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This paper presents the development of a Representative Volume Element (RVE) for Ultra‐high‐Molecular‐W
eight‐Polyethylene (UHMWPE) composites. The numerical models were based on the fibrillar nature of
UHMWPE fibres, which consist of smaller scale, continuous through‐the‐length macro‐fibrils. A three‐
dimensional constitutive model for UHMWPE macro‐fibrils was developed and implemented in the LS‐DYNA
explicit finite element (FE) code, through a user‐defined subroutine. The proposed transversely isotropic model
accounts for viscoelastic effects in the principal direction of the fibre coupled with the continuum damage
mechanics approach. Energy dissipation associated with failure was controlled through an objectivity algo-
rithm to provide mesh insensitive solutions. Hill’s yield criterion was used to capture the non‐linear response
of the fibre in the transverse direction. The RVE was built from macro‐fibrils and a Thermoplastic Polyurethane
(TPU) resin in order to study the micromechanical response of the polymeric composite laminate. Periodic
boundary conditions (PBC) were imposed in the model and a penalty‐based cohesive contact algorithm was
used to simulate interfibrillar interactions and the interface between the macro‐fibrils and the resin. The pro-
posed RVE model provides insight on microscale deformation mechanisms in UHMWPE composites under dif-
ferent loading conditions.
1. Introduction

Improving combat survivability has always been a crucial task in
military technology. Composite materials are being used in ballistic
protection systems due to their combination of high strength and
low density. One of the most promising materials is the UHMWPE
fibre‐reinforced composite, Dyneema® HB26, that has shown excel-
lent projectile capturing capabilities and can be used in both military
and civil applications. The aforementioned composite consists of
Dyneema® SK76 filaments and an optimised polyetherdiol‐aliphatic
diisocyanate polyurethane (PADP) resin.

Dyneema® SK76 filament’s microstructure is very similar to the
one of SK75. In the work of Marissen [1], when the fibre was stretched
over a sharp razor, it revealed its fibrillar nature. Strawhecker et al.
[2], used an Atomic Force Microscope (AFM) to examine the surface
of UHMWPE single filaments which failed across a shear plane. The
observed morphology consisted of smaller scale structures (micro‐
fibrils), bundles of fibrils (macro‐fibrils), amorphous material and
voids. From references [1,2], it can be safely assumed that macro‐
fibrils are continuous through the length of the filament. The tensile
response of Dyneema® SK76 single filaments has been studied by var-
ious researchers [3–5] and showed dependency on the loading rate.
Under transverse compression UHMWPE fibres revealed geometrical
(fibrillation) and material (plasticity) non‐linearities [6]. A macro‐
fibril based numerical model for the fibre and a macro‐fibril constitu-
tive model are proposed in this study to describe the mechanical beha-
viour and through‐thickness deformation of the fibre.

Current and past trends in RVE modelling [7–9] tend to treat the
fibres as a homogenised continuum. While this method provides useful
insight on the laminate’s micromechanical behaviour, the hierarchical
morphology of polymeric fibres could affect the deformation and con-
tribute to the overall non‐linearity of the composite material. In the
scope of this work, the microstructure of the fibre has been explicitly
implemented to provide an extra layer of numerical fidelity while also
allowing the visualisation of stress concentrations, detailed strain‐
fields and potential fibrillation evolution.

The proposed macro‐fibril based fibre model was used to develop a
RVE for the Dyneema® HB26 laminates. The volume fraction (V f) of
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the laminate can be as high as 83% leading to a resin starved config-
uration [3,10]. These laminates are produced with a [0/90]n lay‐up
where each layer has effectively four fibres through‐the‐thickness very
closely packed together, leaving very little space for the resin. The lam-
inate inherits the properties of both the fibres and the resin, which
makes it strain‐rate dependent, with elasto‐viscoplastic behaviour in
the out‐of‐plane directions and under shear [3,10–12]. The RVE is
expected to be a powerful numerical tool to help identify and tailor
the most important parameters that affect the mechanical behaviour
of the material. Furthermore, this micromechanical analysis can be
used in an inverse manner to optimise the ply and the laminate based
on the desired application.

2. Constitutive model

The proposed constitutive model was based on an incremental
Lagrangian formulation, which is used in LS‐DYNA explicit FE codes
for 3D solid brick elements [13]. The mathematical expressions pre-
sented in this section were used to describe the behaviour of a trans-
versely isotropic UHMWPE macro‐fibril.

2.1. Coupled viscoelastic-damage constitutive behaviour

A generalised Maxwell model with six elements was used to simu-
late viscoelastic effects in the longitudinal direction of the macro‐fibril.
Stress can be calculated using the Boltzman integral:

σ tð Þ ¼
Z t

0
E t � τð Þ _ɛ τð Þdτ ð1Þ

where σ is the value of stress at current time t; E is the elastic modulus, τ
is a variable introduced to account for the stress history of the material,
and _ɛ the strain rate. Relaxation of the elastic modulus over time can be
expressed in terms of Prony series:

E tð Þ ¼ E0 1� ∑
6

i¼1
pi 1� e

�t
τi

� �� �
ð2Þ

where E0 is the instantaneous modulus of the material, pi and τi are the
ith Prony series constant and retardation time respectively [14]. Failure
initiation in the longitudinal direction of the macro‐fibril was predicted
using the maximum stress criterion:

FI ¼ σnþ1
11

XT
ð3Þ

where FI the failure index associated with tensile failure initiation, σnþ1
11

is the stress in the longitudinal direction at a time step nþ 1 and XT is
the tensile strength of a macro‐fibril. A linear unloading regime was
assumed in the damage evolution region. The damage evolution equa-
tion can be defined as:

d1 ¼ ɛf ;11
ɛf ;11 � ɛ0;11
� � 1� ɛ0;11

ɛ11

� 	
ð4Þ

where d1 is the total damage in 11‐direction of the material, ɛ0;11 is the
strain where damage initiates in the 11‐direction and ɛf ;11 is the strain
to failure where the material has lost its ability to carry any loading. For
the implementation in the FE code, damage should be given in an incre-
mental form as follows:

Δd1 ¼ ɛf ;11
ɛf ;11 � ɛ0;11
� � ɛ0;11

ɛ211

� 	
Δɛ11 ð5Þ

dnþ1
1 ¼ dn1 þ Δd1 ð6Þ

where Δd1 is the damage increase for a strain increment Δɛ11. Damage
starts to develop when the failure index reaches the value of one and it
is considered irreversible. The Poisson’s ratio must be reduced accord-
ingly in order to maintain a positive definite solution.
2

ν12 ¼ ν12 1� dnþ1
1

� � ð7Þ

ν13 ¼ ν13 1� dnþ1
1

� � ð8Þ
2.2. Plasticity

Experimental studies on single fibre, through‐thickness compres-
sion, have reported a non‐linear stress–strain behaviour with large
inelastic strain being present [6]. The plastic behaviour of the fibre
was simulated by the Hill’s yield criterion where the yield function
can be expressed as:

Φ ¼ F1 σ11 � σ22ð Þ2 þ F2 σ22 � σ33ð Þ2 þ F3 σ33 � σ11ð Þ2 þ F4σ
2
12

þ F5σ
2
23 þ F6σ

2
13

¼ �σ2 ð9Þ
where Fi are constants related to the yield stress and �σ is a function of
the yield stress over the accumulated plastic stain which provides the
isotropic strain hardening behaviour in the model. The constants can
be defined as:

F1 ¼ 1
2

1
σ2y;11

þ 1
σ2y;22

� 1
σ2y;33

� 	
;

F2 ¼ 1
2

1
σ2y;22

þ 1
σ2y;33

� 1
σ2y;11

� 	
;

F3 ¼ 1
2

1
σ2y;11

þ 1
σ2y;33

� 1
σ2y;22

� 	
;

F4 ¼ 1
σ2y;12

; F5 ¼ 1
σ2y;23

; F6 ¼ 1
σ2y;13

ð10Þ

where σy;ij are the yield stresses in each corresponding direction i; j.
Yielding is assumed only in the transverse direction 22 and 33 and
under in‐plane shear 12. The rate of plastic flow is given by _ɛpi in the
following equation:

_ɛpi ¼ _γ
@Φ
@σi

ð11Þ

where γ is the non‐negative plastic multiplier. The detailed methodol-
ogy for calculating the plastic multiplier is described in B, following
the methodology of de Souza Neto et al. [15].

2.3. Mesh sensitivity

Different element sizes are commonly used in FE models. The inter-
nal energy of an element is related to its volume and hence, the dissi-
pated energy, during damage propagation, is going to be different for
each element size. In order to avoid mesh dependent solutions and
strain localisation problems, a smeared cracking approach, which links
damage and fracture mechanics, has been adopted. This approach is
based on a representative unit volume where its stored energy should
be related to the fracture energy of the material [16,17]. The specific
energy dissipated is the area under the stress–strain curve and can be
defined as:

Uf ¼
Z 1

0
σijdɛij ð12Þ

The total specific energy can be subdivided, as seen in Eq. (13), into
elastic (Ue) and viscoelastic (Uve) energy which is stored prior to failure
and propagation energy (Up). A representation of the constitutive law
for a unit volume can be seen in Fig. 1.

Uf ¼ Ue þ Uve þ Up ð13Þ
The translaminar fracture energy (Γf ) is a material property for each
mode of failure and can be derived from the following equation:

Γf ¼
Z 1

0
σijdδij ð14Þ



Fig. 1. Constitutive law schematic.
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The characteristic length (l�) is a geometric quantity of a finite element
which relates the damaged element area with the longest element
length in the loading direction.

UfVe ¼ ΓfAe ð15Þ
Fig. 2. Dyneema® SK76 cross-section numerical model.
l� ¼ Ae=l1 ð16Þ

where l1 is the longest length of an element with area Ae and Ve is the
element volume.

The aforementioned approach has been widely used in other stud-
ies but it has the following limitations. Firstly, it applies only to struc-
tured meshes which is not the case for most FE models in engineering
applications. Complex geometries are often being studied and geomet-
ric discontinuities might be present. Secondly, the crack growth direc-
tion can only be parallel to one of the element edges, which imposes
limitations when models include multi‐directional composite lami-
nates, since each layer can have arbitary directions.

In order to overcome the aforementioned limitations of the
smeared crack approach, an algorithm was used to calculate the char-
acteristic length of each element and ensure objectivity of the model.
This method was based on the Jacobian of the element and it was orig-
inally proposed by Oliver [18] for shell elements. Based on the afore-
mentioned work, an extended algorithm for 3D solid elements was
proposed by Donadon et al. [19] and it was used in this study. The fol-
lowing equation was used to calculate the element characteristic
length in the longitudinal direction.

lT11 ¼ ∑
nc

i¼1

@Ni ξj; nj
� �
@x

cos θfð Þ þ @Ni ξj; nj
� �
@y

sin θfð Þ
� �

θi

� 	�1

ð17Þ

where ξ; n the element isoparametric coordinates, nc is the number of
corner nodes in the virtual midplane of the element, Ni the shape func-
tions of the virtual midplane nodes, θf the angle of the macro‐fibril with
respect to the fibre and θi a function which can take the values of either
1 or 0 depending on the virtual node position. In case the node is ahead
of the crack θi ¼ 1, otherwise θi ¼ 0. The superscript t refers to the ten-
sile mode of failure where the characteristic length is calculated.

For a linear unloading law after failure initiation, the failure strains
for each element can be calculated accordingly incorporating the frac-
ture energy of the material.

ɛfij ¼
2

σij ɛmax
ij

� � Γk
f ij

lkij
�
Z ɛmax

ij

0
σij ɛij
� �

dɛij

" #
þ ɛmax

ij ð18Þ

where k=T for the tensile failure mode and i ¼ j ¼ 1 for the longitudi-
nal direction of the fibre. The detailed methodology of the characteris-
tic length calculation is given in [19].
3

3. Finite element modelling

3.1. Single fibre model

Macro‐fibrils in the fibre cross‐section need to be explicitly mod-
elled as well as the interactions between them in order to predict geo-
metrical non‐linearities observed in experiments. The size of the
micro‐fibrils in UHMWPE fibres can vary from a few nanometers to
a few hundred nanometers, typically from 8 nm to 100 nm. On the
other hand, the size of the macro‐fibrils can be from 100 nm to
3 μm [20]. Strawhecker et al. [2] measured an average value for the
macro‐fibril width, which can be used for modelling. For a Dyneema®
SK76 fibre with a nominal diameter of 14 μm the measured macro‐
fibril width was 934 nm. The fibre model was assumed to have a cir-
cular cross‐section with a diameter of 17 μm. The total number of
macro‐fibrils in the fibre cross‐section was roughly 253 with an aver-
age width of 1 μm and were modelled according to a Laguerre‐Voronoi
tessellation. The microstructure package VorTeX, that was already
available in LS‐PrePost, was used to generate the cross‐section of the
fibre, as seen in Fig. 2. A detailed explanation on how the geometry
of the tessellation is generated can be found in reference [21].

The smaller scale micro‐fibrils behave cohesively with respect to
larger sub‐groups in the fibre [2]. McDaniel et al. [22], performed peel
tests on Dyneema® SK76 single filaments to determine the Mode I and
Mode II energy release rates. The peak normal and shear stresses were
5 MPa and 30 MPa and Mode I and Mode II fracture energies 500 J/m2

and 3,460 J/m2 respectively. Macro‐fibril interactions were modelled
using a penalty‐based cohesive contact logic already available in LS‐
DYNA, Automatic One‐Way Surface to Surface Tiebreak, with option
9 enabled.

In order to minimise the computational cost of the single fibre ten-
sile test simulation, a quarter symmetric model was built with dis-
placement controlled boundary conditions. The tabs of the machine
were not modelled for simplicity and the loading was applied directly
on the free face of the fibre. Loading conditions were applied as nodal
velocities with an S‐shaped curve to simulate the loading conditions
imposed under actual experimental conditions. The length of the fibre
in the FE model was 50 time larger than the radius which resulted in
having a total of 13,035 solid brick elements.

To simulate the out‐of‐plane compressive behaviour of a single
fibre, the platens of the machine had to be explicitly modelled and
were assumed to be rigid. The Laguerre‐Voronoi tessellation resulted
in an asymmetric fibre cross section, making the modelling of the
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whole fibre cross‐section necessary. As indicated in former studies
[23,24], the assumption of plane strain conditions is valid when study-
ing the out‐of‐plane compressive behaviour of a filament. Therefore,
only one element was used, with symmetry boundary conditions, in
the axial direction of the fibre. The numerical model consisted of
7655 solid elements in the cross section of the fibre and 732 solid ele-
ments in the rigid platens.

3.2. RVE model

The Dyneema® HB26 RVE model was developed using macro‐
fibrils and resin. An image of the 0/90 RVE numerical model is pre-
sented in Fig. 3, where the mesh was removed for clarity. The fibres
were modelled in a confined configuration in order to achieve a high
volume fraction of 80%. A minimum of three elements per face in con-
tact is required to achieve correct energy dissipation in the cohesive
zone [23,25], leading to a total of 16,324 solid element for the resin
and 133,892 solid elements for the macro‐fibrils. The proposed user‐
defined material model, was used for the macro‐fibrils, while a
strain‐rate dependent elasto‐plastic constitutive law was used for the
resin. The software Altair HyperMeshTM was used to mesh the model.

Periodic boundary conditions (PBC) were imposed in the RVE
model. Control elements were created for each normal direction in
order to couple the macroscopic strain to the microscopic perturbed
displacements. Nodal displacements of opposing surfaces are coupled
according to the equation set in Eq. (19).

uxjx¼0 � uxjx¼lx ¼ ɛxlx þ ɛxy ly þ ɛxzlz
uy jy¼0 � uy jy¼ly ¼ ɛxy lx þ ɛy ly þ ɛyzlz
uzjz¼0 � uzjz¼lz ¼ ɛxzlx þ ɛyzly þ ɛzlz

ð19Þ

The Constrained Multiple Global option was used to couple opposing
nodes in the model. In order to avoid redundancy in the numerical
implementation of PBC, nodal sets for the RVE corner nodes, edges
and the remaining surfaces were created. A similar approach to the
one in the work of Garoz et al. [26] was followed to impose constraints
Fig. 3. UHMWPE 0/90 macro-fibril based RVE numerical model.

4

on the aforementioned sets. A MATLAB® script was developed for the
node pair selection and generation of the required keyword input file.

The same penalty‐based cohesive contact algorithm that used to
model the interactions between macro‐fibrils, was also employed to
simulate the interfaces between the fibres and the resin as well as
the bonding between the 0 and 90 degree layers. For the latter, the
interlaminar strength values from the work of Lässig et al. [27] were
used, with normal peak and shear stress 1.07 MPa and 2.61 MPa
respectively. Fracture energies from the work of Grujicic et al. [28]
were selected with Mode I and Mode II having the values of
544.7 J/m2 and 1460 J/m2 respectively. Due to lack of single fibre
pull‐out experimental data, the properties of the macro‐fibril cohesive
interactions were used to model the interface between the fibres and
the resin.

4. Results and numerical model validation

4.1. Mesh sensitivity study

A 20 mm × 10 mm × 1 mm strip was loaded in the longitudinal
direction under a quasi‐static (0.01/s) displacement controlled tensile
fashion. Three different element sizes were tested in order to validate
the mesh sensitivity of the constitutive model. A fracture energy of
1500 kJ/m2 was used for the mesh sensitivity analysis in order to pre-
vent negative values for Up when using large finite elements. The
results can be seen in Fig. 4. The force–displacement curve is identical
for various element lengths which shows no mesh dependency.

4.2. Single fibre results

The parameter identification process for the viscoelastic model was
done using the LS‐OPT optimization software to match the numerical
with the experimentally obtained relaxation response of a single fibre.
Fibre relaxation tests were performed according to the methodology
presented in the work of Del Rosso [29], for a fibre gauge length of
100 mm and a tensile loading rate of 100 mm/min. As seen in
Fig. 5, the experimentally obtained relaxation response of a
Dyneema® SK76 fibre was predicted with excellent agreement. The
predicted tensile response was compared to experimental results as
seen in Fig. 6. The parameters used in the macro‐fibril constitutive
model can be seen in Table 1. Russell et al. [3] reported a reduction
in yarn strength associated with the waviness of the fibres. The tensile
strength of the fibre could also be affected by the waviness and
misalignment of the macro‐fibrils. Since none of the above were
explicitly modelled, the strength of the single fibre (4 GPa) was used.

Good correlation was observed between the experimental and
numerical results for a single fibre under tensile loading conditions,
Fig. 4. Force–displacement relationship for different element sizes.



Fig. 5. Single fibre experimental and numerical relaxation response.

Fig. 6. Single fibre experimental and numerical tensile response.

Table 1
Constitutive model parameters.

Dyneema® SK76 macr

ρ kg=m3
� �

970 σy;22 MPað Þ 20
E11 GPað Þ 144.2 σy;33 MPað Þ 20
E22 GPað Þ 2.87 σy;12 MPað Þ 3.33
E33 GPað Þ 2.87 XT GPað Þ 4
G12 GPað Þ 4.5 ΓT

f 11
kJ=m2
� �

864

G23 GPað Þ 1.225
G13 GPað Þ 4
ν12 0.1
ν23 0.4
ν13 0.1

Fig. 7. Single fibre experimental and numerical through-thickness compression r
(homogenised model); (c) Nominal stress–strain response (macro-fibril based mod
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with small discrepancies in the non‐linearity of the stress–strain curve.
Discrepancies in the non‐linearity of the slope could be attributed to
the load distribution through‐the‐thickness of the fibre which was
not considered in the numerical model, since the grips of the machine
were not modelled. However, a direct gripping method was used in the
experimental procedure in [5] and no slippage from the grips was
observed. Therefore, the additional non‐linearity could be attributed
to non‐linear elastic effects that were not considered in this work.

Two single fibre numerical models were tested under out‐of‐plane
compression. Firstly, a homogenised where the fibre was modelled
as a solid cylinder and secondly, a macro‐fibril based where fibrillation
was allowed to manifest through the cohesive contact definition. In
Fig. 7a two strain hardening curves can be seen, one obtained from
the experimental work in [6] and a modified which was proposed in
this work. The latter was generated based on the numerical results
of the homogenised model.

A comparison between the experimental and predicted out‐of‐plane
compressive stress–strain behaviour, for the homogenised model, is
presented in Fig. 7b. The numerical results, generated by using the
experimentally obtained strain hardening curve, showed excellent cor-
relation with the experimental stress–strain curve up to 30% nominal
strain. At higher strains, the numerical response underpredicted the
experimental and thus, the proposed strain hardening curve was used
to amend for this discrepancy. The stress–strain response of the macro‐
fibril based model can be seen in 8c. The model showed good correla-
tion up to 10% of nominal strain but experienced a more compliant
behaviour at higher strains due to fibrillation. This could be expected
since the hardening input curve from the experimental results in [6],
included both geometrical and material non‐linearities. In the
macro‐fibril based model, geometrical non‐linearities were modelled
explicitly by the cohesive contact failure which allowed the evolution
of fibrillation.
o-fibril properties

p1 0.19 τ1 sð Þ 2.95e−5
p2 0.11 τ2 sð Þ 3.4
p3 0.17 τ3 sð Þ 77.9
p4 0.17 τ4 sð Þ 1725
p5 0.07 τ5 sð Þ 5.93e5

p6 0.15 τ6 sð Þ 3.11e7

esults. (a) Strain hardening input curves; (b) Nominal stress–strain response
el).
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The deformed fibre cross‐section of the macro‐fibril based fibre
models as well as the plastic strain distribution through‐the‐
thickness can be seen in Fig. 8, for the value of 30% of nominal strain.
The generated image were obtained using the proposed (modified)
strain hardening master curve.

The out‐of‐plane compressive behaviour consisted of three regions.
Firstly, the fibre showed an elastic response, followed by softening, fib-
rillation and accumulation of plastic strain until it finally reached a
stiffening region [6]. The predicted yield stress was 12 MPa while
the experimentally reported was 20 MPa. Fibrillation was initially
observed from 1% to 26% of nominal strain followed by fibril compres-
sion and plastic strain accumulation up to 41% of nominal strain.
Moreover, fibrillation propagated in the stiffening region (strain >
41%) where interfaces failed under shear and promoted macro‐fibril
sliding.

4.3. Thermoplastic polyurethane (TPU) resin characterisation

The resin was modelled with MAT24 which is a piecewise linear
plasticity material model already available in LS‐DYNA. Kinematic
hardening was implemented using a master curve input for the yield
stress of the resin over the accumulated plastic strain. Since the actual
parameters of the PADP resin used in Dyneema® laminates were not
available, experimental results for the Desmopan® 9665DU TPU resin
were used for the validation of the model.

The tensile tests of the TPU were performed using a dogbone spec-
imen type 1BA(BS ISO 527: 2012). Two strain rates were investigated,
100 mm/min and 600 mm/min. A comparison between the experi-
mental and numerical results can be seen in Fig. 9.
Fig. 8. Through-the-thickness macro-fibril plastic strain distribution, at 30%
of nominal strain.

Fig. 9. TPU tensile response.

6

4.4. RVE results

4.4.1. In-plane tension
Four different strain‐rates were studied for the RVE under in‐plane

tension. A comparison between the numerical results of this study and
experimental results found in the literature can be seen in Fig. 10 and
11.

The numerical results from this study were able to capture the slope
of the stress–strain curve that was observed in experimental results for
various strain‐rates. The average fibre volume fraction of the
Dyneema® HB26 laminate is close to 83%, and thus small discrepan-
cies were present due to the lower volume fraction of 80% in the
model. The predicted strength from the FE models was 1.57 GPa,
which is close to the theoretical value calculated by the following
equation.

XT � V f � 0:5 0=90½ �configurationð Þ ¼ 4GPa� 80%� 0:5

¼ 1:6GPa ð20Þ
However, laminates contain yarns with multiple fibres that possess dif-
ferent values of strength due to manufacturing defects. When the
macro‐fibril strength was reduced to 3 GPa, which is the yarn’s average
strength [3], the predicted laminate strength was 1.18 GPa. A compar-
ison between the predicted and experimentally obtained tensile
strength from different studies can be seen in Table 2. A more appropri-
ate way to predict the strength of the laminate would be to assign a dif-
ferent fibre strength in each element, following a statistical
distribution.

It can be seen in Fig. 11, that other experimental studies [3], under‐
predict the strength of the laminate that was obtained by the DSM ply
Fig. 10. Macro-fibril strength influence in the RVE tensile response.

Fig. 11. Experimental and RVE numerical tensile response under different
strain rates.



Table 2
Numerical and experimental tenisle strength comparison.

Strain rate, _ɛ ¼ 0:01 /s DSM ply test [30] Russell et al. [3] RVE

Thickness umð Þ 270 6 � 103 35.2
Fibre Strength GPað Þ – – 3
Laminate Strength GPað Þ 1.22 0.77 1.18
Error % 3.27 34.7 –

Fig. 13. Experimental [11] and RVE numerical out-of-plane compression
stress–strain results.

Fig. 14. Experimental [11] and RVE numerical out-of-plane compression
stress–strain slope comparison.
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tests [30]. By increasing the laminate thickness, the load cannot be
transferred effectively from the outer layers to the core. A detailed sen-
sitivity analysis on the coefficient of friction between the specimen and
the grips for Dyneema® laminates, which underlines the aforemen-
tioned phenomenon, was presented by Iannucci et al. [12].

Contour maps of the contact nodal gap, in the 90 degree ply, can be
seen in Fig. 12, in μm, for quasistatic 0.001/s, low 1/s and high 1000/s
strain‐rates. The images were taken at 3.24% of strain and fibrillation
was observed under every strain‐rates that was examined, with inter-
face gaps varying from 0.2 to 2.2 nm.

The response of the resin was rate dependent and more compliant
under quasistatic loading. As a results, the compressive force gener-
ated by the resin increased with the strain‐rate and led to larger
macro‐fibril separation. The patterns of fibrillation were similar in
both Fig. 12a and 12b, while the maximum magnitude of nodal gap
increased in the latter. Under high strain‐rates, Fig. 12c, the load could
not be transferred effectively, from the resin to the fibre, hindering fib-
rillation. Macro‐fibril to resin interface failure showed the same rate
dependency as fibrillation with maximum values of 1.63, 1.78 and
0.13 nm for quasistatic, low and high strain‐rates respectively. Lastly,
none of the RVE models experienced complete interlaminar failure.

4.4.2. Out-of-plane compression
Results from the experimental work of Attwood et al. [11] were

used to validate the behaviour of the RVE under out‐of‐plane compres-
sion. Larger width specimens, L=7, 9 and 10 mm, were considered for
validating the model since they were less affected by the free surfaces
of the laminate. The model was subjected to a strain rate of 0.1/s. As
seen in Fig. 13 the stress–strain response of the model over‐predicted
the one observed in the experiments for strains up to 15%.

The TPU resin used to make UHMWPE composites is usually porous
and effects such as resin pore collapse and progressive fibre com-
paction are expected under compression. However, the pores were
not explicitly modelled in this work and in order to assess the validity
of the numerical model, the slope of the stress–strain curve needs to be
studied.

A comparison between the stress–strain slopes is presented in
Fig. 14. The predicted slope, showed a gradual increase at stresses
higher than 200 MPa which is in accordance to the experimental
Fig. 12. Macro-fibril interface failure under tension at 3.24% of str
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observations. Numerical results were more compliant than the experi-
mental curves for L=9 and 10 mm, due to the lower fibre volume frac-
tion in the model. Furthermore, only one fibre was modelled through
the thickness of each ply which is not favourable for capturing the
effects of fibre to fibre interaction. Fibre packing can be deemed
important in accurately predicting the deformation and stress distribu-
tion in the micro‐scale.

Periodic boundary conditions did not allow for excessive in‐plane
expansion, although they provided the expected deformation near
the center of the specimen. Consequently, fibrillation was not observed
as it is expected to develop under transverse fibre expansion which
ain. Strain-rates: (a) _ɛ = 0.001/s; (b) _ɛ = 1/s; (c) _ɛ = 1000/s.



Fig. 16. Experimental [10] and RVE numerical in-plane shear stress–strain
response.

Fig. 17. Failed tension-shear specimen (250 mm × 25 mm) [33].
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leads to macro‐fibril interface failure. Furthermore, indirect tensile
stresses, associated with the 0/90 ply orientation, were not significant
enough to promote failure ply rupture.

The distribution of the plastic strain through the thickness is pre-
sented in Fig. 15 at 20% of macroscopic strain. Maximum plastic strain
values were observed near the center of each fibre.

4.4.3. In-plane shear
The response of the RVE under in‐plane shear loading was tested, at

a strain‐rate of 0.014/s, and compared to experimental results found in
the literature [10]. As seen in Fig. 16, the macro‐fibril based model fol-
lowed accurately the non‐linear trend observed in the experiments but
overpredicted the stress. The RVE enters the stiffening region prema-
turely and fracture can be promoted only by macro‐fibril tensile fail-
ure. The RVE in‐plane shear strength was directly related to the
macro‐fibril tensile strength and higher than the experimentally
obtained value. A failure criterion for the resin is needed for the accu-
rate laminate strength prediction under in‐plane shear.

The stress–strain response is highly dependent on the resin proper-
ties and thus discrepancies were introduced due to the difference
between the properties of the actual PADP resin used to manufacture
the laminates and the properties used in the model. Moreover, the
shear response of the macro‐fibril was predicted according to Hill’s
yield criterion and the in‐plane shear yield strength was assumed to
be

ffiffiffiffiffiffi
36

p
times lower than the one measured in the transverse direction

of the fibre, according the work in [31]. To the best of the author’s
knowledge, the actual in‐plane shear behaviour has not been measured
for the fibre and a decoupled yield criterion might be more appropriate
to express the shear response of the macro‐fibril.

Experimental results in Fig. 16 were obtained by in‐plane tension‐
shear tests according to BS EN ISO 14129:1998 [32]. Micromechanical
modelling is generally focused on a point inside the laminate while the
actual specimen experiences local stress concentration near the tabs, as
seen in Fig. 17. This effect was also expected to hinder the correlation
between the predicted and experimentally measured mechanical
behaviour.

The distribution of the plastic in‐plane shear strain in the macro‐
fibrils is presented in Fig. 18 at γxy ¼ 0:41. The distribution is hetero-
geneous through the thickness of the RVE which indicates interfaces
failure, allowing macro‐fibrils to move independently from each other.
Macro‐fibril sliding was observed with the maximum relative nodal
displacement, being close to the center of the fibre. The measured val-
ues were 82, 307, 479 and 719 nm at γxy ¼ 0:46;0:81;0:86 and 0:87
respectively.
Fig. 15. Through-thickness macro-fibril plastic strain distribution at 20% of
macroscopic strain.

Fig. 18. In-plane plastic shear strain distribution at γxy ¼ 0:41.
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Debonding between the macro‐fibrils and the resin was observed in
small regions, scattered around the perimeter of the fibre, allowing the
cohesive interaction to stay in effect throughout the analysis. The RVE
fully delaminated at γxy ¼ 0:52 where the stress–strain curve entered
the convex stiffening region.

5. Discussion and conclusion

A RVE model for UHWMPE composites was developed and vali-
dated under tensile, compressive and shear loading conditions. The
fibre consisted of continuous macro‐fibrils through its length, which
made it possible for fibrillation to manifest. A user defined constitutive
model was developed to account for the non‐linear and time depen-



D. Kempesis et al. Composite Structures 262 (2021) 113609
dent behaviour of the fibre. The proposed constitutive model was able
to capture accurately the phenomena observed in the experiments. The
macro‐fibril based, single fibre, numerical model showed a more com-
pliant behaviour than the one obtained from experiments, under
through thickness compression. This observation along with the under
predicted yield stress suggests that a modified strain hardening curve
is needed. A direct optimisation on the experimentally obtained
stress–strain curve using the macro‐fibril based model is subject to
future work.

Various strain‐rates ranging from 10�4 to 1000/s were examined
under in‐plane tension. The viscoelastic model was able to capture
the rate dependency observed in the experiments. Fibrillation and
fibril‐resin interface failure were driven by the resin’s response and
thus, showed rate dependency. Maximum separation was observed
at low strain‐rates followed by quasistatic and lastly high strain‐rates.

The implementation of a strain‐rate and pressure dependent cohe-
sive contact interaction is expected to provide a more accurate insight
in interface failure phenomena, especially under high loading rates.
Moreover, a statistical variation of the macro‐fibril strength is believed
to be of high significance and needs to be considered for accurate lam-
inate strength predictions.

Both the through‐thickness compression stress–strain curve and
slope were in good agreement with the experimental results. Plastic
strain in the fibre developed mostly in the centre and fibrillation
was not observed due to the lack of in‐plane expansion in the model.

The RVE was able to predict the non‐linear, in‐plane shear, stress–-
strain curve trend, that was observed in the tests. The manufacturing
process may introduce residual thermal strains, which could be
included in the future along with the properties of the actual resin used
in Dyneema® HB26, both of which are expected improve the accuracy
of the numerical model. Furthermore, single fibre pull‐out tests could
provide useful information on the fibre/resin interface properties. The
applicability of a decoupled yield criterion remains under investiga-
tion as it could improve the accuracy of the numerical model under
in‐plane shear.

Finally, the porosity in the resin needs to be modelled explicitly as
it is expected to affect the load transferring efficiency to the fibres and
show how deformation evolves in the RVE when the strain is being
localised around the pores. This would also prove beneficial for the
prediction of shear strength as failure is expected to initiate around
the largest flaws in the resin.
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Appendix A. Recursive algorithm

Stress as a function of strain and time:

σ tð Þ ¼
Z t

0
E t � τð Þ _ɛ τð Þdτ ðA:1Þ

Change of stiffness over time (Prony series):

E tð Þ ¼ E0 1� ∑
6

k¼1
pk 1� e

�t
τk

� �� �
¼ E1 þ E0∑

6

k¼1
pke

�t
τk ) E tð Þ

¼ E1 þ ∑
6

k¼1
Eke

�t
τk ðA:2Þ

where E1 is the elastic response when the viscoelastic terms are fully
relaxed and Ek the instantaneous stiffness of each viscoelastic term.
From A.1 and A.2:

σ tð Þ ¼
Z t

0
E1 _ɛ τð Þdτ þ

Z t

0
∑
6

k¼1
Eke

� t�τkð Þ
τk _ɛ τð Þdτ ¼

¼ E1

Z t

0
_ɛ τð Þdτ þ ∑

6

k¼1
Ek

Z t

0
e
� t�τkð Þ

τk _ɛ τð Þdτ ) σ tð Þ

¼ σel þ ∑
6

k¼1
EkIk ðA:3Þ

The viscous strain at the end of the increment can be calculated:

Inþ1
k ¼

Z t

0
e
� tnþ1�τð Þ

τk _ɛ τð Þdτ ¼

¼
Z tn

0
e
� tnþ1�τð Þ

τk _ɛ τð Þdτ þ
Z tnþ1

tn
e
� tnþ1�τð Þ

τk _ɛ τð Þdτ ðA:4Þ

where Δt = tnþ1 ‐ tn

e
� tnþ1�τkð Þ

τk ¼ e
� tnþΔt�τð Þ

τk ¼ e
�Δt
τk e

� tn�τð Þ
τk ðA:5Þ

The strain‐rate _ɛ τð Þ can be assumed to stay constant over a time incre-
ment between n and nþ 1.

∴Inþ1
k ¼ e

�Δt
τk

Z tn

0
e
� tn�τð Þ

τk _ɛ τð Þdτ þ
Z tnþ1

tn
e
�Δt
τk e

� tn�τð Þ
τk _ɛ τð Þdτ ) Inþ1

k

¼ e
�Δt
τk Ink þ 1� e�

Δt
τk

� �
τk _ɛ τð Þ ðA:6Þ
Appendix B. Return mapping algorithm

The following algorithm was used to update the stress in the plastic
region, according to [15]. The stress can be expressed as a function of
the plastic multiplier Δγ which is used to return the stress on the yield
surface defined by the (σ ‐ ɛp) master curve. The yield function can be
expressed in the following form:

Φ ¼ 1
2
σ⊺Pσ � σ ɛp

� �� �2 ðB:1Þ

An initial guess for the scalar plastic multiplier Δγ is used to begin the
calculation. The stress can be written as a function of Δγ.

σ Δγð Þnþ1 ¼ I þ ΔγCPð Þ�1σtrial ðB:2Þ
where I is the identity matrix. The plastic flow rate tensor is given
below:

_ɛp ¼ _γPσ ðB:3Þ
The Newton–Raphson method was employed to solve Eq. B.4.

Φ Δγð Þ ¼ 1
2
σ Δγð Þ⊺Pσ Δγð Þ � σ ɛp Δγð Þ� �� �2 ðB:4Þ
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The derivative of the yield function is given below:

dΦ Δγð Þ
dΔγ

¼ Pσ Δγð Þð Þ⊺ dσ
dΔγ

� 2σ Δγð ÞH dɛp
dΔγ

ðB:5Þ

where H is the slope of the non‐dimensional hardening curve input.

H ¼ dσ
dɛp

ðB:6Þ

The plastic multiplier is updated as follows:

δΔγn ¼ �Φ Δγð Þ
dΦ Δγð Þ
dΔγ

ðB:7Þ

Δγnþ1 ¼ Δγn þ δΔγn ðB:8Þ
The derivatives of the stress and accumulated plastic strain with respect
to the plastic multiplier are given by the following expressions:

dσ
dΔγ

¼ � I þ ΔγCPð Þ�1CPσ Δγð Þ ðB:9Þ

dɛp
dΔγ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Pσ Δγð Þð Þ⊺ZPσ Δγð Þ
r

ðB:10Þ

Finally, the stress and the accumulated plastic strain can be calculated
as follows:

σ Δγð Þnþ1 ¼ σ Δγð Þn � δΔγ I þ ΔγCPð Þ�1CPσ Δγð Þn
h i

ðB:11Þ

ɛnþ1
p Δγð Þ ¼ ɛnp Δγð Þ þ Δγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Pσ Δγð Þð Þ⊺ZPσ Δγð Þ
r

ðB:12Þ

The symmetric stiffness matrix C:

C ¼

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

2
666666664

3
777777775

ðB:13Þ

where the coefficients are given by:

C11 ¼ 1�ν23ν32ð ÞE11
Ω ; C12 ¼ ν21þν31ν23ð ÞE11

Ω

C22 ¼ 1�ν13ν31ð ÞE22
Ω ; C23 ¼ ν32þν12ν31ð ÞE22

Ω

C33 ¼ 1�ν12ν21ð ÞE33
Ω ; C13 ¼ ν31þν21ν23ð ÞE11

Ω

C44 ¼ G12; C55 ¼ G23; C66 ¼ G13

Ω ¼ 1� ν12ν21 � ν23ν32 � ν13ν31 � 2ν21ν32ν13
νij
Eii
¼ νji

Ejj
; fori; j ¼ 1;2;3ð Þ

ðB:14Þ

The matrix P includes the parameters of the yield function and is given
as:

P ¼ 2

F1 þ F3 �F1 �F3 0 0 0
�F1 F1 þ F2 �F2 0 0 0
�F3 �F2 F2 þ F3 0 0 0
0 0 0 F4 0 0
0 0 0 0 F5 0
0 0 0 0 0 F6

2
666666664

3
777777775

ðB:15Þ

Z ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2

2
666666664

3
777777775

ðB:16Þ
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