[I⋆]m−1

m

εi(υ) = 0, ∀m ∈ {0, . . . , n⋆},

i.e.
lim
υ→0

εi(υ) = 0, ∀i ∈ N . (51)

The latter equation thus implies that, given any ǫ ≥ 0,
there exists δ′(ǫ) ≥ 0 such that |υ| ≤ δ′(ǫ) implies M⋆εi ≤ ǫ
for all i ∈ N . Therefore, if

lim sup
t→∞

hti ≤ δ(ǫ) := min

{

h̄,
δ′(ǫ)

N

}

, ∀i ∈ N (52)

then |υ| ≤ δ′(ǫ), which implies M⋆εi ≤ ǫ, which, in view
of (46), implies

lim sup
t→∞

xti ≤ min
{

Mi, M
⋆ + ǫ

}

, (53)

Claim 2 thus follows by (53) and by noticing that Claim 1
implies lim supt→∞ xi ≥ M⋆.

7.3. Proof of Claim 3

The third claim of the theorem, i.e., that persistence of
excitation (in the sense of Definition 6) of (hi)i∈N implies
uniform attractiveness of Aǫ :=

∏

i∈N

[

M⋆, min{M⋆ +

ǫ, Mi}
]

, directly follows by the fact that, if the family
(hi)i∈N is persistently exciting, then in the above analysis
t⋆ does not depend on t0 and, therefore, the convergence
(53) is uniform in the initial time.

7.4. Proof of Claim 4

In this subsection we prove the fourth claim of the theo-
rem. In particular, we first show that when the signals hi
are periodic, then thy can be generated by an autonomous
difference equation. Then, we prove that the cascade of
this new system on the update laws (14) has a well-defined
limit set which has the desired stability properties.
With (τi)i∈N ∈ N

N arbitrary, let Fi ∈ R
τi×τi and Ci ∈

R
1×τi denote the matrices

Fi :=

[

0(τi−1)×1 I(τi−1)×(τi−1)

1 01×(τi−1)

]

,
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Ci :=
[

1 01×(τi−1)

]

.

Then, each τi-periodic signal hi satisfies the following
equations

ξt+1
i = Fiξ

t
i

hti = Ciξ
t
i

(54)

for a suitable initial condition ξt0i ∈ R
τi . Moreover, if all

the signals hi are non-zero, then, by Lemma 1, (hi)i∈N

is persistently exciting for some h > 0 in the sense of
Definition 6. For a fixed ǫ > 0, let δ(ǫ) be defined as above
in (52), and let

Ξi :=
{

ξ ∈ R
τi | ∀j ∈ {1, . . . , r}, ξi,j ∈ [0, δ(ǫ)], and

∃j ∈ {1, . . . , r}, ξi,j ≥ h
}

,

where ξi,j denotes the j-th component of xi. Then, Ξi

is compact and invariant for (54). We now consider the
interconnection between (54) and the update laws (14) for
all i ∈ N , with the dynamics restricted to the invariant set
Z := Ξ×R

N , being Ξ :=
∏

i∈N Ξi. We compactly rewrite
this interconnections as follows

zt+1 = φ(zt), zt ∈ Z (55)

with φ suitably defined and zt := (ξt, xt) ∈ R
r × R

N , be-
ing ξ := (ξi)i∈N and r :=

∑

i∈N τi. Clearly, for every
solution xa to (14) starting at a given t0 ∈ N and sub-
ject to the signals (hi)i∈N , there is a solution zb = (ξb, xb)
to (55) starting at 0 and such that xb(t) = xa(t0 + t) for
all t ∈ N. For each compact K ⊂ Ξ × R

N , let S(K)
denote the set of solutions to (55) starting at 0 from K
and, for each t ∈ N, define the reachable set from K as
Rt(K) :=

{

(ξs, xs) ∈ Ξ × R
N | (ξ, x) ∈ S(K), s ≥ t

}

.
In view of the above analysis, and since Ξ is invariant
for (55), it follows that Rt(K) is included in Ξ× R

N and
bounded uniformly in K and t for each t ≥ 1. Thus, the
limit set Ω(K) :=

⋂

t∈N
Rt(K) (where Rt(K) denotes the

closure of Rt(K)) is compact, non-empty, and included
in Ξ × R

N . Moreover, since φ is continuous by construc-
tion, then Ω(K) is also forward invariant, uniformly glob-
ally attractive for (55) from K (see e.g. [9, Proposition
6.26]), and it is the smallest set having the above prop-
erties. Furthermore, we notice that, by definition of the
update laws (14), xti ∈ [µi,Mi] for all t ≥ t0 despite the
value of the initial conditions and of t0, so that we con-
clude that Ω(K1) = Ω(K2) for all K1,K2 supersets of
K⋆ :=

∏

i∈N [µi,Mi]. In the following we let Ω := Ω(K⋆).
As (hi)i∈N is persistently exciting in the sense of Defi-

nition 6, by Claim 3 the convergence (53) holds uniformly
in the initial time. By the properties of Ω, this implies
that Ω ⊂ Ξ×Aǫ, and the projection

Au
ǫ :=

{

x ∈ R
N | (ξ, x) ∈ Ω

}

satisfies Au
ǫ ⊂ Aǫ. Therefore, it remains to show that

Au
ǫ is stable for x, i.e. that for each ℓ > 0, there ex-

ists b(ℓ) > 0, such that every solution to (55) satisfying

dist
(

x0, Au
ǫ

)

≤ b(ℓ) also satisfies dist (xt, Au
ǫ ) ≤ ℓ for all

t ∈ N. This, in turn, can be proved by similar arguments
of [9, Proposition 7.5]). In particular, suppose that the
above stability property does not hold, and fix an ℓ > 0
arbitrarily. If Au

ǫ is not stable, then for each m ∈ N there
exist τm ∈ N and a solution zm = (ξm, xm) ∈ S(Z) such
that dist

(

x0m, A
u
ǫ

)

≤ 2−m and dist (xτmm , Au
ǫ ) > ℓ. This,

in turn implies
dist (zτmm , Ω) > ℓ. (56)

Since X0 := {x ∈ R
N | dist (x, Au

ǫ ) ≤ 1} is compact,
Z0 := Ξ × X0 is compact. Thus, since z0m ∈ Z0 for
all m ∈ N, by uniform attractiveness of Ω, there exists
τ̄ = τ̄ (ℓ) ∈ N such that τm ≤ τ̄ for all m ∈ N. We are
thus given a sequence (zm|≤τ̄ )m∈N of uniformly bounded
signals zm|≤τ̄ , obtained by restricting the solutions zm to
{0, . . . , τ̄}, which satisfies limm→∞ dist

(

z0m, Ω
)

= 0. As φ
is continuous, Z is closed, and since Ω is forward invariant,
then in view of [9, Theorem 6.8] we can extract a subse-
quence of (zm|≤τ̄ )m∈N (which we do not re-index) that
satisfies limm→∞ dist (ztm, Ω) = 0 for all t ∈ {0, . . . , τ̄}.
This, however, contradicts (56) and proves the claim.

7.5. Proof of Claim 5

The last claim of the theorem, i.e. that if (hi)i∈N is suffi-
ciently exciting according to Definition 5 and limt→∞ hti =
0, then limt→∞ xti = M⋆ for all i ∈ N , follows directly from
(49)-(51). �

Appendix A. Proof of Lemma 1

For each i ∈ N , let Ti ∈ N≥1 be the period of hi and,

with t⋆i and h⋆i > 0 such that h
t⋆i
i ≥ h⋆i , let

ri := t⋆i − Ti max{n ∈ N | Tin ≤ t⋆i }.

Then ri ∈ {0, . . . , Ti} and, since hi is Ti-periodic, for every
i ∈ N we have

hri+nTi

i ≥ h⋆i ∀n ∈ N. (A.1)

Let ∆ := maxi∈N Ti + 1 and h := mini∈N h⋆i . Fix arbi-
trarily m ∈ N≥1 and t0 ∈ N. Then we claim that, for each
i ∈ N , there exists ni ∈ N such that

si := ri + niTi ∈
{

t0 + 1 + (m− 1)∆, . . . , t0 +m∆
}

.

In fact, if this were not true, then there would exist
m, t0, n ∈ N and i ∈ N such that ri+nTi < t0+1+(m−1)∆
and ri+(n+1)Ti > t0+m∆ hold. This, however, implies

∆ = (1−m)∆ +m∆ < (1−m)∆ + ri + (n+ 1)Ti − t0

< Ti + 1,

which contradicts the fact that, by definition, ∆ ≥ Ti + 1
for all i ∈ N . Since (A.1) implies that hsii ≥ h for all
i ∈ N , then we claim that, for every t0 ∈ N, m ∈ N≥1 (and
thus, in particular, for those satisfying m ≤ log(M⋆/µ)/h)
and i ∈ N , there exists si ∈ {t0 + 1 + (m− 1)∆, . . . , t0 +
m∆} such that hsii ≥ h, which proves the claim. �
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Appendix B. Proof of Lemma 3

As ν ∈ [0, 1), then for each ǫ ∈ (0, 1 − ν) there exists
t⋆1 ≥ t0 such that

νt−t0xt0 ≤ ǫ, |yt| ≤ lim sup
t→∞

|yt|+ ǫ, λt ≤ lim sup
t→∞

λt + ǫ

for all t ≥ t⋆1.
As λt ≤ ν < 1 for all t ≥ t0, by iterating (30), for t > t⋆1,

we obtain

|xt| ≤

(

t−1
∏

s=t0

λs

)

|xt0 |+
t−1
∑

s=t0

(

t−1
∏

ℓ=s+1

λℓ

)

|ys|

≤ νt−t0 |xt0 |+

t⋆1−1
∑

s=t0

(

t−1
∏

ℓ=s+1

λℓ

)

|ys|+
t−1
∑

s=t⋆1

(

t−1
∏

ℓ=s+1

λℓ

)

|ys|

≤ ǫ+

t⋆1−1
∑

s=t0

νt−s−1|ys|+
t−1
∑

s=t⋆1

(

t−1
∏

ℓ=s+1

λℓ

)

|ys|.

(B.1)
As y is bounded, there exists c such that |yt| ≤ c for all
t ∈ N. Hence, the second term of the sum satisfies

t⋆1−1
∑

s=t0

νt−s−1ys = νt−t⋆1

t⋆1−1
∑

s=t0

νt
⋆
1−s−1ys ≤ νt−t⋆1

c

1− ν
.

Therefore, there exists t⋆2 ≥ t⋆1 such that

t⋆1−1
∑

s=t0

νt−s−1ys ≤ ǫ, ∀t ≥ t⋆2.

Denote for convenience ȳ := lim supt→∞ |yt| and λ̄ :=
lim supt→∞ λt. As λt ≤ ν for all t ≥ t0, then λ̄ ≤ ν.
As ǫ < 1 − ν by assumptions, then λ̄ + ǫ < 1. Therefore,
since t ≥ t⋆1, then the last term of (B.1) satisfies

t−1
∑

s=t⋆1

(

t−1
∏

ℓ=s+1

λℓ

)

|ys| ≤
t−1
∑

s=t⋆1

(

λ̄+ ǫ
)t−s−1(

ȳ + ǫ
)

≤
ǫ

1− ν
+

ȳ

1− (λ̄+ ǫ)

≤
ȳ

1− λ̄
+

ǫ

1− ν
+

ȳ

1− (λ̄+ ǫ)
−

ȳ

1− λ̄

≤
ȳ

1− λ̄
+ p(ǫ)

(B.2)

in which p : [0, 1− ν) → R, defined as

p(ǫ) :=
ǫ

1− ν
+

ǫ

(1− λ̄)(1 − λ̄− ǫ)
,

is continuous and satisfies limǫ→0 p(ǫ) = 0. From (B.1) we
get

|xt| ≤
ȳ

1− λ̄
+ 2ǫ+ p(ǫ)

for all t ≥ t⋆2, and the claim follows by arbitrariness of ǫ.
�
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