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Abstract

Many algorithms feature an iterative loop that converges to the result of inter-

est. The numerical operations in such algorithms are generally implemented using

finite-precision arithmetic, either fixed- or floating-point, most of which operate

least-significant digit first. This results in a fundamental problem: if, after some

time, the result has not converged, is this because we have not run the algorithm

for enough iterations or because the arithmetic in some iterations was insufficiently

precise? There is no easy way to answer this question, so users will often over-budget

precision in the hope that the answer will always be to run for a few more itera-

tions. I propose a fundamentally new approach: with the appropriate arithmetic

able to generate results from most-significant digit first, this work shows that fixed

compute-area hardware can be used to calculate an arbitrary number of algorith-

mic iterations to arbitrary precision, with both precision and approximant index

increasing in lockstep. Consequently, datapaths constructed following my principles

demonstrate efficiency over their traditional arithmetic equivalents where the lat-

ter’s precisions are either under- or over-budgeted for the computation of a result to

a particular accuracy. Further efficiency gains are realisable by inferring the super-

fluous digits within iterative calculations. Use of forward error analysis allows us to

infer insignificant least-significant digits for stationary iterative methods. Their lack

of computation is guaranteed not to affect the ability to reach a solution of any accu-

racy. Exploitation of most-significant digit-first arithmetic additionally enables us to

declare certain digits to be identical at runtime for any iterative methods. Specific to

stationary iterative methods, digit stability is inferred by combining the knowledge

of identical digits shared between successive approximants with matrix condition-

ing. Both allow the skipping of MSD calculation. Versus arbitrary-precision iterative

solvers without the optimisations I detail herein, up-to 470× performance speedups

and 22× memory savings are achieved for the evaluated benchmarks.

i



ii



Declaration of Originality

I herewith certify that the work presented in this thesis is my own. All material in

the thesis which is not my own work has been properly referenced and acknowledged.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution Non-Commercial No Derivatives licence. Researchers

are free to copy, distribute or transmit the thesis on the condition that they at-

tribute it, that they do not use it for commercial purposes and that they do not

alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the licence terms of this work.

iii



iv



Acknowledgements

First and foremost, I would like to express my biggest gratitude to my supervisors,

George Constantinides and James Davis, for their continuous support and guidance

during my PhD study. This thesis would not have been possible without their

remarkable vision in academic research, as well as their brilliant supervision. They

have shared their knowledge and ideas, always been patient and constructive with

my thoughts, and more importantly, nurtured my confidence in my early research

career. It has been a great pleasure and a fruitful journey working with them.

It was also an honour to have had invaluable and insightful discussions with my

examiners, Geoff Merrett and David Thomas, during the viva. I am grateful for those

at the Imperial CAS group—Christos Bouganis, Peter Cheung, John Wickerson,

Wiesia Hsissen, Ben Chua, Shane Fleming, Junyi Liu, Nadesh Ramanathan, Jiang

Su, Kan Shi, Hilda Xue—who have encouraged and helped me throughout my PhD

marathon.

I would also like to thank my colleagues and friends in the FPGA and arithmetic

community, especially Milos D. Ercegovac from UCLA for his helpful suggestions,

and my Master’s supervisor Qiang Liu at Tianjin University for encouraging me

to pursue my studies at Imperial. I am also grateful for the support of the China

Scholarship Council.

Last but not least, I want to give my special thanks to my parents, Guangbiao Li

and Xiangling Chen, my parents-in-law, Cheng Pang and Hongjing Zhou, and my

wife, Yaru Pang, for their endless love, wisdom and support.

v



vi



Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10

2.1 Iterative Methods for Linear and Nonlinear Equations . . . . . . . . . 11

2.1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Iterative Methods for Linear Equations . . . . . . . . . . . . . 13

2.1.3 Iterative Methods for Nonlinear Equations . . . . . . . . . . . 15

2.1.4 Hardware Implementations of Iterative Methods . . . . . . . . 17

2.2 Arbitrary-precision Computing . . . . . . . . . . . . . . . . . . . . . 18

vii



viii CONTENTS

2.2.1 Software Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Hardware Implementations . . . . . . . . . . . . . . . . . . . . 19

2.3 Arithmetic Circuits with Different Number Systems . . . . . . . . . . 21

2.3.1 Traditional Number Systems . . . . . . . . . . . . . . . . . . . 21

2.3.2 Redundant Number Systems . . . . . . . . . . . . . . . . . . . 22

2.3.3 Hardware Implementations . . . . . . . . . . . . . . . . . . . . 23

2.4 Online Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Related Work in Online Arithmetic . . . . . . . . . . . . . . . 29

2.4.3 Advantages and Disadvantages of Online Arithmetic . . . . . 31

3 Arbitrary-precision Constant-hardware Iterative Compute 34

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Proposed ARCHITECTure . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Digit-vector Storage . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Arbitrary-precision Operators . . . . . . . . . . . . . . . . . . 38

3.3.3 Digit-scheduling Pattern . . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.5 Accuracy Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 42



CONTENTS ix

3.3.6 Compute Time . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.7 Digit-parallel Addition Optimisation . . . . . . . . . . . . . . 47

3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Experimental Particulars . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Empirical Performance Comparison . . . . . . . . . . . . . . . 54

3.5.4 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.5 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Don’t-care Digit Elision 64

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



x CONTENTS

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Scalability Comparison . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Don’t-change Digit Elision 83

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Method-agnostic Don’t-change Digit Elision . . . . . . . . . . . . . . 85

5.3.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Combining Don’t-change and Don’t-care Digit Elision . . . . . 93

5.3.5 Performance Improvement . . . . . . . . . . . . . . . . . . . . 95

5.4 Specialised Don’t-change Digit Elision for Stationary Iterative Methods 97

5.4.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Prototype Implementation . . . . . . . . . . . . . . . . . . . . 106

5.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



6 Conclusion and Future Work 115

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 120

xi



xii



List of Tables

2.1 Comparison of arithmetic paradigms for iterative algorithms. . . . . . 18

2.2 Comparison of arbitrary-precision arithmetic techniques. . . . . . . . 20

2.3 Classical representation of signed-digit numbers. . . . . . . . . . . . . 23

2.4 Summary of online arithmetic implementations. . . . . . . . . . . . . 30

3.1 Complexities of iterative solver implementations. . . . . . . . . . . . . 52

3.2 Area-speed tradeoff via selection of RAM width U . . . . . . . . . . . 58

5.1 Properties of approaches for the inference of identical and stable

MSDs in current and future approximants. To enable comparison,

we assume that D MSDs of all elements of the most recently com-

puted two approximants, k̂− 1 and k̂, are known to be the same. For

compactness, we abbreviate α = logr
1−‖G‖∞

2
and β = logr ‖G‖∞ in

the final row of the table. . . . . . . . . . . . . . . . . . . . . . . . . 109

xiii



xiv



List of Figures

1.1 Alternative digit-calculating strategies for the solution of x(k+1) =

1/8 − 1/7 · x(k). Arrows show the order of digit generation. Fig. 1.1a

shows the conventional way to converge a solution while Fig. 1.1b il-

lustrates how the proposed arbitrary-precision iterative solver works

to iterate exactly. Figs. 1.1c and 1.1d show arbitrary-precision iter-

ative solvers with don’t-care (X-marks) digit elision only and with

don’t-change (′′-marks) and don’t-care digit elision. The solid lines

represent the boundaries of the regions. . . . . . . . . . . . . . . . . 4

2.1 A brief overview of iterative methods. . . . . . . . . . . . . . . . . . 16

2.2 Radix-2 online adders. Left: serial. Right: parallel. . . . . . . . . . . 27

3.1 Indexing of digits and chunks within a p-digit number. i indexes all

digits, while those of each of its n chunks, indexed c, are indexed with

u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Operation of our Cantor pairing function, showing the transforma-

tion of a three-dimensional array growing with both approximant

and chunk indices k and c to a structure growing only in a single

dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xv



xvi LIST OF FIGURES

3.3 Proposed digit generation pattern for generic iterative computation

using online operators. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 FSM for digit computation scheduling. Transition edges are labelled

with conditions and actions separated by slashes (/). If the datapath

consists only of adders, the accumulation state is never entered. Oth-

erwise, α = 2 if the datapath contains one or more dividers, and is 1

in all other cases. Termination occurs either on demand or following

memory exhaustion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 How the final precision and iteration count (Kres, Pres) are constrained

by the desired result (K,P ) and the available memory (Kmax, Pmax). . 44

3.6 ARCHITECT-I benchmark datapaths. Adders, multipliers and di-

viders are arbitrary-precision radix-2 signed-digit online operators.

Use of three-digit adders reduces online delay by 2 over their serial

equivalents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Experimental setup for the evaluation of ARCHITECT-I. . . . . . . 54

3.8 Performance comparisons of our proposal against conventional LSD-

first arithmetic for the Jacobi and Newton’s methods. (a) and (b)

show how the conditioning of input matrix Am (Jacobi) and input

value a (Newton) affect the solve time of our proposal compared to

LSD-32. ARCHITECT-I computes more quickly than LSD-32 when

m / 0.022 for Jacobi and a / 3.3 for Newton. (c) and (d) show

that, even though our proposal leads to a slowdown compared to

LSD-8, there are nevertheless points—at m > 2 (Jacobi) and a > 8

(Newton)—whence LSD-8 does not converge at all, hence our speedup

is effectively infinite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



LIST OF FIGURES xvii

3.9 Resource use and performance of ARCHITECT-I Jacobi and New-

ton benchmarks versus RAM depth D. Area is reported in terms of

BRAMs only; LUT and FF use were below 1% for all design points. 57

3.10 Latency reduction using parallel online adders. . . . . . . . . . . . . . 60

3.11 Resource use and performance comparison of Jacobi and Newton’s

method implementations using Zhao et al.’s ( ), PISO ( ) and

our ( ) approaches versus required result precision P . . . . . . . . . 61

4.1 Deriving the gradient of the don’t-care line. Figure 4.1b was arrived at

by transforming dk+1−i, featured in Figure 4.1a, into di, after which

it was rotated clockwise by 90◦ to match the presentation used in

Figure 1.1. Since di does not feature k, Figure 4.1b’s x-intercept

(here, the origin) can be chosen arbitrarily. . . . . . . . . . . . . . . 70

4.2 A comparison of ARCHITECT-I and ARCHITECT-II against

conventional LSD-first arithmetic equivalents. (a) shows how the con-

ditioning of input matrix Am affects the solve time of both ARCHI-

TECT-I ( ) and ARCHITECT-II ( ) compared to LSD-32.

ARCHITECT-I computes faster than LSD-32 only when m / 0.022,

but ARCHITECT-II beats LSD-32 when m / 0.41. (b) shows that

even though both ARCHITECT-I and ARCHITECT-II lead to

a slowdown compared to LSD-8, there is nevertheless a point—at

m > 2—whence LSD-8 does not converge at all, hence ARCHI-

TECT’s speedups are infinite. . . . . . . . . . . . . . . . . . . . . . 77

4.3 How the conditioning ofAm affects the performance speedups of AR-

CHITECT-I ( ) and ARCHITECT-II ( ). . . . . . . . . . . . 78



xviii LIST OF FIGURES

4.4 How the requested accuracy bound η affects (a) the solve time, (b)

the total number of digits calculated and (c) the minimum memory

requirement for ARCHITECT-I ( ) and ARCHITECT-II ( ),

with m = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 A proof sketch showing why it is sound to omit don’t-change digits.

If the two hatched regions contain the same q + δ digits, the three

thick boxes are guaranteed to contain the same q digits, hence x(k)’s

calculation can begin at digit q + 1. . . . . . . . . . . . . . . . . . . 86

5.2 Example of a digit-calculating pattern of ARCHITECT-III, for the

solution of x(k+1) = 1/8 − 1/7 · x(k). Arrows show the order of digit

generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Digit generation pattern with don’t-change digit elision. Groups of

digits in the shaded region were found to be identical at runtime,

allowing computation of the first group to be skipped in the subse-

quent iteration. Dashed lines are scheduled paths not taken and ×s

are digits therefore elided. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 FSM for digit computation scheduling with don’t-change digit elision

only. Transition edges are labelled with conditions and actions sepa-

rated by slashes (/). Boxed conditions apply when don’t-change digit

elision is active; they are otherwise ignored, as was shown in Fig. 3.4

on page 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Solve time speedup for the (a) Jacobi and (b) Newton’s methods fea-

turing don’t-change digit elision versus ARCHITECT-I. (c) and (d)

show the corresponding memory requirement reductions for Jacobi

and Newton, respectively, facilitated through digit elision. . . . . . . 92



5.6 How the requested accuracy bound η affects (a) the solve time, (b)

the total number of digits calculated for ARCHITECT-II ( ) and

ARCHITECT-IIIa ( ), with m = 1. . . . . . . . . . . . . . . . . . 96

5.7 A sketch of guaranteed digit stability. The E-method produces one

new digit of lower significance per iteration; these, whose boundary

is represented by the solid blue line, therefore remain stable across

all future approximants. With knowledge that approximants k and

k + 1 share D identical MSDs, the proposed digit-stability analysis

is able to infer the numbers of stable digits within the k + 1th and

all future approximants. As shown by the dashed red lines, these are

dependent upon the conditioning of the iteration matrix G. . . . . . 98

5.8 How the requested accuracy bound η affects (a) solve time and (b)

minimum memory requirement for ARCHITECT-I ( ), ARCHI-

TECT-II ( ), ARCHITECT-IIIa ( ) and ARCHITECT-IIIb

( ), with m = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.9 How the conditioning ofAm affects the solve time of arbitrary-precision

iterative solvers with both don’t-change and don’t-care digit elision,

i.e. ARCHITECT-IIIa ( ) and ARCHITECT-IIIb ( ) vs LSD-

first arithmetic with a fixed precision of (a) 32 and (b) 8 bits. AR-

CHITECT-IIIb computes more quickly than LSD-32 when m < 3.0,

whereas ARCHITECT-IIIa can only beat LSD-32 when m < 0.27.

(b) shows that both arbitrary-precision iterative solvers lead to an

effectively infinite speedup when m > 2, since LSD-8 can never con-

verge to accurate-enough results. While performance slowdowns were

observed for m ≤ 2, ARCHITECT-IIIb outperformed its predeces-

sor in all cases, just as for LSD-32. . . . . . . . . . . . . . . . . . . . 112

xix



xx



Chapter 1

Introduction

In numerical analysis, an algorithm executing on the real numbers, R, is often

expressed as a conceptually infinite iterative process that converges to a result.

This is illustrated in a general form by the equation

x(k+1) = f
(
x(k)

)
,

in which the computable real function f ∈
(
RN → RN

)
is repeatedly applied to an

initial approximation x(0) ∈ RN . The true result, x∗, is obtained as k approaches

infinity, i.e.

x∗ = lim
k→∞

Π
(
x(k)

)
,

where the operator Π denotes the projection of the variables of interest since the

result may be of lower dimensionality than N . Examples of this template include

classical iterative methods such as the Jacobi and Newton’s methods, as well as

others including gradient descent methods [72].

In practice, these calculations are often implemented using finite-precision approx-

imations such as that shown in Algorithm 1, wherein FPP denotes some finite-

1



2 Chapter 1

Algorithm 1 Generic finite-precision iterative algorithm.

Require: x̂(0) ∈ FPNP , f̂ ∈
(
FPNP → FPNP

)
1: for k = 0 to K − 1 do

2: x̂(k+1) ← f̂
(
x̂(k)

)
3: end for

Assert:
∥∥∥Π
(
x̂(K)

)
− x∗

∥∥∥ < η

precision datatype, P is a measure of its precision (usually word length), f̂ is a

finite-precision approximation of f and η is an accuracy bound. The problem with

this implementation lies in the coupling of P and iteration limit K. Generally, this

algorithm will not be able to ensure that its assertion passes, and when it fails we are

left with no knowledge as to whether K should be increased or if all computations

need to be thrown away and the algorithm restarted with a higher P instead.

As a simple demonstration of this problem, suppose we wish to compute the following

iteration

x(k+1) = 1/8− 1/7 · x(k) (1.1)

starting from zero.

When performing this arithmetic using a standard approach in either software or

hardware, we must choose a single, fixed precision for our calculations before be-

ginning to iterate. Fig. 1.1a shows the order in which the digits are calculated

when the precision is fixed to eight decimal places: approximant-by-approximant,

least-significant digit (LSD) first. Choosing the right precision a priori is difficult,

particularly with respect to hardware implementation. If it is too high, the circuit

may be unnecessarily slow and power-hungry, while, if it is too low, the criterion for

convergence may never be reached.

Iterating exactly

The first proposal for arbitrary-precision iterative computation, as will be presented



3

in Chapter 3, avoids the need to answer the aforementioned question entirely. As

illustrated in Fig. 1.1b, the digits are calculated in a zig-zag pattern, sweeping

through iterations and decimal places simultaneously. The longer we compute, the

more accurate our result will be; the computation can terminate whenever the result

is accurate enough. This avoids the need to fix the precision beforehand, but requires

the ability to calculate from most-significant digit (MSD) first, a facility provided

through the use of online arithmetic [37]. While general-purpose processors featuring

traditional, LSD-first arithmetic units exhibit inefficiency for the realisation of online

arithmetic, field-programmable gate arrays (FPGAs) represent excellent platforms

for the implementation of such MSD-first operations [73,88,104,105,122].

Don’t-care digit elision

As originally formulated, iterating exactly is somewhat inefficient since the trian-

gular shape traced out results in the computation of more digits than is actually

needed. While the generation of all LSDs shown is strictly necessary to achieve exact

computation in every iteration, iterative algorithms do not ordinarily require this

to achieve convergence. Low-significance digits of early approximants are generally

unimportant, thus they are called don’t-care digits. In Chapter 4, a don’t-care digit

elision technique is presented for implementing stationary iterative calculations to

arbitrary accuracies. This refines the exact iterative calculation by avoiding unneces-

sary computations of don’t-care digits, arriving at a digit pattern shown in Fig. 1.1c.

By purposefully allowing rounding error, yet carefully bounding the amount intro-

duced in each approximant, arbitrary-accuracy results can still be obtained while

generating up-to 6.6 fewer digits than iterating exactly.

Don’t-change digit elision

As exemplified in Figs 1.1b and 1.1c, high-significance digits of later approximants lie
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x(0):

x(1):

x(2):

x(3):

x(4):

x(5):

x(6):

x(7):

.

.

.

.

.

.

.

.

0 1 2 5 0 0 0 0 0

0 1 0 7 1 4 2 8 5

0 1 0 9 6 9 3 8 7

0 1 0 9 3 2 9 4 4

0 1 0 9 3 8 1 5 0

0 1 0 9 3 7 4 0 7

0 1 0 9 3 7 5 1 3

0 1 0 9 3 7 4 9 8

(a) Approximants calculated LSD first
(conventional arithmetic).

.

.

.

.

.

.

.

.

0 1 2 5 0 0 0 0 0

0 1 0 7 1 4 2 8 5

0 1 0 9 6 9 3 8 7

0 1 0 9 3 2 9 4 4

0 1 0 9 3 8 1 5 0

0 1 0 9 3 7 4 0 7

0 1 0 9 3 7 5 1 3

0 1 0 9 3 7 4 9 8

(b) Iterating exactly, MSD first.

x(0):

x(1):

x(2):

x(3):

x(4):

x(5):

x(6):

x(7):

.

.

.

.

.

.

.

.

0 1 2 5 X X X X X

0 1 0 7 1 X X X X

0 1 0 9 7 0 X X X

0 1 0 9 3 2 8 X X

0 1 0 9 3 8 1 7 X

0 1 0 9 3 7 4 0 4

0 1 0 9 3 7 5 1 3

0 1 0 9 3 7 4 9 8

(c) MSD first with don’t-care digit eli-
sion.
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0 1 2 5 X X X X X

0 1 0 7 1 X X X X

0 1 0 9 7 0 X X X
′′ 1 0 9 3 2 8 X X
′′ ′′ 0 9 3 8 1 7 X
′′ ′′ ′′ 9 3 7 4 0 4
′′ ′′ ′′ 9 3 7 5 1 3
′′ ′′ ′′ ′′ 3 7 4 9 8

(d) MSD first with don’t-change and
don’t-care digit elision.

Fig. 1.1. Alternative digit-calculating strategies for the solution of x(k+1) = 1/8− 1/7 · x(k). Arrows
show the order of digit generation. Fig. 1.1a shows the conventional way to converge a solution
while Fig. 1.1b illustrates how the proposed arbitrary-precision iterative solver works to iterate
exactly. Figs. 1.1c and 1.1d show arbitrary-precision iterative solvers with don’t-care (X-marks)
digit elision only and with don’t-change (′′-marks) and don’t-care digit elision. The solid lines
represent the boundaries of the regions.

in the bottom-left corner; digits of later approximants are generally identical to ones

in the previous approximant, thus they are called don’t-change digits. In Chapter 5,

two theoretical analyses are proposed to infer don’t-change digits. To begin, a

generic analysis is introduced by exploiting online arithmetic’s digit dependency to

determine identical MSDs. Thereafter, a specialised analysis is introduced by using

interval and forward error analyses to prove that digits of high significance will

become stable during stationary iterative calculations. By detecting the presence

and avoiding the recomputation of these digits, as well as the elision of don’t-care
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ones, we end up with a corridor of digits, which is shown in Fig. 1.1d.

The proposed architecture, coined ARCHITECT (for Arbitrary-precision Constant-

hardware Iterative Compute), is the first to allow the runtime adaption of both pre-

cision and iteration count for iterative algorithms implemented in hardware. Several

research questions that manifest from ARCHITECT’s principles are addressed in

this thesis:

• Can a fixed-sized datapath be used to compute results to arbitrary precision

while still achieving comparable performance versus conventional arithmetic

equivalents?

• Can the locations of unimportant LSDs in early approximants be inferred,

excluding them from calculation to increase performance, while still obtaining

arbitrary-accuracy results?

• How is it possible to avoid recomputing digits of later approximants that are

identical to those of previous approximants?

To achieve these goals, the novel contributions of this thesis are as follows.

Hardware Architecture

• The first fixed-compute-resource hardware for iterative calculation capable

of producing arbitrary-precision results after arbitrary numbers of iterations.

(Chapter 3)

• An optimised mechanism for digit-vector storage based on a Cantor pairing

function to facilitate simultaneously increasing precision and iteration count.

(Chapter 3)
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• To complement digit elision strategies, enhanced memory-addressing schemes

are proposed, leading to greater performance and higher achievable result ac-

curacy for a given memory budget. (Chapters 4 & 5)

Theoretical Analysis

• A theorem for the optimal rate of LSD growth per iteration within stationary

iterative methods, thereby enabling the preclusion of don’t-care digit compu-

tation. With the appropriate preconditions, this is proven to have no bearing

on the chosen method’s ability to reach a solution of any accuracy. (Chapter 4)

• Theoretical analysis of MSD stability within any online arithmetic-implemented

iterative method, facilitating runtime detection of don’t-change digits. (Chap-

ter 5)

• Using interval and forward error analyses, a theorem for the rate of stable

MSD growth within the approximants produced by any stationary iterative

method. (Chapter 5)

Benchmarking and Evaluation

• A library of arbitrary-precision operations, enabling the construction of datap-

aths for iterative methods to solve linear and nonlinear equations. (Chapter 3)

• Exemplary hardware implementations of the proposals for the computation of

both linear (Jacobi method) and nonlinear (Newton) iterations. (Chapters 3,

4 & 5)

• Qualitative and quantitative performance and scalability comparisons against

traditional LSD-first and state-of-the-art online arithmetic FPGA implemen-

tations. (Chapters 3, 4 & 5)
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In order to evaluate ARCHITECT, two widely used iterative algorithms were im-

plemented in hardware—the Jacobi method (to solve systems of linear equations)

and Newton’s method (for the solution of nonlinear equations)—following the afore-

mentioned principles. Jacobi and Newton were chosen to exemplify a large class

of iterative methods with linear and quadratic convergence properties, respectively.

Our emphasis herein is to focus on a small number of methods and treat them in

depth.

1.1 Thesis Outline

The remainder of this thesis is organised in the following manner.

• Chapter 2 highlights the theoretical background and reviews the work rel-

evant to this thesis. Since this thesis is focussed upon arbitrary precision

iterative computation, an overview of iterative methods for linear and nonlin-

ear equations is initially presented. Following this, state-of-the-art arbitrary-

precision computing techniques are surveyed. Finally, some necessary back-

ground of redundant number systems and online arithmetic are introduced,

along with a detailed discussion of the benefits and limitations of online arith-

metic.

• Chapter 3 presents a fixed-area hardware architecture for arbitrary-precision

iterative computing. A Cantor pairing function is employed to allow the simul-

taneous increase of both iteration indices and precision, enabling the traversal

of two-dimensional iteration-precision space in an unconventional fashion. A

library of arbitrary-precision operators is introduced. Exemplary hardware

implementations are constructed for the computation of both linear (Jacobi

method) and nonlinear (Newton) iterations.
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• Chapter 4 investigates how to determine don’t-care digits with stationary

iterative methods and avoid their computations. Forward error analysis is used

to infer the locations of don’t-care digits. I demonstrate that the lack of don’t-

care digit computation is guaranteed not to affect the ability to reach a solution

of any accuracy. Performance speedups and memory footprint reductions are

achieved versus iterative solvers without this optimisation.

• Chapter 5 investigates how to infer the presence and elide the computation of

don’t-change digits for iterative calculations. I first employ online arithmetic’s

computation dependencies to infer identical MSDs through the runtime com-

parison of consecutive approximants. This method is unable, however, to

guarantee that digits will stabilise, i.e. never change in any future iteration.

Therefore, I also address this shortcoming by using interval and forward er-

ror analysis to prove that digits of high significance will become stable within

stationary iterative methods. I formalise the relationship between matrix con-

ditioning and the rate of growth in MSD stability, using this information to

converge to desired results more quickly.

• Chapter 6 concludes the thesis and suggests possible fruitful avenues for

future research, such as optimal digit trajectories for iterative computation

and methods for combining the arbitrary-precision computation with high-

level synthesis (HLS).

1.2 Published Work

The original contributions of this thesis have been published in the following peer-

reviewed conference papers and journal articles as follows.
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• He Li, J. Davis, J. Wickerson and G. A. Constantinides. ARCHITECT:

Arbitrary-precision Constant-hardware Iterative Compute, in IEEE Interna-

tional Conference on Field-Programmable Technology (FPT), 2017. (Best

Paper Presentation Award)

• He Li, J. Davis, J. Wickerson and G. A. Constantinides. Digit Elision for

Arbitrary-accuracy Iterative Computation, in IEEE Symposium on Computer

Arithmetic (ARITH), 2018.

• He Li, J. Davis, J. Wickerson and G. A. Constantinides. ARCHITECT:

Arbitrary-precision Hardware with Digit Elision for Efficient Iterative Com-

pute. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

2019.

• He Li, I. Mcinerney, J. Davis and G. A. Constantinides. Digit Stability Infer-

ence for Iterative Methods using Redundant Number Representation. IEEE

Transactions on Computers, 2020.
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Background

The aim of this thesis is to construct a hardware architecture for arbitrary-precision

iterative calculations using online arithmetic. In this chapter, some related work and

concepts of iterative methods, arbitrary-precision computing, redundant number

systems and online arithmetic are presented. In general, I restrict the discussions

to four main research topics:

• Section 2.1 presents the relevant background of iterative methods for linear

and nonlinear equations, including the basic concepts, iterative method clas-

sifications and an overview of state-of-the-art hardware implementations of

different iterative methods on FPGAs.

• Section 2.2 discusses the motivation to pursue arbitrary-precision computing,

and provides an overview of state-of-the-art arbitrary-precision software pack-

ages and hardware architectures.

• Section 2.3 presents the concepts of redundant number representation and

discusses an overview of arithmetic circuits using redundant number systems.

10
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• Section 2.4 reviews the concepts of online arithmetic algorithms, provides a

brief survey of online arithmetic-based applications and discusses the benefits

and limitations of online arithmetic.

2.1 Iterative Methods for Linear and Nonlinear

Equations

The problem of solving systems of linear and nonlinear equations is among the most

important in many scientific and engineering fields such as applied mathematics,

physics, computer science, finance and astronomy [26]. The idea of using iterative

methods to solve these problems has been put forward and has become one of the

widely used techniques for hundreds of years [47]. A typical iterative method pro-

duces successive approximate answers to converge to the solution of the problem,

with a relatively simple calculation per iteration [47].

Iterative methods can be classified by their rates of convergence. For example,

the Jacobi method is a classical iterative algorithm with linear convergence, which

is usually used to solve systems of linear equations [66]; Newton’s method is a

classical algorithm with quadratic convergence and forms the basis of most modern

optimisation algorithms [69].

2.1.1 Basic Concepts

To begin, a brief overview of vector and matrix norms is presented as they are

usually used for termination criteria and error analysis of iterative methods. A

vector norm ‖x‖ can be considered as the magnitude of a vector x ∈ Rn, if satisfies
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three properties:

‖x‖ ≤ 0 with equality only if x = 0

‖ax‖ = |a|‖x‖

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),

where x,y ∈ Rn and a is a scalar.

A matrix norm of an m×n matrix A is defined as a mapping from Rm×n to R, such

that the following three properties hold:

‖A‖ ≤ 0 with equality only if x = 0

‖aA‖ = |a|‖A‖

‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality),

where A,B ∈ Rm×n.

For square matrices (i.e., m = n), matrix norms that satisfy the additional following

condition are called sub-multiplicative [113]:

‖AB‖ ≤ ‖A‖‖B‖.

For example, the l∞-matrix norm for an n× n matrix is sub-multiplicative [24]:

‖A‖∞ = max
0≤i≤n−1

n−1∑
j=0

|aij| l∞-matrix norm.

This sub-multiplicative matrix norm will be used for my don’t-care digit analysis in

Chapter 4 and digit stability analysis in Chapter 5.
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2.1.2 Iterative Methods for Linear Equations

Iterative methods for the solution of linear equations play a significant role in many

scientific computing scenarios, such as computational fluid mechanics, economic

modelling and oil reservoir modelling [16]. Iterative methods for linear equations

can generally be classified into two types, stationary and nonstationary methods

(e.g., Krylov methods) [65]. Versus nonstationary ones, stationary iterative meth-

ods are classical, simple to implement and can serve as preconditioners for more ad-

vanced methods, such as the preconditioned conjugate gradient (PCG) method [115].

Therefore, we review stationary iterative methods in detail in the following.

Stationary Iterative Methods

In numerical linear algebra, a straightforward way to solve a system Ax = b is to

transform it into a linear fixed-point iteration of the form

Mx(k+1) = Nx(k) + b (2.1)

with A = M−N and M non-singular [51]. Defining iteration matrix G = M−1N ,

(2.1) can also be written as

x(k+1) = Gx(k) +M−1b. (2.2)

Achievement of convergence requires that G’s spectral radius ρ(G) < 1. Such

stationary iterative methods are widely used in the approximate solution of nonlin-

ear [82], differential [67] and integral equations [121]. They also play a significant

role in multigrid theory [83]; multigrid methods commonly serve as preconditioners

for many other iterative algorithms [8].
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Some well known stationary iterative methods include the Jacobi, Gauss-Seidel and

successive over-relaxation (SOR) methods [52]. Let us now analyse the iteration

matrix G for different stationary iterative methods. For example, consider the

Jacobi method to solve Ax = b. This method uses the matrix splitting

M = D, N = − (L+U) ,

where D, L and U are the diagonal, (strict) lower-triangular and upper-triangular

parts of A, respectively [65]. The iteration matrix of the Jacobi method is

GJ = −D−1 (L+U) .

For the Gauss-Seidel method, its iteration matrix is characterised as a new iteration

with matrix splitting

M = D +L, N = −U ,

and the iteration matrix

GGS = − (D +L)−1U .

To accelerate the Gauss-Seidel method, researchers modified it by introducing a

relaxation parameter ω, leading to the successive overrelaxation (SOR) method with

an iteration matrix

GSOR = (D + ωL)−1 ((1− ω)D − ωU) .

Note that the Gauss-Seidel method is a special case (ω = 1) of the SOR method.

The performance of the SOR method can be improved by a good choice of ω, even

though the choice is non-trivial [120].
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Other Methods

There are other types of iterative method to solve linear equations, such as Krylov

subspace methods. Unlike stationary iterative methods, Krylov methods do not

require a fixed iteration matrix G [66]. Examples of Krylov subspace methods

include the conjugate gradient method, the generalised minimum residual method

(GMRES) and the minimum residual method (MINRES) [66].

2.1.3 Iterative Methods for Nonlinear Equations

Newton’s method is a classical iterative method to solve systems of nonlinear equa-

tions. The algorithm was created by Sir Issac Newton, who formulated the result in

1669, and was later improved by Joseph Raphson in 1690. Hence, the algorithm is

also occasionally called the Newton-Raphson method [21].

Newton’s method is a root-finding algorithm, commonly employed to approximate

the zeros of a real-valued function f . The (k + 1)th approximant is given by

x(k+1) = x(k) −
f
(
x(k)
)

f ′(x(k))
,

where f ′ is the first derivative of f . If it converges, then the final solution that

Newton’s method converges to depends on the initial guess x(0).

Given a differentiable function f , formally the Newton iteration function g(x) is

defined as

g(x) = x− f(x)

f ′(x)
.
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Iterative methods

Linear

Stationary iterative method

Jacobi

Gauss-Seidel

Successive over-relaxation

Krylov

Conjugate gradient method

GMRES

MINRES

Nonlinear

Newton’s method

Variants of Newton’s method

Fig. 2.1. A brief overview of iterative methods.

Then

x(1) = g
(
x(0)
)

x(2) = g
(
x(1)
)

= g
(
g
(
x(0)
))

= g2
(
x(0)
)
,

and, in general

g
(
x(k+1)

)
= gk+1

(
x(0)
)
,

where the notation gk+1(·) means applying g(·) up to k + 1 times. If the initial

guess x(0) is sufficiently close to the solution x∗ and g′(x∗) = 0, Newton’s method

converges quadratically [21,60].

In some cases, such as when the root multiplicity is greater than one, Newton’s

method only converges linearly [21]. There are several variants of Newton’s method,
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such as the chord method, Broyden’s method [66] and the Quasi-Newton (QN)

method [29]. Some such variants have been used for neural network training [76,77].

Fig 2.1 presents an overview of different categories of iterative methods to solve

linear and nonlinear equations.

2.1.4 Hardware Implementations of Iterative Methods

Given that iterative methods are particularly popular in scientific computing, ma-

chine learning, optimisation and many other numerical application areas, interest in

their acceleration with FPGAs is growing [86]. Recent studies have demonstrated

that FPGAs are promising platforms for the acceleration of the Jacobi [107], New-

ton’s [78], conjugate gradient [101] and MINRES [10] methods.

Implementations relying on traditional arithmetic—whether digit-serial or -parallel—

enforce compile-time determination of precision. For digit-parallel designs, this af-

fects their area and input/output (I/O) bandwidth requirements, whereas for digit-

serial, it is one of the factors affecting algorithm runtime. Since digit-parallel arith-

metic’s I/O throughput requirements grow with precision, digit-serial arithmetic has

inherently lower I/O consumption. Runtime tuning of precision in iterative calcula-

tions was enabled through the use of online arithmetic in recent work [122], however

unrolling was necessary in order to implement an iterative algorithm’s loop; area

therefore scaled with the desired number of iterations. As shown in Table 2.1, the

work presented in this thesis stands apart from these alternatives by enabling the

runtime selection of both factors affecting accuracy.
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Table 2.1
Comparison of arithmetic paradigms for iterative algorithms.

Name
Area scales with Runtime scales with

Precision Iteration limit Precision Iteration limit

Digit-parallel 4 8 8 4 unbounded

Digit-serial 8 8 4 bounded 4 unbounded

Zhao et al. [122] 8 4 4 unbounded 8

This work 8 8 4 unbounded 4 unbounded

2.2 Arbitrary-precision Computing

Applications requiring very high precision have become increasingly popular in re-

cent years, especially in the current scientific computing community [94]. For ex-

ample, today, hundreds of digits of precision are required in atomic system simu-

lations and electromagnetic scattering theory calculations [5], while Ising integrals

and elliptic function evaluation need thousands of digits [4]. In experimental math-

ematics, precisions higher than double precision are required [39]. Poisson equation

computations frequently require results to tens or hundreds of thousands of dig-

its precision [6]. Researchers in the climate modelling community demonstrated

that high-precision arithmetic can solve numerical inaccuracy in certain loops of cli-

mate modeling programs [7]. Standard numeric datatypes, such as double- or even

quadruple-precision floating point numbers, are no longer sufficient in an increasing

number of scenarios.

2.2.1 Software Libraries

Many software libraries have been developed for arbitrary-precision arithmetic. The

de facto standard is MPFR (Multiple-Precision Floating Point with Correct Round-
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ing), which guarantees correct rounding to any requested number of bits, selected be-

fore each operation is executed [89]. Other state-of-the-art arbitrary-precision com-

putation packages include MPFI (Multiple Precision Floating-point Interval) [100],

the complex MPFR extension MPC [30] and Arb (Arbitrary-Precision Midpoint-

Radius Interval Arithmetic) [59]. Ndour et al. proposed a RISC-V instruction set

architecture (ISA) extension with variable precision floating-point capabilities [93].

2.2.2 Hardware Implementations

Hardware architectures of high-precision operations have been put forward recently,

in particular those within iterative algorithms [86]. FPGAs provide flexibilities not

available on other platforms, allowing for the implementation of bespoke designs with

many precision and performance tradeoffs [43]. Libraries including FloPoCo [28] and

VFLOAT [41], alongside proprietary vendor tools, facilitate the creation of custom-

precision arithmetic IP cores. Although they provide the designer with many op-

tions to suit particular frequency, latency and resource usage requirements, preci-

sion is determined at compile time and therefore remains fixed during operation.

Mixed-precision iterative solvers, in which precisions can be selected from a set as

required at runtime, have also been proposed [56, 79, 107]. A dual-mode double-

and quadruple-precision architecture has also been designed; this was based on the

Taylor series expansion [56]. Liu et al. proposed a novel FPGA-based Markov Chain

Monte Carlo construction that exploited the mixed-precision support of FPGAs in

order to accelerate the computation of likelihood functions [79]. Sun et al. pro-

posed an FPGA-based mixed-precision linear solver: as many operations as possible

are performed in low precision before switching to a slower, higher-precision mode

for the later iterations [107]. The Unum “universal number” is an arithmetic and

binary representation format analogous to floating point [46]. Bacco et al. pro-
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Table 2.2
Comparison of arbitrary-precision arithmetic techniques.

Name Level
Precision set

per calculation
Iteration limit set

per calculation

MPFR [89], etc. Software Before During

FloPoCo [28], etc. Hardware Before During

Mixed-precision [56,79,107] Hardware Before During

SMURF [9] Hardware Before During

Zhao et al. [122] Hardware During Before

This work Hardware During During

posed SMURF—a Unum-based variable-precision floating-point unit—implemented

as a coprocessor of a RISC-V RocketChip core [46]. Zhao et al.’s work enables

arbitrary-precision computation but, as mentioned previously, requires compile-time

determination of iteration count [122].

Apart from Zhao et al.’s proposal, each of the aforementioned proposals requires

precision—or precisions—to be determined a priori. In many cases, this is not a

trivial task; making the wrong choice often means having to throw the calculations

already done away and starting from scratch with higher precision, wasting both

time and energy. In our work, we are particularly interested in hardware archi-

tectures that allow precision to be increased over time without having to restart

computation or modify the circuitry. Table 2.2 presents a side-by-side comparison

of these techniques and their features with this work, the only entry supporting the

determination of precision and iteration count after each calculation has commenced.

When implementing arbitrary-precision arithmetic operators as fundamental units in

datapaths on FPGAs, different number systems can affect the overall computation

performance. In the following, an overview of arithmetic circuits with different

number systems is presented.
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2.3 Arithmetic Circuits with Different Number

Systems

The performance of many custom hardware systems is predominantly dependent

upon the speed of their underlying arithmetic operators [116]. When these employ

conventional, nonredundant number representations, carry propagation is the pri-

mary factor jeopardising their latency. The introduction of redundancy, however,

often allows operator execution time to be shortened due to the reduction—and

sometimes even elimination—of carry chains [55]. For example, a redundant number

system is the setting for the well-known Sweeney-Robinson-Tocher (SRT) division

algorithm [20,117], used in the Intel Pentium processor [50].

2.3.1 Traditional Number Systems

Before introducing redundant number systems, some basic concepts of traditional

number systems must be reviewed. Traditional number systems are nonredundant,

and can be characterised by the radix r and precision p [97]. Given a radix r, a digit

can be selected from an integer set S to represent a number. For a nonredundant

number system, we have

S = {0, 1, 2, · · · , r − 1}.

A number x in the range [0, 1) is then
∑p

i=1 xir
−i, where xi ∈ S for all i. The digit

xi is the ith MSD of this number. Every value within such a system has a unique

representation.
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2.3.2 Redundant Number Systems

In a redundant number system, the representation associated with a value is no

longer unique [3]. In other words, multiple representations may be linked to the

same value. This property allows more flexibility in the choice of representations for

each value. Given a radix r, each digit can represent more than r values.

Signed-digit Number System

As a widely used redundant number system, the signed-digit number system was

designed for the purpose of performing totally parallel addition [45]. The computa-

tion time of a parallel addition is therefore independent of the operand data width,

since the chains of carry propagation are eliminated [81].

For a signed-digit number representation, digit values are selected from the set

Ssd = {−ρ1, · · · ,−1, 0, 1, · · · , ρ2},

where ρ1 + ρ2 + 1 ≥ r and ρ1, ρ2 ≥ 0. The digit set Ssd can be symmetric or

asymmetric with different levels of redundancy. For example, a radix-4 redundant

digit set can be formed in one of the following cases.

• Symmetric with minimal redundancy (ρ2 = ρ1 = r/2, assuming even r):

{−2,−1, 0, 1, 2}.

• Symmetric with maximal redundancy (ρ2 = ρ1 = r − 1):

{−3,−2,−1, 0, 1, 2, 3}.
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Table 2.3
Classical representation of signed-digit numbers.

x+i x−i xi = x+i − x−i

1 0 1

1 1 0

0 0 0

0 1 −1

• Asymmetric (ρ2 6= ρ1): e.g.

{−1, 0, 1, 2, 3}.

Note that Ssd is possible with over redundancy when ρ1 + ρ1 > r [102].

In this thesis, we selected a radix-2 symmetric signed-digit set with maximal redun-

dancy, since it is a standard redundant number system in hardware implementa-

tion [37].

2.3.3 Hardware Implementations

For the de facto standard radix-2 signed-digit number representation, the ith digit

of a number x, xi, lies in {−1, 0, 1}. In hardware, each xi corresponds to a pair

of bits, x+i and x−i , selected such that xi = x+i − x−i . The classical coding of this

signed-digit number system is listed in Table 2.3.

Use of redundant number systems allows us to accelerate arithmetic circuits on hard-

ware [2,27,40,64,110], in particular those with signed-digit representation. Although

these arithmetic circuits necessitate the use of redundant number representations,

data can be efficiently converted between non-redundant and redundant forms using
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well known on-the-fly conversion techniques [37].

Fast multipliers have been designed using signed-digit representation for partial

product generation [27] and partial product reduction [64]. We further review state-

of-the-art research employing signed-digit representation for other operations.

• Addition. Residue number system (RNS) arithmetic has attracted significant

attention for high-speed arithmetic operations [58]. Timarchi et al. proposed

a signed-digit residue number system (SD-RNS) to eliminate the carry propa-

gation in RNS arithmetic. To achieve further performance increase, they used

high-radix signed-digit (HRSD) coding to build an efficient HRSD-RNS adder.

• Constant vector multiplication. As a basic operation in filtering and convolu-

tion, constant vector multiplication can be implemented using multiplication-

free techniques by adding and subtracting a series of power-of-two results [40].

Related hardware implementations have been investigated for many years.

Fan et al. recently optimised a signed-digit constant vector multiplication by

reducing the computational complexity of their multiplier-free technique [40].

• Division. Effort has been made to design fast and low-cost multipliers and

adders. However, there have only been a few promising studies for division

acceleration [54, 56, 63, 80]. Digit-recurrence division is the most widely used

in today’s high-performance microprocessors, since it presents a good balance

between performance, area and energy consumption [17]. Bruguera presented

a latency- and area-efficient radix-64 digit-recurrence division by overlapping

simpler radix-4 iterations [18]. Amanollahi and Janeripur employed redundant

number representations for partial remainders and quotient digits in radix-16

division algorithms [2]. By doing so, fast carry-free computation of the next

partial remainder is achieved and less number of divisor multiples are required.
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We will present an arbitrary-precision division architecture in Chapter 3.

The majority of applications using redundant number systems focus on fast arith-

metic designs [55]. There are several other specialised applications, such as MSD-

first computation [37] and function evaluation [32].

While the majority of existing applications employing such representations focus on

speed and efficiency, the work I describe in Chapter 5 is the first to use redundancy

in order to infer digit stability within iterative algorithms.

2.4 Online Arithmetic

Achieving arbitrary-precision computation with fixed hardware requires MSD-first

input consumption and output generation. A suitable proposal for this, widely

discussed in the literature, is online arithmetic [37]. By employing redundancy in

the number representations of online arithmetic, allowing less-significant digits to

correct errors introduced in those of higher significance, all online operators are able

to function in an MSD-first fashion.

Recently, Ercegovac has presented a brief overview of the properties of MSD-first

arithmetic [34]. To provide a detailed background of online arithmetic, this section

introduces online arithmetic algorithms and surveys related hardware implementa-

tions of online arithmetic. Finally, the benefits and limitations of online arithmetic

are discussed.
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2.4.1 Basic Algorithms

Online operators are classically serial, however efficient digit-parallel (unrolled) im-

plementations targetting FPGAs have been developed as well [104]. We make use

of both digit-serial and -parallel online operators in this thesis.

Of particular significance to the material presented in this thesis is the concept

of online delay. When performing an online operation, the digits of its result are

generated at the same rate as its input digits are consumed, but the result is delayed

by a fixed number of digits, denoted δ. That is, the first (i.e. most-significant) q

digits of an operator’s result are wholly determined by the first q + δ digits within

each of its operands [37]. The value of δ is operation-specific, but is a small integer

determined by the redundancy factor and the radix [37].

Online Addition

A classic online adder makes use of full adders and registers to add digits of inputs

x and y, presented serially as xin and yin, as shown in Figure 2.2 (left), from most

to least significant [37]. Digits of z start to appear at serial output zout after two

clock cycles; this is the online delay of the adder, denoted δ+. Duplication of the

serial adder P times and the removal of its registers lead to the creation of a P -

digit parallel online adder devoid of online delay, as shown in Figure 2.2 (right) [37].

Crucially, while carry digits are presented at the least-significant end of the adder

and generated at the most, there is no carry chain; the critical path lies across two

full adders [104]. This indicates the adder’s suitability for the construction of more

complex online operators.
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Fig. 2.2. Radix-2 online adders. Left: serial. Right: parallel.

Online Multiplication

Algorithm 2 illustrates classical radix-2 online multiplication of signed operands x

and y, with product z in the range (−1, 1) [37]. Digit vectors x and y are assembled

from digits of inputs x and y over time from most-significant first; ‖ represents

concatenation performed such that

x =

j∑
i=0

xi2
−i−1, y =

j∑
i=0

yi2
−i−1

during cycle j. Digit-selection function sel× serves to determine the digits of output

z [37]. This is defined to be

sel×(v) =


1 if v ≥ 1/2

0 if − 1/2 ≤ v < 1/2

−1 otherwise.

zj is produced at cycle j + 3 since δ× is 3. P -digit online addition lies at the heart

of the algorithm; due to its fixed width, the hardware that implements Algorithm 2
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Algorithm 2 Radix-2 online multiplication.

Inputs: serially presented digits x, y
1: x,y,w ← 0
2: for j = 0 to P + 2 do
3: y ← y ‖ yj
4: v ← 2w + 2−3(xyj + yxj)
5: zj−3 ← sel×(v)
6: w ← v − zj−3
7: x← x ‖ xj
8: end for

Output: serially generated digits z

can multiply to a precision of at most P , which must be fixed in advance.

Algorithm 3 Radix-2 online division.

Inputs: serially presented dividend x, divisor y
1: y,w, z ← 0
2: for j = 0 to P + 3 do
3: y ← y ‖ yj
4: v ← 2w + 2−4(xj − zyj)
5: zj−4 ← sel÷(v)
6: w ← v − zj−4y
7: z ← z ‖ zj−4
8: end for

Output: serially generated quotient z

Online Division

The process of classical radix-2 online division is shown in Algorithm 3, in which

dividend x and divisor y are used to produce quotient z. In contrast to Algorithm 2,

division requires the formation of digit vector z since all prior output digits are

needed for the calculation of v, while updates to w require the full history of y.

Online division therefore has more complex computation dependencies than multi-
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plication. Its digit-selection function, sel÷, is

sel÷(v) =


1 if v ≥ 1/4

0 if − 1/4 ≤ v < 1/4

−1 otherwise.

zj is produced at cycle j + 4 since δ÷ is 4.

2.4.2 Related Work in Online Arithmetic

Online Arithmetic Operations

There is a long history of development of online arithmetic operators, such as

fixed-point [111], floating-point [118, 119] and complex number system [19] multi-

plication and division, as well as MSD-first Coordinate Rotation DIgital Computer

(CORDIC) [48,108], etc. Recently, hardware acceleration of online algorithms have

been increasingly popular, in particular those with efficient mapping [104], mul-

tiple operands [62, 114], high radices [61], variable precision [109] and overclock-

ing [103]. Table 2.4 presents a summary of different online arithmetic implemen-

tations. FPGAs represent an appropriate platform for realising online arithmetic

due to their flexible fabrics, devoid of the costs associated with application-specific

integrated circuit (ASIC) implementation. Shi et al. presented an efficient digit-

parallel implementation of online addition and multiplication [104] and explored the

accuracy-performance tradeoff facilitated through overclocking [103]. Multi-operand

multiplication [62] was designed recently, resulting in savings in resource usage and

interconnection complexity versus a LSD-first arithmetic equivalent. Moreno et al.

also presented a multi-operand online addition with an efficient conversion of multi-
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Table 2.4
Summary of online arithmetic implementations.

Name Operation Technical feature

Joseph &
Devanathan [61]

× High radix

Joseph &
Devanathan [62]

× Multi-operand multiplication

Shi et al. [103] +, × Overclocking

Shi et al. [104] +, × Digit-parallel implementation

Moreno et al. [114] +
Multi-operand and

multi-format addition

Zhao et al. [122] +, ×, ÷ Arbitrary precision

This work +, ×, ÷ Arbitrary precision and iteration

format data [114]. Joseph and Devanathan built a high-radix online multiplier and

demonstrated throughput boost and online delay reduction versus classical radix-2

online multipliers, with the sacrifice of a growing power-delay product [61]. Zhao et

al. presented a novel architecture for arbitrary-precision online operations through

hardware reuse [122].

Applications Using Online Arithmetic

There has been some work using online arithmetic in various application domains.

The most popular is digital signal processing (DSP), named online signal process-

ing [71]. Online arithmetic-implemented digital filters have been explored, such

as the finite impulse response (FIR) filter [42, 44], infinite impulse response (IIR)

filter [12, 36], discrete Fourier transform (DFT) [70, 71], fast Fourier transform

(FFT) [84,92] and discrete cosine transform (DCT) [70,71]. These designs are able

to produce their MSDs first and allow the subsequent computations to commence

earlier, which can achieve high performance thanks to digit-serial designs.



2.4. Online Arithmetic 31

Online arithmetic is also used in communication systems to truncate computations

dynamically for power-area product savings [98, 99]. Rajagopal and Cavallaro em-

ployed this MSD-first feature for sign detection in communication systems [99].

Computation can be terminated when the first non-zero MSD arrives, while with

conventional LSD-first arithmetic, the MSD is produced at the end of the entire

computation. Therefore, online arithmetic provides easier sign detection.

Another important application based on online arithmetic is function evaluation [13–

15,31,32,38]. Ercegovac proposed an MSD-first function evaluation method, named

the E-method, for polynomials and some rational functions [31]. The E-method

solves diagonally dominant linear systems and generates one digit of each of the

elements of their solution vectors in one iteration, starting from the MSD first [32].

Nicolas et al. overcame the limitation of diagonal dominance required for the E-

method by changing the variables of a rational function, calling this family of ra-

tional functions E-fractions [13, 15]. For high-precision evaluation of polynomials,

Ercegovac et al. implemented the E-method on FPGAs to demonstrate that FPGAs

provide good flexibility of digit-serial and -parallel implementations [38]. Recently,

Brisebarre et al. presented an automatic circuit generator for the E-method [14],

incorporated into the FloPoCo framework [28].

There are also several other applications using online arithmetic, such as MSD-first

approximate computing [106], arbitrary precision arithmetic [122], general profile

search [88] and iterative numerical calculation [75].

2.4.3 Advantages and Disadvantages of Online Arithmetic

Given various applications using online arithmetic, I now summarise the benefits of

online arithmetic.
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• Computing while Communicating. MSD-first computation allows us to overlap

multiple operations in datapaths to reduce the computation latency. This

property can compensate for possible performance inefficiencies due to digit

serial propagation.

• Elimination of carry propagation. Carry propagation is a performance bot-

tleneck in conventional LSD-first arithmetic, and delays are proportional to

precision. As presented previously in Section 2.3.2, online arithmetic uses re-

dundant number systems, therefore long carry chains are eliminated for adders.

• Iterating exactly. With some architectural optimisations, online arithmetic can

compute results to arbitrary precision [122]. A novel hardware architecture for

arbitrary-precision iterative computation will be discussed in Chapter 3. As

for conventional LSD-first arithmetic, precision must be fixed before starting

to iterate, choosing the right precision a priori is non-trivial, particularly with

respect to hardware implementation.

• Runtime determination of precision. Similarly to the previous point, online

arithmetic allows computation to dynamically terminate when the required

precision has been reached. Traditional LSD-first arithmetic operators cannot

ever determine its precision at runtime, since their precision must be fixed at

compile time.

• Inference of stable most-significant digits. In standard numerical iterative com-

puting, approximate answers aim to approach the real solution with successive

iterations. MSD-first computing allows us to infer stable digits in iterative

calculations. The E-method [32] and the theoretical analysis in Chapter 5

demonstrate this property.

Despite the aforementioned benefits, online arithmetic still has some limitations that
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researchers have been putting effort into addressing for many years [97]. Decades

ago, Muller discussed some characterizations of functions computatble in online

arithmetic [90]. In general, the limitations of online arithmetic can be categorised

into three aspects.

• Overhead due to redundant number representations. Just as in redundant

number systems, a common concern in online arithmetic is that additional

hardware resources are required. Area-efficient implementations of online

arithmetic have been explored, such as that using modern FPGA’s architec-

tures [102].

• Conversion to and from traditional representations. For pure online arithmetic

systems, conversion to and from traditional representations is not required.

However, if online operators are used to generate intermediate results, this

conversion is necessary. For example, Ercegovac and Lang proposed an on-

the-fly technique that allows data to be efficiently converted between non-

redundant and redundant forms [35].

• Initial delay. Online delay is an important characteristic of online operators.

Classical digit-serial online operators produce output digits at the same rate

as the consumption of operands, with a delay of a fixed number of digits: δ.

Techniques have been proposed to reduce online delay, such as composite online

algorithms [1,33,96], high-radix designs [61] and multi-operand operators [62,

114].

In the next chapter, we will see how ARCHITECT is designed by exploiting online

arithmetic, and how it scales and outperforms traditional LSD-first and state-of-

the-art online arithmetic equivalents.
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Arbitrary-precision

Constant-hardware Iterative

Compute

3.1 Overview

In this chapter, ARCHITECT-I, a novel hardware architecture for iterative com-

putation is proposed. ARCHITECT-I is able to calculate an arbitrary number of

iterations to arbitrary precision. A novel digit-vector storage scheme is described

by considering two-dimensional indices: precision and iteration count. Given the

computation dependencies of online arithmetic, a digit-scheduling pattern is then

proposed within the precision-iteration space. How to construct ARCHITECT-I

operations such as addition, multiplication and division is presented thereafter. The

proposed hardware architecture is then evaluated on FPGAs for the computation of

some iterative algorithm benchmarks.

34
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The technical contributions of this chapter are as follows.

• The first fixed-compute-resource hardware architecture for iterative calculation

capable of producing arbitrary-precision results after arbitrary numbers of

iterations.

• An optimised mechanism for digit-vector storage based on a Cantor pairing

function to facilitate simultaneously increasing precision and iteration count.

• A library of ARCHITECT-I operators able to compute from most-significant

to least-significant digits, iteratively refining computations to any precision.

• Exploitation of digit-parallel online addition to decrease datapath latency.

• Exemplary hardware implementations of my proposals for the computation of

both linear (Jacobi method) and nonlinear (Newton) iterations.

• Qualitative and quantitative performance and scalability comparisons against

traditional and state-of-the-art online arithmetic FPGA implementations. Dat-

apaths constructed following the proposed principles demonstrate efficiency

over their traditional arithmetic equivalents where the latter’s precisions are

either under- or over-budgeted for the computation of a result to a particular

accuracy. Versus arbitrary-precision iterative solvers without the optimisations

detailed herein, I achieve up-to 1.1× performance speedups for the evaluated

benchmarks.

3.2 Notation

In this chapter, (K,P ) is defined as the target result that computes at least K

iterations and to at least P -digit precision.
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A digit vector is denoted by a bold symbol x, and will be stored in registers. For a

P -digit number, x =
∑P

i=1 xir
−i, where xi is the ith MSD.

P digits are stored by U -digit chunks, therefore dP/Ue is the number of such chunks

that constitute a P -digit number. The chunk index is denoted by c and the digit

index within a U -digit chunk is denoted by u.

The approximant of an iterative method at iteration k ∈ N>0 is denoted x(k), with

its jth element (a scalar value) denoted x
(k)
j .

Where an approximant consists of signed-digit numbers, x
(k)
ji is the ith MSD of the

jth element of x(k).

A matrix is represented by a bold capital symbol X.

3.3 Proposed ARCHITECTure

Using classic online operators as a starting point, I now describe the construction

of constant compute-resource hardware capable of performing iterative computation

to increasing precision over time. This concept is called ARCHITECT-I.

3.3.1 Digit-vector Storage

Classic online operators make use of registers to store digit vectors. When imple-

menting Algorithms 2 and 3 on page 28 in hardware, for example, P -digit registers

are needed for x and y. To compute to an arbitrary precision p instead, this is

unsuitable; RAM must be used for digit-vector storage to avoid both under- and

over-budgeting register resources. p is separated into two dimensions: one fixed,

U , that determines the RAM width, and a second variable, n = dp/Ue, representing
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the number of these ‘chunks’ that constitute each p-digit number. For digit index i,

where 0 ≤ i < p, we define chunk index c = bi/Uc and chunk digit index u = i mod U

such that i = Uc + u. When performing iterative calculations, digit vectors exist

for each step, thus their indexing requires three variables: c ∈ [0, n), u ∈ [0, U) and

approximant index k. The relationships between c, n, u, U and overall digit index

i are shown visually for a single p-digit number in Figure 3.1.

i = 0 1 2

u = 0 1 2

c =

· · ·

· · ·

U − 1

U − 1

U

0

· · ·

· · ·

2U−1

U − 1

· · ·

· · ·

p− 1

U − 1

· · ·

0 1 n− 1

Fig. 3.1. Indexing of digits and chunks within a p-digit number. i indexes all digits, while those of
each of its n chunks, indexed c, are indexed with u.

Since ARCHITECT-I requires k and i to both vary non-monotonically as time

progresses, as was shown in Fig. 1.1b on page 4, it is necessary to uniquely en-

code a one-to-one mapping from two-dimensional approximant and chunk index pair

(k, c) into one-dimensional time. ARCHITECT-I uses a Cantor pairing function

(CPF) [22], a bijection from N2 onto N, for this purpose, defined to be

cpf(k, c) =
(k + c) (k + c+ 1)

2
+ c. (3.1)

The function’s bijectivity is crucial for ARCHITECT-I. Unlike classic row- or

column-major indexing, the injectivity of the CPF allows both dimensions to grow
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Fig. 3.2. Operation of our Cantor pairing function, showing the transformation of a three-
dimensional array growing with both approximant and chunk indices k and c to a structure growing
only in a single dimension.

without bound while providing a unique result for every (k, c). The operation of our

CPF is demonstrated visually in Fig. 3.2; what is conceptually a three-dimensional

array indexed as (k, c, u) becomes a two-dimensional array indexed by (cpf(k, c), u)

instead, thereby suiting the ‘flat’ nature of RAM. The function’s surjectivity ensures

that every cpf(k, c) is produced by some (k, c), thus enabling the most efficient use

of the available memory.

3.3.2 Arbitrary-precision Operators

Multiplication

We are now in a position to rewrite Algorithm 2 on page 28 such that it can compute

results to arbitrary precision. These transformed steps are shown in Algorithm 4.

Most importantly, a new loop has been introduced; this iterates over the n pairs
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Algorithm 4 Radix-2 ARCHITECT-I multiplication.

Inputs: serially presented multiplicand x, multiplier y; approximant index k, pre-
cision p

1: x,y,w ← 0
2: for j = 0 to p+ 2 do
3: y[cpf(k, bj/Uc)][j mod U ]← yj
4: for c = bj/Uc to 0 do
5: v[cpf(k, c)]← 2w[cpf(k, c)] + 2−3(x[cpf(k, c)]yj + y[cpf(k, c)]xj)
6: if c > 0 then
7: w[cpf(k, c)]← v[cpf(k, c)]
8: end if
9: end for

10: zj−3 ← sel×(v[cpf(k, 0)])
11: w[cpf(k, 0)]← v[cpf(k, 0)]− zj−3
12: x[cpf(k, bj/Uc)][j mod U ]← xj
13: end for
Output: serially generated product z

of p-digit numbers’ chunks (Fig. 3.1), most-significant first, to facilitate arbitrary-

precision multiplication with a U -digit online adder. Digit vectors x, y, v and w

are now indexed in two dimensions, corresponding to standard RAM addressing

denoted as [word][digit]. Where a digit index is not given, all U digits of that word

are accessed simultaneously.

Division

The equivalently transformed version of Algorithm 3 on page 28 is shown in Algo-

rithm 5. Mirroring the increased complexity of classic online division over multipli-

cation, here, two accumulation loops are needed: one for the calculation of v, as for

multiplication, and a second for w. Consequently, n−1 more cycles are required for

the computation of an output digit in ARCHITECT-I division than multiplication.

Particular care is required for digit alignment in online division since input operands

need to be bounded such that the output range is (−1, 1) [37]. The normalisation
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Algorithm 5 Radix-2 ARCHITECT-I division.

Inputs: serially presented dividend x, divisor y; approximant index k, precision p
1: y,w, z ← 0
2: for j = 0 to p+ 3 do
3: y[cpf(k, bj/Uc)][j mod U ]← yj
4: for c = bj/Uc to 0 do
5: v[cpf(k, c)]←2w[cpf(k, c)] + 2−4(xj − z[cpf(k, c)]yj)
6: end for
7: zj−4 ← sel÷(v[cpf(k, 0)])
8: for c = bj/Uc to 0 do
9: w[cpf(k, c)]← v[cpf(k, c)]− zj−4y[cpf(k, c)]

10: end for
11: z[cpf(k, bj/Uc)][j mod U ]← zj−4
12: end for
Output: serially generated quotient z

of quotients following online division ordinarily necessitates variable δ÷ [112]. To

avoid this, a lower bound on the magnitude of the divisor can maintain a fixed online

delay [95]. This has been analysed by Trivedi and Ercegovac who bounded the divisor

magnitude within [1/r, 1) for online-division algorithms [111]. For experimentation,

digit alignment can be guaranteed across iterations through the appropriate selection

of initial inputs.

3.3.3 Digit-scheduling Pattern

Given a generic online delay δ made up of latencies from a pipeline (or replicated

pipelines operating in parallel) of one or more operators implementing the body of

an iterative algorithm, restrictions are imposed on the order in which digits can be

calculated. δ impacts us in two ways:

• Calculation of the first output digit requires the prior input of the first δ + 1

input digits. Thereafter, each subsequent output digit requires one additional

input digit in order to be computed.
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• The ith output digit is generated δ cycles after the ith input digit is presented.

In general, digits of the same approximant can be calculated indefinitely, while those

across iterations must be sequenced such that they obey these δ-imposed limitations.

When scheduling digit z
(k)
i ’s generation, we must ensure that

t
(
z
(k)
i+1

)
> t
(
z
(k)
i

)
, t

(
z
(k+1)
i

)
> t
(
z
(k)
i+δ

)

for all approximant indices k ≥ 1 and digit indices i ≥ 0, where t is the time at

which a generation event occurs.

While there is the freedom to trade off between iteration count and precision within

the bounds of these dependencies, ARCHITECT-I always assumes a mapping from

the current to the next digit of the form depicted in Fig. 3.3. The groups of digits

shown, each δ in size, are processed ‘downwards’ and ‘leftwards,’ with slope depen-

dent on δ and control snapping back to the first approximant once digit position

i = 0 has been reached. Fixing the granularity of digit generation to δ allows

for control path simplification—as will be elaborated upon in Section 3.3.4—and

limits transitions between approximants. The latter is beneficial since, as will be

explained in Section 3.3.6, switching between approximants leads to the incursion

of performance penalties under some circumstances.

3.3.4 Control Logic

Given a particular (k, i), ARCHITECT-I can compute the subsequent index pair,

(k′, i′), needed to realise a scheduling pattern such as the one shown in Figs 3.3 with

the finite-state machine (FSM) depicted in Fig. 3.4.

The states’ functionality is as follows.
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Fig. 3.3. Proposed digit generation pattern for generic iterative computation using online operators.

• Digit generation: Manages the propagation and storage of δ-digit groups across

iterations. When remaining within this state, only digit index i must be

evaluated to determine changes needed to k and i.

• Accumulation: When i < U , ARCHITECT-I is able to perform i-digit ad-

ditions in single cycles. However, when i ≥ U , bi/Uc additional cycles must

be consumed to compute all U -digit chunks. Since ARCHITECT’s multi-

plication and division operators have dissimilar accumulation functionality, as

was explained in Section 3.3.2, the number of clock cycles consumed by each

is different. The throughput of the datapath as a whole is determined by

the slowest operator. In Fig. 3.4, counter γ sequences the return to the digit

generation state. Since i is variable, this loop cannot be unrolled.

3.3.5 Accuracy Bounds

Let us assume the existence of a target result defined by its iteration index and

precision (K,P ). To reach it, we are required to compute for at least K iterations

and to at least P -digit precision. Note that ARCHITECT-I does not necessitate

its users to specify K or P up-front, while other approaches require either one or
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Fig. 3.5. How the final precision and iteration count (Kres, Pres) are constrained by the desired
result (K,P ) and the available memory (Kmax, Pmax).

both of these—usually P—to be determined before beginning to iterate.

As shown in Fig. 3.5, the number of iterations resulting from computation to target

(K,P ) is defined as Kres and the final precision of the first approximant—always the

most precise—as Pres. Kres is bounded to no more than Kmax, while Pres is similarly

bounded by Pmax, both of which are determined by the size of the available memory.

The latter therefore determines the maximum approximant index and precision—

and consequently accuracy—that can be reached through the use of this approach.

Thus, if higher accuracy is required, more memory must be instantiated.

Upon completion, the precision of approximant k will be

p(k) =


δ
(⌈

P
δ

⌉
+K − k

)
if k < K

P if k = K

δ(Kres − k) otherwise,

where Kres can be geometrically deduced, based on computation patterns such as



3.3. Proposed ARCHITECTure 45

that shown in Fig. 3.3, to be

Kres =


⌈
P
δ

⌉
+K − 1 if P > δ

K otherwise

and Pres = p(1).

For each arbitrary-precision digit vector to be stored, Kmax and Pmax are fixed by

RAM depth D (in U -digit words). Analysis of the pairing function in (3.1) allows

us to derive

Pmax = U
(

1 +
⌊
3/2
(√

1 + 8/9D − 1
)⌋)

,

Kmax =


Pmax

U
+ 1 if D ≥

(
Pmax

U
+ 1
)
Pmax

2U

Pmax

U
otherwise.

3.3.6 Compute Time

Given a particular target (K,P ), and hence a certain Kres and Pres, we can calculate

the number of clock cycles required to compute the desired result. This total time

T (clock cycles) can be broken down into the following three components such that

T = Tinit + Tgen + Tsa.

• Initial online delay : The computation must wait δ clock cycles before each

approximant’s result begins to appear, thus the delay across all iterations is

simply

Tinit = δKres.

• Digit generation: Across all iterations performed, the total time for digit gen-
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eration is either

Tgen =
Kres−1∑
k=0

p(k)
(
2n(k) − 1

)
− Un(k)

(
n(k) − 1

)
− δ,

if the datapath contains dividers, or

Tgen =
Kres−1∑
k=0

n(k)

(
p(k) −

U
(
n(k) − 1

)
2

)
− δ

if it contains multipliers. n(k) =
⌈
p(k)/U

⌉
and represents the number of chunks

within the given approximant upon termination of the algorithm. In the case

that the datapath contains only adders,

Tgen =
Kres−1∑
k=0

p(k) − δ.

p(0) and n(0) are the numbers of digits and chunks, respectively, that must be

read from the initial guess.

• Digit-serial addition: Recall that a serial online adder has δ+ = 2. When

switching between iterations, adders, if present, require two cycles to recalcu-

late the preceding approximant’s residuals in order to produce a new digit [37].

This ensures that the calculated digit aligns with its truncated digit vectors.

For this,

Tsa = β
(
K2

res −Kres + 2K − 2
)
, (3.2)

where β is the number of serial adders present along the highest-online delay

path within the circuit.
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3.3.7 Digit-parallel Addition Optimisation

It is possible to eliminate the final T component in Section 3.3.6, resulting in Tsa = 0,

by using three-digit parallel online adders in place of serial ones. I store consecutive

digit-vector words in alternating memory banks for speed. By ensuring that RAM

width U > 1, i.e. that each word contains at least two digits, we can always read

the three contiguous digits required by these adders in a single cycle. No additional

memory is needed for this optimisation.

3.4 Benchmarks

In order to evaluate ARCHITECT-I, two widely used iterative algorithms were

implemented—the Jacobi method (to solve systems of linear equations) and New-

ton’s method (for the solution of nonlinear equations)—in hardware following the

aforementioned principles. Jacobi and Newton were chosen to exemplify a large class

of iterative methods with linear and quadratic convergence properties, respectively.

3.4.1 Jacobi Method

The Jacobi method seeks to solve the system of N linear equations Ax = b. If A

is decomposed into diagonal and remainder components such that A = D +R, x

can be computed through the repeated evaluation of

x(k+1) = D−1
(
b−Rx(k)

)
,
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or, expressed in element-wise fashion,

x
(k+1)
i =

1

aii

bi − ∑
j 6=i∈[0,N)

aijx
(k)
j

 ∀i ∈ [0, N) ,

where k is the approximant index. Since D’s only non-zero elements lie along its

diagonal, D−1 is trivial to calculate. Note that x(k+1) relies only upon the previously

calculated value x(k); the calculation can therefore be parallelised by computing

each x
(k+1)
i independently across the different values of i. A convergence criterion,

‖Ax(k) − b‖ < η, can be used in order to determine if the solution has been found

to great enough accuracy.

Such a system is guaranteed to be solvable by the Jacobi method when A is strictly

diagonally dominant, i.e. if the condition |aii| >
∑

j 6=i |aij| holds for all i. Although

strict diagonal dominance is not a necessity in every case, we assume this condition

to always be satisfied for simplicity.

A metric used to quantify the sensitivity of a particular linear system to error is the

condition number of A [87],

κ(A) = ‖A‖
∥∥A−1∥∥ .

Perturbations in x(k), caused by rounding, lead to errors in x(k+1) whose magnitude

is dependent, in part, on κ(A); a high condition number indicates thatA is sensitive

to error and therefore ill-conditioned [25]. It is expected to need at least ζ additional

digits of precision in order to compute a system with κ(A) = 2ζ than would be

required if κ(A) were 1 [23].

Without loss of generality, Jacobi solvers with matrix size N = 2 are implemented

as a toy example, depicted in Fig. 3.6a, and features ARCHITECT-I numerical
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(b) Newton’s method (δ = 4).

Fig. 3.6. ARCHITECT-I benchmark datapaths. Adders, multipliers and dividers are arbitrary-
precision radix-2 signed-digit online operators. Use of three-digit adders reduces online delay by 2
over their serial equivalents.

operators as described in Section 3.3.2. Jacobi solvers with N > 2 could have

been built with additional multipliers and adders, but this is not the emphasis—

demonstrating arbitrary-accuracy iterative calculation—of this work. Note that

runtime division is unnecessary since A and b are constants.
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3.4.2 Newton’s Method

Newton’s method is a root-finding algorithm, commonly employed to approximate

the zeroes of a real-valued function f . The iterative process is

x(k+1) = x(k) −
f
(
x(k)
)

f ′(x(k))
,

where f ′ is the first derivative of f . Assuming that f(x) = 0 is soluble and f ′(x∗) 6= 0,

convergence is quadratic if the initial guess x(0) is sufficiently close to a solution

x∗ [60].

The implemented datapath is shown in Fig. 3.6b, again with ARCHITECT-I opera-

tors, as a second case study. This can solve equations of the form f(x) = ax2−3 = 0:

x(k+1) =
x(k)

2
+

3

2ax(k)
. (3.3)

Since the solution of f(x) = 0 is irrational for some choices of a (e.g. 1), we consider

this to be a particularly good showcase of ARCHITECT-I’s arbitrary-precision

capabilities.

3.5 Evaluation

Theoretical analysis was conducted and experiments were performed to investigate

how ARCHITECT-I scales and performs versus competing arithmetic implemen-

tations, both traditional (LSD-first) and online, using the Jacobi and Newton’s

methods as benchmarks. Performance is evaluated in terms of latency, which, for all

implementations considered in this thesis, is the multiplicative inverse of throughput.

The closest study to this work is that presented by Zhao et al. [122], which ARCHI-



3.5. Evaluation 51

TECT-I compares against directly. For comparison against traditional arithmetic,

parallel-in serial-out (PISO) operators were chosen to be implemented since AR-

CHITECT-I operates in a similar digit-serial fashion. PISO sits at the midpoint be-

tween fully serial (SISO) and parallel (PIPO) in terms of area and performance [57].

With increase in precision P—which, for traditional arithmetic, can solve problems

requiring precision up to P—PISO suffers less from area growth and operating fre-

quency fmax degradation than PIPO [85] while also being dramatically faster than

SISO [68]. While we focus exclusively on hardware implementations, the limitations

revealed for PISO apply equally to software libraries since precision must be chosen

prior to iterative algorithmic commencement.

3.5.1 Complexity Analysis

Table 3.1 presents the results of asymptotic complexity analysis—in terms of circuit

size, memory requirements and latency—performed for ARCHITECT-I and its

competitors. For PISO, we assume the repeated evaluation of an iterative expression

using datapaths composed of standard numeric operators. For each arithmetic,

we further assume latency-optimal datapath implementations featuring minimal-

depth adder (for Jacobi) and multiplier (Newton) trees. Complexities for Zhao

et al.’s implementation were derived from analytical expressions provided by the

authors [122].

Since we have chosen to analyse latency-optimised datapaths, area scales with the

required number of multipliers (Newton) and adders (Jacobi), which themselves

grow quadratically with N . For PISO, area also scales linearly with the width of

its input operands, controlled by P , while the size of Zhao et al.’s implementations

instead scales linearly with the number of iterations to be performed, K. The area

of an ARCHITECT-I implementation, however, scales with neither K nor P , since
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Table 3.1
Complexities of iterative solver implementations.

Area Memory Solve time

PISO O(N2P ) O(NP ), O(P )1 O(log(N)KP )

Zhao et al. [122] O(N2K) O(N2KP ) O(P (log(N)K + P ))

ARCHITECT-I O(N2) O
(
N2(K + P )2

)
O
(

(log(N)K+P )3

log(N)

)
1 N -dimensional Jacobi method, N th-order Newton’s method.

the same arithmetic operators compute every approximant, to any precision, for the

chosen iterative method.

As with area, a PISO implementation’s memory footprint scales linearly with P ; for

the Jacobi method, scaling is also linear in N due to the size of the computed vector.

Both Zhao et al.’s implementations and ARCHITECT-I require residue storage

within their multipliers and dividers; memory occupancy therefore scales with area

for the arbitrary-precision architectures. For the former, the use of memory also

scales with P as residues in online multiplication and division are stored to the same

precision as its input data. Since ARCHITECT-I effectively collapses approximant

and precision indices into a single dimension via its CPF, the memory requirements

for each operator are determined by the maximum value of (3.1) during computation

to the target (K,P ), thus they scale quadratically with K + P .

PISO’s latency grows linearly with K and P , but logarithmically with N due to our

aforementioned choice of adder (and multiplier) structures. Zhao et al.’s speed is

bottlenecked by the growth of precision—quadratically—as well as the frequency of

pipeline flushes, which grows as O(log(N)KP ) [122]. For ARCHITECT-I, given

that each datapath’s highest cumulative online delay δ is logarithmically related to

N , its latency complexity can be determined by solving for Tgen in Section 3.3.6.

Note that Tgen dominates Tinit in all cases and Tsa = 0 due to the use of digit-parallel
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adders.

At first glance, it appears that ARCHITECT-I behaves more poorly than its com-

petitors in terms of memory use and solve time when scaled. These complexities,

however, do not take fundamental limitations of the alternatives into account. In

particular, exact computation to a particular (K,P ) is rarely possible with P -digit

LSD-first arithmetic due to rounding errors introduced in earlier approximants; only

MSD-first architectures are capable of producing exact results for every approxi-

mant. Additionally, they do not account for ARCHITECT-I’s unique ability to

compute results to any required accuracy, effectively allowing the necessary (K,P )

to be determined, on a problem-by-problem basis, at runtime. In contrast, a PISO

implementation’s precision is always bounded, while the same is true of iteration

count for Zhao et al.’s proposal. In the remainder of this section, we explore empir-

ically the implications of these issues.

3.5.2 Experimental Particulars

Experiments were performed to investigate how ARCHITECT-I scales and per-

forms versus competing arithmetic implementations, both traditional (LSD-first)

and online, using the Jacobi and Newton’s methods as benchmarks.

A Xilinx Virtex UltraScale FPGA (XCVU190-FLGB2104-3-E) was targetted for

all experiments detailed henceforward, with implementation performed using Vi-

vado 16.4. The correctness of results obtained in hardware was verified via compari-

son against those produced by golden models executed in software. Fig. 3.7 captures

the experimental process.
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Fig. 3.7. Experimental setup for the evaluation of ARCHITECT-I.

3.5.3 Empirical Performance Comparison

To evaluate performance for the Jacobi method, systems were considered in which

Am =


1 1− 2−m

1− 2−m 1

 , b =


b0

b1

 , x(0) = 0,

with b0 and b1 randomly selected from a uniform distribution in the range [0, 1). As

m increases, the condition number κ(Am) also increases, indicating that a higher

precision P will be required to generate a result of great enough accuracy. I set ac-

curacy bound η = 2−6 and experimentally determined that the most ill-conditioned

matrix requiring P = 32, a commonly encountered traditional arithmetic data width,

to solve the associated system was that with m = 25, therefore I limited the exper-

iments to m ∈ [0, 25]. I postulate that ARCHITECT-I should ‘win’, i.e. compute
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the required result in less time, versus PISO either when the latter’s precision P

is high and Am is well conditioned or when P is too low for an ill-conditioned Am

to allow convergence at all. For ARCHITECT-I, a RAM size (U,D) = (8, 210) is

used. Latencies were calculated using frequencies taken from Section 3.5.5.

Fig. 3.8a captures the latency ratio between ARCHITECT-I and PISO with a

fixed precision of 32 bits (LSD-32) necessary to compute results for matrices with

lowm. Here, PISO can be said to have over-budgeted precision; results take longer to

compute than had a smaller P been chosen in advance. For the most well conditioned

matrices (m / 0.022), ARCHITECT-I takes less time to reach the target (K,P ).

For larger m, however, the opposite is true: the lower-indexed iterations’ results

are computed to greater accuracy than those with PISO, taking more time. Had

a lower choice of P been made for PISO, ARCHITECT-I would have been at a

disadvantage for the more well conditioned matrices, but it would also have been

able to compute the results of systems featuring ill-conditioned matrices that PISO

could not. As shown in Fig. 3.8c, with P = 8 (LSD-8), ARCHITECT-I can solve

systems with m > 2, where PISO’s precision is under-budgeted; here, even if PISO

ran indefinitely it would never be able to converge to an accurate-enough solution.

By ways of conclusion, therefore, ARCHITECT-I requires less time to generate

results than PISO either when P is small and convergence is fast, or when P is too

large for PISO to ever converge.

Newton’s method in (3.3) was implemented with a ∈ [1, 231]. As a increases, 3/2a

decreases, thus greater precision will be required for its representation. Calculations

are performed under termination condition
∣∣f(x(k+1)

)∣∣ < η, with η again set to 2−6.

a ∈ [1, 231] was chosen since, to solve f(x) with a = 231, the worst-case precision

requirement was again P = 32.

Figs 3.8b and 3.8d show the performance of ARCHITECT-I-based Newton’s method
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Fig. 3.8. Performance comparisons of our proposal against conventional LSD-first arithmetic for
the Jacobi and Newton’s methods. (a) and (b) show how the conditioning of input matrix Am

(Jacobi) and input value a (Newton) affect the solve time of our proposal compared to LSD-32.
ARCHITECT-I computes more quickly than LSD-32 when m / 0.022 for Jacobi and a / 3.3 for
Newton. (c) and (d) show that, even though our proposal leads to a slowdown compared to LSD-8,
there are nevertheless points—at m > 2 (Jacobi) and a > 8 (Newton)—whence LSD-8 does not
converge at all, hence our speedup is effectively infinite.

benchmark versus 32-bit and 8-bit PISO in the same form as Figs 3.8a and 3.8c.

The results achieved for Newton’s method are broadly similar to those for Jacobi.

ARCHITECT-I requires a / 3.3 to beat LSD-32 in terms of compute time, while

only our proposed iterative solver can solve systems with a > 8 when PISO has

P = 8. Identical conclusions regarding under- and over-budgeted precisions can
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therefore be drawn for Newton’s method.

3.5.4 Scalability Analysis
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Fig. 3.9. Resource use and performance of ARCHITECT-I Jacobi and Newton benchmarks versus
RAM depth D. Area is reported in terms of BRAMs only; LUT and FF use were below 1% for all
design points.

Implementation results are presented in Fig. 3.9 for both Jacobi and Newton’s

method benchmarks, including area and maximum operating frequency fmax. Each

of the four plots features D, the RAM depth used for storage of each digit vector,
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Table 3.2
Area-speed tradeoff via selection of RAM width U .

U
LUTs
(%)

FFs
(%)

BRAMs
(%)

fmax

(MHz)
Addition latency

(cycles)
J
ac

ob
i

8 0.12 0.030 0.53 180
⌈
p(k)/8

⌉
64 0.49 0.083 1.9 115

⌈
p(k)/64

⌉
N

ew
to

n

8 0.12 0.024 0.42 155 2
⌈
p(k)/8

⌉
− 1

64 0.34 0.035 1.5 110 2
⌈
p(k)/64

⌉
− 1

on the x-axis, and RAM width U was 8 in all cases. Lookup table (LUT) and flip-

flop (FF) use is not shown since the numbers are insignificant compared to those

of on-chip block RAM (BRAM)—from 0.12% to 0.29% for LUTs and 0.030% to

0.064% for FFs for the smallest (D = 210) and largest (D = 218) Jacobi designs

implemented, and from 0.12% to 0.30% (LUTs) and 0.024% to 0.055% (FFs) for

the Newton datapath. Memory use grows with D, as expected; the higher Kres and

Pres one wishes to be able to reach, the more RAM must be instantiated. With 52%

and 48% of BRAMs allocated for the Jacobi and Newton methods, respectively,

both benchmarks can reach Kmax = 724 and Pmax = 5784. The small increases in

non-memory resources noted can be attributed to the additional control logic and

multiplexing required to address larger memories. The fmax plots show that my im-

plementations are able to run at between 180 MHz (Jacobi) and 155 MHz (Newton),

for the smallest D tested, to around 60 MHz for the largest of both benchmarks with

a fixed RAM width U .

ARCHITECT-I gives its users the freedom to trade off area and computation time

directly by varying RAM width U . When U is changed, so are the widths of the

parallel online adders used in the datapath; while a design with narrower adders

is just as able to compute a particular result as one capable of performing wider
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additions, it will also consume more clock cycles in return for demanding lower

resource use. Comparisons between U = 8 and U = 64 with the same D, in this

case 210, are shown in Table 3.2 to exemplify this for both of the benchmarks. Note

that the accumulation latency for Newton’s method is higher than Jacobi’s due to

the former’s use of division; as was explained in Section 3.3.2, division requires more

cycles to produce each output digit than are required for multiplication.

As was discussed in Section 3.3.6, the use of parallel online addition allows us to avoid

the recalculation of the previous iterations’ residuals, leading to the elimination of

Tsa expressed in (3.2) on page 46. Figure 3.10 illustrates the performance speedup

due to our architectural optimisations for both Jacobi ( ) and Newton ( ).

Performance is improved for higher η since it leads to clock cycle savings when

switching between iterations. For higher-accuracy cases, this optimisation does not

contribute much to solve time speedup, however. This makes sense since, as η falls,

more iterations are required to achieve convergence, thus more cycles are required for

the production of each new each digit. This also affords much greater opportunity

for digit-elision optimisations I will discuss in future chapters.

3.5.5 Quantitative Comparison

In order to compare the resource use and fmax of ARCHITECT-I against its com-

petitors, assume that iterative solvers wish to compute to particular (K,P ) tar-

gets. It is emphasised that, since ARCHITECT-I iterates exactly while LSD-first

arithmetic-based solvers do not, latency cannot be fairly compared when considering

computation to a particular (K,P ).

The computation targets were chosen to set (100, 211) (for the Jacobi method) and

(10, 211) (Newton). Thus, at their 100th and 10th iterations, respectively, a result
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Fig. 3.10. Latency reduction using parallel online adders.

with 2048-digit precision is expected to be achieved. Fewer iterations were targetted

for Newton’s method due to its quadratic convergence for the test cases described in

Section 3.4.2. Using U = 8, for ARCHITECT-I, the resultant iteration counts and

precisions for the two methods are (Kres, Pres) = (509, 2545) (Jacobi) and (351, 2106)

(Newton). To successfully perform computation to (K,P ), we must ensure that

Kmax ≥ Kres and Pmax ≥ Pres. It can be determined that, by setting RAM depth

D = 217, iterative solvers are able to reach Kmax = 512 and Pmax = 4088, which

satisfies these requirements for both benchmarks.

Fig. 3.11 presents a side-by-side comparison of the architectures implemented fol-

lowing the principles presented herein and those using PISO operators as well as

the online implementation published by Zhao et al. [122]. Most strikingly, the latter

demonstrates area inefficiency, with resource use scaling linearly with iteration count

K; ARCHITECT-I consumes 75× fewer LUTs and 77× fewer FFs than Zhao et

al.’s proposal requires to execute 100 iterations of the Jacobi method. When execut-

ing 10 iterations of Newton’s method, these factors are 11 and 18, respectively. fmax
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is comparable between the two since the underlying arithmetic is largely equivalent,

although ARCHITECT-I’s is slightly superior. For PISO, while its fmax is initially

much higher—over 300 MHz for P = 24—than ARCHITECT-I’s, it falls as P in-

creases. Taking Newton’s method as an example, with a high precision requirement,

such as 211 digits, ARCHITECT-I is able to outperform its PISO counterpart in

terms of fmax by a factor of 1.6. Corresponding decreases in LUT and FF use were

also found: when computing to P = 210, again for Newton, ARCHITECT-I con-

sumes 2.4× and 4.4× fewer of each than PISO, while for 211 these factors increase to

4.9 and 8.7. Similar conclusions can be made for the implementation of the Jacobi

method. Since the proposed designs are able to calculate to any K ≤ Kmax and

P ≤ Pmax, their areas and fmaxes are constant.

3.6 Conclusion

This chapter proposed the first hardware architecture capable of executing iterative

algorithms to produce results of arbitrary accuracy by combining increasing itera-

tion count with precision while using constant compute resources. This technique

is named ARCHITECT-I. This proposal employs online arithmetic to generate

its results MSD first and a Cantor pairing function within its digit-storage mecha-

nism to facilitate the simultaneous growth of iteration count and precision. I also

proposed the replacement of serial online adders within iterative datapaths with

parallel equivalents, facilitating latency reduction and consequent improvements in

throughput.

ARCHITECT-I was evaluated on FPGAs using the Jacobi and Newton’s methods

in order to verify its accuracy and establish its scalability and efficiency. Experi-

mental results showed that datapaths constructed from ARCHITECT-I operators
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are superior to their traditional arithmetic equivalents in scenarios where the lat-

ter’s precisions are either overly high (e.g. LSD-32) for the problems being solved

or too low (e.g. LSD-8) for results to converge at all. These benchmarks showcased

the key advantage of the approach: removing the burden of having to determine

and fix the precisions of arithmetic operators in advance. A single ARCHITECT-I

datapath is able to compute results to any accuracy, with the only limit being im-

posed by the size of the available RAM, while LSD-first solvers have their precisions

upper-bounded at compile-time.

Experimental results revealed 15× LUT and 31× FF reductions over 2048-bit con-

ventional parallel-in serial-out arithmetic, along with 75× LUT and 77× FF de-

creases versus the state-of-the-art online arithmetic implementation, when executing

100 Jacobi iterations. For Newton’s method run for 10 iterations, these factors were

4.9, 8.7, 11 and 18, respectively. Versus ARCHITECT-I with the proposed parallel

addition optimisations disabled, ARCHITECT-I was able to achieve up-to 1.1 ×

reduction for Jacobi and Newton’s methods.

Use of most-significant digit-first arithmetic additionally allows computation to ter-

minate at any less-significant digit place at runtime. Since low-significance digits

of early approximants are generally unimportant, avoiding their calculation in sub-

sequent iterations can increase performance and decrease memory footprints. The

next chapter will theorise the presence and avoid the computation of these unimpor-

tant LSDs, resulting in a more efficient computation pattern as shown in Fig. 1.1c

on page 4.
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Don’t-care Digit Elision

4.1 Overview

In the previous chapter, I proposed ARCHITECT-I which achieves exact numeric

computation by using online arithmetic to allow the refinement of results from earlier

iterations over time, without rounding error. ARCHITECT-I has a key drawback,

however: often, many more digits than strictly necessary are generated, with this

problem exacerbating the more accurate a solution is sought.

Significant efficiency gains are realisable by exploiting the fact that not all approx-

imants contribute equally to an algorithm’s overall error. Low-significance digits

of early approximants are often unimportant, thus we call them ‘don’t-care’ digits.

ARCHITECT-I with don’t-care digit elision sacrifices the feature of exact numeric

computation, but can still converge to a solution to arbitrary accuracy.

In this chapter, the locations of don’t-care digits are inferred within stationary

iterative calculations by exploiting forward error analysis. Their lack of computation

is guaranteed not to affect the ability to reach a solution of any accuracy. Versus

64
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ARCHITECT-I without digit elision, the illustrative hardware implementation,

named ARCHITECT-II, achieves a geometric mean 21× speedup in the solution

of a set of representative linear systems through the avoidance of redundant digit

calculation. For the computation of high-precision results, an up-to 25× memory

requirement reduction is also obtained over the same baseline.

The following novel contributions are made in this chapter:

• A theorem for the optimal rate of LSD growth per iteration within stationary

iterative methods, thereby enabling the avoidance of don’t-care digit compu-

tation.

• A theorem showing that arbitrary-accuracy solutions can be achieved when

omitting don’t-care digits during stationary iterative calculations.

• An exemplary hardware implementation of the new proposal using the Jacobi

method.

• Performance evaluations of the demonstrative architecture, drawing compari-

son against ARCHITECT-I and conventional fixed-precision equivalents. A

mean 4.1× reduction is observed in the number of digits generated to solve a

set of representative linear systems, showing a geometric mean 21× speedup

over ARCHITECT-I.

4.2 Notation

The approximant of an iterative method at iteration k ∈ N>0 is denoted x(k), while

its exact result is x∗, with their jth element denoted x
(k)
j and x∗j , respectively.
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A matrix is represented by a bold capital symbol X. The infinity norm of either a

matrix or a vector is given by ‖•‖∞.

Let λ be an eigenvalue of an n× n matrix X. The spectral radius of X is denoted

by ρ (X) = max1≤i≤n |λi|, where X has eigenvalues λi.

4.3 Theoretical Analysis

Let us now turn to the issue of don’t-care digit elision. This term is used to refer to

low-significance digits in earlier approximants which do not prohibit the chosen it-

erative method’s convergence. Herein, a novel don’t-care digit analysis is presented,

applicable to any stationary iterative method: Jacobi, Gauss-Seidel, successive over-

relaxation, etc.

Consider a linear system Ax = b, where A ∈ RN×N . Given the definition of

stationary iterative methods expressed in (2.2) in Section 2.1.2, approximant by

approximant, we have

x(1) = Gx(0) +M−1b

x(2) = G2x(0) +GM−1b+M−1b

...

x(k+1) = Gk+1x(0) +
k∑
i=0

GiM−1b (4.1)

starting from some initial guess x(0).

Lemma 4.1 (Higham [51]). If ρ (G) < 1, then
∑∞

i=0G
i = (I −G)−1.
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Thus,

lim
k→∞

Gkx(0) = 0. (4.2)

Applying Lemma 4.1 a second time, this observation allows us to conclude from

(4.1) that

lim
k→∞

k∑
i=0

GiM−1b = x∗.

Hence, (2.1) on page 13 will converge to x∗ for any choice of x(0).

Lemma 4.2 (Higham [51]). x∗ is a fixed point of the iteration, i.e. x∗ = Gk+1x∗+∑k
i=0G

iM−1b ∀k.

Introducing rounding error εk, as we propose to via truncation of each approximant,

(2.2) on page 13 becomes

x̂(k+1) = Gx̂(k) +M−1b+ εk+1

or, expressed per approximant,

x̂(1) = Gx̂(0) +M−1b+ ε1

x̂(2) = G2x̂(0) +GM−1b+Gε1 +M−1b+ ε2

...

x̂(k+1) = Gk+1x̂(0) +
k∑
i=0

GiM−1b+
k∑
i=0

Giεk+1−i (4.3)

from some finite-precision initial guess x̂(0).

Defining computation error e(k) = x∗ − x̂(k), subtraction of (4.3) from the equality
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given in Lemma 4.2 results in

e(k+1) = Gk+1e(0) −
k∑
i=0

Giεk+1−i,

wherein e(k) captures errors due to the finiteness of both the iteration count and the

precision. We wish to minimise this value. Since we cannot minimise e(k) directly,

we seek to minimise its upper bound instead. Taking norms,

∥∥e(k+1)
∥∥
∞ ≤

∥∥Gk+1e(0)
∥∥
∞ +

k∑
i=0

‖G‖i∞ ‖εk+1−i‖∞

≤
∥∥Gk+1e(0)

∥∥
∞ +

k∑
i=0

‖G‖i∞ r
−dk+1−i (4.4)

where ‖G‖∞ < 1 and we ensure that ‖εk+1−i‖∞ ≤ r−dk+1−i by controlling the

precision of each approximant’s computation, expressed as a number of radix-r digits

dj.

For neatness, let g(i) denote the maximum error introduced in approximant i:

g(i) = ‖G‖i∞ r
−dk+1−i . (4.5)

Defining d to be a column vector whose jth element is the number of digits used to

represent each element of the jth approximant, and assuming an available ‘budget’

of total digits D for computation, we aim to find

min
d

f(d) =
k∑
i=0

g(i)

subject to h(d) = −D +
k∑
i=0

di+1 = 0,

(4.6)

thereby determining the optimal allocation of the available digits per approximant.
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Theorem 4.1 (The optimal error distribution is uniform). The optimisation in

(4.6) is achieved when g(i) is a constant independent of i.

Proof. Via the Karush-Kuhn-Tucker conditions [11], the optimal d, d∗, is obtained

when

∇f(d∗) + λ∇h(d∗) = 0

h(d∗) = 0

for some multiplier λ. We have

∇f(d) =



(
‖G‖k∞ ln r−1

)
r−d1

(
‖G‖k−1∞ ln r−1

)
r−d2

...

(
‖G‖0∞ ln r−1

)
r−dk+1



∇h(d) =



1

1

...

1


,

i.e.

−
(
‖G‖i∞ ln r

)
r−dk+1−i + λ = 0.

Therefore, the optimisation in (4.6) is achieved when g(i) = λ/ln r, a constant inde-

pendent of i, as required.
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k + 1

− logr α ∇
=

log
r ‖G‖

∞

D

i

dk+1−i

(a) Sketch of (4.7).

=⇒

− logr α

k + 1

∇
=
−

log
r ‖G‖

∞

D

di

i

(b) Don’t-care line.

Fig. 4.1. Deriving the gradient of the don’t-care line. Figure 4.1b was arrived at by transforming
dk+1−i, featured in Figure 4.1a, into di, after which it was rotated clockwise by 90◦ to match the
presentation used in Figure 1.1. Since di does not feature k, Figure 4.1b’s x-intercept (here, the
origin) can be chosen arbitrarily.

Setting g(i) = α and taking logs, we obtain

dk+1−i = i logr ‖G‖∞ − logr α. (4.7)

I present the transformation of this function to the required don’t-care line graphi-

cally in Figure 4.1. From Figure 4.1b, we can infer that the optimal gradient of the

don’t-care line is − logr ‖G‖∞, and is therefore independent of D and α. The line’s

x-intercept is analogous to the precision with which one wishes to begin computa-

tion, so is user-defined.

Let us now analyse the limit of
∥∥e(k)∥∥∞ when the proposed don’t-care line is used

during stationary iterative computation.

Theorem 4.2 (Error can be arbitrarily minimised). limk→∞
∥∥e(k)∥∥∞ = 0.
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Proof. Applying (4.7) to (4.4) leads to

∥∥e(k+1)
∥∥
∞ ≤

∥∥Gk+1e(0)
∥∥
∞ +

k∑
i=0

‖G‖i∞ r
−(i logr ‖G‖∞−logr α)

=
∥∥Gk+1e(0)

∥∥
∞ +

k∑
i=0

‖G‖i∞ ‖G‖
−i
∞ α

=
∥∥Gk+1e(0)

∥∥
∞ + α

k∑
i=0

1

=
∥∥Gk+1e(0)

∥∥
∞ + (k + 1)α (4.8)

Given that α is a constant independent of i ∈ [0, k], from (4.5) we know that

α = g(0) = r−dk+1 . (4.9)

Applying this to (4.8) results in

∥∥e(k+1)
∥∥
∞ ≤

∥∥Gk+1e(0)
∥∥
∞ +

k + 1

rdk+1
. (4.10)

From (4.2), we can infer that

lim
k→∞

Gk = 0. (4.11)

Combining (4.10) and (4.11), the limit of the computation error is

lim
k→∞

∥∥e(k+1)
∥∥
∞ ≤ lim

k→∞

k + 1

rdk+1
.

Via the Stolz–Cesàro theorem [91],

lim
k→∞

k + 1

rdk+1
= lim

k→∞

k + 2− (k + 1)

rdk+2 − rdk+1
.
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As was illustrated in Fig. 4.1, the slope of the proposed don’t-care line is only

dependent upon ‖G‖∞. Since ‖G‖∞ ∈ (0, 1), the gradient of don’t-care lines,

i.e. − logr ‖G‖∞ is always positive. Therefore,
(
rdk+1

)
k≥1 is strictly monotone and

divergent. From (4.7) and (4.9), we know that

rdk+2 = r− logr‖G‖∞−logr r
−dk+1

= rlogr‖G‖
−1
∞ +dk+1

=
rdk+1

‖G‖∞
. (4.12)

Thus,

lim
k→∞

k + 1

rdk+1
= lim

k→∞

1
rdk+1

‖G‖∞
− rdk+1

= lim
k→∞

‖G‖∞
rdk+1 (1− ‖G‖∞)

(4.13)

which, since ‖G‖∞ < 1 and rdk+1 →∞ as k →∞, is zero.

Therefore, iterative calculations performed using the proposed don’t-care line are

guaranteed to converge to a solution of any accuracy, as required.

4.4 Implementation

Armed with the analysis presented in Section 4.3, we are now in a position to design

suitable control and storage infrastructure to support the efficient generation of

digits within ARCHITECT implementations.



4.4. Implementation 73

4.4.1 Control Logic

For every element of x̂(k), x̂
(k)
j , two factors determine the number of its digits that

must be calculated:

• The initial guess. Assume that Figure 4.1’s don’t-care line is placed such that

the minimum number of digits needed to represent x̂
(0)
j exactly are used. Thus,

each approximant requires a minimum of

χ = − logr ULP
(
x̂
(0)
j

)

digits for its representation, where ULP returns the unit in the last place of

its argument.

• Don’t-care LSDs. The don’t-care line’s gradient is indicative of the number of

additional digits to calculate per approximant. Hence, within approximant k,

we do care about

ω(k) = d−k logr ‖G‖∞e

more digits than were contained in the initial guess. ω(k) is always rounded

towards +∞ to ensure that we do not inadvertently neglect to calculate any

required LSDs.

Combining these, we arrive at

βj(k) = χ+ ω(k)

where βj(k) reveals the number of digits to produce per approximant.

A parameterisable finite-state machine (FSM) was designed to sequence digit propa-

gation through a pipeline of online operators. This is fundamentally different to the
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FSM used in ARCHITECT-I, I hence modified it, with implications for memory

usage. Beginning with the consumption of approximant k = 0 (the user-supplied

initial guess), it sweeps through βj(k) digits per approximant, incrementing k after

each calculation.

From a user’s perspective, no additional information needs to be supplied to take

advantage of don’t-care digit elision. The system to be solved, defined by A and b,

along with x̂(0), are all that is required.

4.4.2 Memory

Since the proposed don’t-care analysis tells us the number of digits needed to be

computed per approximant a priori, approximants are able to be computed, in full,

sequentially. This was demonstrated visually in Figure 1.1d. Since the number of

memory words (chunks) required for each approximant grows over time, With this

don’t-care line, each approximant k calculated by ARCHITECT-II can overwrite

its previous one, leading to a significant reduction in memory requirement versus

ARCHITECT-I.

Output digit storage is not our only memory-related concern. Datapath following

ARCHITECT’s principle also requires residue storage within its multipliers and

dividers which were presented in Section 3.3.2. As a result of these sources of

increasing storage burden, the size of the instantiated memories will determine the

maximum precision and number of iterations (and consequently accuracy) to which

one can compute. The arbitrary-accuracy claim is subject to the availability of

sufficient memory to solve the particular problem at hand.
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4.5 Evaluation

Hardware performance evaluations were conducted to compare ARCHITECT-II

against ARCHITECT-I and conventional LSD-first equivalents. For the latter,

datapaths are composed of parallel-in, serial-out (PISO) arithmetic operators for

which precision must be set at compile time, as was done to evaluate ARCHITECT-

I. PISO functions in a similar digit-serial fashion to those used for ARCHITECT-I

and this work.

Compared to iterative computation architectures constructed using conventional

arithmetic (LSD-first) operators, we expect ARCHITECT-II to compare favourably

due to:

• There being no need to determine, or fix, precision in advance. This is the

arbitrary-precision feature I achieved in both ARCHITECT-I and ARCHI-

TECT-II.

• Don’t-care LSD elision. The theoretical don’t-care analysis facilitates the

growth of precision over time. This allows us to focus exclusively on digits

known to be of value, thereby increasing efficiency. This is difficult to achieve

in LSD-first architectures, in which every approximant must ordinarily be cal-

culated to a maximum (worst-case) precision.

Versus ARCHITECT-I, we hypothesise that ARCHITECT-II will achieve greater

performance thanks to:

• Don’t-care digit elision. Beyond the benefits outlined above, additional perfor-

mance gains can be obtained through digit generation avoidance in MSD-first

architectures. It is expected that don’t-care digit avoidance will significantly
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improve performance effectively since digit generation requires more time the

lower the significance of the digit. This is a property of the hardware used for

operators which are themselves inherently iterative, e.g. multipliers.

• A more efficient digit computation pattern. As exemplified in Figure 1.1b, AR-

CHITECT-I refines earlier approximants as needed in order to reach further

into the iteration-precision space. Since the don’t-care line is monotone, there

is no need to revisit earlier iterations, as was demonstrated in Figure 1.1d.

• Significantly lower memory usage. Closely related to the previous point, the

simplified computation pattern permits us to discard older approximants and

their residues. This allows us to do away with ARCHITECT-I’s Cantor

paring function, with memory use scaling only with precision.

All of our hardware implementations targetted a Xilinx Virtex UltraScale FPGA

(XCVU190-FLGB2104-3-E), with Vivado 16.4 used for compilation. Results ob-

tained in hardware were compared for correctness against a golden software model.

The Jacobi method, a well known stationary iterative algorithm, was used as a case

study for the proposals presented in this chapter.

4.5.1 Performance Comparison

To begin, we investigated how the conditioning of A affected the performance of

ARCHITECT-I and ARCHITECT-II relative to conventional LSD-first arith-

metic. Mirroring the experiments conducted to evaluate ARCHITECT-I, a set of
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Fig. 4.2. A comparison of ARCHITECT-I and ARCHITECT-II against conventional LSD-first
arithmetic equivalents. (a) shows how the conditioning of input matrixAm affects the solve time of
both ARCHITECT-I ( ) and ARCHITECT-II ( ) compared to LSD-32. ARCHITECT-I
computes faster than LSD-32 only when m / 0.022, but ARCHITECT-II beats LSD-32 when
m / 0.41. (b) shows that even though both ARCHITECT-I and ARCHITECT-II lead to a
slowdown compared to LSD-8, there is nevertheless a point—at m > 2—whence LSD-8 does not
converge at all, hence ARCHITECT’s speedups are infinite.

linear systems Amx = b were used with

Am =


1 1− 2−m

1− 2−m 1

 ,

elements of b selected from a uniform distribution bounded to [0, 1) and we calcu-

lated the accuracy bound
∥∥Ax(k) − b

∥∥
∞ < η with η = 2−6. Figure 4.2 illustrates
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the speedup in solve time of ARCHITECT-II with and ARCHITECT-I without

don’t-care digit elision. Note that speedups below unity are slowdowns.
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Fig. 4.3. How the conditioning of Am affects the performance speedups of ARCHITECT-I ( )
and ARCHITECT-II ( ).

Figure 4.2a compares ARCHITECT-I and ARCHITECT-II against LSD-first

arithmetic implementation with a fixed precision of 32 bits (LSD-32). This pre-

cision is over-budgeted for the solution of well conditioned matrices, hence it can

be seen that, when m is small, both ARCHITECT-I and -II can compute more

quickly. ARCHITECT-I requires m / 0.022 in order to beat LSD-32, whereas

ARCHITECT-II only requires m / 0.41. Figure 4.2b demonstrates that if LSD-

first arithmetic is given an under-budgeted precision of just eight bits (LSD-8),

then only arbitrary-precision iterative solvers can solve ill-conditioned systems with

m > 2. Even if LSD-8 could run indefinitely, it would never be able to converge to

an accurate-enough result. The emphasis here is that, however optimised a conven-

tional implementation is, if its precision is sufficiently over- or under-budgeted, an

ARCHITECT implementation will eventually outperform it.

To further evaluate the performance of the new proposal, Figure 4.3 presents a side-
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by-side comparison of solving different linear systems using ARCHITECT-I and

ARCHITECT-II. The results show that, generally, as m increases, more time is

required in order to achieve a sufficiently accurate result. Most strikingly, ARCHI-

TECT-II demonstrates high efficiency with corresponding decreases in computation

time being found versus ARCHITECT-I. When computing a well conditioned ma-

trix with m = 0.19, our design is 2.8× faster than ARCHITECT-I, while for m = 6

it is some 2500× faster. This proposal outperformed ARCHITECT-I in all tested

cases, with a geometric mean 21× speedup obtained.

4.5.2 Scalability Comparison

To evaluate the scalability of ARCHITECT-II, Figure 4.4 shows how the requested

accuracy, controlled by η, affects solve time, the number of computed digits and the

corresponding memory requirement.

It can be seen from Figure 4.4a that ARCHITECT-I requires increasingly more

time to reach a solution than ARCHITECT-II as the requested accuracy increases.

With low accuracy requirements, such as η = 2−4, this method is 2.3× faster than

ARCHITECT-I. In the case of high accuracy, such as when computing to η =

2−256, the optimised method is 48× faster. From a more fundamental perspective,

Figure 4.4b shows the relationship between the requested accuracy and the total

number of digits calculated. Thanks to don’t-care digit elision, ARCHITECT-II

calculates 1.2× fewer digits than ARCHITECT-I with η = 2−4, increasing to 6.6×

fewer digits when η = 2−256.

Finally, Figure 4.4c shows the minimum number of on-chip memory blocks that need

to be instantiated in order for ARCHITECT-I and ARCHITECT-II to reach

particular accuracies. For lower-accuracy cases (η ≥ 2−32), both designs require
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Fig. 4.4. How the requested accuracy bound η affects (a) the solve time, (b) the total number
of digits calculated and (c) the minimum memory requirement for ARCHITECT-I ( ) and
ARCHITECT-II ( ), with m = 1.

approximately the same amount of memory, where the constant quantity is due to

the granularity of the FPGA memory blocks. The advantages over ARCHITECT-
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II’s memory addressing explained in Section 4.4.2 come to the fore with higher

accuracy requirements. For the lowest η tested, 2−256, I observed a 25× memory

reduction.

4.6 Conclusion

In this chapter, a new methodology ARCHITECT-II was proposed for the cre-

ation of iterative numeric solvers in hardware. Efficiency over ARCHITECT-I

was achieved by identifying unimportant—don’t-care—digits, excluding them from

calculation. For the identification of don’t-care digits, a theorem was proposed for

stationary iterative methods allowing many low-significance digits to be ignored

without impacting upon the solver’s ability to reach a result of any accuracy.

The proposed method was evaluated using the Jacobi method. Versus ARCHI-

TECT-I, experimental results showed a mean 4.1× reduction in the number of dig-

its generated in order to solve a set of differently conditioned matrices to the same

accuracy. In those cases, elision of redundant digit calculation led to a geometric

mean 21× speedup. The monotonicity of the don’t-care line allows us to eliminate

the need to revisit and refine earlier approximants, leading to an up-to 25× memory

footprint reduction. Making more efficient use of a given-sized memory enables us

to advance much deeper into the iteration-precision space than ARCHITECT-I al-

lowed. Finally, versus a fixed-precision Jacobi solver constructed from conventional

LSD-first arithmetic operators, ARCHITECT-II was shown to be able to solve

more difficult linear systems than ARCHITECT-I did, and that less solve time is

required when a system is well conditioned.

In the future, one possible research direction is to extend the proposed don’t-care

digit analysis to other iterative algorithms, including Krylov subspace methods such
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as conjugate gradient descent. Exploring the possibility of don’t-change digit anal-

ysis is also very interesting, since convergence in iterative computation can be con-

sidered as agreement in MSDs. Don’t-change digit analysis can be either generic or

algorithm-specific, and this allows us to do away with restarting each approximant

from the most significant digit every iteration, thereby achieving further perfor-

mance improvements and memory reductions. I am particularly keen to see if it is

possible to obtain the same rates of growth in MSD stability and LSD significance,

thus achieving parallel don’t-change and don’t-care lines. Doing so would enable the

creation of efficient, fixed compute-resource hardware with no bounds on accuracy,

and may allow us to generalise the E-method [32].
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Don’t-change Digit Elision

5.1 Overview

I have demonstrated that don’t-care digit elision leads to performance increases

and memory footprint reductions for stationary iterative calculations. On top of the

benefits of don’t-care digit elision, further efficiency gains are realisable by exploiting

the fact that convergence in iterative computation can be considered as agreement

in MSDs. This behaviour is easily found in standard numerical computing: a few

new correct digits may be generated in each approximant. However, we always

recompute all of the digits in each iteration, even the don’t-change ones, i.e. digits

of later approximants that are identical to ones in the previous approximant. In this

chapter, we ask “why do we waste time and energy to recompute them?”

Two theoretical analyses are presented to infer don’t-change digits. To begin, a

generic analysis is introduced exploiting online arithmetic’s digit dependencies to

determine identical MSDs. With the knowledge that some D MSDs are common to

approximants k and k+1, the first D−δ MSDs in approximant k+2 are guaranteed

83
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to be identical to its predecessors. This allows the generation of those digits to be

skipped, increasing efficiency. This technique is applicable to any online arithmetic-

implemented iterative calculation, however it is unfortunately unable to guarantee

that digits will stabilise, i.e. never change in any future iteration.

Thereafter, a specialised analysis is introduced for stationary iterative methods,

combining the knowledge of MSDs shared between successive approximants with

matrix conditioning to infer digit stability. Interval and forward error analyses are

used to prove that digits of high significance will become stable. I analyse the

relationship between system matrix conditioning and the rate of growth in MSD

stability, using this information to converge to the desired results more quickly.

The contributions of this chapter are as follows.

• Theoretical analysis to determine the position of identical digits within any

online arithmetic-implemented iterative method.

• Using interval and forward error analyses, a theorem for the rate of stable

MSD growth within the approximants produced by any stationary iterative

method.

• Theoretical comparison of two proposals and the E-method, allowing the skip-

ping of MSD calculation. Benefits and limitations of these methods are dis-

cussed.

• Empirical comparisons against the traditional and previous arbitrary-precision

iterative solvers on FPGAs, demonstrating performance speedups and memory

savings when employing don’t-change digit elision.
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5.2 Notation

We assume the use of a fixed-point radix-r signed-digit number representation sys-

tem with maximal redundancy. Digits therefore belong to the digit set {−r+1,−r+

2, · · · , r − 2, r − 1}.

A scalar value is denoted by a normal symbol x. For convenience, we assume that

all redundantly represented numbers have |x| < 1, and can thus be expressed as

x =
∑D

i=1 xir
−i, where xi is the ith MSD of a D-digit number.

A vector is represented by a bold symbol x, with its jth element denoted xj. Where

a vector consists of signed-digit numbers, xji is the ith MSD of the jth element of x.

The approximant of an iterative method at iteration k ∈ N>0 is denoted x(k), while

its exact result is x∗. The algorithm residual of an iterative method at iteration k

is s(k) = x(k) − x∗.

A matrix is represented by a bold capital symbol X. The infinity norm of either a

matrix or a vector is given by ‖•‖∞.

5.3 Method-agnostic Don’t-change Digit Elision

5.3.1 Theoretical Analysis

Thanks to the use of online arithmetic, when advancing downwards in our iteration-

precision space, we can avoid the recalculation of don’t-change digits. This is gener-

ally not possible in LSD-first architectures, in which carries can propagate from LSD

to MSD. Don’t-change digit elision is guaranteed to be an error-free transformation:

no approximation is induced through its application.
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q δ

x(k−2):

x(k−1):

x(k):

Fig. 5.1. A proof sketch showing why it is sound to omit don’t-change digits. If the two hatched
regions contain the same q + δ digits, the three thick boxes are guaranteed to contain the same q
digits, hence x(k)’s calculation can begin at digit q + 1.

The concept behind this optimisation is straightforward. Before beginning to cal-

culate the digits of approximant k, we examine the digits of the previous two ap-

proximants. If these approximants are equal in their most-significant q + δ digits,

it is guaranteed that approximant k will be equal to its two predecessors in its first

q digits. Hence, we do not calculate them, thus we can skip directly to digit q’s

generation.

The soundness of this optimisation can be justified by appealing to the digit de-

pendencies of online arithmetic. Fig. 5.1 provides some graphical intuition. Given

that each approximant depends only on the value of its immediate predecessor, and

recalling the definition of online delay from Section 2.4, we emphasise that the first

q digits of one approximant depend only upon the first q + δ digits of the previous

approximant [37]. Hence, if approximants k − 2 and k − 1 are equal in their first

q + δ digits, approximant k is guaranteed to be equal to them in its first q digits.
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5.3.2 Implementation

Online delay-based don’t-change digit elision is applicable to any online arithmetic-

based iterative calculation. By detecting the presence and avoiding the recompu-

tation of don’t-change digits, ARCHITECT-III, i.e. ARCHITECT-I (Fig. 1.1b)

with don’t-change elision, produces digit patterns such as that shown in Fig. 5.2.

This increases efficiency while having no bearing on the chosen iterative method’s

ability to reach a result of any accuracy.

x(0):

x(1):

x(2):

x(3):

x(4):

x(5):

x(6):

x(7):

.

.

.

.

.

.

.

.

0 1 2 5 0 0 0 0 0

0 1 0 7 1 4 2 8 5

0 1 0 9 6 9 3 8 7
′′ 1 0 9 3 2 9 4 4
′′ ′′ 0 9 3 8 1 5 0
′′ ′′ ′′ 9 3 7 4 0 7
′′ ′′ ′′ 9 3 7 5 1 3
′′ ′′ ′′ ′′ 3 7 4 9 8

Fig. 5.2. Example of a digit-calculating pattern of ARCHITECT-III, for the solution of x(k+1) =
1/8− 1/7 · x(k). Arrows show the order of digit generation.

Suitable control and storage infrastructure were designed to support the efficient

generation of digits within iterative calculations. During the generation of approx-

imant k, we compare digits on-the-fly with those generated for approximant k − 1,

previously stored in RAM. Based on the number of digits found to be identical, we

store a pointer indicating whence approximant k+ 1’s, i.e. the next approximant’s,

generation should begin. Pointer storage requires a small amount of extra memory

but, as will be elaborated upon in Section 5.3.3, this overhead is small and amortised

out the more RAM is instantiated for digit vector storage.

As a result of the introduction of don’t-change digit elision, ARCHITECT-III’s

scheduling pattern becomes dynamic. Fig. 5.3 shows an example. This is similar

to Fig. 3.4 for ARCHITECT-I, but, due to the identification of the third approxi-
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i
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0 δ 2δ 3δ

1

2

3

Fig. 5.3. Digit generation pattern with don’t-change digit elision. Groups of digits in the shaded
region were found to be identical at runtime, allowing computation of the first group to be skipped
in the subsequent iteration. Dashed lines are scheduled paths not taken and ×s are digits therefore
elided.

mant’s first group of MSDs as identical, we can advance into the iteration-precision

space more quickly than had we not elided these digits, thereby increasing compute

efficiency.

Along with increased performance, the elision of don’t-change digits also enables

us to increase memory efficiency. Let φ be the number of digits guaranteed to be

identical within the current approximant (k), as determined through the runtime

comparison of MSDs within the preceding two approximants. We can substitute

cpf(k, ĉ) =
(k + ĉ) (k + ĉ+ 1)

2
+ ĉ,

for (3.1) on page 37, where ĉ = b(i−φ)/Uc. By doing so, identical digits no longer need

to be recomputed or stored. In common with (3.1), this optimised strategy guaran-

tees no memory wastage through the surjectivity of its mapping from approximant

and chunk indices to memory addresses.
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Control Logic

Given a particular (k, i), i.e. the ith digit at approximant k, we can compute the

subsequent digit to realise scheduling patterns such as those shown in Fig. 5.3 with

the finite-state machine (FSM) depicted in Fig. 5.4. The state transition conditions

are similar to the FSM for ARCHITECT-I, as was discussed in Section 3.3.4, but

suits don’t-change digit elision, for which φ must be considered.

5.3.3 Evaluation

In order to evaluate ARCHITECT-III, Jacobi and Newton were chosen as bench-

marks to exemplify a large class of iterative methods with linear and quadratic

convergence properties, respectively. Their datapaths are shown in Figs.3.6a and

3.6b. ARCHITECT-III implementations featured all of the previously described

optimisations: online delay-based don’t-change digit elision and its related memory-

addressing and digit-scheduling schemes.

A Xilinx Virtex UltraScale FPGA (XCVU190-FLGB2104-3-E) was targetted for

all experiments detailed henceforward, with implementation performed using Vi-

vado 16.4. The correctness of results obtained in hardware was verified via compar-

ison against those produced by golden models executed in software.

Performance Improvement Breakdown

Analysis was conducted to investigate how the elision of don’t-change digits improves

the performance and memory efficiency over ARCHITECT-I. Overall, Figs 5.5a

and 5.5b show that solve time can be reduced significantly versus ARCHITECT-

I. As expected, the speedups versus ARCHITECT-I we observed for Newton’s
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method were far more significant than those for Jacobi: up to 16× for the former.

Far fewer don’t-change digits are detected and elided during computation than for

the quadratic-convergence Newton’s method, hence the less-significant latency re-

ductions seen in Fig. 5.5a than Fig. 5.5b. The subtle jump present in Fig. 5.5a is

due to the δ-digit granularity of elision.

Relatively low performance improvements were expected for the Jacobi benchmark

due to the method’s linear convergence. For higher-accuracy cases, don’t-change

digit elision does not contribute much to solve time speedup. This makes sense

since, as η falls, more iterations are required to achieve convergence, thus more

cycles are required for the production of each new digit.

Figs 5.5c and 5.5d show the memory efficiency improvements afforded through the

use of don’t-change digit elision for both benchmarks. I present these as the ratio

of the number of BRAM blocks that must be instantiated on the targetted FPGA

for the solution of equations to particular accuracies for ARCHITECT-I and -III.

For lower-accuracy cases (η ≥ 2−32), both designs require approximately the same

amount of memory, although ARCHITECT-III is inferior due to the overheads

involved in comparison and subsequent elision. For highest-accuracy cases, we ob-

served up-to 1.5× and 1.9× memory savings for the Jacobi and Newton’s methods,

respectively. There are particularly high-accuracy cases—η ≥ 2−874 for Jacobi and

η ≥ 2−7169 for Newton—ARCHITECT-I cannot reach before it exhausts its avail-

able memory, while ARCHITECT-III can. The advantages of this scheme and its

efficient memory addressing therefore come to the fore with higher accuracy require-

ments.
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Fig. 5.5. Solve time speedup for the (a) Jacobi and (b) Newton’s methods featuring don’t-change
digit elision versus ARCHITECT-I. (c) and (d) show the corresponding memory requirement
reductions for Jacobi and Newton, respectively, facilitated through digit elision.

Area and Frequency Comparison

Further experiments were performed to investigate how ARCHITECT-III scales

and performs in terms of area and maximum operating frequency fmax versus AR-

CHITECT-I.

For the largest case (D = 218) in Jacobi solvers, ARCHITECT-III consumes 1.1×

more LUTs and 1.2× more FFs versus ARCHITECT-I. These factors for Newton’s

method with the same D are 1.5 and 1.4, respectively. The small increases in LUTs
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and FFs can be attributed to the runtime-detection and MSD-elision logic.

For the same reason, the critical path delays of ARCHITECT-III are higher than

ARCHITECT-I’s, resulting in a drop in fmax for both Jacobi and Newton imple-

mentations. fmax drops from 180 MHz to 135 MHz for the smallest (D = 210) Jacobi

design implemented, and from 150 MHz to 120 MHz for the smallest (D = 210) New-

ton datapath.

5.3.4 Combining Don’t-change and Don’t-care Digit Elision

Given the presented don’t-care elision for stationary iterative methods in Chapter 4,

let us now take advantage of don’t-change and don’t-care digit elision to support

the efficient generation of digits within an MSD-first iterative solver. This is named

ARCHITECT-IIIa, with computation patterns such as that illustrated in Fig. 1.1d.

Control Logic

For every element of x̂(k), x̂
(k)
j , three factors determine the number of its digits

that must be calculated: (i) the number of digits of initial guess χ, (ii) the number

of additional digits to calculate per approximant ω(k) indicated by the don’t-care

line’s gradient (4.7) on page 70 and (iii) the number of MSDs that are guaranteed

to be stable within approximant k, φ(k). χ and ω(k) have been described in Sec-

tion 4.4.1. φ(k) is obtained through the comparison of successive approximants, as

was discussed in Section 5.3.1. A counter is all that is required to implement this.
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Combining these, we arrive at

βj(k) =


χ+ ω(k) if k < 2

χ− φ(k) + ω(k) otherwise,

where βj(k) reveals the number of digits to produce per approximant. The index of

the first digit to produce within each approximant is given by φ(k).

I designed a parameterisable finite-state machine (FSM) to sequence digit propa-

gation through a pipeline of online operators. Beginning with the consumption of

approximant k = 0 (the user-supplied initial guess), it sweeps through βj(k) digits

per approximant, incrementing k after each calculation. Once k ≥ 2, don’t-change

digits start to be evaluated, shifting the start of each approximant’s calculation by

φ(k) digits away from the MSD.

From a user’s perspective, no additional information needs to be supplied to take

advantage of digit elision. The system to be solved, defined by A and b, along with

x̂(0), are all that is required.

Memory

To enable don’t-change digit elision, we require access to one previously computed

approximant. This is compared with the current approximant (k) to infer the num-

ber of don’t-change digits in the yet-to-be-computed approximant k+ 1. It is there-

fore safe for us to overwrite approximant k−2 with approximant k. A single and flat

memory is segmented into two halves: one for even approximants, and one for odd.

Therefore, approximant k’s memory bank is selected by simply evaluating k mod 2.

Output digit storage is not our only memory-related concern. Don’t-change digit
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elision requires the ability to start computation from arbitrary digit indices, thus

we must store the internal residues of earlier iterations’ operations.

5.3.5 Performance Improvement

In order to compare the performance of ARCHITECT-IIIa against that of AR-

CHITECT-II with don’t-care digit elision only, I used the Jacobi method and ex-

perimented with linear systems of the form, as was evaluated for ARCHITECT-II

(Section 4.5),

Am =


1 1− 2−m

1− 2−m 1

 , b =


b0

b1

 , x(0) = 0, (5.1)

with b0 and b1 randomly selected from a uniform distribution in the range [0, 1). I

used the termination criteron ‖Amx− b‖ < η, with η ∈ (0, 1]. The conditioning

of Am is controlled via m ≥ 0, and convergence is always guaranteed, since Am is

strictly diagonally dominant for all m.

Figure 5.6 shows how the requested accuracy, controlled by η, affects the solve time

and the number of computed digits. We can see from Figure 5.6a that ARCHI-

TECT-II requires increasingly more time to reach a solution than ARCHITECT-

IIIa as the requested accuracy increases. In the case of high accuracy, such as when

computing to η = 2−256, ARCHITECT-IIIa is 4.1× faster than ARCHITECT-II.

With low accuracy requirements, such as η ≤ 2−18, both designs consume similar

solve time, even though ARCHITECT-IIIa is slightly slower than ARCHITECT-

II. This makes sense since ARCHITECT-IIIa’s fmax is slightly inferior principally

due to reductions caused by the introduction of don’t-change digit elision logic. From
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Fig. 5.6. How the requested accuracy bound η affects (a) the solve time, (b) the total number of
digits calculated for ARCHITECT-II ( ) and ARCHITECT-IIIa ( ), with m = 1.

a more fundamental perspective, Figure 5.6b shows the relationship between the re-

quested accuracy and the total number of digits calculated. ARCHITECT-IIIa

calculates the same number of digits as ARCHITECT-II with η = 2−4, increasing

to 7.0× fewer digits when η = 2−256.

The gap between the don’t-change plus don’t-care and don’t-care-only lines widens

as η reduces, indicating that consideration of don’t-change digits becomes more

important with higher accuracy requirements. This makes sense since, as η falls,

more iterations are required to achieve convergence, thus affording more opportunity

for advanced don’t-change digit elision.
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5.4 Specialised Don’t-change Digit Elision for Sta-

tionary Iterative Methods

In the method-agnostic don’t-change digit elision, given some D identical MSDs

between approximants k and k + 1, the number of identical MSDs that will also

appear in approximant k + 2 can be deduced. Since that number is always smaller

than D, however, this technique is unfortunately unable to infer digit stability. If we

concentrate on a particular class of algorithms, such as stationary iterative methods,

the position of stable digits can be determined.

In this section, digit-stability analysis is presented for stationary iterative methods

to avoid the recomputation of these stable digits. I demonstrated efficiency over

iterative solvers using the generic don’t-change digit elision, as will be discussed in

Section 5.4.3.

Also enabling the inference of digit stability, Ercegovac’s E-method produces the

digits of its results from MSD first, one more per iteration [32], as exemplified in

Fig. 5.7. The E-method, however, is a specialised Jacobi iteration and imposes strict

conditions on its inputs: particularly a well conditioned iteration matrix G [32]. In

contrast to the E-method, the proposed digit-stability analysis is applicable to any

stationary iterative method and, as also shown in Fig. 5.7, holds for both well and

ill-conditioned G. With particularly well conditioned matrices, we can predict the

generation of more than one stable digit per iteration.
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Fig. 5.7. A sketch of guaranteed digit stability. The E-method produces one new digit of lower
significance per iteration; these, whose boundary is represented by the solid blue line, therefore
remain stable across all future approximants. With knowledge that approximants k and k + 1
share D identical MSDs, the proposed digit-stability analysis is able to infer the numbers of stable
digits within the k+ 1th and all future approximants. As shown by the dashed red lines, these are
dependent upon the conditioning of the iteration matrix G.

5.4.1 Theoretical Analysis

Assume that a stationary iterative method is used to solve a linear system Ax = b.

Further assume that the inequality ‖G‖∞ < 1 holds for iteration matrix G 1. If

approximants to x∗ are vectors of maximally redundant signed-digit numbers, knowl-

edge of the number of identical MSDs in any two successive approximants k̂−1 and

k̂ allows us to declare that subsets of MSDs in all approximants k ≥ k̂ will never

change. The key steps in the derivation that follows are:

1. Lemma 5.2: If it is known that D MSDs of successive approximants’ elements

1We adopt the infinity-norm in the analysis that follows since digit stability is ensured through
bounds on worst-case perturbations of x(k). In the common case of Hermitian matrices, ρ(G) =
‖G‖2 and ‖G‖2 ≤ ‖G‖∞, thus a bound on ‖G‖∞ corresponds to a bound on ρ(G) [53]. Finally
note that, although we present our analysis in a general setting, its application is intended for
methods where ‖G‖∞ is readily computable, such as Jacobi.



5.4. Specialised Don’t-change Digit Elision for Stationary Iterative Methods 99

are identical, we can bound the magnitude of the algorithm residue based on

D and G.

2. Lemma 5.3: Given a particular residue bound, we prove that a quantity of

the current and future approximants’ MSDs can never change.

3. Theorem 5.1: Bringing Lemmas 5.2 and 5.3 together, we infer the minimum

number of permanently identical MSDs per approximant based on D and G.

Let us begin by formally defining the meaning of digit stability within the approxi-

mants of an iterative algorithm.

Definition 5.1 (Digit stability). The D MSDs of an approximant k̂ are said to be

stable iff

x
(k)
i = x

(k̂)
i ∀k > k̂, i ∈ {1, 2, · · · , D} .

Our choice of number system means that we can append digits to a number x to

form a new number, x̃, representing any value within a symmetric interval around

x. We call such numbers consistent in the values they represent.

Definition 5.2 (Digit consistency). Let x be a D-digit number represented using

maximally redundant digits. Further let y be a second number, also maximally re-

dundant, comprising any finite number of digits. y is said to be consistent with x

iff

y ∈
(
x− r−D, x+ r−D

)
.

Lemma 5.1 (Representation interval). Let x be a maximally redundant D-digit

number. If additional digits are appended to x to form a new number, x̃, then x̃ is

consistent with x.
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Proof. By definition,

x =
D∑
i=1

xir
−i.

Since x̃ contains D̃ > D digits, with its D MSDs the same as those in x,

x̃ =
D∑
i=1

xir
−i +

D̃∑
i=D+1

x̃ir
−i

= x+
D̃∑

i=D+1

x̃ir
−i.

The digit extrema in a maximally redundant number system are − (r − 1) and r−1.

We can thus deduce that

x̃ ∈

x− D̃∑
i=D+1

(r − 1) r−i, x+
D̃∑

i=D+1

(r − 1) r−i


=
[
x− r−D + r−D̃, x+ r−D − r−D̃

]
⊂
(
x− r−D, x+ r−D

)
,

and so, per Definition 5.2, x̃ is consistent with x.

Suppose now that we know—via runtime digit-by-digit comparison—that some D

MSDs within successive approximants k and k + 1 are identical. Given particular

iteration matrix conditioning, we can bound the algorithm residue for approximant

k + 1.

Lemma 5.2 (Residue bound). If the elements of x(k) and x(k+1) share a minimum

of D identical MSDs, then

∥∥s(k+1)
∥∥
∞ <

2 ‖G‖∞
1− ‖G‖∞

r−D.
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Proof. Manipulation of (2.1) on page 13 allows us to deduce that

Mx(k+1) = Nx(k) + b

M
(
x(k+1) − x(k)

)
= (N −M)x(k) +Ax∗

As(k) = M
(
x(k) − x(k+1)

)
.

Given that A−1 =
∑∞

i=0G
iM−1 [74], we therefore have

s(k) =
∞∑
i=0

Gi
(
x(k) − x(k+1)

)
.

Taking norms and recalling that ‖G‖∞ < 1,

∥∥s(k)∥∥∞ ≤
∥∥∥∥∥
∞∑
i=0

Gi

∥∥∥∥∥
∞

∥∥x(k) − x(k+1)
∥∥
∞

≤ 1

1− ‖G‖∞

∥∥x(k) − x(k+1)
∥∥
∞ . (5.2)

Let j be the index for which x
(k)
j and x

(k+1)
j are the successive elements sharing the

fewest identical MSDs. We define the number of contiguous MSDs shared by the

jth elements as D. From Lemma 5.1 we know that

x
(k)
j ∈

(
D∑
i=1

x
(k)
ji r

−i − r−D,
D∑
i=1

x
(k)
ji r

−i + r−D

)

and

x
(k+1)
j ∈

(
D∑
i=1

x
(k+1)
ji r−i − r−D,

D∑
i=1

x
(k+1)
ji r−i + r−D

)
.

Since x
(k)
ji = x

(k+1)
ji ∀i ∈ {1, 2, · · · , D}, we find that

∣∣∣x(k)j − x(k+1)
j

∣∣∣ < 2r−D,
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giving a bound on the vector norm of

∥∥x(k) − x(k+1)
∥∥
∞ < 2r−D. (5.3)

Transformation of (2.2) on page 13 reveals that

x(k+1) = Gx(k) +M−1Ax∗

= Gx(k) + (I −G)x∗

s(k+1) = Gs(k).

Taking norms, ∥∥s(k+1)
∥∥
∞ ≤ ‖G‖∞

∥∥s(k)∥∥∞ , (5.4)

which, when combined with (5.2), results in

∥∥s(k+1)
∥∥
∞ ≤

‖G‖∞
1− ‖G‖∞

∥∥x(k) − x(k+1)
∥∥
∞ .

Substitution of (5.3) then gives

∥∥s(k+1)
∥∥
∞ <

2 ‖G‖∞
1− ‖G‖∞

r−D. (5.5)

Given a particular residue bound, our next task is to show that MSD stability is

guaranteed within the current and future approximants.

Lemma 5.3 (Existence of digit stability). If the condition

∥∥∥s(k̂)
∥∥∥
∞
< r−D (5.6)
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holds, then x∗j is consistent with the D−1 MSDs of x
(k)
j ∀k ≥ k̂ ∀j, and these MSDs

are stable.

Proof. Convergence results on the algorithm ensure that there must exist an ap-

proximant k̂ for which

x∗j ∈
(
x

(k̂)
j − r−D, x(k̂)

j + r−D
)
∀j.

From Lemma 5.1, we know that x∗j is consistent with x
(k̂)
j .

Through repeated self-substitution of (5.4),

∥∥s(k)∥∥∞ ≤ ‖G‖k−k̂∞ ∥∥∥s(k̂)
∥∥∥
∞

(5.7)

which, given (5.6), means that

∥∥s(k)∥∥∞ < ‖G‖k−k̂∞ r−D

and thus ∣∣∣s(k)j ∣∣∣ < ‖G‖k−k̂∞ r−D ∀j.

For approximant k, therefore,

x∗j ∈ I :=
(
x
(k)
j − ‖G‖

k−k̂
∞ r−D, x

(k)
j + ‖G‖k−k̂∞ r−D

)
∀j.

Let us consider how the perturbation of one or more of the D − 1 MSDs in any

approximant k ≥ k̂ would be inconsistent with the proof of convergence. Such a

perturbation would produce a new interval, I ′. If x∗j /∈ I ′, such a new representation

of xj would invalidate the convergence, thus the D−1 MSDs of x
(k)
j must be identical
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for all k ≥ k̂.

Consider an increase of the D − 1th MSD by one unit, leading to a representation

consistent with any value in

I ′ :=
(
x

(k̂)
j − ‖G‖k−k̂∞ r−D + r−(D−1), x

(k̂)
j + ‖G‖k−k̂∞ r−D + r−(D−1)

)
∀j.

Comparing the upper bound of I and the lower bound of I ′, we have

min I ′ −max I = −2 ‖G‖k−k̂∞ r−D + r−(D−1)

=
(
r − 2 ‖G‖k−k̂∞

)
r−D. (5.8)

Since r ≥ 2 and ‖G‖∞ < 1, (5.8) is strictly positive. This means that I ∩ I ′ = ∅,

and thus x∗j /∈ I ′.

Clearly, a unit increase of any digit in x
(k)
ji ∀i ∈ {1, 2, · · · , D − 1} would lead to

I ∩ I ′ = ∅, violating the algorithm’s convergence. A similar argument can be made

for a unit decrease of x
(k)
ji ∀i ∈ {1, 2, · · · , D − 1}. Thus, x∗j is consistent with the

D − 1 MSDs of x
(k)
j ∀k ≥ k̂ ∀j, and these MSDs are stable.

We are now able to bound the current and future iterations’ residues and ensure

that stable MSDs exist, but the relationship between these two features is currently

missing. Combining Lemmas 5.2 and 5.3 will allow us to establish this, thereby

providing a guaranteed minimum number of stable digits for the current and all

future approximants.

Theorem 5.1 (Inference of digit stability). If x(k̂−1) and x(k̂) share a minimum of

D identical MSDs, then x∗j is consistent with the D+

⌊
logr

1−‖G‖∞
2‖G‖k−k̂+1

∞

⌋
− 1 MSDs of



5.4. Specialised Don’t-change Digit Elision for Stationary Iterative Methods 105

x
(k)
j ∀k ≥ k̂ ∀j, and these MSDs are stable.

Proof. Since the D MSDs of each element of approximants k̂−1 and k̂ are identical,

we can apply Lemma 5.2 to approximants k̂ − 1 and k̂ to find that (5.5) holds for

k̂, i.e. ∥∥∥s(k̂)
∥∥∥
∞
<

2 ‖G‖∞
1− ‖G‖∞

r−D.

Substituting this inequality into (5.7), we can deduce that

∥∥s(k)∥∥∞ < ‖G‖k−k̂∞
2 ‖G‖∞

1− ‖G‖∞
r−D

= r
−
(
D+logr

1−‖G‖∞
2‖G‖k−k̂+1

∞

)

≤ r
−
(
D+

⌊
logr

1−‖G‖∞
2‖G‖k−k̂+1

∞

⌋)
.

We can therefore apply Lemma 5.3 with this bound on
∥∥∥s(k̂)

∥∥∥
∞

, from which we are

finally able to infer that x∗j is consistent with the D+

⌊
logr

1−‖G‖∞
2‖G‖k−k̂+1

∞

⌋
− 1 MSDs of

x
(k)
j ∀k ≥ k̂ ∀j, and that those MSDs are stable.

Examination of Theorem 5.1 allows us to understand the shapes of the stability

regions seen in Fig. 5.7 for different ‖G‖∞. The relationship between the number

of identical MSDs within approximants k̂ − 1 and k̂ and the quantity that stabilise

by approximant k̂ is controlled by D +

⌊
logr

1−‖G‖∞
2‖G‖k−k̂+1

∞

⌋
− 1 with k = k̂, i.e. D +⌊

logr
1−‖G‖∞
2‖G‖∞

⌋
−1. For the most well conditioned systems, i.e. those with low ‖G‖∞,

logr
1−‖G‖∞
2‖G‖∞

is more positive, while for particularly ill-conditioned systems it is more

negative. This explains the leftward and rightward shifts present in Fig. 5.7 for high

and low values of ‖G‖∞, respectively. The point at which D identical MSDs infer

the presence of D stable digits within approximant k̂ occurs when ‖G‖∞ = 1
2r+1

.

Beyond k̂, we see a linear increase in logr
1−‖G‖∞

2‖G‖k−k̂+1
∞

, and therefore in the number
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of stable digits, with k. This applies even for the most ill-conditioned systems; an

increasing number of digits will therefore always stabilise over time.

5.4.2 Prototype Implementation

In order to evaluate the effectiveness of this digit-stability analysis, I built a hardware

implementation based on the previous ARCHITECT-IIIa (Section 5.3.4), modified

to allow the runtime inference, and subsequent avoidance of recalculation, of digits

known to have stabilised. As the digits of approximant k are generated, their val-

ues are compared on-the-fly with those of previously generated approximant k − 1,

fetched from RAM. Once some D > 0 successive MSDs are found to be identical

across all pairs of elements x
(k−1)
j and x

(k)
j , we assign k̂ ← k and, for all subsequent

approximants, the generation of each approximant’s first

ψ(k) = D +

⌊
logr

1− ‖G‖∞
2 ‖G‖k−k̂+1

∞

⌋
− 1

digits is skipped. Note that we do not need to calculate logarithms or perform

exponentiation in hardware. Instead, we can use the more computationally efficient

form

ψ(k) = D +
⌊
α−

(
k − k̂ + 1

)
β
⌋
− 1, (5.9)

where α = logr
1−‖G‖∞

2
and β = logr ‖G‖∞ are constants that we precompute and

feed in along with A, b and x(0).

Since the proposed digit-stability analysis is applicable to any stationary iterative

methods, my prototype was a Jacobi method implementation, named ARCHI-

TECT-IIIb. Like ARCHITECT-IIIa, ARCHITECT-IIIb excludes the don’t-

change and don’t-care digits from calculation. By virtue of the novel digit-stability
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inference, ARCHITECT-IIIb can perform more efficiently against ARCHITECT-

IIIa by skipping the calculation of MSDs known to have stabilised. The datapath

of the Jacobi method is shown in Fig. 3.6a, which is identical in structure to that

used in ARCHITECT-II and -IIIa, facilitating direct comparison.

5.4.3 Evaluation

There are three obvious comparison points for ARCHITECT-IIIb: ARCHITECT-

IIIa with online delay-based MSD elision, the E-method [32] and the broad class of

conventional, LSD-first iterative solvers. For the MSD-first methods, theoretical

analysis (Section 5.4.3) was conducted to uncover the shortcomings of the prior

art. Experiments (Section 5.4.3) were also performed to quantify the gains through

the realisation of digit-stability analysis in hardware. For comparison against LSD-

first arithmetic, I implemented datapaths composed of parallel-in, serial-out (PISO)

operators of the same form that has been previously used to evaluate ARCHI-

TECT-II and -IIIa. These operate in a similar digit-serial fashion, but require the

compile-time determination of precision.

The hardware implementations all targetted a Xilinx Virtex UltraScale FPGA (part

number XCVU190-FLGB2104-3-E) and were compiled using Vivado 16.4. All results

obtained in hardware were verified against golden software models.

Theoretical Comparison

As was mentioned in Section 5.3.4, ARCHITECT-IIIa’s MSD elision strategy is

unable to infer the existence of stable digits. In the worst case, as shown in Table 5.1,

we are forced to compute the values of δ more MSDs for every approximant, poten-

tially wasting significant time and energy in doing so, when using this method. The
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hardware realisation of digit-stability analysis (i.e. ARCHITECT-IIIb) is actually

simpler than its online delay-based predecessor (i.e. ARCHITECT-IIIa), leading

to the multiple performance boosts I elaborate upon in Section 5.4.3. A benefit of

online-delay based don’t-change digit inference is its applicability to any iterative

method.

The E-method, designed for the efficient evaluation of polynomial and rational func-

tions, is the only existing work allowing the declaration of MSDs as stable across

the approximants of an iterative algorithm [32]. Its MSD-first Jacobi solver pro-

duces one new, less-significant digit for each of the elements of its solution vector

per iteration. To achieve this, the target linear system Ax = b must fulfil a list of

strict conditions. In particular: (i) ‖G‖∞ ≤ 1/2r, i.e. a more restrictive requirement

than strict diagonal dominance of A, and (ii) ‖b‖∞ < 1. (ii) is required since b

forms the algorithm’s initial internal residue, which must begin and remain bounded

within (−1, 1)N in order to produce valid digits at each iteration.

As reflected in Table 5.1, digit-stability inference is far less restrictive than the E-

method. The former holds for any stationary iterative method, while the E-method

is a particular Jacobi implementation. Furthermore, we impose no restrictions upon

the target system beyond ‖G‖∞ < 1, meaning that users can realise the benefits of

digit-stability even for very poorly conditioned matrices.

In order to achieve the same rate of stable MSD growth, solving (5.9) for β = 1 shows

that the proposed analysis requires ‖G‖∞ = 1/r: double that for the E-method. This

technique is thus able to achieve the E-method’s growth rate for a wider range of

differently conditioned matrices. With ‖G‖∞ < 1/r, we achieve a growth rate faster

than the E-method’s, while the opposite is true when ‖G‖∞ ∈ (1/r, 1). An advantage

of the E-method over my proposals is that the former does not require knowledge

of MSDs shared between approximants; the conditions enumerated above guarantee
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Fig. 5.8. How the requested accuracy bound η affects (a) solve time and (b) minimum memory
requirement for ARCHITECT-I ( ), ARCHITECT-II ( ), ARCHITECT-IIIa ( ) and
ARCHITECT-IIIb ( ), with m = 1.

that digits will begin to stabilise immediately. However, it is trivial to implement

logic to detect the existence of identical MSDs in successive approximants.

Empirical Evaluation

Experiments were conducted to evaluate the performance improvement of ARCHI-

TECT-IIIb versus that of ARCHITECT-I, -II and IIIa, I used the Jacobi method,

the same case study used in previous implementations, for direct comparison.



5.4. Specialised Don’t-change Digit Elision for Stationary Iterative Methods 111

In Fig. 5.8, I demonstrate the scalability of the most efficient Jacobi solver i.e.,

ARCHITECT-IIIb, featuring the elision of stable and don’t-care digits. For these

experiments, I fixed m = 1 in (5.1) and varied accuracy bound η. Fig. 5.8a shows

that ARCHITECT-IIIb requires less time to reach a solution than ARCHITECT-

I, ARCHITECT-II and ARCHITECT-IIIa for all the requested accuracies tested.

When computing to η = 2−256, ARCHITECT-IIIb achieves 470×, 8.8× and 2.2×

speedups versus ARCHITECT-I, -II and -IIIa, respectively. With low accuracy re-

quirements, such as when η = 2−4, speedup factors are 4.0, 1.6 and 1.9, respectively.

In addition, the gaps between ARCHITECT-IIIa ( ) and ARCHITECT-IIIb

( ) and don’t-care-only ARCHITECT-II ( ) lines widen as η reduces. This

indicates that the elision of don’t-change digits achieves more solve-time savings, as

η falls, since more iterations are required to compute.

For iterative solvers with both don’t-change and don’t-care optimisations enabled,

ARCHITECT-IIIb achieves approximately constant solve time speedups over AR-

CHITECT-IIIa, showing the superiority of our digit-stability inference. Speedups

ranged from 2.0× (η = 2−4) to 2.2× (η = 2−256). The saturation is due to proper-

ties of the arbitrary-precision arithmetic operators shared by both implementations,

which require an increasing number of clock cycles to generate each digit as the

significance of those digits decreases. As η falls, the increasing time per digit’s

generation begins to dominate the gains realised through the stable MSD elision.

Fig. 5.8b shows the minimum number of on-chip memory blocks that need to be

instantiated in order for the arbitrary-precision iterative solvers to reach particular

accuracies. The jaggedness in this plot is due to the granularity of the FPGA mem-

ory blocks, for which we only used whole numbers of BRAMs. For lower-accuracy

cases (η ≥ 2−32), all of the designs require approximately the same amount of mem-

ory, although ARCHITECT-IIIa and -IIIb are slightly inferior due to don’t-change
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detection overheads. The advantages of the memory addressing of ARCHITECT-

IIIa and -IIIb explained in Section 5.3.4 come to the fore with higher accuracy re-

quirements. For the lowest η tested, 2−256, ARCHITECT-IIIa and -IIIb achieved

a 22× memory reduction over ARCHITECT-I.
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Fig. 5.9. How the conditioning of Am affects the solve time of arbitrary-precision iterative solvers
with both don’t-change and don’t-care digit elision, i.e. ARCHITECT-IIIa ( ) and ARCHI-
TECT-IIIb ( ) vs LSD-first arithmetic with a fixed precision of (a) 32 and (b) 8 bits. ARCHI-
TECT-IIIb computes more quickly than LSD-32 when m < 3.0, whereas ARCHITECT-IIIa can
only beat LSD-32 when m < 0.27. (b) shows that both arbitrary-precision iterative solvers lead
to an effectively infinite speedup when m > 2, since LSD-8 can never converge to accurate-enough
results. While performance slowdowns were observed for m ≤ 2, ARCHITECT-IIIb outperformed
its predecessor in all cases, just as for LSD-32.

In Fig. 5.9a, we further compare our implementations against a Jacobi solver fea-

turing LSD-first PISO arithmetic operators with a precision of 32 bits (LSD-32),

a commonly encountered data width. For the solution of well conditioned linear
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systems—those with lowm—LSD-32 has over-budgeted precision: results take longer

to compute than had a lower precision been chosen instead. As a result, both AR-

CHITECT-IIIa and -IIIb compute more quickly than LSD-32 when m < 0.27. The

benefits of our optimised MSD elision strategy become prominent with higher m.

For 0.27 < m < 3.0, ARCHITECT-IIIb outperforms its LSD-first competitor in

terms of solve time, while ARCHITECT-IIIa does not.

Fig. 5.9b shows the results of the same experiments, but compared against an 8-bit

LSD-first arithmetic implementation (LSD-8), also a commonly encountered data

width [49]. Here, high m results in ill-conditioned systems, for which LSD-8 has

under-budgeted precision. When m > 2, only our arbitrary-precision solvers can

converge to results of great enough accuracy. In these cases, their performance

speedups are effectively infinite. For m ≤ 2, while both ARCHITECT-IIIa and

-IIIb experience slowdowns vs. LSD-8, ARCHITECT-IIIb is faster than its com-

petitor in all cases.

5.5 Conclusion

In this chapter, I proposed two don’t-change digit elision methods. Firstly, an

algorithm-agnostic don’t-change digit elision was presented. Online arithmetic’s

digit dependencies were used to determine don’t-change digits at runtime, allowing

their recalculation in subsequent iterations and thereby increasing performance and

decreasing memory footprints. I evaluated this technique on FPGAs using the Jacobi

and Newton methods in order to verify its accuracy and establish its scalability and

efficiency. These benchmarks showcased that iterative solvers with don’t-change

digit elision achieved up-to 16× performance speedups and 1.9× memory savings

against ARCHITECT-I without any digit elision.
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Even though online-delay based don’t-change digit analysis is applicable to any

iterative method, this technique is unable to guarantee that digits will stabilise.

To infer digit stability, a theorem specific to stationary iterative methods was pre-

sented to allow us to predict the rate of stable MSD growth across the approximants.

With knowledge that some number of MSDs are common to two successive approx-

imants, the proposed digit-stability analysis allows us to declare when, and which,

MSDs in all future approximants will stabilise. The recomputation of these digits

can thus be avoided, facilitating performance speedups. Unlike the E-method, this

proposal holds, and is of benefit for linear systems of any conditioning.

As a classical stationary iterative method, the Jacobi method was used to evaluate

the proposed digit-stability analysis. Combined with the don’t-care digit elision,

efficiency of ARCHITECT-IIIb was achieved over previous arbitrary-precision it-

erative solvers, with an up-to 470× speedup for the solution of a range of representa-

tive linear systems. Versus conventional arithmetic, I demonstrated ARCHITECT

gains in cases where LSD-first solvers have precisions either too low (e.g. LSD-8) or

too high (e.g. LSD-32) to suit the exemplary linear systems in this thesis.

In the future, I will extend our analysis to more iterative methods, including gradient

descent and Krylov subspace methods. I foresee that MSD-first stochastic gradient

descent with digit stability declaration would be of particular interest to the deep

learning community. I am also keen to adapt my proposal to Newton’s method,

for which I expect to achieve substantial performance gains due to its quadratic

convergence.
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Conclusion and Future Work

6.1 Summary of Contributions

Applications requiring arbitrary precision especially those featuring iterative algo-

rithms that converge to solutions, are becoming increasingly popular. The precision

of an iterative solver’s datapath built using conventional arithmetic operators can be

either overly high for the problem being solved or too low for the result to converge

at all. To solve this problem, this thesis therefore asked:

• Can a fixed-sized datapath be used to compute results to arbitrary

precision while still achieving comparable performance versus con-

ventional arithmetic equivalents?

In Chapter 3, I proposed a constant-compute-resource hardware architecture named

ARCHITECT that iterates exactly to arbitrary accuracies. I employed on-

line arithmetic to start computation from MSD first and a Cantor pairing function

for digit storage, allowing iteration count and precision to be increased simulta-

neously. A library of arbitrary-precision arithmetic operators—an ARCHITECT
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adder, multiplier and divider—was built to enable the construction of datapaths

for different iterative methods. ARCHITECT was evaluated on FPGAs using

the Jacobi and Newton methods in order to verify its accuracy and establish its

scalability and suitability in numerical analysis. These benchmarks highlighted the

key benefits of my approach: removing the burden of having to determine and fix

the precision of arithmetic operators in advance. Experimental results revealed up-

to 15× look-up table (LUT) and 31× flip-flop (FF) reductions over conventional

parallel-in serial-out arithmetic, along with 75× LUT and 77× FF decreases versus

the state-of-the-art online arithmetic implementation, when executing 100 Jacobi

iterations. For Newton’s method run for 10 iterations, these factors were 4.9, 8.7,

11 and 18, respectively.

The hardware presented in Chapter 3 achieves exact numeric computation by using

online arithmetic to allow the refinement of results from earlier iterations over time,

avoiding rounding error. However, this technique generates more LSDs than strictly

necessary, since not all approximants contribute equally to an algorithm’s overall

error. I therefore asked:

• Can the locations of unimportant LSDs in early approximants be

inferred, excluding them from calculation to increase performance,

while still obtaining arbitrary-accuracy results?

In Chapter 4, I proposed the don’t-care digit elision technique to address this

question. I formalised the relationship between matrix conditioning and the number

of digits required to be computed in each iteration via the forward error analysis.

This technique is applicable to only stationary iterative methods which represent a

large class of commonly used methods, such as Jacobi, Gauss-Seidel and successive

over-relaxation (SOR). By analysing a bound on the rounding error that can be
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introduced in each approximant, I showed that a large number of don’t-care digits

can be elided while still allowing arbitrary accuracy to be obtained. First, a theorem

for the optimal error distribution of approximants was presented. Forward error

analysis was used to determine the number of additional LSDs to be computed

per iteration. A second theorem was presented to confirm that arbitrary-accuracy

solutions will still be achieved when eliding don’t-care digits. This proposal was

evaluated using the Jacobi method. For the solution of a set of representative linear

quations, elision of don’t-care digit calculation led to a geometric mean 21× speedup

versus my vanilla arbitrary-precision solvers. Knowledge of don’t-care digit locations

allows us to eliminate the need to revisit and refine earlier approximants, leading to

an up-to 25× memory footprint reduction.

Along with insignificant LSDs, in numerical iterative computation, later approxi-

mants generally feature stable MSDs. When using nonredundant number systems,

cases arise where low-magnitude perturbations cause large numbers of digits to

change between iterations via carry propagation. By introducing redundancy into

our number representation, we can prevent the occurrence of such a scenario. LSDs

are able to correct errors introduced in digits of higher significance, further allowing

those MSDs to be declared as don’t-change digits. This observation led to the third

research question I aimed to address:

• How is it possible to avoid recomputing digits of later approximants

that are identical to those of previous approximants?

In Chapter 5, two don’t-change digit elision techniques were proposed. To begin,

properties of online arithmetic were employed to allow the generation of those digits

to be skipped in any iterative method, increasing efficiency. Versus my vanilla

arbitrary-precision iterative solvers, I achieved up-to 16× performance speedups
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and 1.9× memory savings for the Jacobi and Newton benchmarks. A benefit of this

proposal is its applicability to any iterative method, however, it is unfortunately

unable to infer digit stability.

Use of interval and forward error analyses allows us to prove that digits of high

significance will become stable when computing the approximants of systems of

linear equations using stationary iterative methods. Unlike the E-method [32], the

proposed digit-stability analysis holds for any stationary iterative method, and is of

benefit to linear systems of any conditioning. I demonstrated efficiency over previous

ARCHITECT and conventional (LSD-first) arithmetic implementations using a

Jacobi solver with don’t-care and stable digit elision. Versus the Jacobi solver using

don’t-care and the generic don’t-change digit elision, I achieved speedups of 2.0-

2.2× for the solution of a range of representative linear systems. Versus LSD-first

solvers with over-budgeted precisions, my proposal was competitive when solving

well conditioned matrices. Against LSD-first solvers with under-budgeted precisions,

my proposal was competitive when solving ill-conditioned systems.

6.2 Future Work

I have identified several interesting directions for future work based on that con-

ducted for this thesis.

(i) Don’t-care and digit-stability analyses for other iterative algorithms.

Since the present don’t-care and digit-stability analyses are algorithm-specific,

further analysis is required to similarly optimise other iterative algorithms.

For example, I expect that arbitrary-precision stochastic gradient descent with

don’t-care and stable digit elision would be beneficial for neural network train-
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ing. Newton’s method with both optimisations enabled is expected to enable

substantial performance gains due to its quadratic convergence.

(ii) ARCHITECT in ASIC. While I prototyped designs on FPGAs owing to the

costs and lead times associated with full-custom implementation, I note that

these devices are optimised for the implementation of conventional arithmetic

operators. In particular, FPGAs’ hardened carry chains suit the construction

of fast LSD-first adders. At present, ARCHITECT cannot take advantage

of such structures. I am confident that, should ARCHITECT see application-

specific integrated circuit (ASIC) implementation, however, more competitive

performance would be achievable.

(iii) High-radix ARCHITECT. Higher-radix (r > 2) online arithmetic could

instead (or additionally) be employed to exploit high-performance adders, in-

cluding on FPGAs, which I anticipate would lead to further speedups.

(iv) Don’t-care digit elision: time budget versus digit budget. Given The-

orem 4.1, don’t-care digits can be excluded from iterative calculations. How-

ever, the generation time of each digit is different: the lower the significance

of a given digit, the longer it takes to be computed. A time-minimising digit

trajectory may be more beneficial than a digit-minimising one. Therefore, it

would be interesting to minimise time for generation of all non-elided digits

by changing the formulation of the proposed theoretical analysis.

(v) Floating-point ARCHITECT. The implementations presented and evalu-

ated in this thesis utilise fixed-point arithmetic. ARCHITECT’s principles

are, however, generic, and can be employed for the construction of floating-

point operators supporting arbitrary-precision mantissas. Arbitrary-precision

computing using floating-point number representations would open fruitful re-

search opportunities that deserve future investigations.
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(vi) High-level synthesis of ARCHITECT datapaths. Finally, I envisage

that the arbitrary-precision computation enabled by ARCHITECT could be

combined with high-level synthesis (HLS) to enable faster hardware specialisa-

tion. Although FPGAs are suitable for the implementation of custom-precision

datapaths, HLS tools only support finite-precision fixed-point or floating-point

data types. It would be interesting to present a solution for arbitrary-precision

arithmetic in HLS, allowing the use of arbitrary precisions for input arguments

and return values.

6.3 Final Remarks

Through the work presented in this thesis, I have achieved significant advancement

in the combination of online arithmetic and iterative algorithms to enable efficient

arbitrary-precision iterative calculation in hardware. Several novel techniques for

the elision of don’t-care and don’t-change digits were introduced for iterative calcu-

lations through the use of forward error analysis and redundant number systems. I

demonstrated that hardware for arbitrary-precision iterative numerical algorithms

can exhibit efficiency over traditional arithmetic equivalents where the latter’s preci-

sions are either under- or over-budgeted for the problem at hand. The contributions

of this thesis can open up possibilities to conduct new avenues of research in dig-

ital computing, such as more advanced digit elision techniques, arbitrary-precision

floating-point arithmetic and these combined with high-level synthesis.
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[54] M. Iştoan and B. Pasca. Flexible Fixed-point Function Generation for FPGAs.

In IEEE Symposium on Computer Arithmetic, 2017.

[55] G. Jaberipur. Arithmetic Circuits for DSP Applications. Wiley Online Library,

2017.

[56] M. Jaiswal and H. So. Area-Efficient Architecture for Dual-Mode Double

Precision Floating Point Division. IEEE Transactions on Circuits and Systems

I: Regular Papers, 64(2), 2017.

[57] K. Javeed, X. Wang, and M. Scott. Serial and Parallel Interleaved Modular

Multipliers on FPGA Platform. In IEEE International Conference on Field

Programmable Logic and Applications, 2015.

[58] W. K. Jenkins, M. A. Soderstrand, and C. Radhakrishnan. Historical Patterns

of Emerging Residue Number System Technologies During The Evolution of

Computer Engineering and Digital Signal Processing. In IEEE Symposium on

Circuits and Systems, 2018.

[59] F. Johansson. Arb: Efficient Arbitrary-precision Midpoint-radius Interval

Arithmetic. IEEE Transactions on Computers, 66(8), 2017.

[60] M. Joldes, J.-M. Muller, and V. Popescu. On The Computation of The Re-

ciprocal of Floating Point Expansions Using An Adapted Newton-Raphson



128 BIBLIOGRAPHY

Iteration. In IEEE International Conference on Application-Specific Systems,

Architectures and Processors, 2014.

[61] G. B. Joseph and R. Devanathan. Design and Analysis of Online Arithmetic

Operators for Streaming Data in FPGAs. International Journal of Applied

Engineering Research, 11(3), 2016.

[62] G. B. Joseph and R. Devanathan. Algorithms for Multiplierless Multiple Con-

stant Multiplication in Online Arithmetic. Circuits, Systems, and Signal Pro-

cessing, 37(11), 2018.

[63] B. Jovanovic, R. Jevtic, and C. Carreras. Binary Division Power Models for

High-level Power Estimation of FPGA-based DSP Circuits. IEEE Transac-

tions on Industrial Informatics, 10(1), 2014.

[64] A. Kaivani and S. Ko. Floating-point Butterfly Architecture Based on Bi-

nary Signed-digit Representation. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 24(3), 2015.

[65] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM,

1995.

[66] C. T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

[67] W. Koh, R. Ahmad, S. Jaaman, and J. Sulaiman. Pricing Asian Option

by Solving Black-Scholes PDE using Gauss-Seidel Method. In International

Conference on Computing, Mathematics and Statistics, 2019.

[68] A. Landy and G. Stitt. Revisiting Serial Arithmetic: A Performance and

Tradeoff Analysis for Parallel Applications on Modern FPGAs. In IEEE Sym-

posium on Field-Programmable Custom Computing Machines, 2015.

[69] K. Lange. Optimization. Springer, 2004.



BIBLIOGRAPHY 129

[70] D. Lau, A. Schneider, M. D. Ercegovac, and J. Villasenor. FPGA-based Struc-

tures for On-line FFT and DCT. In IEEE Symposium on Field-Programmable

Custom Computing Machines, 1999.

[71] D. Lau, A. Schneider, M. D. Ercegovac, and J. Villasenor. A FPGA-based Li-

brary for On-line Signal Processing. Journal of VLSI signal processing systems

for signal, image and video technology, 28(1-2), 2001.

[72] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521(7553),

2015.

[73] H. Li, J. J. Davis, J. Wickerson, and G. A. Constantinides. ARCHITECT:

Arbitrary-precision Constant-hardware Iterative Compute. In IEEE Interna-

tional Conference on Field Programmable Technology, 2017.

[74] H. Li, J. J. Davis, J. Wickerson, and G. A. Constantinides. Digit Elision for

Arbitrary-accuracy Iterative Computation. In IEEE Symposium on Computer

Arithmetic, 2018.

[75] H. Li, J. J. Davis, J. Wickerson, and G. A. Constantinides. ARCHITECT:

Arbitrary-precision Hardware with Digit Elision for Efficient Iterative Com-

pute. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

2019.

[76] J. Liu and Q. Liu. Speed and Resource Optimization of BFGS Quasi-Newton

Implementation on FPGA Using Inexact Line Search Method for Neural Net-

work Training. In IEEE International Conference on Field-Programmable

Technology, 2018.

[77] Q. Liu, J. Liu, R. Sang, J. Li, T. Zhang, and Q. Zhang. Fast Neural Net-

work Training on FPGA Using Quasi-newton Optimization Method. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 26(8), 2018.



130 BIBLIOGRAPHY

[78] Q. Liu, R. Sang, and Q. Zhang. FPGA-based Acceleration of Davidon-

Fletcher-Powell Quasi-Newton Optimization Method. Transactions of Tianjin

University, 22(5), 2016.

[79] S. Liu, G. Mingas, and C.-S. Bouganis. An Unbiased MCM FPGA-based

Accelerator in The Land of Custom Precision Arithmetic. IEEE Transactions

on Computers, 66(5), 2016.

[80] W. Liu, J. Li, T. Xu, C. Wang, P. Montuschi, and F. Lombardi. Combin-

ing Restoring Array and Logarithmic Dividers into An Approximate Hybrid

Design. In IEEE Symposium on Computer Arithmetic, 2018.

[81] M. Lu. Arithmetic and Logic in Computer Systems. Wiley Online Library,

2004.

[82] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviy-

chuk. Non-smooth Newton Methods for Deformable Multi-body Dynamics.

ACM Transactions on Graphics, 38(5), 2019.

[83] T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric Algebraic

Multigrid Based on Local Approximate Ideal Restriction (` AIR). SIAM Jour-

nal on Scientific Computing, 40(6), 2018.

[84] R. McIlhenny and M. D. Ercegovac. On The Design of An On-line FFT

Network for FPGA’s. In IEEE Asilomar Conference on Signals, Systems, and

Computers, 1999.

[85] M. R. Meher, C. C. Jong, and C.-H. Chang. A High Bit Rate Serial-serial

Multiplier with On-the-fly Accumulation by Asynchronous Counters. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 2011.



BIBLIOGRAPHY 131

[86] Michele Benzi and Thomas M. Evans and Steven P. Hamilton and Massimil-

iano Lupo Pasini and Stuart R. Slattery. Analysis of Monte Carlo-accelerated

Iterative Methods for Sparse Linear Systems. Numerical Linear Algebra with

Applications, 24(3), 2017.

[87] E. K. Miller. A Computational Study of the Effect of Matrix Size and

Type, Condition Number, Coefficient Accuracy and Computation Precision

on Matrix-solution Accuracy. In IEEE Antennas and Propagation Society In-

ternational Symposium, 1995.

[88] E. Mosanya and E. Sanchez. A FPGA-based Hardware Implementation of

Generalized Profile Search Using Online Arithmetic. In ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays, 1999.

[89] MPFR. The GNU MPFR Library. http://www.mpfr.org, 2017.

[90] J.-M. Muller. Some Characterizations of Functions Computable in On-line

Arithmetic. IEEE Transactions on Computers, 43(6), 1994.

[91] M. Muresan. A Concrete Approach to Classical Analysis. Springer, 2009.

[92] W. G. Natter and B. Nowrouzian. Digit-serial Online Arithmetic for High-

speed Digital Signal Processing Applications. In IEEE Asilomar Conference

on Signals, Systems and Computers, 2001.

[93] G. Ndour, T. T. Jost, A. Molnos, Y. Durand, and A. Tisserand. Evaluation of

Variable Bit-width Units in A RISC-V Processor for Approximate Computing.

In ACM International Conference on Computing Frontiers, 2019.

[94] Y. Nie, Y. Shen, Q. Chen, and Y. Xiao. Hybrid-Precision Arithmetic for

Numerical Orbit Integration towards Future Satellite Gravimetry Missions.

Advances in Space Research, 2020.

http://www.mpfr.org


132 BIBLIOGRAPHY

[95] S. F. Obermann and M. J. Flynn. Division Algorithms and Implementations.

IEEE Transactions on Computers, 46(8), 1997.

[96] R. M. Owens. Compound Algorithms for Digit Online Arithmetic. In IEEE

Symposium on Computer Arithmetic, 1981.

[97] R. M. Owens. Techniques to Reduce The Inherent Limitations of Fully Digit

On-line Arithmetic. IEEE Transactions on Computers, 100(4), 1983.

[98] S. Rajagopal and J. R. Cavallaro. On-line Arithmetic for Detection in Digital

Communication Receivers. In IEEE Symposium on Computer Arithmetic,

2001.

[99] S. Rajagopal and J. R. Cavallaro. Truncated Online Arithmetic with Applica-

tions to Communication Systems. IEEE Transactions on Computers, 55(10),

2006.

[100] N. Revol and F. Rouillier. Motivations for An Arbitrary Precision Interval

Arithmetic and The MPFI Library. Reliable computing, 11(4), 2005.

[101] A. Roldao-Lopes, A. Shahzad, G. A. Constantinides, and E. C. Kerrigan. More

Flops or More Precision? Accuracy Parameterizable Linear Equation Solvers

for Model Predictive Control. In IEEE Symposium on Field Programmable

Custom Computing Machines, 2009.

[102] K. Shi. Design of Approximate Overclocked Datapath. Imperial College Lon-

don, 2015.

[103] K. Shi, D. Boland, and G. A. Constantinides. Accuracy-Performance Tradeoffs

on An FPGA through Overclocking. In IEEE International Symposium on

Field-programmable Custom Computing Machines, 2013.



BIBLIOGRAPHY 133

[104] K. Shi, D. Boland, and G. A. Constantinides. Efficient FPGA Implementa-

tion of Digit Parallel Online Arithmetic Operators. In IEEE International

Conference on Field Programmable Technology, 2014.

[105] K. Shi, D. Boland, E. Stott, S. Bayliss, and G. A. Constantinides. Datapath

Synthesis for Overclocking: Online Arithmetic for Latency-accuracy Trade-

offs. In ACM/EDAC/IEEE Design Automation Conference, 2014.

[106] A. Skaf, M. Ezzadeen, M. Benabdenbi, and L. Fesquet. On-Line Adjustable

Precision Computing. In IEEE International Conference on Design & Tech-

nology of Integrated Systems Iin Nanoscale Era, 2019.

[107] J. Sun, G. D. Peterson, and O. O. Storaasli. High-performance Mixed-precision

Linear Solver for FPGAs. IEEE Transactions on Computers, 57(12), 2008.

[108] N. Takagi, T. Asada, and S. Yajima. Redundant CORDIC Methods with A

Constant Scale Factor for Sine and Cosine Computation. IEEE Transactions

on Computers, 40(9), 1991.

[109] A. Tenca and M. Ercegovac. A High-Radix Multiplier Design for Variable

Long-precision Computations. In IEEE Asilomar Conference on Signals, Sys-

tems and Computers, 1997.

[110] S. Timarchi, N. Akbarzadeh, and A. A. Hamidi. Maximally Redundant High-

radix Signed-digit Residue Number System. In IEEE International Symposium

on Computer Architecture and Digital Systems, 2015.

[111] K. S. Trivedi and M. D. Ercegovac. On-line Algorithms for Division and

Multiplication. IEEE Transactions on Computers, 100(7), 2006.

[112] P. Tu and M. D. Ercegovac. Design of On-line Division Unit. In IEEE Sym-

posium on Computer arithmetic, 1989.



134 BIBLIOGRAPHY

[113] C. F. Van Loan and G. H. Golub. Matrix Computations. Johns Hopkins

University Press, 1983.

[114] J. Villalba, T. Lang, and J. Hormigo. Radix-2 Multioperand and Multiformat

Streaming Online Addition. IEEE Transactions on Computers, 61(6), 2011.

[115] C. Vuik. Krylov Subspace Solvers and Preconditioners. ESAIM: Proceedings

and Surveys, 63, 2018.

[116] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K. Cheung,

and G. A. Constantinides. Deep Neural Network Approximation for Custom

Hardware: Where We’ve Been, Where We’re Going. ACM Computing Surveys,

52(2), 2019.

[117] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital Systems

Designers. 1982.

[118] O. Watanuki and M. D. Ercegovac. Floating-point On-line Arithmetic: Algo-

rithms. In IEEE Symposium on Computer Arithmetic, 1981.

[119] O. Watanuki and M. D. Ercegovac. Error Analysis of Certain Floating-point

On-line Algorithms. IEEE Transactions on Computers, C-32(4), 1983.

[120] D. M. Young. Iterative Solution of Large Linear Systems. Elsevier, 2014.

[121] D. Yuan and X. Zhang. An Overview of Numerical Methods for The First

Kind Fredholm Integral Equation. SN Applied Sciences, 1(10), 2019.

[122] Y. Zhao, J. Wickerson, and G. A. Constantinides. An Efficient Implementa-

tion of Online Arithmetic. In IEEE International Conference on Field Pro-

grammable Technology, 2016.


	Abstract
	Acknowledgements
	Introduction
	Thesis Outline
	Published Work

	Background
	Iterative Methods for Linear and Nonlinear Equations
	Basic Concepts
	Iterative Methods for Linear Equations
	Iterative Methods for Nonlinear Equations
	Hardware Implementations of Iterative Methods

	Arbitrary-precision Computing
	Software Libraries
	Hardware Implementations

	Arithmetic Circuits with Different Number Systems
	Traditional Number Systems
	Redundant Number Systems
	Hardware Implementations

	Online Arithmetic
	Basic Algorithms
	Related Work in Online Arithmetic
	Advantages and Disadvantages of Online Arithmetic


	Arbitrary-precision Constant-hardware Iterative Compute
	Overview
	Notation
	Proposed ARCHITECTure
	Digit-vector Storage
	Arbitrary-precision Operators
	Digit-scheduling Pattern
	Control Logic
	Accuracy Bounds
	Compute Time
	Digit-parallel Addition Optimisation

	Benchmarks
	Jacobi Method
	Newton's Method

	Evaluation
	Complexity Analysis
	Experimental Particulars
	Empirical Performance Comparison
	Scalability Analysis
	Quantitative Comparison

	Conclusion

	Don't-care Digit Elision
	Overview
	Notation
	Theoretical Analysis
	Implementation
	Control Logic
	Memory

	Evaluation
	Performance Comparison
	Scalability Comparison

	Conclusion

	Don't-change Digit Elision
	Overview
	Notation
	Method-agnostic Don't-change Digit Elision
	Theoretical Analysis
	Implementation
	Evaluation
	Combining Don't-change and Don't-care Digit Elision
	Performance Improvement

	Specialised Don't-change Digit Elision for Stationary Iterative Methods
	Theoretical Analysis
	Prototype Implementation
	Evaluation

	Conclusion

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Final Remarks

	Bibliography

