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Abstract 

This thesis aims to develop strategies for integrating frequent onload data obtained from 

permanently installed monitoring systems with probabilistic structural integrity methods in 

order to produce real-time, uncertainty-quantified diagnostics and prognostics for fatigue 

damage. The proposed strategy is broadly divided into two phases: defect detection, and 

defect growth monitoring.  

For the defect detection phase, a framework for evaluating the detection capabilities of PIMS 

is first proposed. This is essential to qualifying PIMS for industrial applications, and forms 

the basis of quantifying its value for structural integrity assessment. The framework is then 

utilised to address the well-recognised compromise between area coverage and sensitivity 

of PIMS. By combining information on the spatial sensitivity of PIMS and the spatial 

uncertainty of defect location, the detection capabilities of specific combinations of 

monitoring systems and components can be quantitatively compared. 

A novel approach to incorporate measurements from PIMS into structural integrity 

assessment is subsequently proposed. The ability of PIMS to recursively eliminate the 

possibility of there being substantial damage in the monitored component is demonstrated, 

which proves to be an effective way of maintaining confidence in its structural integrity. This 

framework will therefore help promote the adoption of PIMS for damage detection in suitable 

engineering applications.  

For the defect growth monitoring phase, the ability of PIMS to produce accurate rate 

measurements is exploited to perform remnant life predictions using the Failure Forecast 

Method (FFM). A statistical analysis comparing the conventional inspection-based approach 

to the FFM approach is performed, demonstrating the ability of the FFM approach to estimate 

more accurately the remnant life of the monitored component. A novel method for using the 

FFM under non-constant amplitude loading conditions is also developed and validated. This 

enables the use of the FFM in more complex loading conditions, thereby advancing its 

potential uses in real-life applications.  
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1  Introduction 

1.1 Background and motivation of research 

Fatigue damage is one of the leading causes of failure in engineering structures [1], [2]. 

Components subjected to repeated loading are prone to the initiation and propagation of 

fatigue cracks, which can potentially lead to catastrophic failures that are costly and 

hazardous to repair [3]–[5]. Thus, assessing and managing the structural integrity of such 

components in real-life engineering applications is of great importance.  

A significant amount of research is conducted in attempt to understand and predict the 

accumulation of fatigue damage. This ranges from fundamental understanding of the physical 

phenomenon for various materials [6], [7] to the development of empirical models and 

computational simulations that are used for the analysis of complex geometries and loading 

conditions [8], [9]. Despite such efforts, accurately predicting the fatigue life of an in-service 

engineering component still remains a difficult task. The progression of fatigue damage is 

strongly dependent on microstructural imperfections, loading conditions and environmental 

factors which are often not precisely known in advance. This results in significant 

uncertainties when predicting the progression of fatigue damage, making it very challenging 

to accurately estimate the fatigue life of a specific component.  

Conventionally, conservative estimates have been used to overcome uncertainties in fatigue 

damage progression when managing engineering structures. In order to provide confidence 

that the possibility of failure is sufficiently low, conservatism in input parameters based on 

standardised factors of safety are used. Such conservatism in input parameters aggregates 

and ultimately results in largely conservative estimates in the life estimate. Standards and 

procedures on how to obtain sufficiently conservative estimates has been well established in 

multiple industries [10]–[12].  
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As industries strive to continually improve and optimise the life-cycle management of 

engineering structures, moving towards probabilistic approaches in structural integrity 

assessment becomes increasingly necessary. While conservative estimates provide 

confidence in structural integrity, the level of conservatism is based on engineering 

judgement, therefore making the level of confidence in the estimate difficult to quantify. In 

comparison, the use of probabilistic methods makes it possible to quantify the margins of 

safety and thus confidence in the estimates produced, which in turn would allow for better-

informed decisions in the management of engineering structures. Consequently, research 

and developments in implementing probabilistic approaches in structural integrity 

assessment and life estimates has become increasingly prevalent [13]–[15].  

In addition to initial estimates of fatigue life, regular in-service inspections using non-

destructive evaluation (NDE) techniques are also typically performed for critical engineering 

components in order to be confident of its structural integrity. Results from an inspection can 

be used to assess and update the prior estimates of the structural integrity of the component. 

This would ultimately inform the decision on whether any remedial actions are required and 

timing of the next inspection. Procedures of doing so in a consistent and thorough manner 

have been developed worldwide and in use for multiple engineering applications [16]–[18].  

With advances in technology, it is becoming increasingly viable and of commercial interest to 

use permanently installed monitoring systems (PIMS) to monitor engineering components in 

real-time; this is commonly referred to as structural health monitoring (SHM). Near-

continuous data collected by PIMS has the potential to provide information on the damage 

state of the monitored component while it is in operation. Notably, incorporating SHM has 

the potential benefit of reducing the need of in-service inspections while assuring the 

structural integrity of the monitored component to the same confidence level. This is 

especially valuable for components that are difficult and hazardous to access and inspect.  

In order to implement PIMS for detecting and monitoring fatigue damage in real-life 

applications, frameworks for interpreting data collected from PIMS for use in probabilistic 

structural integrity assessment needs to be developed. Given the fundamental differences 

between data obtained from in-service inspections and data obtained in real-time from PIMS, 

there are both great challenges and promising opportunities in using PIMS for localised 

defect detection and monitoring to provide better-informed estimates in structural integrity 

and remaining life.  
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1.2 Project aims and thesis outline 

The overall aim of this research project is to develop strategies for integrating frequent 

onload data obtained from PIMS with probabilistic structural integrity methods in order to 

produce real-time, uncertainty-quantified diagnostics and prognostics for fatigue damage. 

This research will seek to investigate the use of PIMS for localised defect monitoring in two 

main phases of fatigue damage. First is the use of PIMS for detecting the initiation of a 

macroscopic defect; second is the use of PIMS to track and monitor the growth of an identified 

defect. The frameworks and methods developed in this research can be deployed in a wide 

range of applications to provide valuable understanding on the feasibility and quantified 

benefits of using PIMS for localised defect monitoring from the perspective of managing the 

lifecycle of engineering components.  

This thesis will be structured as follows: 

In Chapter 2, the background theory of the fundamental mechanisms of fatigue damage is 

introduced, followed by a review of engineering approaches to modelling and quantifying 

fatigue damage. Subsequently, a review of the current state-of-the-art in non-destructive 

techniques that are suitable for SHM is provided.  

Chapter 3 proposes a framework to quantify the detection capabilities of PIMS. The chapter 

begins by describing the theory of quantifying the detection capability of NDE inspection 

techniques. The differences in evaluating the uncertainty of monitoring results from PIMS as 

opposed to NDE inspection will then be discussed. A hypothetical example based on 

computational simulations is used to demonstrate the proposed framework. This would form 

the foundations of quantifying the benefits of using PIMS for probabilistic structural integrity 

assessments. 

Having established a framework for quantifying the detection capabilities of PIMS, Chapter 4 

then uses the framework to address the well-recognised compromise between area coverage 

and sensitivity for PIMS, evaluating the probability of detection of PIMS with respect to the 

spatial uncertainty in defect initiation. Example components with varying degree of 

confidence in defect location are to be monitored with PIMS with varying degree of area 

coverage and sensitivity. The results for each sensor-component combination are then 

compared using quantified performance parameters, thus demonstrating the value of the 

framework in optimising the design of PIMS and evaluating the efficacy of using PIMS for life-

cycle management.   
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Chapter 5 proceeds to develop a framework for quantifying the value of PIMS when 

integrated in structural integrity assessment from the point of view of managing the life cycle 

of a component. Established mathematical tools for probabilistic analysis in structural 

integrity assessment is first described.  A framework for implementing data from PIMS for 

structural integrity assessment is then proposed. Subsequently, a comparison between 

managing the life cycle of a component with and without PIMS is made using a simulated 

example. 

With the use of PIMS to detect an initiated defect considered, Chapter 6 proceeds to evaluate 

the potential of using PIMS to monitor and track the growth of an identified defect. A recently 

developed approach using rate-based measurements to perform remnant life predictions is 

first described [19]. This approach will then subsequently be expanded for more complex 

fatigue loading conditions. To demonstrate the feasibility and benefits of using a rate-based 

approach to perform remnant life predictions, a statistical analysis based on laboratory 

experiments is developed and performed. A comparison with the conventional inspection-

based approach will also be made.  

Finally, Chapter 7 provides the conclusion and summary of main contributions of this 

research, together with suggestions for future work.  
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2 Literature review  

This chapter provides a theoretical background and literature review on the fields of study 

that are relevant to the research project. The chapter will be divided into two sections, 

discussing the background theory of fatigue damage and the state-of-the-art of SHM 

technologies for monitoring fatigue damage. 

2.1 Theory of fatigue damage  

As early as the 19th century, it has been observed that materials fail under repeated loading, 

even if the loading results in stresses below its yield strength [20]. Due to its great 

implications on engineering design, the phenomenon of fatigue damage has been 

comprehensively studied across all phases from initiation of microscopic damage to the 

propagation of macroscopic cracks. This section describes the fundamental mechanisms of 

metal fatigue damage and the different engineering approaches to evaluating and managing 

the progression of fatigue damage. 

2.1.1 Mechanisms of metal fatigue 

As summarised from [7], [21], fatigue damage progression can be divided into 4 phases as 

shown in Figure 2.1. These phases will be discussed in the following subsections. Note that 

Phase 3 and 4 are discussed before Phase 2 as it is simpler to introducing key concepts in 

Phase 3 and 4 before explaining Phase 2.  

 
Figure 2.1 Flowchart summarising the progression of fatigue damage.  
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2.1.1.1 Phase 1: Initiation of microscopic fatigue damage  

The initiation of microstructural damage and cracks is a complex problem with great 

dependence on the microstructure of the specific material of interest. Detailed description 

and review on the current state-of-the-art can be found in [21], [22]; a brief description 

sufficient for the scope of this research is given here. 

Fatigue damage originates from the accumulation of permanent microscopic changes as a 

component is repeatedly loaded and unloaded. During the initial loading cycles, surface 

grains may plastically deform locally even when subjected to nominally elastic loads. This 

type of deformation is known as microplasticity and is caused by slipping within the grains 

of the material. Slipping is the movement of dislocations along crystallographic planes of a 

grain [23].  Slipping can only occur at defined slip planes of a grain, hence it occur favourably 

at grains where the orientation of grains aligns with the plane of maximum shear stress [24]. 

Slipping via cyclic loading results in extrusions and intrusions as shown in Figure 2.2. This 

characteristic form of dislocation structure, known as persistent slip bands, then result in 

stress concentrators at the surface of the material and therefore become preferential sites for 

microscopic cracks to form; an example image of this taken with a scanning electron 

microscope is shown in Figure 2.3. With successive cyclic loading, these microscopic cracks 

will then continue to coalesce with persistent slip bands formed at neighbouring grains and 

grow along the grain boundaries of the material.  

 (a)   (b)  

Figure 2.2 Formation of slip lines with (a) monotonic loading, and (b) cyclic loading [23] 

 

 

Figure 2.3 Scanning electron microscope image of an initiated fatigue crack from persistent slip bands. 
Image modified from [25]. 
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2.1.1.2 Phase 3 and 4: Formation and growth of long macroscopic cracks and 

final fracture 

As microscopic defects continue to grow, they eventually become macroscopic in size. At this 

phase of fatigue damage, global stress-strain field analyses can now be used to evaluate crack 

growth behaviour. There are multiple modes of loading that will result in crack growth, 

namely opening (Mode I), shearing (Mode II) and tearing (Mode III) mode. These different 

modes of crack growth are illustrated in Figure 2.4. The discussion hereon will focus on the 

most commonly considered Mode I loading.  

 
Figure 2.4 Schematic of the different modes of loading resulting in crack growth. [23] 

At the stage of long crack growth, crack growth characteristics can simply be described by 

the stress intensity factor range, ∆𝐾, and maximum stress intensity factor, 𝐾𝑚𝑎𝑥, assuming 

linear elastic conditions. Stress intensity factor, 𝐾 is defined as, 

𝐾 = 𝑌𝑆√𝑎 Eq. 2.1 

𝑆 = Loading stress perpendicular to direction of crack growth 

𝑌 = Geometry factor  

𝑎 = Crack length 

 

It has been proposed that any combination of loading, crack length and geometry for the same 

material that results in the same ∆𝐾  and 𝐾𝑚𝑎𝑥  value would have identical crack growth 

behaviour. This is known as the similitude hypothesis [26] and it is widely regarded to hold 

true in the phase of long crack growth.  

The phase of long fatigue crack growth is generally divided into three stages as illustrated in 

Figure 2.5. The differentiation between Stage I and Stage II crack growth is governed by the 

cyclic plastic zone size (i.e. the volume of the material near the crack tip that is plastically 

deformed under cyclic loading). The difference in plastic zone size would result in different 

microscopic failure modes that result in crack growth. Stage I crack growth is when the 

resulting cyclic plastic zone is smaller than the grain size, resulting in single-shear crack 
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growth as shown in Figure 2.6 (a). This gives a serrated crack surface as crack growth would 

be parallel to the slip plane of the grain ahead of the crack tip.  

 
Figure 2.5 Plot of the different stages of linear elastic long fatigue crack growth. 

 

Stage II crack growth is when the resulting cyclic plastic zone is larger than the grain 

diameter, resulting in duplex slip crack growth where slipping occurs simultaneously across 

multiple grains, resulting in transgranular crack growth; this is shown in Figure 2.6 (b). Here, 

crack growth is not governed by the orientation of the grain ahead of the crack tip, hence it 

grows perpendicular to the direction of applied load. Stage II crack growth can be described 

by the well-known Paris' Law, as discussed later.  

Stage III crack growth is generally of limited interest; the portion of fatigue life spent in this 

stage of fatigue crack propagation is negligibly small [27].  Ultimately, the size of the fatigue 

crack increases very rapidly and reaches a point where the component can no longer 

withstand the loading, reaching the fourth and final stage of defect progression. In 

engineering applications, failure assessment diagrams (FAD) as discussed later in Section 

2.1.2.4 is used to evaluate the final crack length and mode of failure.  
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 (a) (b)  

Figure 2.6 Schematic and example of Stage I (left) and Stage II (right) long crack growth [21]. Note the 
difference in length scales of the two images.  

2.1.1.3 Phase 2: Formation and growth of mechanically/physically small 

cracks 

The formation and growth of mechanically/physically small cracks can be seen as a transition 

between microscopic crack growth and long macroscopic crack growth. While global stress-

strain field analyses can still be used to evaluate crack growth at this phase, the similitude 

hypothesis does not hold. This breakdown of the similitude hypothesis is often attributed to 

the effect of crack closure, as briefly discussed below; a more detailed review on the topic can 

be found in [28].  

Crack closure is the phenomenon which the crack surfaces remain in contact despite the 

presence of far-field tensile loading. In the absence of extreme environment effects (e.g. high 

temperature, presence of corrosive fluids etc.), the most prominent effects are plasticity-

induced and roughness-induced crack closure. Plasticity-induced crack closure is a result of 

plastic deformation of material near the surface of a fatigue crack.  As fatigue cracks 

propagate, a wake of plastic-deformed material is formed as illustrated in Figure 2.7. 

Depending on the geometry, this deformation can result in the crack surfaces coming into 

contact before it is fully unloaded, thus reducing the effective tensile loading range at the 

crack tip. The significance of this effect will also depend on the loading ratio experienced by 

the component; the effect is much less pronounced when the component remains in tension 

throughout the loading cycle. 
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Roughness-induced crack closure originates from the fact that for lower stress intensity crack 

growth regimes, crack growth results in serrated crack surfaces as detailed in Section 2.1.1.2. 

Despite under nominally Mode I loading, other modes of loading as defined in the previous 

section may be present locally near the crack tip. This results in a mismatch between the 

asperities of the crack surface, which in turn enhances fatigue crack closure [21]. An 

illustration of this is shown in Figure 2.8.  

 

Figure 2.7 Schematic of the plastic zone ahead of the crack tip, and the plastic wake developed due to 
previous loading cycles. [21] 

 

 

Figure 2.8 Schematic of the mismatch of fracture surface asperity, resulting in crack closure. [29] 

For the above crack closure effects described to be apparent, the crack length would have to 

be sufficiently long to contain a fully developed plastic wake and sufficient crack surfaces. 

This means that there are smaller resistive forces to crack growth for cracks that are smaller 

in size. Since the propagation of a fatigue crack is a balance between the driving (i.e. 

mechanical load) and resistive (i.e. crack closure) forces, small cracks can grow at lower 

loadings or at greater growth rates for equal loadings compared to long cracks.  

Consequently, conventional long crack growth laws cannot be used to predict crack growth 

behaviour of short cracks, or at least corrections would have to be made. It is therefore 

important to acknowledge that short cracks can propagate at lower loads, and that it would 

often be quicker than what is predicted from conventional long crack growth analysis. This 
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can lead to non-conservative estimations, something that is undesirable for engineering 

applications.  

As this mechanically/physically small crack continue to propagate with more loading cycles, 

the effect of crack closure plateaus and eventually becomes independent of crack length. This 

is when the concept of similitude hypothesis holds, marking the end of Phase 2 and the 

beginning of Phase 3 as discussed earlier in Section 2.1.1.2. 

2.1.2 Engineering approach to evaluating fatigue damage 

From an engineering perspective, it is of great importance to quantitatively correlate the 

extent of fatigue loading (i.e. stress or strain amplitude) to the number of loading cycles 

before different phases of fatigue damage as defined earlier is reached. Overall, the total 

number of loading cycles to failure, 𝑁𝑓, is usually divided into two phases [30], 

𝑁𝑓 = 𝑁𝑖 + 𝑁𝑝 Eq. 2.2 

where 𝑁𝑖  is the number of cycles before a macroscopic fatigue crack initiates, and 𝑁𝑝 is the 

number of cycles before the initiated crack propagates through the component, resulting in 

final failure. Note that the definition of an “initiated defect” is ambiguous and has significantly 

different interpretations across research communities. From an engineering and NDE point 

of view, this is typically defined as a defect that has reached a detectable size, hence its 

definition would also depend on the detection capabilities of the NDE technique used.  

Depending on the extent of fatigue loading, the proportions of different phases of fatigue 

damage can vary significantly. For higher loading applications, also known as low cycle 

fatigue, few cycles are required before a microscopic and subsequently macroscopic crack is 

initiated, hence its fatigue life is dominated by fatigue crack propagation. On the other hand, 

for lower loading applications, also known as high cycle fatigue, fatigue life is instead 

dominated by the initiation of a macroscopic crack. Upwards of 99% of the fatigue life at 

lower loading applications can be spent at the initiation phase [31].  

Given the different proportions of damage phases, there are two main approaches to 

managing the progression of fatigue damage, namely the safe-life approach and the damage 

tolerant approach, are typically used. The following is a review of the two approaches.  

2.1.2.1 Safe-life approach to fatigue damage 

The overall concept of the safe-life (or total-life) approach is to ensure that fatigue cracks 

would not initiate and propagate to cause catastrophic failure after experiencing a predefined 
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number of loading cycles. The approach assumes that components are nominally defect-free 

prior to service, thus its resistance to fatigue crack initiation and propagation can be 

estimated with laboratory tests using nominally defect-free specimens of the same material 

under representative operating conditions [21].  

A further simplification that can be made for certain materials such as steel and titanium 

would be to design for infinite fatigue life.  It is generally accepted that for practical purposes, 

there exists a limiting loading extent at which a component made of these materials will in 

theory have infinite fatigue life [32]. While earlier phases of damage may still be reached, 

there is insufficient driving force for these defects to ultimately cause fracture. This material-

dependent loading limit is known as the fatigue limit. A component that will not experience 

loading amplitudes greater than its fatigue limit is therefore considered to have infinite 

fatigue life. 

Basquin first proposed the relationship between the cyclic load stress amplitude, 𝑆𝑎, and the 

cycles to failure, 𝑁𝑓 for elastic loading as plotted in Figure 2.9 and expressed as [33], 

𝑆𝑎 =
∆𝑆

2
= 𝑆𝑓

′(2𝑁𝑓)
𝑏

 Eq. 2.3 

∆𝑆 = Stress range 

𝑆𝑓
′ =  Fatigue strength coefficient (approximately the fracture strength in a monotonic 

tensile stress) 

𝑏 = Fatigue strength exponent 

 
Figure 2.9 Schematic plot of the relationship between loading amplitude and cycles to failure.  

Coffin [34] and Manson [35] later independently expanded the characterisation for a strain-

life approach, including the effect of plastic strain. This is applicable to low cycle fatigue 

applications where loading results in stresses close to or above the elastic limit of the 

component of interest. The relationship is expressed as, 
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∆𝜖

2
=

𝑆𝑓
′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜖𝑓

′(2𝑁𝑓)
𝑐
 Eq. 2.4 

∆𝜖 = Strain range 

𝐸 = Young’s modulus of the material 

𝜖𝑓
′ =  Fatigue ductility coefficient (approximately the fracture ductility in a monotonic 

tensile stress) 

𝑏 = Fatigue ductility exponent 

These models are later expanded for different materials and probabilistic analysis as 

summarised in [36], but the fundamental concept of plotting loading amplitude with number 

of loading cycles to failure remains the same.  

2.1.2.2 Damage-tolerant approach to fatigue damage 

Contrary to the safe-life approach, the damage-tolerant approach uses fracture mechanics 

and empirical crack growth laws to determine the fatigue life of a component containing a 

pre-existing defect. There are two ways of implementing the damage-tolerant approach to 

managing fatigue damage in engineering structures, depending on whether a defect is or is 

not found after an inspection. When defects are found following an inspection, the size of the 

defect may be obtained, and empirical crack growth laws may be used to estimate the growth 

of the identified defect and thus remaining life. Alternatively, when defects are not found, it 

can be conservatively assumed that the component contains the largest defect that may be 

missed by the inspection technique, and thus evaluating its remaining life.  

There are many empirical crack growth laws that can be used to evaluate the remnant life of 

a component containing a defect. The most well-known is the Paris’ crack growth law which 

very well describes the Stage II long crack growth regime as discussed in  

Section 2.1.1.2 [37]. The Paris’ law is described as, 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 Eq. 2.5 

𝑑𝑎

𝑑𝑁
= Crack growth per cycle of loading 

∆𝐾 = Stress intensity factor range 

𝐶 = Paris’ constant 

𝑚 = Paris’ exponent 

 

The model has since been adapted in numerous ways to account for Stage I and Stage III crack 

growth, together with the effect of load ratio, crack closure, fracture toughness of the material 
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and the threshold stress intensity of the material. A commonly-used equation for this is the 

Forman-Newman (or NASGRO) equation [38], which is, 

𝑑𝑎

𝑑𝑁
= 𝐶′ [(

1 − 𝑓(𝑅)

1 − 𝑅
)∆𝐾]

𝑚′ (1 −
∆𝐾𝑡ℎ

∆𝐾 )
𝑝

(1 −
∆𝐾

(1 − 𝑅)𝐾𝑐
)

𝑞 Eq. 2.6 

𝐶′, 𝑚′, 𝑝 and 𝑞 = Material constants 

𝑅 = Load ratio 

𝑓(𝑅) = Empirical crack opening polynomial function 

∆𝐾𝑡ℎ = Material stress intensity threshold 

𝐾𝑐 = Material fracture toughness  

 

The validity of the above theories depends on the validity of the small-scale yielding 

approximation, which assumes that the plastic zone size as defined in Section 2.1.1.2 is 

sufficiently small compared to other physical dimensions of the cracked body [39]. Under 

such conditions, linear elastic stress fields and thus the stress intensity factor can be used for 

fracture mechanics and crack growth analysis. For applications that result in greater 

plasticity ahead of the crack tip, more advanced methods such as the 𝐽-integral approach 

would be required [40], [41]. 

2.1.2.3 Effect of variable amplitude loading 

Cyclic loading experienced by engineering structures is rarely of constant amplitude and 

often varies over time. The simplest way to account for damage accumulation from variable 

amplitude loading is to assume linear damage accumulation, thus using Miner’s rule [42] to 

sum the contributions of individual loadings to evaluate the fatigue damage accumulated in 

a component. For a component that experiences cyclic loading of 𝑖 = 1, 2,… 𝑘  different 

amplitudes with each loading amplitude denoted as 𝑆𝑖, its damage state, 𝐷, is expressed as, 

𝐷 = ∑
𝑛𝑖

𝑁𝑓(𝑆𝑖)

𝑘

𝑖=1

 Eq. 2.7 

In the equation, 𝑛𝑖  is the number of loading cycles with amplitude 𝑆𝑖  the component 

experiences. 𝑁𝑓(𝑆𝑖)  is the number of loading cycles of amplitude 𝑆𝑖  the component can 

withstand before failing; this is typically obtained from the Basquin law. A component is 

considered to have failed when 𝐷 = 1.  

In order for Miner’s rule to be used, cycle counting algorithms which enables load cycles to 

be extracted from load histories are required. The most common cycle counting algorithm is 
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the Rainflow counting method proposed by Endo et al. [43]. Loading sequences are first 

reduced to relevant peaks and valleys, and the cycles of complete hysteresis loops are 

counted and recorded as demonstrated in Figure 2.10.  A guide to the counting method can 

be found in [44]. By using a stack-based implementation and recursive algorithm, Musallam 

[45] was able to further develop the Rainflow counting method for it to be used in real-time 

applications, which will be useful for SHM conditional monitoring. 

 
Figure 2.10 Schematic of the Rainflow cycle counting method. [45]  

 

However, it is important to note that the above linear damage accumulation model neglects the 

effect of load interactions, which can both accelerate or decelerate crack growth under variable 

loading conditions. It has been well known that the sequence of variable amplitude loading has a 

significant effect on fatigue life [46], and extensive research has been conducted on model and 

predict these effects [47]. For instance, a single overload would result in a large plastic zone ahead 

of the crack and hence blunting the crack tip [48]. This results in a reduction in crack growth rate 

and hence an increased fatigue life. Moreover, Elber has shown that due to residual  stress at the 

crack tip as a result of plastic deformation, the crack closure effect can play a significant role in 

the rate of crack propagation even when load cycles are fully in tension, and that it is one of the 

key contributors to the interaction effects of variable amplitude loading [49].  

There are cases of variable amplitude loading when the loading spectrum is stationary, meaning 

that the distribution of loading amplitudes remains constant over time; an example of this would 

be the wind loadings of wind turbines [50]. For such cases, it is possible to use the equivalent 

constant amplitude loading approach to account for the variation in load amplitudes and also load 

interaction effect as demonstrated in [51], [52] and illustrated in Figure 2.11.  
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Figure 2.11 Illustration of the equivalent constant amplitude loading approach, showing (a) the real 

loading, and (b) the equivalent constant amplitude loading. [51] 

2.1.2.4 Fitness-for-service criterion for the damage-tolerant approach  

When evaluating the remaining life of a defective component using the damage-tolerant 

approach, it is necessary to define a critical defect size above which the engineering 

component would no longer be considered fit for service. This is typically defined as either a 

loss of function or structural failure. An example of a loss of function would be a through-wall 

crack in a pressure vessel that results in leakage, but the presence of the crack would not 

cause a structural failure under loading. In this case, the critical defect size would simply be 

equal to the thickness of the wall. Such a component is said to be designed to leak-before-

break, or more generally designed to fail-safe.  

For components that are not designed with a fail-safe criterion, a fracture mechanics analysis 

is conducted to evaluate the critical defect size that would result in structural failure. Of the 

different methods available, standardised failure assessment diagrams (FAD) are typically 

used in the industry as schematically shown in Figure 2.12 [16], [53].   

 
Figure 2.12 Schematic illustration of a failure assessment diagram (FAD). 

 

The FAD plots a graphical relationship between the fracture parameter, 𝐾𝑟 , and the plastic 

collapse parameter, 𝐿𝑟, which are parameters that increases proportionally with increasing 

loading. The fracture parameter, 𝐾𝑟 , is the maximum stress intensity experienced by the 
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component normalised to the fracture toughness of the material. Under linear-elastic 

conditions, the component would fail by brittle fracture if 𝐾𝑟 ≥ 1.  

The plastic collapse parameter, 𝐿𝑟 , is the nominal reference stress experienced by the 

component near the defect normalised to the elastic limit (typically the 0.2% proof stress) of 

the material. One could imagine that as defect size increases, the amount of material that 

remains intact decreases, resulting in an increase in the reference stress. Hence, the 

component would fail by plastic collapse when the combination of defect size and loading 

results in excessive plastic deformation (𝐿𝑟 > 1).  

Any combination of defect size and loading for a component can be reduced to an operating 

point on the FAD; an example operating point is shown as an orange cross on Figure 2.12. 

The component is considered safe if the resulting operating point lies within the FAD line. 

The FAD can also be used to evaluate the maximum load which the defective component can 

withstand (dotted green line on Figure 2.12), as well as the maximum tolerable defect size 

for a given load (dashed blue line on Figure 2.12). The latter is of great importance to 

remaining life estimation using the damage-tolerant approach, as a critical defect size may be 

defined from this analysis. Note that the maximum loading possible that the component may 

experience should be used in the FAD analysis instead of the nominal load; an example of this 

would be extreme weather loadings for offshore structures [54].   

2.1.2.5 Challenges in evaluating the growth of small defects 

To this point, the engineering approaches to fatigue analysis of nominally defect-free 

component as well as components containing macroscopic defects have been discussed. 

Clearly there is a transition from which a component goes from being nominally defect free 

to containing a macroscopic defect. This transition can be illustrated using the Kitagawa-

Takahashi diagram as described in [55], [56] and shown schematically in Figure 2.13.  

 
Figure 2.13 Schematic plot of a typical Kitagawa-Takahashi diagram.  
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The Kitagawa-Takahashi diagram plots, for a range of defect size, the maximum allowable 

stress amplitude which would in theory result in infinite fatigue life. As seen from the plot, 

for microscopic defect sizes, the limiting stress amplitude would tend towards the fatigue 

limit of the material obtained from the 𝑆-𝑁 curve, whereas for large macroscopic cracks, it 

would tend towards the stress amplitude resulting in the threshold stress intensity of the 

material.  

In between the two regions, there is a region where the damage growth properties transition 

between the two, during which a defect may grow even if it is below the fatigue limit and the 

stress intensity threshold. This is closely linked to Phase 2 of defect growth as discussed in 

earlier sections, and the evaluation and prediction of fatigue damage progression at this 

phase is very challenging due to its sensitivity to microstructure; a review on the current 

state-of-the-art can be found in [57].  

A detailed understanding of defect growth in this region is beyond the scope of this research. 

What is important here is to acknowledge the challenge in modelling the growth of small 

defects (dimensions of order 0.1 to 1 mm [21]) and to be mindful of these limitations when 

using defect growth models for long macroscopic cracks when performing remnant life 

estimations as conducted later in this research.  

2.2 Structural health monitoring for fatigue damage 

Following a review in the mechanisms and engineering approaches to evaluating fatigue 

damage, a review of the current state-of-the-art of SHM technologies suitable for use as PIMS 

to monitor fatigue damage is provided. An outline of the basic principles of each relevant 

technology will be given, followed by a discussion on the benefits and challenges of using each 

method for SHM applications. 

2.2.1 Vibration-based methods 

With strategically placed accelerometers and/or laser doppler vibrometers, the vibration 

response of entire engineering structures can be monitored. By measuring the natural 

frequency, mode shape or mode shape curvature of the structure, any deviations from the 

undamaged state can be used as an indication of the initiation of defects [58]. This can 

subsequently be used to infer the structural health of the monitored structure. The use of 

vibration-based methods for SHM is common with civil structures such as buildings [59] and 

bridges [60].  
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While vibration-based methods can be used to monitor entire engineering structures with a 

relatively small number of sensors, there are several challenges in using it for detecting 

localised damage as summarised in [61]. Firstly, sensitivity of vibration-based methods to 

localised damage is significantly lower than other SHM methods. A comparative study for 

vibration response SHM on bridge girders shows that damage is only detected when there is 

a significant loss in cross-section area (~50%) unless a large amount of sensors are in place 

[60], [62]. It is therefore only realistically possible to detect severe local damage using 

vibration-based methods. Secondly, vibration-based methods for SHM would need to 

suppress or compensate the effect of environmental conditions such as temperature and 

marine growth for offshore structures; these effects can also significantly alter the vibration 

response of an engineering structure, thus invalidating the collected monitoring data. Lastly, 

vibration-based methods are very sensitive to changes in boundary conditions. This means 

that while failure near the joints of structures may be relatively easier to detect, sensitivity 

to localised damage in other areas is much lower. For instance, a cross-section loss at the root 

of a cantilever beam produces a much greater change in vibration response compared to a 

cross-section loss towards the free end of the beam [63]. 

2.2.2 Acoustic emission 

When defects grow in a stressed component, elastic energy stored in the component is 

released, and a proportion of this energy dissipates in the form of elastic waves; these elastic 

waves are commonly known as acoustic emissions [64]. By appropriately attaching 

accelerometers or ultrasonic transducers on the component, these acoustic signals may be 

recorded, analysed and subsequently used as an indication of defect growth [65]. Various 

method for analysing acoustic signals are available, ranging from simple emission counting 

and spectral analysis [66], to more intricate methods such as artificial neural networks for 

damage type recognition [67], [68]. Depending on the specific application, sensor capabilities 

and signal processing technique used, the location, classification of defects and the rate of 

defect growth may be estimated from obtained signals. The first pronounced industrial use 

of acoustic emission methods is to certify pressure vessels during hydrostatic proof tests 

[69], [70], and its use have since been developed in multiple SHM applications, including civil 

structures [71], offshore structures [72] and aerospace structures [73].  

One of the main benefits of acoustic emission sensors is that it can cover a substantial area, 

meaning that minimal sensors are required to cover a large structure. Also, the method is 
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inherently a real-time monitoring technique that only detect actively propagating defects, 

which are usually the defects of concern in engineering structures.  

The biggest challenge for acoustic emission methods is to separate acoustic signals that are a 

result of defect growth and acoustic signals that are from other irrelevant sources. As a result, 

advanced signal processing techniques performed by qualified personnel are likely needed. 

Even when signals of defect growth are correctly identified, the need to quantify the extent 

of damage would introduce another level of complexity to analysing the recorded acoustic 

signals.  

Overall as concluded by Sengupta et al. [74], while the fundamental theory of acoustic 

emission methods is simple, it is one of the most challenging techniques to effectively 

implement in real-life engineering applications. Quantifying damage severity with acoustic 

emission methods is considered the most critical area of research for acoustic emission 

methods to be used for structural integrity assessment and remaining life estimations.  

2.2.3 Active ultrasonic methods 

Rather than detecting elastic waves emitted from growing defects, a more widely used 

acoustic method for defect detection involves actively transmitting and receiving ultrasonic 

waves using piezoelectric or electromagnetic transducers. The use of bulk wave, guided 

wave, and nonlinear ultrasonic methods will be discussed in this section.  

2.2.3.1 Bulk ultrasonic wave 

The use of bulk ultrasonic wave to detect internal flaws in a solid material dates back to the 

early 1940s [75]. An illustration from [76] on using bulk ultrasonic wave to detect defects is 

shown in Figure 2.14. Short bursts of ultrasonic waves, typically around the order of 1 MHz, 

are injected into the component of interest [77]. The following techniques can then be used 

to detect and characterise a wide variety of defects [78]: 

• Amplitude techniques: use of a loss in transmission (i.e. pitch-catch) or an unexpected 

reflection of signals (i.e. pulse-echo) for indication and characterisation of defects 

• Temporal techniques: use of the arrival time of scattered signals to detect and size 

defect (e.g. time-of-flight diffraction) 

• Imaging techniques: producing a map of signal amplitude or phase by correlating time 

of arriving signal to a spatial point; this usually involves scanning across an area of 

interest and/or the use of an array of transducers. 
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• Inversion techniques: inferring the properties of a defect by modelling the scattered 

signal received by multiple transducers and use algorithms to iteratively adjust the 

properties of the defect until the modelled signal outputs match the actual signals 

measured.    

 

(a)    (b)  

Figure 2.14 Illustration of how the bulk wave ultrasonic method is used for defect detection.  
Modified from [76].  

Although bulk wave ultrasonic testing is widely used for NDE inspections, there are currently 

few industrial applications of permanently installing ultrasonic sensors for SHM. An example 

of this would be the use of bulk wave ultrasonic sensors for wall thickness monitoring at high 

temperature environments as demonstrated and commercialised in [79], [80]. While bulk 

wave methods generally provide significantly better sensitivity to local defects compared to 

vibration-based and acoustic emission methods, its spatial coverage is also much smaller, 

meaning that its use for permanently installed SHM would be impractical unless the location 

of defect initiation is known with reasonable certainty.  

2.2.3.2 Guided ultrasonic wave 

As illustrated in Figure 2.15, the propagation of guided waves are guided by the structural 

form of the component it propagates through [81]. Guided wave propagation occurs when 

the thickness of the component is less than or of the order of the excited wavelength [82]. As 

the excited elastic wave is being constrained by the boundaries of the component, multiple 

reflections, refractions and mode conversion occurs, resulting in the generation of guided 

waves [83].  

Guided wave methods are a common choice of technique for inspecting long and slender 

components such as pipes [84] and also plate structures using omnidirectional guided waves 

[85]. Guided waves can travel long distances with relatively minimal attenuation and covers 

the entire cross-section of the component, making it an effective inspection method for 

covering large areas with few inspection points. This also means that guided wave methods 

can be an attractive candidate for permanently installed monitoring.  
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Figure 2.15 Illustration of the difference between bulk wave and guided wave ultrasonic inspection. 

Significant research has been conducted in driving the development and implementation of 

guided wave methods for SHM. This ranges from transducer design, signal processing 

techniques and overcoming environmental effects; a recent review can be found in [86]. 

Notably, the use of guided waves for short range, higher sensitivity guided wave 

measurements has been studied to enable the detection and monitoring of fatigue cracks, 

which can prove to be beneficial for localised fatigue SHM [87].  

2.2.3.3 Nonlinear ultrasonic methods 

As an acoustic wave signal passes through a solid material, harmonics of the signal will be 

generated due to nonlinearity in the material, which originates from the anharmonicity of 

crystal lattices and also microscopic damage (i.e. dislocations) [88]. As discussed in Section 

2.1.1.1, the accumulation of microscopic damage is what precedes the initiation of fatigue 

damage. Hence, it has been shown that quantifying the distortion in acoustic wave as a result 

of these microscopic damage can be used to measure the severity of fatigue damage of a 

component [89], [90]. The second-order nonlinearity parameter, 𝛽, is typically used; this is 

defined as the ratio of the amplitude between the fundamental and second harmonic of the 

measured ultrasonic signal. A sample plot of 𝛽 against fatigue life of a laboratory specimen is 

shown in Figure 2.16.  
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Figure 2.16 Example plot of the nonlinear parameter, 𝛽, against fatigue life for an Aluminium alloy 

AA2024-T4 laboratory specimen [90]. 

 

Given its potential to provide early indications of fatigue damage, the use of nonlinear 

ultrasonic methods has attracted considerable interest, with its use investigated for bulk 

wave and more recently guided wave methods. The analysis of nonlinear ultrasonic 

measurements is clearly more complex and not as established compared to linear methods, 

thus its use in real-life, in-service inspections is still currently very limited, let alone SHM 

applications. 

2.2.4 Potential drop method 

The potential drop method is typically used in laboratory conditions to monitor crack growth 

of fatigue or creep tests [91]. This method works by injecting current, AC or DC, into the 

specimen and measuring the change in resistance due to geometrical changes or changes in 

material properties, which can then be converted into defect sizes. An illustration of the 

potential drop method is shown in Figure 2.17. This method is typically used to size defects 

once found using other NDE methods, rather than used for inspection [92]. Also, the potential 

drop method is only sensitive to surface-breaking or near-surface defects.   

(a)  (b)  

Figure 2.17 Illustration of the potential drop method, showing how current flow differs between the (a) 
defect-free case, and (b) defective case. Illustration modified from [93]. 
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Area coverage of a potential drop sensor depends largely on the spacing of electrodes; large 

spacing of electrodes increases spatial coverage at the cost of sensitivity. An advantage of the 

potential drop method is that the individual electrodes for the potential drop method is 

relatively inexpensive and simpler to permanently install. This means that an array of current 

injection and sensing probes can potentially be permanently installed to maximise area 

coverage while retaining good sensitivity. The use of an array of potential drop sensors have 

been demonstrated for monitoring of creep damage [94].  

There are a number of challenges and limitations to the use of potential drop methods for 

fatigue SHM monitoring. Primarily, electromagnetic properties of the component must 

remain stable or be compensated under operating conditions to enable accurate 

measurements. If sizing of the defect is required, this can prove to be a complicated task for 

real-life engineering components with complex geometries. The effect of strain and plasticity 

also further complicates the relationship between defect size and resistance [95]. 

2.3 Discussion 

From this literature review, it is believed the following aspects need to be considered for a 

successful implementation of SHM of fatigue damage. 

Overall, it is believed that for permanently installed SHM to be implemented to monitor 

fatigue damage in real-life engineering applications, the following needs to be considered.  

Firstly, research and development in SHM technology needs to be in line with the research 

and development of fatigue damage growth in real-life applications. An SHM technology that 

can detect damage at an early stage of component life does not necessarily translate into 

better structural integrity assessment if it is not complemented with accurate defect growth 

predictions.  

A literature review of the understanding of fatigue damage reveals that accurately predicting 

the growth of small, microstructure-dependent defects remains a challenging problem, not 

to mention in real-life applications with complex loading and environmental conditions. This 

would suggest that being able to detect damage at an early stage of component life using SHM 

technology may currently have limited value from the point of view of assessing the 

structural integrity and remnant life of the component; there is huge uncertainty as to 

whether or how these damage will evolve and ultimately lead to failure.  

It is believed that the key value of implementing SHM technology is the ability to continuously 

monitor for the presence of substantial, macroscopic damage in order to provide confidence 
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in the structural integrity of the monitored component. With the use of macroscopic crack 

growth laws, it can be assured that failure of the monitored component is not imminent when 

no substantial damage is detected by the SHM system. In cases where substantial damage is 

detected, measurements collected by the SHM system may also be used to continuously 

update the predicted remnant life of the component. The use of SHM measurements to detect 

and monitor the growth of macroscopic fatigue damage will be investigated in  

Chapters 5 and 6. 

Secondly, there is a need to optimise sensor coverage and sensitivity. As shown in the review 

above, different SHM techniques have varying capabilities in terms of spatial coverage and 

sensitivity. Requirements for these capabilities are highly dependent on the certainty in 

defect location and crack growth behaviour. No matter how sensitive an SHM technique is, if 

it does not sufficiently cover all areas where a defect may initiate, confidence in structural 

integrity may not be sufficient. This will be investigated in Chapter 4 of this thesis, where a 

framework to quantify the trade-off between sensor coverage and sensitivity will be 

developed and demonstrated. 

Finally, the implementation of SHM would have to be attractive from an economic point of 

view compared to existing inspection approaches while maintaining the same level of 

confidence in structural integrity. Applications that would favour the use of SHM would be 

cases where inspection is ineffective (e.g. limited accessibility or disruptive) and those where 

defect growth is rapid such that frequent inspections are required to be confident in 

structural integrity [61]. With the frameworks and methods developed throughout the thesis, 

the efficacy of SHM for specific applications can be quantified and compared to conventional 

inspections. Results obtained from the analysis using the developed frameworks can then be 

implemented with methods of cost analysis for evaluation from an economic point of view.  



 
 

 

   33 

 

3 Evaluating the detection capabilities of 

permanently installed monitoring 

systems 

3.1 Introduction 

The value of PIMS is determined by the confidence in its detection capabilities; PIMS can only 

provide sufficient confidence in structural integrity if it is capable of detecting defects 

reliably. To this end, for data collected by PIMS to be integrated into real-time structural 

integrity assessments or ‘digital twins’ [96], the detection capabilities of PIMS needs to be 

systematically quantified. 

The detection capabilities of PIMS may be evaluated using the receiver operating 

characteristics (ROC) analysis, whereby two metrics are used to quantify its detection 

capabilities. First is the probability of detection (POD), defined as the probability of detecting 

a defect of given severity. Second is the probability of false alarm (PFA), defined as the 

probability of falsely detecting a defect when there is none. A more in-depth review of ROC 

analysis is given later in Section 3.3.  

The detection capabilities of PIMS is determined by the effect of numerous sources of 

uncertainty; examples include sensor and defect location, defect orientation, defect 

morphology, electrical noise, and environmental influences. Evaluating the detection 

capabilities of PIMS presents unique challenges compared to conventional NDE inspections, 

arising from the fact that PIMS are, by definition, permanently installed at a fixed position. If 

the measurement conditions are unfavourable (e.g. installed in a poor position), the POD may 

be severely compromised, undermining the reliability of the monitoring system. Further, the 
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POD usually refers to a single measurement in isolation, but one of the aims of this thesis is 

to make use of the series of measurements from PIMS; the effect of systematic uncertainties 

is problematic as each successive measurement may not be considered fully independent 

from previous measurements.  

This chapter aims to lay out a model-assisted methodology for evaluating the POD of PIMS 

that distinguishes between sources of uncertainty that are random and systematic. The use 

of model-assisted methods will be necessary since it would be impractical to conduct the 

large number of destructive tests required for a probabilistic analysis, especially as each 

would require samples with PIMS installed on them. The methodology forms the basis for the 

following two chapters. In Chapter 4, the analysis is applied to the problem of assessing the 

detection capabilities of PIMS where the location of damage is uncertain. In Chapter 5, the 

analysis is used for probabilistic forecasting of remaining life based on a series of PIMS 

measurements.  

This chapter is structured as follows. In Section 3.2, a simple example that will be used 

throughout to demonstrate the proposed methodology is outlined. Section 3.3 then gives a 

description of the fundamental theories for probability of detection. Section 3.4  discusses the 

intricacies and challenges specific to quantifying the sources of uncertainties of PIMS and 

proposes a way of overcoming these challenges. Section 3.5 proposes how the use of prior 

knowledge on systematic factors (e.g. likely defect orientation) may be incorporated into the 

analysis of detection capabilities. Finally, a discussion and conclusion of the chapter is given 

in Section 3.6 and 3.7.  

3.2 Outline of the example problem 

An example problem is used throughout the chapter to demonstrate the process of evaluating 

the detection capabilities of PIMS. In the example problem, we seek to evaluate the detection 

capabilities of a potential drop monitoring system to detect a penny-shaped crack of diameter, 

𝑑, within a steel bar. The example problem is shown in Figure 3.1. The dimensions of the 

rectangular steel bar are 150 × 32 × 20 mm. The axisymmetric crack has three translational 

and two rotational degrees of freedom; for simplicity, the example problem will only consider 

one rotational degree of freedom, 𝜃, as shown in Figure 3.1(a). It is assumed that the crack 

will always be located at the centre of the beam. The more challenging problem of 

translational uncertainty will be the focus of the following chapter. 
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The potential drop monitoring system used in the example is similar to that described in 

Section 2.2.4. A DC monitoring system is used as its response can be simply modelled with 

commercial finite element software. Also, an AC monitoring system would not be sensitive to 

internal defects as alternating current would concentrate towards the outer surfaces of the 

bar [97], thus not suitable for this example problem.  

The monitoring system consists of four electrodes, two on each end of the beam. Current is 

injected between a pair of electrodes and the electric potential is measured by the other pair 

as illustrated in Figure 3.1(b). The presence of a defect forms an impediment to the current 

flow and therefore increases the resistance. A relative increase in resistance indicates the 

growth of a defect. We seek to evaluate the detection capability of the potential drop 

monitoring system for a range of defect sizes.  

(a)  

               (b)    

Figure 3.1 Setup of the example problem; (a) side view, (b) top view.  
The sought penny-shaped crack is represented in red. All dimensions in mm. 

3.3 Receiver operating characteristic analysis of PIMS 

3.3.1 Theory of receiver operating characteristic analysis 

PIMS may be considered as systems that output a signal, 𝑋, that is correlated to the likelihood 

of a defect being present in the monitored component. In the example potential drop problem, 

the output signal would be the relative change in resistance which scales with defect severity. 

Another example would be an ultrasonic sensor which returns the maximum amplitude of a 

reflected signal from a defect. In both cases, the greater the signal, the more likely it is that a 

defect is present.  
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Given that the output of PIMS will inevitably be subject to sources of uncertainties, it is 

appropriate to model their possible outputs as probability distributions, 𝑃(𝑋).  The 

distribution given the monitored component is defect-free would be 𝑃(𝑋|no defect) ; the 

distribution given a specific class of defect is present in the monitored component would be 

𝑃(𝑋|defect). The distributions are schematically illustrated in Figure 3.2.  

 
Figure 3.2 Schematic illustration of the probability distributions of the system output, 𝑋, for a  

defect-free case, 𝑃(𝑋|no defect), and; a defective case, 𝑃(𝑋|defect).  
A threshold, 𝑋𝑡ℎ, is chosen and the corresponding 𝑃𝑂𝐷 and 𝑃𝐹𝐴 is shown. 

In order for PIMS to distinguish between the defect-free and defective cases, a signal 

threshold, 𝑋𝑡ℎ, is typically defined such that a defect is called when the PIMS outputs 𝑋 > 𝑋𝑡ℎ. 

This is represented as the dotted black line in Figure 3.2. With this, two metrics may be 

evaluated for a chosen 𝑋𝑡ℎ. The first is the probability of detection (𝑃𝑂𝐷), which quantifies 

how well PIMS perform in terms of calling a defect if present. The 𝑃𝑂𝐷 is illustrated as the 

area shaded in green in Figure 3.2, and is defined as, 

𝑃𝑂𝐷 = 𝑃(𝑋 > 𝑋𝑡ℎ|defect) Eq. 3.1 

The second metric is the probability of false alarm (𝑃𝐹𝐴). This metric defines how well PIMS 

perform in terms of not calling a defect when the component is defect-free. The 𝑃𝐹𝐴  is 

illustrated as the area shaded in red dashes in Figure 3.2, and is defined as, 

𝑃𝐹𝐴 = 𝑃(𝑋 > 𝑋𝑡ℎ|no defect) Eq. 3.2 

Clearly, the choice of 𝑋𝑡ℎ would have a significant effect on the performance characteristics. 

A useful plot to visualise the performance is to plot its 𝑃𝑂𝐷  and 𝑃𝐹𝐴  for a range of 𝑋𝑡ℎ , 

producing what is known as the receiver operating characteristic (ROC) curve; illustrative 

examples of this are shown in Figure 3.3. On this plot, a small 𝑋𝑡ℎ would result in a point close 

to (1, 1) on the ROC space, corresponding to having a high 𝑃𝑂𝐷 at the cost of a high 𝑃𝐹𝐴. 

Conversely, a large 𝑋𝑡ℎ  would result in a point close to the origin of the ROC space, 

corresponding to having a low 𝑃𝐹𝐴  but also a low 𝑃𝑂𝐷 . A useful metric to gauge the 

performance of the PIMS is to evaluate the area under the ROC curve. A perfect system (i.e. 

𝑃𝑂𝐷 = 1 and 𝑃𝐹𝐴 = 0) would have an area of unity; a naïve system which randomly outputs 
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a positive result would have an area of 0.5. In practise, PIMS would lie somewhere between 

the naïve and the perfect system, as represented by the solid blue and the dashed red curve. 

The appropriate choice of 𝑋𝑡ℎ depends on the nature of the application. The decision process 

typically involves weighing the risks and consequences of missing a defect and making a false 

call. For instance, if the risk of missing a defect is catastrophic, it may be worthwhile to choose 

an operation point with a higher 𝑃𝑂𝐷 at the expense of a higher 𝑃𝐹𝐴; this corresponds to 

choosing a lower 𝑋𝑡ℎ value. On the other hand, if the consequence of a false alarm is very 

costly, an operation point with a low 𝑃𝐹𝐴 at the expense of a lower 𝑃𝑂𝐷 would be chosen; 

this corresponds to choosing a higher 𝑋𝑡ℎ value. In practise, 𝑋𝑡ℎ is usually chosen to meet the 

predefined requirement of a maximum allowable 𝑃𝐹𝐴 or a minimum required 𝑃𝑂𝐷, and the 

corresponding 𝑃𝑂𝐷 or 𝑃𝐹𝐴 is used as a metric to gauge the capability of the PIMS.  

 
Figure 3.3 Illustrative plot of various ROC curves in the ROC space. 

3.3.2 Probability of detection curves 

It is often essential to characterise the capabilities of PIMS in terms of how small a defect it 

can reliably detect. To characterise the performance of PIMS in terms of defect sizes, the 

probability distribution, 𝑃(𝑋|defect), for a range of defect sizes needs to be obtained. To do 

so, ROC analysis will have to be repeated for a range of defect sizes, subsequently obtaining 

𝑃𝑂𝐷 as a function of defect size (for a given 𝑋𝑡ℎ and thus 𝑃𝐹𝐴). The plot of 𝑃𝑂𝐷 against defect 

size is known as a POD curve, and is a standardised way of representing the performance of 

NDE systems [98], [99]. A schematic illustration of a typical POD curve is shown in Figure 3.4. 

The POD curve typically takes the form of a logistics curve, whereby the 𝑃𝑂𝐷 approaches the 

predefined 𝑃𝐹𝐴 when defect size is close to zero (i.e. defect-free) and approaches unity with 

increasing defect size.  
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Figure 3.4 Schematic illustration of a POD curve, plotting POD against the depth of a defect.  

3.4 Evaluating the sources of uncertainties of PIMS 

From the above theory of ROC analysis, it is clear that accurately defining the distributions 

𝑃(𝑋|no defect) and 𝑃(𝑋|defect) is crucial to evaluating the detection capabilities of PIMS. 

This in turn means that uncertainties in the signal output of PIMS need to be accurately 

quantified. There are numerous sources of uncertainty including random effects such as 

electrical noise, and systematic effects such as defect location. The treatment of different 

sources of uncertainty will have to be carefully considered in order to ensure that the 

statistical interpretation of the ROC and POD curves is robust. 

Quantifying the uncertainty of periodic NDE inspections is comparatively well established 

[99]. Measurements taken with periodic inspections are relatively infrequent, and it is highly 

unlikely that successive inspections of the same component will be performed under exactly 

the same conditions by exactly the same equipment (even if the ‘same’ technique is used). 

Therefore, many sources of uncertainties may be considered independent between 

successive inspections of the same component. Hence, the effect of relevant factors can 

simply be combined to produce a single representative probability distribution. Thereon, 

conventional ROC analysis can be performed to evaluate its detection capabilities.  

The same treatment is not applicable for PIMS. PIMS are by definition permanently installed 

onto a specific component, and this combination of sensor and component will last for the 

entirety (or at least a significant portion) of the service life of the component. If systematic 

factors such as error in sensor placement or deficient sensor-component coupling have a 

significant effect on the detection capabilities, then the reliability of the system may be 

hindered. Further, if all sources of uncertainty are treated as independent, systematic bias or 

serial correlation between successive measurements will cause significant discrepancy 

between the predicted and actual detection capabilities. Thus, while random sources of 
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uncertainty contribute to the variance in the distributions, systematic uncertainty will 

instead have the effect of reducing the confidence in the central tendency of the distributions. 

It is proposed that the sources of uncertainties can be divided into three categories: short-

term random uncertainties, medium-term uncertainties, and long-term systematic 

uncertainties. The following sections give a description of these three categories of 

uncertainties, together with how each should be considered in the context of evaluating the 

detection capabilities of PIMS for structural integrity assessment.  

3.4.1 Short-term random uncertainties 

Short-term random uncertainties are sources of uncertainties that effect the system output 

at a much faster rate than the rate at which measurements are taken. As a result, the effect of 

these sources of uncertainties are essentially randomised for each successive measurement 

taken. Independent sources of random uncertainty can easily be evaluated and aggregated, 

subsequently contributing to the variance in the probability distributions 𝑃(𝑋|no defect) and 

𝑃(𝑋|defect). Illustrative distributions of varying amount of random uncertainty in the system 

output is shown in Figure 3.5.  

(a)      (b)  

Figure 3.5 Illustrative distributions of 𝑃(𝑋|no defect) and 𝑃(𝑋|defect) with (a) large random uncertainty, 
and (b) small random uncertainty. 

Few sources of uncertainties can be considered as short-term random uncertainties with 

PIMS; an example would be internal electrical noise. Moreover, since random uncertainties 

may be effectively suppressed by averaging, random uncertainties are generally of lesser 

importance to PIMS.  

3.4.2 Medium-term uncertainties 

In practise, various sources of uncertainty neither change instantaneously nor are truly 

constant throughout the entire life of the component. These medium-term uncertainties 

affect the system output change at a rate similar or slower than the rate at which 

measurements are taken. It can be challenging to decide on their treatment. The approach 

suggested in this Chapter is to either treat them as short-term or long-term according to 

the following guidance. 
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A well-recognised problem in the use of PIMS is the influence of environmental effects 

such as the operating temperature of the monitored component or measurement system, 

consequently the sensor output may fluctuate on a daily or yearly timescale along with 

the temperature. The introduction of serial correlation in the data leads to a systematic 

uncertainty in the defect free signal that will limit the detection capabilities. To overcome 

this, methods must be employed to compensate or suppress the influence of temperature; 

examples of temperature compensation schemes for guided wave monitoring can be 

found in [100], [101]. The use of compensation schemes has been shown to be sufficiently 

effective at limiting the effect of temperature to a level where the residuals may be 

considered random [102], [103] and can therefore be treated as a short-term random 

uncertainty. 

Some medium-term effects cannot be suppressed; an example of this would be defect 

morphology. While a defect may have a particular realisation of shape or roughness at a 

given instance, over time its morphology may evolve to become either more or less 

favourable to be detected. Clearly, near-instantaneous repeated measurements are not 

going to overcome the problem of unfavourable defect morphology, nor would it be 

possible to suppress the effect with compensation methods. Therefore, this source of 

uncertainty must be treated as a long-term systematic uncertainty. 

3.4.3 Long-term systematic uncertainties 

Systematic uncertainties are factors that nominally do not change over the service life of a 

sensor-component combination. There are a wide variety of parameters that contribute to 

systematic uncertainties in the signal output of PIMS, and this has been studied in a wide 

range of literature. Some examples of these parameters include defect characteristics (e.g. 

location [104], orientation [105], morphology [106]), sensor characteristics (e.g. position 

[104], and coupling between the sensor and the component [107]).  

In most cases, multiple factors would result in systematic uncertainty and not all of them may 

be independent of each other. Therefore, simulations on a range of combinations of these 

factors are needed to capture their combined effect on the expected response of PIMS. 

Ultimately, the effect of these factors would contribute to uncertainty in the central tendency 

of the distributions 𝑃(𝑋|no defect) and 𝑃(𝑋|defect). This is illustrated in Figure 3.6 where 

distributions of favourable and unfavourable combinations of systematic factors are shown. 

Consequently, separate ROC analysis will need to be completed for a range of combinations 
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of systematic factors to produce a population of ROC curves and subsequently POD curves for 

a given threshold. The resulting range of POD curves would subsequently inform the 

uncertainty and confidence in the detection capabilities.  

 (a)      (b)  

Figure 3.6 Illustrative distributions of 𝑃(𝑋|no defect) and 𝑃(𝑋|defect) with (a) favourable, and (b) 
unfavourable combination of systematic factors. 

3.4.4 Analysis of the example problem 

For simplicity, only the effect of random signal noise and defect orientation will be considered 

in the example problem. Evidently, random signal noise will contribute to the random 

uncertainty and defect orientation will contribute to the systematic uncertainty.  

3.4.4.1 Random uncertainties 

The effect of random signal noise is assumed to follow the normal distribution, 

𝑋𝑃𝐷~𝑛𝑜𝑟𝑚𝑎𝑙(�̅�𝑃𝐷 , 𝜎𝑃𝐷) Eq. 3.3 

 where �̅�𝑃𝐷 is the expected sensor output as evaluated in the following section and 𝜎𝑃𝐷 is the 

standard deviation. 𝜎𝑃𝐷  is assumed to be 2.8 × 10−4 in this analysis. This is approximated 

from the anticipated resistance measured by the monitoring system being of order 

10 𝜇Ω based on finite element results. This is then combined with the fact that a state-of-the-

art potential drop system can produce resistance measurements of the same order of 

magnitude with standard deviation of approximately 2.8 𝑛Ω [108]. 

3.4.4.2 Systematic uncertainties 

To evaluate the expected responses of the potential drop monitoring system, �̅�𝑃𝐷 , finite 

element simulations using COMSOL Multiphysics were conducted to evaluate the expected 

resistance measurement, 𝑅, for the defect-free case as well as a range of defect diameter, 𝑑, 

and orientation, 𝜃. The range of defect diameter evaluated is from 𝑑 = 0.5 mm to 𝑑 = 15 mm 

in increments of 0.5 mm; the range of defect orientation evaluated is from 𝜃 = 0° (i.e. normal 

to current flow) to 𝜃 = 90° (i.e. parallel to current flow) in increments of 5°.  

The final system output of the potential drop monitoring system is the change in normalised 

resistance, which is defined as,  
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�̅�𝑃𝐷 =
𝑅𝑑𝑒𝑓𝑒𝑐𝑡

𝑅𝑛𝑜 𝑑𝑒𝑓𝑒𝑐𝑡

− 1 Eq. 3.4 

where the subscript indicates the defective and defect-free states. The plot of �̅�𝑃𝐷  as a 

function of defect size is shown in Figure 3.7(a); the plot of expected response as a function 

of defect orientation is shown in Figure 3.7(b). A 𝑃𝐹𝐴 of 10−3 is chosen for this example. This 

is used to evaluate the corresponding threshold, 𝑋𝑡ℎ, as schematically demonstrated earlier 

in Figure 3.2 using the distribution, 𝑃(𝑋𝑃𝐷|no defect) . The resulting value of  

𝑋𝑡ℎ = 0.865 × 10−3 is also shown in Figure 3.7(a) and (b). It is clear from the results that the 

potential drop monitoring system is very sensitive to the defect orientation. As 𝜃 increases, 

the effect of the defect obstructing in electric current flow quickly diminishes and therefore 

sensitivity also reduces.  

(a) (b)  

Figure 3.7 Results from the finite element simulations of the example problem, plotting (a) change in 
normalised resistance as a function of defect diameter, and (b) change in normalised resistance as a 

function of defect orientation. 

3.4.4.3 ROC analysis and POD curves 

With the effect of random and systematic uncertainties quantified, there is now sufficient 

information to construct the probability distributions 𝑃(𝑋|no defect)  and 𝑃(𝑋|defect)  for 

each combination of defect orientation and size. With this, ROC analysis as detailed in Section 

3.3.1 can be performed, resulting in a population of ROC curves for a range of defect 

orientations and sizes. Finally, POD curves for a given 𝑃𝐹𝐴 as detailed in Section 3.3.2 for 

each defect orientation can be plotted; the results for 𝑃𝐹𝐴 = 10−3  are shown in  

Figure 3.8. 
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Figure 3.8 POD curves for 𝑃𝐹𝐴 = 10−3 from the results for the example problem.  

3.5 Incorporating the statistical variations of systematic 

factors 

Evaluating the anticipated POD from Figure 3.8 is clearly dependent on what is the 

anticipated angle of the crack. From the results, at 𝑑 = 10 mm, the 𝑃𝑂𝐷 ranges anywhere 

between 0 and 100%, reflecting an exceptional lack of confidence in the detection capability 

of the monitoring system when there is no prior knowledge on the likely defect angle. 

However, in practise, it is often possible to obtain information on the likelihood of crack 

orientation, or more generally, any other relevant systematic factors. This information may 

come in the form of statistical distributions based on underlying physics, computational 

analysis, experiments, or simply a survey from previous experiences. Using the Monte Carlo 

method where systematic factors are sampled from these distributions, the statistical 

expectation and confidence levels in 𝑃𝑂𝐷 of the monitoring system when used for a specific 

application may be evaluated. This approach closely resembles the model-assisted 

probability of detection (MAPOD) approach for NDE inspections as implemented in the CIVA 

software designed for assessing NDE inspection techniques [109], [110].  

In the context of the example problem, suppose the penny-shaped crack we sought to detect 

typically originates from a 60° “V” groove weld as illustrated in Figure 3.9. As a result, we 

arbitrarily assume, for illustration purposes, that the probability distribution of defect 

orientation follows a normal distribution with a mean of 30° and a standard deviation of 5°; 

a plot of the distribution is shown in Figure 3.10.  
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Figure 3.9 Illustration of a 60° “V” groove weld modified from [111]. The sought penny-shaped crack is 

indicated by a red line.  

 
Figure 3.10 Plot of the distribution of crack orientation.  

A 1000-trial Monte Carlo simulation is carried out to evaluate the expected response of the 

monitoring system and subsequently 𝑃𝑂𝐷 as a function of defect size for a distribution of 

defect orientations. For each trial, a sample of crack orientation is drawn from the 

distribution shown in Figure 3.10, and the expected response of the monitoring system for a 

range of defect sizes is interpolated from the finite element results. The probability of 

detecting a crack at the sampled orientation is subsequently evaluated for each defect size 

using the ROC analysis. With this, a POD curve for a crack at the sampled orientation is 

obtained. By repeating the process for all sampled defect orientations, a population of POD 

curves is produced; a selection of this is plotted in Figure 3.11.  

For each defect size, a histogram and empirical cumulative distribution function (CDF) of 

𝑃𝑂𝐷 can be plotted; an example for 𝑑 = 7 mm is shown in Figure 3.12. With this, the expected 

𝑃𝑂𝐷 for each defect size, 𝑃𝑂𝐷𝑒𝑥𝑝, can be evaluated simply as the average of the results in the 

histogram. Confidence bounds of 𝑃𝑂𝐷  for each defect size can also be obtained from the 

empirical CDF; this is illustrated in Figure 3.12 for the 95% confidence bound, denoted as 

𝑃𝑂𝐷95 . The 95% confidence bound means that the true 𝑃𝑂𝐷  for a given combination of 

systematic factors at the evaluated defect size is anticipated to be at least the 𝑃𝑂𝐷95 value for 

95% of the cases.  
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The resulting 𝑃𝑂𝐷𝑒𝑥𝑝 and 𝑃𝑂𝐷95 (as well as the 5% confidence bound for completeness) for 

all defect sizes are subsequently evaluated and curve-fitted to the logistics function, and the 

resulting 𝑃𝑂𝐷  curves can be plotted as also shown in Figure 3.11. Compared to the plot 

shown earlier in Figure 3.8, it is clear from the results that with more accurate information 

on the angle of the sought defect, there is much greater confidence in the detection 

capabilities of the monitoring system. Since it is known that defects that happen to be in an 

unfavourable orientation are unlikely to occur, the corresponding poorly performing POD 

curves can be eliminated; this is evident in the comparison between Figure 3.8 and Figure 

3.11. This shows that a more accurate estimation of the detection capabilities can be 

produced by incorporating the prior information about the sources of uncertainties. 

 
Figure 3.11 Resulting expectation and confidence POD curves considering the distribution of  

crack orientation together with POD curves from selected samples of defect orientation. 

 

 
Figure 3.12 Probability density and cumulative function of POD at 𝑑 = 7 mm. The expected 𝑃𝑂𝐷 and 95% 

confidence 𝑃𝑂𝐷 are shown as a dotted black line and dashed red line respectively. 
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3.6 Discussion 

Overall, the key steps for evaluating the detection capability of PIMS established in this 

chapter is as follows:  

1) Define a nominal configuration of the PIMS used, the component and the type of defect 

to be detected.  

2) Obtain all relevant sources of uncertainties with the use of sensitivity analysis, and 

categorise their contribution to uncertainty as random or effects. Medium-term 

effects should be categorised into either categories base on the nature of each 

individual effect. 

3) Evaluate the contribution of random uncertainties and thus obtain the variance in 

𝑃(𝑋|no defect) and 𝑃(𝑋|defect) 

4) Evaluate the effect of long-term systematic uncertainties on the expected system 

response using MAPOD or equivalent methods. 

5) Combine the effect of random and systematic uncertainties and evaluate the 𝑃𝑂𝐷 of 

the PIMS for each combination of systematic uncertainties for a chosen 𝑃𝐹𝐴. 

6) Evaluate the likelihood of each combination of systematic uncertainties occurring 

based on underlying physics, computational analysis, experiments, or survey of 

previous experiences. 

7) Evaluate the expectation and confidence bounds of POD for the chosen defect size. 

8) Repeat Steps 4 to 7 for a range of defect sizes to obtain a POD curve with confidence 

bounds. 

With an established framework for evaluating the detection capabilities for PIMS, quantified 

plots and metrics can be produced to evaluate the efficacy of PIMS under different 

engineering applications. This will be useful in comparing between different monitoring 

system or different configurations of the same monitoring system. Also, by taking into 

account the statistical distributions of systematic factors of specific applications, decisions in 

choosing and optimising the use of monitoring systems becomes more effective and better-

informed. This will be further studied in Chapter 4, where the well-recognised optimisation 

of sensitivity and area coverage for PIMS is addressed.  

The quantified detection capabilities of PIMS can also be implemented in the assessment of 

structural integrity of the monitored component.  With confidence in how small a defect can 

PIMS detect, confidence in the useful life of the monitored component can be inferred based 

on the response of the PIMS. This would clearly illustrate the benefits of using PIMS from the 
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point of view of managing the life cycle of engineering components; this will be studied later 

in Chapter 5.   

The example problem used in this chapter only considers the effect of one systematic factor, 

whereas in practice it is very likely that many more systematic factors would significantly 

affect the detection capabilities of PIMS. As a result, research into more advanced methods of 

efficient sampling and modelling would be required for these studies to be feasible in real-

life applications. Recent studies have already been conducted to use more advanced 

mathematical tools such as the polynomial chaos expansion method for sensitivity analysis 

and MAPOD studies [112], [113], and the use of similar methods may be implemented into 

the use of evaluating the detection capabilities of PIMS.  

Validating the results obtained from using the framework with experimental studies and 

subsequently field studies would also be required to demonstrate its use in real-life 

applications. This will be challenging given the large number of destructive tests on samples 

with PIMS installed that would be required. While model-assisted methods can reduce the 

need of experimental studies at earlier stages of development of PIMS, experimental and field 

studies are inevitably needed for successful implementation of PIMS in real-life applications 

to provide confidence in the capabilities of PIMS under realistic operating conditions.  

3.7 Conclusions 

To sum up, a framework for evaluating the detection capabilities for PIMS has been 

established, forming the foundations of quantifying the benefits of using PIMS for structural 

integrity assessments. The framework builds upon existing methodologies used with NDE 

inspections, including the ROC analysis and MAPOD studies. The framework deals with 

sources of random and systematic uncertainties and incorporates statistical distributions of 

the systematic factors when evaluating the confidence in the detection capabilities of PIMS. 

The framework is demonstrated with a hypothetical example of detecting a penny-shaped 

crack in a steel block using a potential drop monitoring system. This established framework 

will be used in the following chapters to compare between different monitoring systems or 

configurations of the same monitoring system, and also to implement results from PIMS for 

structural integrity assessments. 
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4 Structural integrity-informed 

approach to optimising sensitivity and 

area coverage for permanently 

installed monitoring systems 

4.1 Introduction 

This chapter builds upon the established framework in Chapter 3 to address the spatial 

aspect of the detection capabilities of PIMS. In contrast to manual NDE inspection techniques 

which usually rely on the ability to manipulate the sensor position and pseudo-optimise 

sensor location to possible defects, PIMS may be positioned in a sub-optimum location with 

respect to the sought defect. The detection capabilities will be determined by the location-

specific sensitivity of the measurement to the defect at the given location, but the location of 

the emerging damage is unlikely to be known precisely or be predicted deterministically and 

so it is necessary to use a probabilistic approach. The anticipated location of damage may be 

predicted from past experience or surveys, or predicted based on structural considerations 

such as distributions of stresses. Such a probabilistic approach is consistent with the aim of 

estimating a probability of detection. 

The effect of defect location on the detection capability of PIMS has been studied in previous 

literature [114], and is similarly studied as an optimisation problem for sensor network 

placement in structural health monitoring [115], [116]. However, to the knowledge of the 

author, a unified approach that combines this information with structural integrity 

information on the probability of defect location has yet to be developed.  
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It is proposed that the framework established in Chapter 3 can be used to produce, for a 

specific sensor-component combination, standardised visualisations and metrics that 

characterise the detection capability of PIMS which takes into account the confidence in 

defection location obtained from structural integrity information. The proposed approach is 

composed of three main stages:  

1) Evaluating the spatial distribution of probability of detection (POD map); 

2) Evaluating the spatial probability of defect location (PDL map);  

3) Combining the steps 1 and 2 to evaluate the overall anticipated detection capabilities. 

The three stages are consistent with the methodology laid out in Chapter 3, corresponding to 

steps 1 to 5, step 6 and step 7 of the framework respectively.  

The use of the established framework will be demonstrated with illustrative numerical 

studies of example sensor and component combinations. In structural health monitoring, 

there is a well-recognised compromise between area coverage and sensitivity. Sensors may 

interrogate either a small inspection volume and therefore have high sensitivity to any 

changes within that volume, or interrogate a larger volume which inevitably leads to a 

reduction in sensitivity. The choice of design point within this compromise is clearly 

dependent on the confidence in defect location and in turn the required area coverage. The 

illustrative examples are chosen as they show how the framework may be used to quantify 

the detection capabilities of a sensor-component combination and how to address the well-

recognised compromise between area coverage and sensitivity. 

This chapter will be structured as follows. The example problems used for illustration are 

first described in Section 4.2. The process of obtaining the spatial detection capability of PIMS 

is demonstrated in Section 4.3. The process of obtaining the probability of defect location is 

demonstrated in Section 4.4. Results of combining the two to quantify the detection 

capabilities of the combinations of sensor and components are then presented and discussed 

in Section 4.5. Evaluation and discussion of the detection capabilities of sensor-component 

combinations as a function of defect size is presented in Section 4.6. Finally, a discussion and 

summary of findings is provided in Section 4.7 and 4.8.  

4.2 Description of examples problems 

Two structural problems are presented, together with two separate example PIMS, giving a 

total of four sensor-component combinations. The two structural examples are a rectangular 

beam undergoing three-point and four-point fatigue bending. These examples were chosen 
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due to it being simple to model, and that they are representative of cases where there is a 

high and low confidence in the location of damage respectively. A bulk-wave ultrasonic 

sensor is suggested as an example with high sensitivity but low area coverage, and a potential 

drop sensor is suggested as an example with lower sensitivity but higher area coverage. 

The examples described here are hypothetical and are chosen to best illustrate the value of 

using the proposed framework for quantifying the performance of a PIMS for different 

operating conditions. More realistic models of monitored components and sensors may be 

substituted. This section describes these examples in more detail to further elucidate the 

challenge before the framework is described in the following section. 

4.2.1 Description of example structural problems 

Two beams, each with dimensions shown in Figure 4.1, are to be exposed to either three- or 

four-point fatigue bending with equal maximum stress amplitude and load ratio, 𝑅 = 0 , 

meaning that the top surface is always in axial-compression while the bottom surface is 

always in axial tension. The surface axial stress distributions along the length of the beams 

are shown schematically in Figure 4.2. The triangular stress amplitude distribution of the 

three-point bending example indicates that the maximum stress amplitude is experienced 

only at the centre of the beam, whereas the trapezoidal stress distribution of the four-point 

bending example indicates the maximum stress amplitude is nominally uniform between the 

two loading points. The two cases therefore represent scenarios where the area over which 

damage is expected to initiate is small and large respectively. Assuming that the defect will 

occur on the surface of the component experiencing tension, we can expect the damage to 

initiate close to the centre line of the component in the three-point bending case, whereas we 

can expect the damage to initiate anywhere in the uniformly stressed section between the 

two loading points in the four-point bending case. The distribution of probability of damage 

location will be quantitatively assessed in Section 4.4. 

               
Figure 4.1 Geometry of the monitored beam. All dimensions in mm. 
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 (a)    (b)  

Figure 4.2 Loading conditions and a schematic stress amplitude distribution of the bottom surface of the 

beam under (a) three-point fatigue bending , and (b) four-point fatigue bending. All dimensions in mm. 

4.2.2 Description of example PIMS 

Two PIMS were considered and modelled numerically: a bulk-wave ultrasonic sensor and a 

potential drop sensor. The modelled ultrasonic sensor is schematically illustrated in Figure 

4.3. A 45° ultrasonic shear-vertical wave is created by coupling a 25 mm diameter transducer 

to a 36° Perspex wedge which is fluid-coupled to the monitored component. In the numerical 

model of this study, this was modelled as phased out-of-plane point forces on the top surface 

of the block. The reflected signal is then evaluated by summing the phased surface 

displacements at the same points where the signal is excited.  

The ultrasonic sensor is positioned so the ultrasonic beam is parallel to the long axis of the 

component and the centre of the ultrasonic beam is coincident with the centre of the bottom 

surface of the component.  The excitation signal was a 5-cycle Hanning-windowed toneburst 

at a centre frequency of 1 MHz. The presence of a defect would reflect the signal back to the 

transducer, the amplitude of the reflected signal is dependent on the size and location of the 

defect and is used to indicate the presence of a defect.  

The potential drop sensor is schematically illustrated in Figure 4.4. Similar to the monitoring 

system used in Chapter 3, current injection and sensing electrodes are placed at the two ends 

of the beam. By monitoring the injected current and resulting voltage the transfer resistance 

can be calculated. The presence of a defect would deflect current flow in the beam, resulting 

in an increase in resistance. The expected increase in resistance is again dependent on the 

size and location of the defect and is used as an indication of whether a defect is present. 

The ultrasonic and potential drop sensors are chosen to represent sensors of high sensitivity 

and low area coverage, and a sensor of low sensitivity and high area coverage respectively. 
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One could imagine the ultrasonic sensor would be very sensitive to defects at the centre of 

the beam where the ultrasound is interrogating, while having negligible sensitivity to defects 

near the sides and ends of the beam. Conversely, the potential drop sensor would have a 

reasonably uniform sensitivity across the whole surface of the beam. This will be 

demonstrated and quantified in the following section. 

         
Figure 4.3 Schematic of the permanently installed bulk-wave ultrasonic senor evaluated for monitoring.  

 
Figure 4.4 Schematic of the permanently installed potential drop senor evaluated for monitoring. 

4.3 Obtaining the spatial POD maps of the PIMS (Steps 1 to 5) 

The detection capabilities of the two example sensors will now be evaluated using the 

proposed framework outlined in Chapter 3. This section covers the analysis of the POD of the 

PIMS, which corresponds to steps 1 to 5 in the framework. The outcomes of this section are 

spatial POD maps for the two PIMS, which illustrates the POD of the PIMS with respect to 

where the sought defect is located.  

Step 1: Defining a nominal configuration of the component, defect type and PIMS 

The first step is to define and model a nominal configuration of the component, defect type 

and PIMS.  The monitored component is defined earlier in Section 4.2.1. For simplicity in 

modelling, the sought defect is defined as a smooth, square crack-like notch having zero axial 

extent with sides of length, 𝑎, and is orientated normal to the length of the beam. A schematic 

illustration of this is shown in Figure 4.5. The nominal sensor configuration was described 

earlier in Section 4.2.2. A defect length of 𝑎 = 6 mm will be used in this section for illustration. 

The effect of varying defect location is the focus of this study and will be evaluated in Step 4. 

The effect of varying defect size will be discussed later in Step 8.  

 5°
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Figure 4.5 Schematic of the cross-section of the beam and the candidate defect modelled in this study.  

The outputs of the two sensors considered, 𝑋𝑈𝑇  and 𝑋𝑃𝐷 , are defined as follows. For the 

ultrasonic sensor, this would be the maximum amplitude of the reflected signal obtained with 

the Hilbert transform. For clarity, the signals are normalized to the case where the defect 

spans the entire cross section of the beam (i.e. a corner-echo reflection). 𝑋𝑈𝑇 would therefore 

nominally be zero when the beam is defect-free, and 𝑋𝑈𝑇 = 1  would nominally be the 

maximum output of the ultrasonic sensor. Example input and output signals of the ultrasonic 

sensor are illustrated in Figure 4.6. For the potential drop sensor, the measured resistance is 

normalized to the resistance measured when the component is defect-free; the signal output 

is the normalized resistance minus one.  

 
Figure 4.6 Sample signal of the ultrasonic sensor from finite element simulations to illustrate the sensor 

output.  

Step 2: Defining sources of uncertainty in measurements 

The aim of this study is to investigate the process of optimising between area coverage and 

sensitivity. It is clear even without a formal sensitivity analysis that the POD of the ultrasonic 

sensor would be highly dependent on the defect location given its limited field of view. Hence, 

for simplicity and clarity of focus, only the variation in signal output as a result of defect 

location and random noise will be incorporated. Evidently, random noise will contribute to 

the random uncertainty and defect location will contribute to the systematic uncertainty. In 

practice, the evaluation of more parameters is almost certainly required, and the appropriate 

choice of uncertainties to incorporate in the analysis can be determined with parameter 

sensitivity analysis methods. 
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Step 3: Evaluating the contribution of random uncertainties 

In the present study, the signal output of an ultrasonic sensor, 𝑋𝑈𝑇, is assumed to follow the 

Rice probability distribution,  

𝑋𝑈𝑇~𝑅𝑖𝑐𝑒(�̅�𝑈𝑇, 𝜎𝑈𝑇) Eq. 4.1 

where �̅�𝑈𝑇 is the expected sensor output as evaluated in the following section, and 𝜎𝑈𝑇  is the 

shape parameter of the distribution as a result of noise signals backscattered from 

microstructural inhomogeneities [117]. A value of 0.01 is chosen for the shape parameter in 

this study as evaluated from the results in [118]. This is an approximation of the typical 

capabilities of ultrasonic measurement systems; in practice, this should be determined 

accordingly with the actual monitoring system used under its operating conditions.  

Similar to Chapter 3, the measured change in normalized resistance of the potential drop 

sensor, 𝑋𝑃𝐷, is assumed to follow the normal distribution, 

𝑋𝑃𝐷~𝑁𝑜𝑟𝑚𝑎𝑙(�̅�𝑃𝐷 , 𝜎𝑃𝐷) Eq. 4.2 

 where �̅�𝑃𝐷 is the expected sensor output as evaluated in the following section and 𝜎𝑃𝐷 is the 

standard deviation, assumed to be 2.8 × 10−4.  

Step 4: Evaluating the contribution of systematic uncertainties 

By running multiple finite element simulations where the candidate defect is moved to 

different positions, the expected signal outputs, �̅�𝑈𝑇  and �̅�𝑃𝐷 , may be evaluated. The 

simulations for the ultrasonic sensor were conducted using the finite element software 

Abaqus; the simulations for the potential drop sensor were conducted using the finite 

element software COMSOL Multiphysics. By interpolating the results of the simulations at 

selected points, a map of expected signal outputs for both sensors is populated as shown in 

Figure 4.7. As mentioned in Section 4.2.1, only defects initiating from the bottom of the beam 

are considered in this analysis. 
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 (a)   

(b)  

Figure 4.7 Maps showing (a) the nominal signal amplitude of the ultrasonic sensor, and (b) the nominal 
change in normalised resistance of the potential drop sensor for a 6 × 6 mm defect. The red crosses 

indicate points where FE simulations are conducted; all other values were interpolated or extrapolated. 

Step 5: Evaluating the POD of the PIMS for each combination of systematic 

uncertainties 

With the effect of random and systematic uncertainties evaluated, distributions of the signal 

output of the PIMS, 𝑃(𝑋|no defect) and 𝑃(𝑋|defect), can be produced. With this, ROC analysis 

can be used to evaluate the 𝑃𝑂𝐷 of the for an acceptable 𝑃𝐹𝐴. A 𝑃𝐹𝐴 of 10−6 is used in this 

study, which is significantly lower than what is typically used with NDE inspections. This is 

needed for PIMS since frequent measurements are made, resulting in more possibilities for a 

false alarm to occur. For instance, if a 𝑃𝐹𝐴 of  10−3 is chosen, it is expected that a false alarm 

would occur if 1000 measurements are made.  

Also note that for the ultrasonic sensor, the output contains a vector of 𝑝 data points, and a 

false alarm is defined as any of the output data points greater than the threshold. Hence, the 

PFA of the ultrasonic sensor can be approximated by De Morgan’s law [119], 

𝑃𝐹𝐴 = 1 − (1 − 𝑓)𝑝 Eq. 4.3 

where 𝑓 is the probability of a single data point being above the threshold given there is no 

defect.  

By performing the ROC analysis as described in Section 3.3 for defects at different locations, 

the spatial POD map for the sensors can be produced. The results of the two sensors for a 

6 × 6 mm square defect are shown in Figure 4.8. As seen from the results, the ultrasonic 

sensor has near perfect detection capabilities with POD close to unity at the centre of the 
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beam where the ultrasonic beam is directed. However, the sensitivity quickly diminishes with 

defects located away from the limited area of ultrasonic interrogation. On the other hand, the 

potential drop sensor has a relatively even coverage over the entire beam except for the ends 

of the beam where the electrical current has yet to spread out sufficiently. 

(a)   

(b)   

Figure 4.8 Spatial POD Map of (a) the ultrasonic sensor, and (b) the potential drop sensor.  

4.4 Probability of defect location maps (Step 6) 

Step 6: Evaluating the likelihood of combinations of systematic uncertainties 

With the spatial POD map for both sensors defined, the next step is to evaluate the spatial 

probability of defect location. In real-life applications, the potential defect location on a 

component is generally not known deterministically. The defect location will be determined 

by a combination of the externally applied demand on the component resulting in 

distributions of stress, temperature or environmental conditions, together with the intrinsic 

material properties and condition of the component [120]. As discussed in Section 2.1, the 

formation of fatigue cracks depends greatly on the stress and location of microstructural 

imperfections (e.g. dislocations), which are most likely unknown for an engineering 

component. Given this uncertainty in where the “weakest link” of the component is, it is 

necessary to evaluate the location of a damage using a probabilistic approach.   

The overall aim is to produce what is defined here as the probability of damage location (PDL) 

map, which is the map of where a defect is most likely to initiate given there is a defect 

somewhere on the component. This can be mathematically expressed as,  
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𝑃𝐷𝐿(𝑖) =
𝑃𝑓(𝑖)

∑ 𝑃𝑓(𝑘)𝑛
𝑘=1

 Eq. 4.4 

where 𝑃𝑓(𝑖) is the probability of the defect being present at location 𝑖 , and 𝑛  is the total 

number of discretized locations considered in this analysis.  

Several methods can be used to construct the PDL map for the monitored component. Some 

of these include the use of finite element models, experiments, surveying from previous 

experiences, or simply the identified inspection zones that are often readily available in 

practice [121]. In some cases, such as corrosion, it may not be possible to estimate the 

location of damage, but the length scale of damage will provide an indication of the required 

spatial coverage [122]. 

In this study, the weakest-link theory by Weibull [123] is used to evaluate the PDL map. The 

theory was originally developed to evaluate the effect of specimen size on measured material 

strength. The method has since been applied to evaluating a range of damage mechanisms 

such as brittle fracture [124] and provide a non-local stress approach to fatigue assessment 

[125], [126] with commercially-available software based on the theory [127].  

The theoretical analysis of the example problem in the present study using the weakest-link 

theory is summarized in Appendix A; only the results are shown here. Overall, 𝑃𝑓(𝑖)  for 

fatigue damage is given by, 

𝑃𝑓(𝑖) = 1 − (1 − Φ(
 n(𝑁) − 𝐶1 + 𝐶2  n(𝑆′(𝑖))

𝜎
))

𝐴(𝑖)
𝐴𝑟𝑒𝑓

 Eq. 4.5 

where: 

• 𝑁 = number of loading cycles experienced by the component 

• 𝑆′(𝑖) = stress amplitude with mean stress correction using the modified Goodman 

relationship [12] experienced by the component at location 𝑖 

• 𝐶1 and 𝐶2 = material constants for the Basquin law [128] 

• 𝜎 = shape parameter of the lognormal distribution which describes the uncertainty 

in the Basquin law relationship between 𝑆′(𝑖) and 𝑁 

• Φ(∙) = cumulative distribution function of the standard normal distribution 

• 𝐴(𝑖) = surface area of discretised location 𝑖 

• 𝐴𝑟𝑒𝑓 = surface area of the specimen used to determine 𝐶1 and 𝐶2  
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The parameters used in analysing the sample problem in this study are summarized in  

Table 4.1. Clearly the parameters selected here are rough estimates, but they provide an 

indication of the form of the results to expect from the analysis. Results from actual 

experimental data can be implemented when evaluating applications in real life.  

Table 4.1 Material parameters used in this study. 

Parameter Value Source and remarks 

𝐶1 186 
From properties of AISI 1015 in [129] 

𝐶2 9.09 

𝜎 0. 77 Estimated from NUREG/CR–6909 [12] 

𝐴(𝑖) 1 𝑚𝑚2 Surface area of an element in FE simulations 

𝐴𝑟𝑒𝑓 380 𝑚𝑚2 
Surface area of a uniform-gage test specimen 

recommended in ASTM E-606 [130] 

 

The map of stress amplitude for the two loading cases is produced using 3-D finite element 

simulations. The maximum stress amplitude for the two cases were set to be equal at 

110 MPa (see Figure 4.9 for the stress distribution). This map of stress amplitude is then used 

to produce the corresponding PDL maps using Eq. 4.5 and values in Table 4.1. The results are 

shown in Figure 4.10. As expected, the area over which a defect is likely to occur is much 

greater in the four-point bending case compared to the three-point bending case, meaning 

that the area which the monitoring system needs to cover is much larger.  

(a)  

(b)  

Figure 4.9 Stress amplitude maps (in MPa) for (a) the three-point fatigue bending, and (b) the four-point 
fatigue bending case. 
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(a)  

(b)  

Figure 4.10 PDL maps for (a) the three-point fatigue bending, and (b) the four-point fatigue bending case. 

 

Note that in theory, the PDL map would vary with the number of loading cycles as 𝑃𝑓(𝑖) is a 

function of the number of loading cycles. This variation is however found to be minimal and 

therefore insignificant to the analysis demonstrated here; from Eq. 4.5, one could imagine 

that 𝑃𝑓(𝑖)  would steadily increase for all the elements as the number of loading cycles 

increase and so the normalized 𝑃𝐷𝐿(𝑖) remains reasonably constant. 

 

4.5 Overall probability of detection – Combining the POD and 

PDL map (Step 7)  

Step 7: Evaluating the expectation and confidence bounds of POD 

With spatial POD maps for the PIMS and PDL maps for the two loading conditions defined, 

the expectation and confidence in the detection capabilities of each sensor-component 

combination can be evaluated.  A weighted statistical analysis will be used as described in the 

following section.  This is different to the Monte Carlo approach used in Chapter 3, where 

samples of systematic uncertainties are drawn from predefined distributions and evaluated. 

The weighted approach used here allows for a direct weighting of the POD of the PIMS at each 

discretised location on the mapped space. For clarity, the analysis will be described 

generically in the following section before being applied to the example problem. 
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4.5.1 Weighted Statistical Analysis 

Consider the case where there are 𝑛  possible mutually exclusive events (𝑛 = 10  in the 

illustration in Figure 4.11), each with an index, 𝑖 , an associated event value, 𝑥(𝑖) , and 

probability of occurrence, 𝑃(𝑖) (Figure 4.11a). We wish to evaluate the expected event value 

and the associated confidence.  

 
Figure 4.11 Illustration of constructing a weighted histogram. An event space of 𝑖 = 1, … , 10 events is 

constructed. (a) Each event has a corresponding event value and probability of occurrence. (b) A naïve, 
unweighted histogram is constructed based on the event values; their corresponding probability of 

occurrence is also shown, represented by the shaded area.  (c) The final weighted histogram weighted 
according to the corresponding probability of occurrence of each event. 

The list of possible event values can be visualised with a histogram (Figure 4.11b). For an 

unweighted histogram, each event will contribute to one of 𝑘  bins according to the event 

value. The resulting height of each bin is simply the number of events in each bin category, 

𝑛𝑘; the sum of heights of this histogram would therefore be 𝑛. 

This histogram cannot be used to accurately evaluate the expected event value and its 

confidence as it does not include any information on the probability of each event occurring; 

it would implicitly assume there is an equal probability of the event occurring. To evaluate 

the expected event value, each contribution to the histogram should be weighted according 

to its corresponding probability of occurrence, producing what is known as a weighted 
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histogram [131]. The height of each bin in the weighted histogram, 𝑤𝑘, can be calculated by 

summing the probability of occurrence associated with each individual contribution to the 

histogram,  

𝑤𝑘 = ∑𝑃𝑘(𝑖)

𝑛𝑘

𝑖=1

 Eq. 4.6 

where 𝑃𝑘(𝑖) is the probability of event 𝑖 in bin 𝑘 (Figure 4.11c). The sum of heights of this 

histogram is the sum of the probability of all event and therefore equals unity. 

In the context of this chapter, the events in the weighted statistical analysis would be a defect 

occurring at each discretised location, 𝑖, on the monitored component; the event value for 

each location is the corresponding POD of the permanently installed sensor, 𝑃𝑂𝐷(𝑖); the 

probability of occurrence is the corresponding PDL from structural integrity information, 

𝑃𝐷𝐿(𝑖). 

4.5.2 Application to the example problem 

The analysis above is applied to the results from the four sensor-component combinations of 

the example problem; the case of using the ultrasonic sensor to monitor the three-point 

bending beam to detect 6 × 6 mm defects is used here to illustrate. Results for all four sensor-

component combinations and of different defect sizes will be discussed later in Section  4.5.3 

and Section 4.6 respectively. 

Figure 4.12(a) shows the unweighted histogram normalised to the total number of 

discretised locations.  Figure 4.12(b) shows the weighted histogram together with the 

weighted empirical CDF where the contribution of POD values at unlikely defect locations are 

suppressed. The weighted empirical CDF is produced by sorting all 𝑃𝑂𝐷(𝑖)  in ascending 

order and plotting the corresponding cumulative weights, 𝑃𝐷𝐿(𝑖) , as a function of 𝑃𝑂𝐷 . 

Compared to the unweighted histogram, the effect of weighting the histogram with the 

probability of damage location is most apparent from the disappearance of the peak at 

𝑃𝑂𝐷 = 0; the 𝑃𝑂𝐷 = 0 bin of the histogram was populated by contributions from outside of 

the region interrogated by ultrasound, but in the three-point bending example the PDL map 

provides the information that the defect is very unlikely to occur in these low-sensitivity 

regions and so should be given a low weighting accordingly. 
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Figure 4.12 Relative frequency histogram of 𝑃𝑂𝐷𝑖  for the ultrasonic sensor – (a) unweighted, and (b) 

weighted by the probability of damage location, 𝑃𝐷𝐿𝑖 . 

Using the weighted histogram and cumulative plot, two metrics of detection capabilities, 

𝑃𝑂𝐷𝑒𝑥𝑝  and 𝑃𝑂𝐷95  can be evaluated to quantify the performance of a sensor-component 

combination; this is similar to that discussed in Section 3.5 and are also illustrated in Figure 

4.12. Since a weighted statistical analysis is used, methods of obtaining 𝑃𝑂𝐷𝑒𝑥𝑝  is slightly 

different compared to when Monte Carlo methods is used in Chapter 3. Instead of averaging 

the 𝑃𝑂𝐷  value of all discretised locations, the 𝑃𝑂𝐷𝑒𝑥𝑝  is evaluated as the probability-

weighted average in probability theory,  

𝑃𝑂𝐷𝑒𝑥𝑝 = ∑𝑃𝑂𝐷(𝑖) × 𝑃𝐷𝐿(𝑖)

𝑛

𝑖=1

 Eq. 4.7 

4.5.3 Evaluation of all sensor-component combinations 

Using the same method, the detection capabilities of each of the four sensor-component 

combinations for 6 × 6  mm defects can now be compared. The graphical results for a  

6 × 6 mm defect are shown in Figure 4.13. A table of 𝑃𝑂𝐷𝑒𝑥𝑝 and 𝑃𝑂𝐷95 is shown in Table 4.2.  

The histograms for the potential drop sensor are shown in Figure 4.13(b), (d) and (f). 

Between the naïve unweighted case and the four-point bending case the few low-sensitivity 

locations at the extreme ends of the component are weighted to zero and the corresponding 

low POD bins in the histogram are suppressed. The sensitivity over the remainder of the 

component is relatively uniform, resulting in the cluster of results at around 𝑃𝑂𝐷 = 85-95%; 

there is little consequence to increasing the confidence in damage location within an already 

uniform sensitivity. Therefore, there is little uncertainty in the POD and therefore the 𝑃𝑂𝐷𝑒𝑥𝑝 

and 𝑃𝑂𝐷95 values are in reasonable agreement. 
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Figure 4.13 Weighted histograms of the 𝑃𝑂𝐷 for 6 × 6 mm defects of the ultrasonic sensor (a, c, e) and the 
potential drop sensor (b, d, f) for the four-point (c, d) and three-point (e, f) bending case. The unweighted 

histograms (a, b) are also plotted for comparison. 

 

Table 4.2 𝑃𝑜𝐷𝑒𝑥𝑝  and 𝑃𝑜𝐷95 for all four of the sensor-component combinations for 6 × 6 mm defects. 

Results are for 𝑃𝐹𝐴 = 10−6. 

 Ultrasonic sensor  Potential drop sensor  

𝑃𝑂𝐷𝑒𝑥𝑝 𝑃𝑂𝐷95 𝑃𝑂𝐷𝑒𝑥𝑝 𝑃𝑂𝐷95 

Four-point fatigue bending 32.7% 0% 90.5% 88. % 

Three-point fatigue Bending 92.5% 32.1% 90.6% 88.8% 
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Due to the bi-modal nature of the ultrasonic sensor histogram as shown in Figure 4.13(a), 

there is a great deal of uncertainty in the POD; depending on the location of the damage the 

POD will either be near-zero or near-unity. As the region where a defect may be expected to 

occur gets successively smaller between the naïve, four-point and three-point cases, 

increasingly many low-sensitivity locations are weighted to zero and the corresponding 

𝑃𝑂𝐷 = 0 peak gets increasingly suppressed. Despite this, for both the three-point and four-

point structural cases, there remains enough possibility that a defect will occur in a low-

sensitivity region that the 𝑃𝑂𝐷95 value is poor; even in the three-point bending case there is 

a 5% chance that the POD will be less than 32.1%.  

The results in Table 4.2 indicate the importance of evaluating the expectation and confidence 

in POD. For the three-point bending case, based on the expected value the ultrasonic sensor 

appears to outperform the potential drop sensor. Conversely, the 𝑃𝑂𝐷95 values indicate that 

for the ultrasonic sensor there is a significant possibility that a defect may occur in a poor 

sensitivity region and therefore may go undetected, whereas this is unlikely for the potential 

drop sensor due to the greater area coverage. The 𝑃𝑂𝐷95  results significantly penalise 

sensor-component combinations where there is insufficient area coverage. This can be 

visualised by plotting the map of  [1 − 𝑃𝑂𝐷(𝑖)] × 𝑃𝐷𝐿(𝑖) as shown in Figure 4.14 for the case 

of monitoring the three-point bending case with the ultrasonic sensor; this map highlights 

areas of insufficient POD with significant PDL. A wider ultrasonic sensor would reduce the 

problem of insufficient coverage at the edges as indicated, though the problem would remain 

for the four-point fatigue bending case.  

It is also worth considering the impact of sensor mis-positioning. The improvement in 

performance is achieved as the region where damage is likely to occur is well aligned with 

the sensor; if the sensor was not in this location, the region where damage is likely to occur 

would not align with the sensor field-of-view and the performance would naturally suffer; 

the high POD elements would be poorly weighted instead of the low POD elements. 

 

Figure 4.14 Plot of [1 − 𝑃𝑂𝐷(𝑖)] × 𝑃𝐷𝐿(𝑖) for monitoring the three-point bending case using the 
ultrasonic sensor, highlighting areas of insufficient sensitivity with significant probability of defect 

location. 
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The analysis presented here helps to identify the performance limiting aspects of a 

permanently installed sensor. For the ultrasonic sensor, despite the very high sensitivity in 

the interrogated region, clearly the performance is limited by poor area coverage; increasing 

the sensitivity or reducing the measurement uncertainty (for example by improving the noise 

performance) is unlikely to cause significant improvement in performance. On the other 

hand, the potential drop sensor has sufficient area coverage for both structural cases and 

increasing the area coverage still further will lead to negligible performance increase; in this 

case the performance is limited by the sensitivity and/or measurement uncertainty. 

4.6 Detection capabilities as a function of defect size (Step 8) 

The study above can be repeated to evaluate the detection capabilities of different sizes to 

produce a plot of POD against defect size. Square defects with side length  

𝑎 = 2 to 8 mm are evaluated, and the results are shown in Figure 4.15. The expected POD and 

its 5% and 95% bounds are plotted. It is common to quantify the detection capabilities of a 

sensor as the defect size for which there is 95% confidence that a POD of at least 90% can be 

achieved by the sensor; this is often referred to as the 𝑎90|95 defect size [98], [99]. The 𝑎90|95 

is recognised as being particularly valuable for structural integrity assessments as a metric 

for the largest defect that may be reasonably assumed to be present and go undetected.  

To evaluate the 𝑎90|95 defect size for each sensor-component configuration, the 𝑃𝑂𝐷95 

results are fitted to the logistic function [132]. The resulting 𝑎90|95  for each sensor-

component configuration is shown in Table 4.3. As anticipated, due to the relatively uniform 

sensitivity of the potential drop sensor there is little uncertainty in the POD and therefore 

little discrepancy between the 𝑃𝑂𝐷𝑒𝑥𝑝  and 𝑃𝑂𝐷95  values. The 𝑎90|95  achieved for both the 

three-point bending and four-point bending cases is the same at 6.0 mm. The potential drop 

sensor is not limited by coverage and thus the increase in POD is in essence solely dependent 

on the defect size; the larger the defect, the more disruption in current flow is caused and the 

greater the change in resistance measurement. 
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Figure 4.15 Plot of 𝑃𝑂𝐷 against 𝑎 for the four sensor-component combinations with confidence bounds 

and the estimated 𝑎90|95.  

Table 4.3 𝑎90|95 for all four of the sensor-component combinations.  

 Four-point Bending Three-point Bending 

Ultrasonic Sensor  ≫ 8 𝑚𝑚 7.0 𝑚𝑚 

Potential drop sensor 6.0 𝑚𝑚 6.0 𝑚𝑚 

 

Conversely, there is significant uncertainty in the POD of the ultrasonic sensor and therefore 

a significant discrepancy between the 𝑃𝑂𝐷𝑒𝑥𝑝 and 𝑃𝑂𝐷95 values. The 𝑃𝑂𝐷95 values are poor 

as a result of the possibility that defects may occur in the regions with very poor sensitivity. 

For the four-point bending case the 𝑃𝑂𝐷95 value never exceeds zero; if a defect occurs in a 

location with negligible sensitivity then it will not be detected regardless of its size. This 

conclusion is subtly different for the three-point bending case, as indicated by Figure 4.14 the 

locations with inadequate coverage are situated to the sides of the component. Consequently, 

when a defect increases in size it ‘grows’ into an area of high sensitivity and is therefore 

detected. Again, a wider sensor would overcome the problem of insufficient coverage for the 

three-point bending case. 
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4.7 Discussion of results 

Quantitative assessment is necessary to optimise the selection and design of PIMS. It is 

proposed that the analysis described in this chapter may be conducted for a range of different 

monitoring system design parameters in order to maximise the 𝑎90|95 value. In the example 

problem, the ultrasonic transducer diameter or frequency could be altered in order to achieve 

sufficient area coverage, without compromising too far on sensitivity. On the other hand, the 

placement of electrodes of the potential drop sensor may be optimised based on confidence 

in defect location to improve sensitivity.  

In the examples used in this chapter, finite element structural analysis and the weakest link 

theory is used to provide a probability of damage location specific to each discretised spatial 

location. It is worth emphasising that on many occasions such involved analysis is not 

required. For simple problems such as the example problems in this chapter, dividing the 

component into uniform domains of ‘likely’ and ‘unlikely’ areas for damage location would 

have little consequence on the conclusions; in the three-point bending case the ‘likely’ areas 

would correspond to an element wide strip down the centre of the component, while for the 

four-point bending case the ‘likely’ area would be between the two central supports. The 

difference in the results of 𝑃𝑂𝐷𝑒𝑥𝑝  and 𝑃𝑂𝐷95  for the example problem would have been 

within 5% compared to the more comprehensive study using finite element simulations and 

the weakest link theory.  

This chapter focusses on the spatial aspect of POD and does not exploit the ability of a 

permanently installed sensor to collect frequent, real-time data, which may significantly 

improve its detection capabilities; the analysis presented here is only based on isolated 

measurements. The benefits of collected real-time data from the point of view of life cycle 

management of fatigue-prone components will be explored in the following chapter.  

4.8 Conclusions 

The spatial aspect of the detection capabilities of PIMS is addressed using the proposed 

framework in Chapter 3. The map of sensor sensitivity is combined with the map of 

probability of defect location to evaluate the detection capabilities of PIMS for a specific 

application. The spatial map of probability of detection is evaluated using a model-assisted 

approach in this study. The map of probability of defect location is evaluated using a finite 

element-based weakest-link approach. There are many other methods for estimating the 

probability of defect location; these range from simple segmentation into ‘likely’ and 
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‘unlikely’ areas of defects arising, to more quantitative structural mechanics-based 

assessments.  

Illustrative examples have been used to demonstrate the value of using the framework 

established in Chapter 3 to address the well-recognised area coverage sensitivity 

compromise. Histograms of POD are suggested to be particularly valuable in evaluating the 

performance of the monitoring system, and when coupled with the spatial maps of POD and 

PDL can help identify the performance limiting design aspects. 

Key performance parameters such as 𝑃𝑂𝐷𝑒𝑥𝑝 , 𝑃𝑂𝐷95  and 𝑎90|95  have been suggested and 

evaluated. The 𝑎90|95  is recognised as being particularly valuable for structural integrity 

assessments as a metric for the largest defect that may be reasonable assumed to be present 

and go undetected. Quantifying performance is necessary to be able to optimise monitoring 

system design, and tailor it to the specific needs of the structural integrity assessment and 

subsequently life-cycle management of engineering components as will be demonstrated in 

the following chapter.  
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5 Life-cycle management of engineering 

components incorporating data from 

permanently installed monitoring 

systems 

5.1 Introduction 

The previous two chapters provided methods to evaluate the detection capabilities of PIMS. 

The aim of this chapter is to propose a framework to integrate the uncertainty quantified 

PIMS data into a probabilistic structural integrity assessment to aid the life-cycle 

management of fatigue-prone engineering components. 

To date, the life cycle of an engineering infrastructure or plant is usually managed by a 

combination of structural integrity assessments and regular manual NDE inspections. The 

typical life-cycle management of an engineering component is summarised in Figure 5.1(a). 

At regular intervals during service of a component, an NDE inspection is carried out to ensure 

no defects exceeding a certain critical size are present (a negative inspection result). 

Following a negative inspection result the fitness-for-service (FFS) is evaluated by 

postulating the existence of 'the largest defect that might be missed' and forecasting its 

growth. Clearly, 'the largest defect that might be missed' is determined by the reliability of 

the detection capabilities of the inspection or monitoring system. The 𝑎90|95  defect size 

described in the previous chapter is suggested in [99], but in this chapter the full POD curve 

will be used. The remaining life of the inspected component is then calculated based on the 

size of the postulated defect and the crack growth model and parameters. This subsequently 
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provides assurance on the integrity of the component and confidence in its FFS for a 

calculable period of time.  

The availability of regular in-situ measurements from PIMS enables frequent assessments of 

FFS without manually inspecting the component. The life-cycle management of an 

engineering component with monitoring is illustrated in  Figure 5.1(b) as similarly described 

in [133]. Notably, incorporating data collected from PIMS has the potential benefit of 

reducing the need of in-service inspections while ensuring the integrity of the monitored 

component to the same confidence level. Industrial applications have also shown that the 

deployment of PIMS is valuable for components that are difficult or hazardous to access and 

inspect [134].   

(a)  (b)  

Figure 5.1 Illustration of (a) the typical life-cycle management of a component, and (b) the proposed life 
cycle management of a component with the availability of monitoring data. 

In this chapter, a framework is proposed to integrate data collected from PIMS with 

probabilistic FFS assessments. The uncertainty quantified POD curves from the previous 

chapters provide a distribution that may be used to filter out the possibility of a significant 

defect being present. It is then proposed that particle filtering methods (also known as 

sequential Monte Carlo methods) can be used to recursively update the possible defect extent 

of the monitored component and subsequently its FFS. With each successive negative result, 

the possibility of a significant defect being present is filtered based on the detection 

capabilities of the PIMS, expressed in the form of a POD curve. This results in an updated 

distribution of postulated defect sizes, which then feeds into a probabilistic FFS analysis to 

forecast the evolution of the postulated defects. The postulated defect size distribution is then 

used to forecast the defect evolution, which in turn is used to predict the probability 

distribution of failure time. In this way a real-time probabilistic assessment of FFS can be 

evaluated.  

This chapter is structured as follows. A description of an example problem that is used to 

demonstrate the proposed framework is first provided in Section 5.2. The theory of particle 

filtering methods that is proposed for postulated defect size updating and evaluating the 

confidence in FFS will be described in Section 5.3. The proposed approach is then applied to 
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the example problem, with the results being discussed in Section 5.4. Finally, a discussion on 

the results and conclusions are presented in Section 5.5 and Section 5.6.  

5.2 Description of example problem 

To illustrate the benefits of incorporating data collected from PIMS into life-cycle 

management, a hypothetical example of a steel pipe undergoing three-point fatigue bending 

is used. The life cycle of the pipe may be managed by one of two approaches. First is the use 

of periodic inspections only, second is the use of a combination of PIMS and potentially less 

frequent inspections. Details of the structural problem, the inspection and monitoring 

techniques used, and the failure criterion of the example problem will be outlined in this 

section. 

5.2.1 Description of the structural problem 

A hypothetical example of managing the life cycle of a welded steel pipe with nominal 

diameter, 𝐷 = 152.  mm (i.e. 6-inch) and wall thickness, 𝑡 = 11 mm undergoing three-point 

fatigue bending is used in this chapter. This example was chosen as results from experimental 

study on a guided wave crack growth monitoring system is available as published in [135]. A 

schematic illustration of the sample pipe is illustrated in Figure 5.2. The pipe is welded at the 

midpoint of the pipe as indicated by the dashed black line in the figure. The pipe is prone to 

initiation and propagation of a planar thumbnail fatigue crack at the weld where it 

experiences maximum stress amplitude.  

 
Figure 5.2 Schematic illustration of the welded pipe used in this study. The red line and patch represent 

the planar thumbnail fatigue crack. 

To evaluate the FFS of a component using the damage tolerant approach, a defect growth 

model is required. As discussed earlier in Section 2.1.2.2, many empirical fatigue crack 

growth models are available in the literature. The most commonly used Paris’ crack growth 

law with a cut-off at the threshold stress intensity factor is used in this study; any 

combination of loading and defect size resulting in ∆𝐾 < ∆𝐾𝑡ℎ  will not grow. This is 

consistent with the simplest crack growth model used in the British Standard 7910 [16].  
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𝑑𝑎

𝑑𝑁
= {

𝐶 (∆𝐾)𝑚, ∆𝐾 ≥ ∆𝐾𝑡ℎ

0, ∆𝐾 < ∆𝐾𝑡ℎ
 

Eq. 5.1 

∆𝐾 = 𝑌(𝑎)∆𝑆√𝜋𝑎 

𝐶 and 𝑚 = Paris’ constant and exponent of the material 

∆𝐾 = stress intensity range  

∆𝐾𝑡ℎ = threshold stress intensity range of the material 

𝑎 = defect size in the evaluated defect growth direction 

𝑌(𝑎) = geometry factor 

∆𝑆 = stress range 

As with many other damage mechanisms, fatigue damage accumulation is stochastic in 

nature [136]–[139]. In this study, the stochasticity in defect growth is simply represented by 

a probability distribution of the Paris’ constant, 𝐶 ; the Paris’ exponent, 𝑚 , and threshold 

stress intensity range, ∆𝐾𝑡ℎ , are assumed to be known. The values used are also from the 

British Standard 7910 [16] and are shown in Table 5.1. Clearly this is a simplified model as 

pointed out in the literature [140]. However, it is believed that this simplified model is 

sufficient for illustration purposes in this study. A different probabilistic defect growth model 

can easily be substituted to suit the actual application.  

All postulated initial cracks are assumed to be semi-circular (i.e. 𝑎 = 𝑐). However, the growth 

of the semi-circular crack in both the depth, 𝑎, and width, 𝑐, direction needs to be evaluated. 

The same defect growth model is used for evaluating the defect growth in both directions; 

the difference in growth rate in the two directions is accounted for when evaluating the 

geometry factor, 𝑌(𝑎), as described in the AFGROW Handbook for Damage Tolerant Design 

[141].  

Table 5.1 Welded steel parameters for the defect growth model used from British Standard 7910 and the 
AFGROW Handbook for Damage Tolerant Design. 

Description Parameter Value / Probability Distribution 

Paris’ constant 𝐶 𝐶~Logno m  (𝜇 = −29.8 , 𝜎2 = 0.55) 

Paris’ exponent 𝑚 3.11 

Threshold stress intensity 

range [𝑀𝑃𝑎 √𝑚𝑚] 
∆𝐾𝑡ℎ 63 

Geometry factor 𝑌(𝑎) 
Evaluated from [141] for a given defect 

size, 𝑎 
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The uncertainty in loading conditions experienced by the component is characterised by 

uncertainties in stress range, which is said to follow a normal distribution with parameters 

shown in Table 5.2. Loading is assumed to be fully reversed (i.e. load ratio, 𝑅 = −1). Again, 

this is a simplified model and the values chosen here are arbitrary to give a fatigue life of 

order 106  cycles with considerable uncertainty in load severity. A more realistic 

representation of the loading conditions, such as predictions made from inputs of a 

conditional monitoring SHM system, can be substituted as needed.  

Table 5.2 Loading conditions of the component used in this study. 

Description Parameter Probability Distribution 

Stress range ∆𝑆 ∆𝑆~No m  (𝜇 = 220, 𝜎 = 22) 

Load ratio 𝑅 −1, deterministic 

 

With the loading conditions and defect growth parameters defined, defect growth from a 

crack of given geometry may be modelled and predicted by numerically integrating the crack 

growth law. A sample result of growing a 1 mm semi-circular crack (i.e. 𝑎 = 𝑐) to a through-

thickness crack (i.e. 𝑎 = 𝑡) with mean values of Paris’ constant, 𝐶, and stress range, ∆𝑆, is 

shown in Figure 5.3. The uncertainty in these parameters and the postulated crack length will 

result in a range of possible defect growth curves; this uncertainty and how it is managed 

with inspection and monitoring results is the focus of this chapter. 

(a)        (b)  

Figure 5.3 Sample result of fatigue crack growth, showing (a) growth in the depth and width direction 
against the number of cycles; (b) shape of the defect at selected intervals.  

 

5.2.2 Description of the inspection and monitoring schemes 

In this hypothetical example problem, an eddy current sensor will be used for periodic 

inspections, and a permanently installed ultrasonic guided wave sensor will be used for 

defect monitoring. Descriptions of the setup and detection capability of the two sensors are 

given below. 
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5.2.2.1 Eddy current sensor for inspection 

An eddy current sensor is used for inspection in this study; an overview on how an eddy 

current sensor works can be found in [142]. An eddy current sensor was chosen for this study 

because it is suited for detecting surface-breaking defects, which is ideal for the example 

problem. The POD curve of the eddy current sensor for a crack-like defect is obtained from 

existing literature for an eddy current sensor by Mohseni et al. [143] where its detection 

capabilities are evaluated experimentally with qualified inspectors. The results are fitted to 

a logistics function and is shown in Figure 5.4. As a metric of detection capability, the eddy 

current sensor is expected to have a 𝑃𝑂𝐷 = 90% at 𝑎 = 0.95 mm. 

 
Figure 5.4 POD curve of the eddy current sensor used in this study.  

5.2.2.2 Guided wave sensor for monitoring 

For defect monitoring, a short-range shear-horizontal guided wave PIMS as described in 

[135] is used. Basic theory on how guided wave sensors work is described in Section 2.2.3.2. 

The POD curve of the guided wave sensor is evaluated using a combination of analytical 

solutions and experimental results produced by Chua et al. [87], [135]. The amplitude of the 

guided wave signal reflected from a zero axial extent crack-like defect is evaluated 

analytically, with the results shown in Figure 5.5(a). The amplitude of the signal is 

represented as a percentage of the amplitude of a pipe-end reflection. The signal noise level 

is evaluated from a laboratory experiment, which is found to follow a normal distribution 

with a standard deviation of 0.13%  in the case where only one transducer is used as a 

receiver and no averaging is done. A separate study on the effect of long-term stability of 

guided wave systems also yielded similar results in terms of signal noise level [144]. 

Assuming a target PFA of 10−6 , a POD curve plotting the probability of detection against 

defect depth can be produced as shown in Figure 5.5(b). As a metric of detection capability, 

the guided wave sensor has a 𝑃𝑂𝐷 = 90% at 𝑎 = 3.5 mm. This is inferior compared to the 

eddy current sensor used for inspections. 
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 (a)  (b)  

Figure 5.5 (a) Plot of the reflection ratio of the guided wave sensor as a function of crack depth, and 

(b) the subsequent POD curve assuming normally distributed noise and 𝑃𝐹𝐴 = 10−6. 

 

5.2.2.3 Considerations in choosing POD curves  

Note that the POD curves shown in Figure 5.4 and Figure 5.5 consider all sources of 

uncertainty as random and are therefore the expected POD curves. It has been shown in the 

previous two chapters that for PIMS, systematic uncertainty can cause considerable 

uncertainty in the POD curve that can be represented by showing various curves, such as the 

expected value curve, the median curve, or a curve representing the bounds of any chosen 

level of confidence. The choice of which curve to use corresponds to the meaning of the 𝐹𝐹𝑆 

estimate produced. The expected POD curve results in an estimate of the expected 𝐹𝐹𝑆, while 

the 95% confidence bound curve will result in estimates that will be conservative 95% of the 

time. 

Alternatively, a Monte Carlo approach to sample POD curves based on their probability of 

occurrence can be used to evaluate how the uncertainty in the detection capabilities translate 

to uncertainty in FFS. Clearly, this approach would require significantly more computational 

effort. In this Chapter, the expected POD is used in the first instance to illustrate the method, 

but the possible effect of systematic uncertainty is explored in Section 5.4.3. 

5.2.3 Failure criterion, confidence in FFS and inspection opportunities 

To conduct a meaningful FFS analysis, a failure criterion would have to be defined. In practice, 

the failure criterion is either defined as a loss of function such as a leaking pipe, or potential 

structural failure as discussed earlier in Section 2.1.2.4. With probabilistic analysis, the 

confidence in FFS of a component, denoted as 𝐹𝐹𝑆𝐶  in this study, is defined as the confidence 

in the component not violating the failure criterion. As an example, assume that the failure 

criterion is a defect of depth 𝑎𝑐𝑟𝑖𝑡  to be present. 𝐹𝐹𝑆𝑐 would subsequently be defined as the 

probability that no defect greater than 𝑎𝑐𝑟𝑖𝑡  is present on the component of interest. If our 
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estimated defect depth distribution, 𝑝(𝑎), at a given time during service is as illustrated in 

Figure 5.6, 𝐹𝐹𝑆𝐶  at that given time can then be evaluated as 𝑝(𝑎 < 𝑎𝑐𝑟𝑖𝑡).  

 
Figure 5.6 Schematic illustration of the definition of failure criterion and confidence in FFS. 

Defects that may be present in the component are anticipated to propagate according to the 

assumed defect growth model. An important aspect of the analysis is to forecast the evolution 

of the postulated defect size distribution and thus 𝐹𝐹𝑆𝐶  with time (or number of loading 

cycles for fatigue). The solid blue line in Figure 5.7 schematically plots of how 𝐹𝐹𝑆𝐶  would 

typically evolve; as postulated defects are anticipated to propagate with time, 𝐹𝐹𝑆𝐶  would 

subsequently decrease. When the evaluated 𝐹𝐹𝑆𝐶  reaches a predefined target value, 𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡, 

there is no longer sufficient confidence in the FFS of the component. An inspection would 

then have to be conducted before 𝐹𝐹𝑆𝐶  reaches 𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡  to update 𝑝(𝑎) . Should the 

inspection return a negative result, the possibility of a significant defect being present is 

eliminated and thus 𝐹𝐹𝑆𝐶  is improved. In Figure 5.7, an inspection is conducted at time 𝜏2 to 

update the 𝐹𝐹𝑆𝐶 .  

 
Figure 5.7 Schematic plot of how 𝐹𝐹𝑆𝐶  typically evolves with time and updated with inspections.   

 

In reality, it is extremely rare that one gets to inspect the component when 𝐹𝐹𝑆𝐶  reaches 

𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡 exactly. Typical opportunities to inspect the component are governed by a calendar-

based maintenance scheme of the structure. In Figure 5.7, arbitrary opportunities for 

inspection, 𝜏1, 𝜏2 and 𝜏3, are shown and represented as dot-dash grey lines. Together with the 

aim of minimising the number of inspections required, the decision to inspect a component 

would be evaluated based on whether it is necessary to conduct an NDE inspection to ensure 

𝐹𝐹𝑆𝐶  remains greater than 𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡  before another inspection opportunity arises. Using 
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Figure 5.7 as an example, at 𝜏1, the projected 𝐹𝐹𝑆𝐶  would remain above 𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡  until the 

next available inspection opportunity, 𝜏2. It is therefore not necessary to inspect at 𝜏1 as there 

is sufficient confidence in the FFS of the component. However at 𝜏2, the projected 𝐹𝐹𝑆𝐶  of the 

managed component will fall below 𝐹𝐹𝑆𝑙𝑖𝑚𝑖𝑡 before 𝜏3 as illustrated by the dotted black line. 

It is therefore necessary to inspect at 𝜏2 in order to be sufficiently confident in the FFS of the 

component until the next inspection opportunity. The dotted blue line represents the update 

in 𝐹𝐹𝑆𝐶  following an inspection which returns a negative result. 

In the example problem used in this study, the pipe is designed to leak-before-break, so the 

failure criterion is defined as having a through-wall crack in the component while in 

operation (i.e. 𝑎𝑐𝑟𝑖𝑡 = 𝑡). 𝐹𝐹𝑆𝑡𝑎𝑟𝑔𝑒𝑡 is said to be 99.9% in this study. It is assumed that there 

is an opportunity to inspect the managed component every 105 loading cycles. The values 

chosen here are arbitrary and may be substituted to suit the specific application studied. For 

instance, inspection opportunities may not occur at regular loading cycle intervals, but rather 

at specific times regardless of how many loading cycles the component of interest has 

experienced.  

5.3 Updating of defect size distribution and fitness-for-

service analysis 

In the context of this study, the role of inspections and PIMS is to screen for the presence of 

defects; the absence of a detectable defect provides assurance on the FFS of the component 

and consequently the confidence required to continue operation of the component for a 

period of time. The process of updating the confidence in FFS given results from inspection 

and/or PIMS proposed for this study is divided into two stages:  

1. Updating the defect size distribution using inspection and/or monitoring results 

2. Updating the confidence in fitness-for-service using the updated defect size 

distribution and the probabilistic defect growth model 

5.3.1 Updating the defect size distribution using inspection and/or 

monitoring results 

The main aim of this stage is to use single or multiple negative results (i.e. no defects 

detected) from inspection and/or monitoring to infer what sized defect, 𝑎, might be present 

in the component.  
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5.3.1.1 Bayesian inference for a single measurement result 

We begin by looking into the problem where only a single measurement result is considered. 

This can be simply evaluated using Bayes’ theorem, which in the context of defect size 

updating would be, 

𝑝(𝑎|𝑋 ≤ 𝑋𝑡ℎ) ∝ 𝑝(𝑎) × 𝑝(𝑋 ≤ 𝑋𝑡ℎ|𝑎) Eq. 5.2 

The distribution 𝑝(𝑎) is the prior distribution, which describes the estimate of defect size 

distribution prior to any measurements being made. This may come from sources such as 

manufacturing standards or previous inspections, or simply a naïve uniform distribution if 

there is no prior knowledge.  

The distribution 𝑝(𝑋 ≤ 𝑋𝑡ℎ|𝑎) is the likelihood function, which describes the likelihood of the 

negative result given a defect size. Importantly, this may be expressed in terms of the POD 

curve, 𝑃𝑂𝐷(𝑎), of the inspection or monitoring system used as also done in [133].  𝑃𝑂𝐷(𝑎) 

was defined earlier in Eq. 3.1 as the probability of 𝑋 > 𝑋𝑡ℎ for a given defect size, 𝑎. Thus, the 

likelihood function for a negative inspection or monitoring result maybe expressed as, 

𝑝(𝑋 ≤ 𝑋𝑡ℎ|𝑎) = 1 − 𝑝(𝑋 > 𝑋𝑡ℎ|𝑎) = 1 − 𝑃𝑂𝐷(𝑎) Eq. 5.3 

Finally, the distribution 𝑝(𝑎|𝑋 ≤ 𝑋𝑡ℎ) is the posterior distribution, which is what we want to 

obtain from the analysis. This gives an updated estimation of defect size distribution based 

on the inspection or monitoring result.  

5.3.1.2 Recursive updating of defect size distribution: a particle filtering 

approach 

The previous section outlined the use of the POD curve to infer possible defect sizes from a 

single measurement. In practise, multiple inspections are performed, and if PIMS are used, 

measurements are frequently collected throughout the service life of the component. Each 

new measurement should inform the possible defect sizes. The process of updating the 

distribution of defect sizes is not as straightforward as recursively applying Bayes’ theorem 

and using the previously evaluated posterior distribution as the prior distribution for the 

latest measurement. This is because the size of any potential defect in the component would 

evolve with time.  

As a result, a dynamic state-space modelling approach is required. Particle filtering methods 

(also known as sequential Monte Carlo methods) are of growing popularity for probabilistic 

damage prognosis in multiple applications given their flexibility and ease of implementation 
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and will be used in this study [145]–[147]. The theory of particle filtering methods is widely 

discussed in existing literature; a summary of the method is given here in the context of 

managing the life cycle of engineering components. The aim is to evaluate the defect size 

distribution after every 𝑁  loading cycles given all available inspection and monitoring 

results. This is expressed as,  

𝑝(𝑎𝑗|𝑴𝟎:𝒋) Eq. 5.4 

𝑎𝑗 = Size of defect at the most recent, 𝑗-th inspection or monitoring result, where the component 

has experienced 𝑁𝑗 loading cycles. 

𝑴𝟎:𝒋 = Vector of results of the zeroth to 𝑗-th measurement from inspection or monitoring, 

the zeroth being the initial measurement prior to service (i.e. at 𝑁 = 0). A binary 

result is considered; either no defect is detected (i.e. 𝑋 ≤ 𝑋𝑡ℎ) or a defect is detected 

(i.e.  𝑋 > 𝑋𝑡ℎ). 

Step 1: Specify the prior 

To initiate the process, a distribution of initial defect size, 𝑝(𝑎0), would have to be defined. In 

numerous studies on probabilistic damage prognosis using defect growth models, the 

assumption that a macroscopic defect is already present and detected is often made [148], 

[149]. Under such conditions, the initial defect size distribution would simply be the 

measured defect size together with its quantified uncertainty. However, there are also cases 

where the component of interest is nominally “defect-free”. For such cases, a postulated 

defect size distribution would have to be used.  

There are numerous approaches to postulating the initial defect size distribution. One 

approach is the use of an equivalent initial flaw size; this approach uses the defect growth 

model to backward-extrapolate the equivalent initial flaw size such that the evaluated 

component life matches that evaluated using the stress-life approach; further discussion of 

this can be found in [150]. Alternatively,  the initial defect size distribution can be defined in 

view of knowledge from “service experience, the manufacturing process, resolution limits of 

a NDE technique”  [17].  

In this study, it is assumed that regardless whether monitoring is used to manage the life 

cycle of the component, an inspection is conducted prior to its service. Therefore, the 

detection capability of the inspection technique is used to define the postulated initial defect 

size distribution. Assuming no prior knowledge other than a negative result from the initial 



 

5. Life-cycle management of engineering components incorporating data from PIMS 

80 

inspection, the initial distribution of defect size is evaluated using Eq. 5.2 and Eq. 5.3. This 

results in,  

𝑝(𝑎0|𝑀0) ∝ 1 − 𝑃𝑂𝐷(𝑎) Eq. 5.5 

where 𝑀0 is the negative result of the initial inspection. Using the POD curve of the eddy 

current sensor defined in Section 5.2.2.1, 𝑝(𝑎0|𝑀0) is obtained by normalising the function 

1 − 𝑃𝑂𝐷(𝑎) for 𝑎 ≥ 0 such that it integrates to unity; the resulting distribution is shown in 

Figure 5.8. This figure shows the distribution of the size of a postulated defect that may be 

present in the component given the negative result of the initial inspection. In this example, 

since it is very likely that the inspection would detect any defect greater than approximately 

1.25 mm in depth, a negative result would effectively eliminate the possibility of a defect 

greater than this size. Conversely, there is little chance the inspection would detect a defect 

smaller than approximately 0.5 mm  in depth, so the inspection provides negligible 

information on the likelihood of such a defect being present. Thus, the distribution at small 

defect sizes remain flat since a naïve uniform distribution was used as the prior, 𝑝(𝑎). Should 

a POD curve of a certain confidence bound be used, a level of conservatism in the estimated 

postulated defect size is introduced. For instance, the 95% confidence POD curve would 

result in an estimate that is conservative for 95% of the of the combinations of systematic 

uncertainty realisations.  

 
Figure 5.8 Plot of 𝑝(𝑎0|𝑀0) for the example problem after the initial inspection without any other  

prior knowledge.  

Step 2: Time dependence of defect evolution 

Between successive measurements, the postulated defects are assumed to evolve based on 

the defined defect growth model. As a result, it is necessary to evaluate the evolved 

distribution of defect size based on the previous measurements before taking into account 

the most recent measurement.  

At the instance where the 𝑗-th measurement is made, the previous measurement would be 

the (𝑗 − 1)-th measurement, and the previously-evaluated defect size distribution would be 
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𝑝(𝑎𝑗−1|𝑴𝟎:𝒋−𝟏). The aim of this step is to evaluate the distribution 𝑝(𝑎𝑗|𝑴𝟎:𝒋−𝟏) with the 

defect growth model. This distribution would act as the prior distribution in the following 

step when the defect size is updated with the latest measurement results.  

A Monte Carlo approach is used to evaluate the evolved defect size distribution. An 

appropriate sampling method such as the Latin hypercube sampling method [151] used in 

this study is used to draw 𝑖 = 1, … ,𝑈 samples from the distribution 𝑝(𝑎𝑗−1|𝑴𝟎:𝒋−𝟏) and other 

parameters with uncertainties of the defect growth model (i.e. Paris’ constant, 𝐶, and stress 

range, ∆𝑆, in the example problem). Each sample of defect size, 𝑎𝑗−1
(𝑖)

, and a set of probabilistic 

parameters of the defect growth model is then used to evaluate each corresponding 𝑎𝑗
(𝑖)

. This 

can then be represented as a histogram of evolved defect sizes which approximates the 

distribution 𝑝(𝑎𝑗|𝑴𝟎:𝒋−𝟏) . An illustration of evaluating the defect size distribution after 

2 × 105 loading cycles for the example problem is shown in Figure 4.9. The prior distribution 

used is the distribution defined in the previous step. In this example, 2 × 106 samples were 

drawn from the distributions of defect size and crack growth parameters. From the results, it 

is clear that a significant portion of the postulated defects have grown in size. Note that a 

portion of smaller defects did not evolve; this is due to the fact that the combination of defect 

size and defect growth parameter results in stress intensity is below the growth threshold 

(see Eq. 5.1).  

 
Figure 5.9 Illustration of the process of evaluating the evolution of the histogram of defect sizes sampled 

from the prior defect size distribution. 
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Step 3: Particle filtering using the POD curve 

With the distribution 𝑝(𝑎𝑗|𝑴𝟎:𝒋−𝟏)  evaluated, the next step is to incorporate the latest 

measurement result, 𝑀𝑗, and thus obtain the distribution 𝑝(𝑎𝑗|𝑴𝟎:𝒋). To do so, each sample of 

𝑎𝑗
(𝑖)

 is assigned a weight, 𝑤𝑗
(𝑖)

, evaluated as 

�̃�𝑗
(𝑖)

= 𝑤𝑗−1
(𝑖)

× 𝑝(𝑀𝑗|𝑎𝑗
(𝑖)

) 

𝑤𝑗
(𝑖)

=
�̃�𝑗

(𝑖)

(∑ �̃�𝑗

(𝑝)𝑋
𝑝=1 ) 

 
Eq. 5.6 

where 𝑤𝑗−1
(𝑖)

 is the previously evaluated weight of the particle, and 𝑝(𝑀𝑗|𝑎𝑗
(𝑖)) is the likelihood 

function as derived in Eq. 5.3 with the POD curve of the latest measurement. This describes 

the likelihood of obtaining the latest measurement result if a defect of size 𝑎𝑗
(𝑖)  is indeed 

present. With this, the final posterior distribution, 𝑝(𝑎𝑗|𝑴𝟎:𝒋), that describes the updated 

postulated defect size given all previous inspections and the current inspection can be 

approximated as, 

𝑝(𝑎𝑗|𝑴𝟎:𝒋) = ∑𝑤𝑗
(𝑖)

× 𝛿(𝑎𝑗 − 𝑎𝑗
(𝑖)

)

𝑈

𝑖=1

 Eq. 5.7 

where 𝛿(∙) is the Dirac delta function.  

Following the example in the previous step, suppose an inspection is carried out after  

𝑁 = 2 × 105 loading cycles, and thus the POD curve of the eddy current sensor is used for the 

likelihood function. Illustration of the process for the example is shown in Figure 5.10. A 

negative result from the inspection filters the probability of a defect that is much larger than 

the detection capability being present, otherwise the test result is likely to be positive. As 

seen from the example figure, the likelihood of a negative result becomes negligibly small 

above around 𝑎 = 1.25 mm. The negative result from the inspection therefore effectively 

eliminates the largest defect sizes from the prior distribution, 𝑝(𝑎𝑗|𝑴𝟎:𝒋−𝟏), to produce the 

updated posterior distribution, 𝑝(𝑎𝑗|𝑴𝟎:𝒋).  
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Figure 5.10 Illustration of the process of updating the histogram of postulate defect sizes with the most 

recent inspection/monitoring result. 

Step 4: Resampling (optional) and updating 

Typically when performing particle filtering, resampling is performed using the evaluated 

posterior distribution, 𝑝(𝑎𝑗|𝑴𝟎:𝒋); methods to conduct resampling can be found in [152]. This 

process is to avoid sample degeneracy where more and more samples have a weight of zero, 

resulting in fewer useful samples. However, it is known that standard methods of resampling 

would reduce the variance in samples as explained in [153]; the effect is known as sample 

impoverishment. This is particularly undesired for this specific application since the extreme 

cases are of great importance when evaluating the FFS of components. With reduced variance 

in samples, postulated defects of significant sizes are likely to be removed, resulting in a non-

conservative estimate in FFS.  

Therefore, resampling is not done in this study; an appropriate number of samples is used to 

ensure that there are sufficiently many non-zero weight samples throughout the evaluation 

process to provide accurate results. An alternative is to use more advanced resampling 

techniques such as deterministic resampling which are designed to minimise the effect of  

sample impoverishment [154].  

Finally, the weighted (or resampled) samples from 𝑝(𝑎𝑗|𝑴𝟎:𝒋)  are then used in the next 

iteration of the process when a new data point from inspection or monitoring is obtained (i.e. 

𝑗 = 𝑗 + 1).  
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Overall, the process of recursively updating the defect size distribution using a particle 

filtering approach is summarised in Figure 5.11. The resulting 𝑝(𝑎𝑗|𝑴𝟎:𝒋) will be used to 

evaluate the confidence in FFS of the component as described in the following section.  

 
Figure 5.11 Illustration of the particle filtering approach to recursively update the defect size distribution 

given inspection or monitoring results. Numbers in orange circles represent the corresponding steps. 

Larger figures can be found in Figure 5.9 and Figure 5.10. 

5.3.2 Updating the confidence in fitness-for-service 

With the updated defect size distribution, a distribution of the number of loading cycles 

before the defined failure criterion (i.e. a through-wall crack in the example problem) is 

reached, denoted as 𝑁𝑓, can be evaluated. This in turn can be used to produce a plot of 𝐹𝐹𝑆𝐶  

as a function of loading cycles. The process is summarised in Figure 5.12. Samples of 

postulated defect sizes from the updated distribution and probabilistic defect growth 

parameters are drawn from their respective distributions, and 𝑁𝑓  for each sample is 

evaluated. Subsequently, the probability density function of 𝑁𝑓 can be produced as shown in 

the top right of Figure 5.12. This in turn can be used to evaluate the confidence in not failing 

(i.e. 𝐹𝐹𝑆𝐶) as a function of loading cycles, evaluated as one minus the cumulative distribution 

function of 𝑁𝑓; this is shown as the solid blue line in the top right of Figure 5.12. Note that the 

evaluation of 𝑁𝑓 shown here is truncated at 2.5 × 106 cycles. The results at higher number of 

cycles are not relevant as the required 𝐹𝐹𝑆𝑡𝑎𝑟𝑔𝑒𝑡 is typically a very large value, thus only the 

lower tail of the distribution of 𝑁𝑓 is of interest.  
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Figure 5.12 Illustration demonstrated the process of obtaining a prediction in when 𝐹𝐹𝑆𝑡𝑎𝑟𝑔𝑒𝑡  is reached. 

5.4 Results for the example problem 

The previous sections detailed the process of updating the distribution of possible defect 

sizes and evaluating the FFS of the component. Using the process detailed, simulations can be 

conducted to illustrate how the confidence in FFS evolves over time when managed by 

inspection only or a combination of inspection and monitoring. To recall, the failure criterion 

of the pipe is defined as having a through-wall crack at the weld of the pipe while in operation. 

The limiting FFS is set at 99.9%. It is assumed that there is an opportunity to inspect at 

regular intervals every 105  cycles.  Evaluation on the required number of inspections 

required is conducted for the first 2 × 106 loading cycles. The case where all inspections and 

data from PIMS return a negative result is considered, which is reasonably likely to occur 

since the median loading cycles to failure of the component evaluated using the initial 

postulated defect size distribution in Section 5.3.1 is estimated to be 2.2 × 106 cycles. The 

aim is to minimise the required number of inspections. Two management schemes are 

considered: first is when only periodic inspections are used; second is when a combination 

of inspections and monitoring is used.  

5.4.1 Life-cycle management with inspections only 

We begin by looking at the scenario where only in-service inspections are used to manage 

the welded pipe. The plot of confidence in FFS, 𝐹𝐹𝑆𝐶 , against the number of loading cycles, 𝑁, 

is shown in Figure 5.13; this is equivalent to the schematic illustration shown earlier in Figure 

5.7. It can be seen that for the first 6 × 105 cycles, an inspection is required every 2 × 105 

cycles as indicated by the dashed blue lines. However, with successive negative inspection 
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results the possibility that significant defects that would have grown to a detectable size are 

filtered out. Equally, the probability that there are only small defects below the crack growth 

threshold (see Section 5.2.1) increases. Thus, an inspection is only required every 3 × 105 

cycles after the third in-service inspection and every  × 105 cycles after the fifth in-service 

inspection. Overall, in this specific scenario, a total of six in-service inspections is required 

for the managed component to safely operate for 2 × 106 cycles assuming all inspections 

return a negative result.  

 
Figure 5.13 Evolution of confidence in FFS (𝐹𝐹𝑆𝐶) throughout the life cycle of the managed component 

using only periodic inspections. A total of six in-service inspections are required for the component to last 
2 × 106 cycles. 

Another way of representing the results is to plot the projected remaining cycles until 𝐹𝐹𝑆𝑙𝑖𝑚 

is reached as a function of number of cycles experienced by the component as shown in Figure 

5.14. The dotted red line represents the interval between inspection opportunities. When the 

projected remaining cycles to 𝐹𝐹𝑆𝑙𝑖𝑚 falls below this line, the component would need to be 

inspected at the next available opportunity. Similar observations can be made with this figure 

as with Figure 5.13. This plot will become more informative when comparing to the results 

with the case where monitoring is incorporated.  

 
Figure 5.14 Plot of remaining number of cycles until 𝐹𝐹𝑆𝑙𝑖𝑚  is reached against number of cycles 

experienced by the component with inspections only.  
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5.4.2 Life-cycle management with inspections and monitoring 

We now proceed to consider the scenario where a PIMS is installed on the welded pipe. It is 

assumed that monitoring data is collected every 104  cycles, which translates to 10 

measurements between each inspection opportunity. The frequency of measurement chosen 

here is arbitrary and more frequent measurements can be made as long as the measurements 

does not become serially correlated as discussed earlier in Section 3.4.2. 

The plot of 𝐹𝐹𝑆𝐶  against 𝑁 for the case where a monitoring system is incorporated is shown 

in Figure 5.15. Given that the PIMS has a POD of unity for a defect of the critical size  

(i.e. 𝑃𝑂𝐷(𝑎𝑐𝑟𝑖𝑡) = 1), confidence in FFS immediately after a negative result from the PIMS 

would always be unity. Therefore, since the reduction in confidence between the frequent 

measurements made by the PIMS is negligible, 𝐹𝐹𝑆𝐶  effectively remains constant at unity 

throughout if all monitoring results are negative.  

 
Figure 5.15 Evolution of confidence in FFS (𝐹𝐹𝑆𝐶) throughout the life cycle of the managed component 

using inspections and monitoring. A total of three in-service inspections are required for the component 
to last 2 × 106 cycles. 

However, it can be seen that the projected 𝐹𝐹𝑆𝐶  until the next inspection opportunity may 

still fall below 𝐹𝐹𝑆𝑙𝑖𝑚; this occurs after 2, 4, and 7 × 105 cycles in this specific scenario as 

indicated by the dash blue lines in Figure 5.15. To illustrate, the moment where  

𝑁 = 2 × 105 cycles is used as an example. Using the process discussed in Section 5.3.2, the 

current postulated defect size distribution can be projected up to the next available 

inspection opportunity (i.e. at 𝑁 = 3 × 105  cycles). Subsequently, the confidence in not 

having a defect greater than 𝑎𝑐𝑟𝑖𝑡  (i.e. 𝐹𝐹𝑆𝐶 ) as a function of number of cycles from  

𝑁 = 2 × 105 to 3 × 105 cycles can be evaluated; this is plotted as the dash black line in Figure 

5.15. The results show that 𝐹𝐹𝑆𝐶  will fall below the target confidence of 𝐹𝐹𝑆𝑙𝑖𝑚 = 99.9% 

before 𝑁 = 3 × 105  cycles. Hence, an inspection is required to ensure that 𝐹𝐹𝑆𝐶  will stay 

above 𝐹𝐹𝑆𝑙𝑖𝑚 during operation.  
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This is also illustrated using the plot of the projected remaining cycles until 𝐹𝐹𝑆𝑙𝑖𝑚 against 

the number of cycles experienced by the component as shown in Figure 5.16. Comparing this 

to the same plot for inspection only in Figure 5.14, the most evident difference with the use 

of PIMS is that 𝐹𝐹𝑆𝐶  and subsequently the projected remaining cycles to 𝐹𝐹𝑆𝑙𝑖𝑚  may be 

updated with each successive result from the monitoring system. This is evident from the 

gradual curvatures of the plot in Figure 5.16 as opposed to the straight lines as shown in 

Figure 5.14 with inspections only.  

 
Figure 5.16 Plot of remaining number of cycles until 𝐹𝐹𝑆𝑙𝑖𝑚  is reached against number of cycles 

experienced by the component when monitoring is incorporated.  

It can be seen from the results that the value of having a monitoring system installed is 

relatively limited during the early stages of component life. Recall that the detection 

capability of the monitoring system is inferior compared to the inspection technique (𝑃𝑂𝐷 = 

90% at 𝑎 = 3.5 mm and 0.95 mm respectively). As a result, there is insufficient information to 

completely eliminate the possibility of significant defects being present and to keep the FFS 

above the desired level. This means that an inspection is required after 2, 4, and 7 × 105 

loading cycles, which is nearly identical to the case where only inspection is used.  

As more measurements with negative results are obtained, there is greater confidence in the 

FFS of the component, and thus an inspection is no longer required from 7 × 105  cycles 

onwards. It is observed that the projected remaining cycles to 𝐹𝐹𝑆𝑙𝑖𝑚 gradual increases with 

the number of loading cycles. While this may be non-intuitive, this is a result of the increase 

in probability of there being only small defects that will not propagate or propagate very 

slowly as evaluated from the defect growth model. This gradual increase in confidence is also 

present, though not as pronounced, in the case where only inspections are conducted; the 

gradual increase in inspection intervals is the result of the same effect. This effect is also 

observed in the example analysis of existing standards for probabilistic inspection planning 

(i.e. DNV-GL-C210 [14]) where a simple Bayesian updating is used.  
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Overall, the results show that three instead of six inspections are required in this specific 

scenario. If PIMS of better detection capabilities is used, it is possible that 𝐹𝐹𝑆𝐶  will never fall 

below 𝐹𝐹𝑆𝑙𝑖𝑚 , thus eliminating the need to inspect while maintaining confidence in the 

structural integrity of the monitored component. This demonstrates the potential of using 

PIMS to filter the extreme cases in order to maintain sufficient confidence in its FFS. In terms 

of managing the life cycle of engineering components, this can translate to fewer inspection 

required or possibly eliminating the need for inspections. This would therefore reduce the 

risk and cost of maintenance of the monitored component.  

5.4.3 PIMS with insufficient coverage 

As discussed in the previous chapter, the detection capability of PIMS is not only governed by 

its sensitivity to defects, but also its spatial coverage. The POD curve of the monitoring system 

used in this study only considers the effect of random signal noise. Earlier discussion in 

Section 5.2.2.3 considered how the 95% confidence POD curve may be used to add 

conservatism to account for the influence of spatial coverage on the detection capability of 

PIMS. For PIMS that have insufficient coverage, using a 95% confidence POD curve can 

significantly reduce its assured detection capability as demonstrated in the previous chapter. 

To demonstrate the limited capabilities of a monitoring system with insufficient coverage, a 

simulated POD curve is produced and used to repeat the study in order to mimic the effect of 

using a monitoring system with insufficient coverage. The simulated POD curve is shown in 

Figure 5.17. The POD curve is modified from that of the guided wave sensor used in the study. 

The POD curve is offset by 1 mm in terms detection capabilities as a function of defect depth 

and scaled by a factor of 0.9 in 𝑃𝑂𝐷, indicating that 10% of defects would not be detected, 

regardless of size, due to insufficient area coverage. The values chosen here are arbitrary; a 

study on spatial coverage as discussed in the previous chapter would be required to fully 

capture the effect of insufficient coverage in practical applications.  

Figure 5.18 and Figure 5.19 show the plots of 𝐹𝐹𝑆𝐶  against 𝑁 and plot of projected remaining 

cycles until 𝐹𝐹𝑆𝑙𝑖𝑚  against 𝑁  when using the simulated POD curve to mimic insufficient 

coverage. Looking at the results, it can be seen that although the monitoring system is capable 

of filtering the extreme cases to some degree, its filtering effect is insufficient to achieve a 

reduction in the number of inspections required. This highlights the importance of evaluating 

the capabilities of PIMS from a life-cycle management point of view to quantify the value of 

using PIMS for each specific scenario.   
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Figure 5.17 POD curve of the PIMS used in the example problem (solid black line), and a simulated PIMS 

with insufficient coverage (dotted black line).  

 

 
Figure 5.18 Evolution of confidence in FFS (𝐹𝐹𝑆𝐶) throughout the life cycle of the managed component 

using inspection and monitoring with insufficient coverage. A total of six in-service inspections are 
required for the component to last 2 × 106 cycles; this is the same as using inspection only.  

 

 
Figure 5.19 Plot of remaining number of cycles until 𝐹𝐹𝑆𝑙𝑖𝑚  is reached against number of cycles 

experienced by the component when monitoring with insufficient coverage is incorporated.  
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5.5 Discussion of results 

The use of PIMS is only valuable when it translates into quantifiable benefits in managing the 

life cycle of engineering components and structures. The framework proposed in this chapter 

uses particle filtering methods to integrate the uncertainty quantified detection capabilities 

of PIMS and probabilistic defect growth models for fitness-for-service analysis. With 

successive negative results from the monitoring system, the less probable defect growth 

paths are filtered based on the results, thus recursively updating our confidence in the FFS of 

the monitored component.  

The proposed approach simply treats the output of PIMS as binary detection/no detection 

results as similarly done in [133], [155], rather than converting the actual signal output into 

defect sizes as done in most studies using particle filtering for SHM applications [146], [147], 

[156]. The key advantages of doing so is that the analysis does not need to be conducted in 

real-time while the component is in operation; the confidence in FFS of the monitored 

component is known as long as the monitoring system returns a negative result. This is 

especially useful when a large number of components is being monitored at the same time. 

This also means that the potential benefits of PIMS can be easily quantified prior to 

deployment by assuming a presumed sequence of measurement results (i.e. all negative 

results for the first 2 × 106 cycles in this study). This will be useful when determining the 

optimal life-cycle management strategy for specific scenarios. 

Using the successive negative results from PIMS to filter the possibility of substantial damage 

can be a very effective way of maintaining confidence in the FFS of engineering components. 

The FFS of an engineering component is typically governed by the extreme cases. As a result, 

even though the monitoring system used in this study is inferior compared to the inspection 

technique, the ability to constantly eliminate these extreme cases assures that failure of the 

component is not imminent. This in turn provides confidence in its FFS while reducing the 

need for in-service inspections.  

Managing the life cycle of an engineering component with PIMS is conceptually different 

compared to the conventional approach where only in-service inspections are used. With the 

conventional inspection-based approach, the presence of defects that are much smaller than 

the critical defect size would need to be eliminated to ensure no defects would evolve to the 

critical size in between the inspections. Therefore, improvement in the detection capabilities 

of inspection techniques will need to be complemented with the advancement in predicting 

the growth of smaller defects in order there to benefit in terms of managing the life-cycle 
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management of components. As discussed earlier in Section 2.1.2.5, this is challenging for 

fatigue damage due to its dependence on microstructure. This would inevitably result in 

substantial uncertainty in defect growth, consequently hindering the value of an improved 

inspection system from a life-cycle management perspective. In comparison, this complexity 

in modelling the growth of small defects can potentially be avoided with the use of PIMS. 

Given the ability for PIMS to make frequent measurements, only the growth of more 

substantial damage is of interest when evaluating the FFS of the monitored component.   

The proposed approach can also be used to demonstrate how measurements from PIMS may 

justify for life extension of a monitored component. A sequence of negative detection results 

can provide confidence that no substantial damage has incurred during its operation. 

Provided that the component is continuously monitored, there may be sufficient confidence 

that the component would not fail imminently and thus the component is safe for continued 

operation.  

Nevertheless, the effectiveness of using PIMS is greatly dependent on many parameters for 

each specific application, some of which include the detection capabilities of the monitoring 

system, operating conditions, the failure criterion, and the number of opportunities to 

inspect. For instance, PIMS may not be as effective for cases where the maximum tolerated 

defect size is small since this would demand a monitoring system that has both great 

sensitivity and spatial coverage. Under such considerations, the use of PIMS may not be a 

viable solution from both a technical and economical point of view. 

It is believed that further additions can be made to develop the proposed framework. Firstly, 

the implementation of cost analysis as done in [133], [157] would be of great value to justify 

the business case for implementing PIMS to manage the life cycle of engineering components. 

Also, rather than using a single, potentially conservative POD curve for the analysis, a Monte 

Carlo approach to sample POD curves for a more accurate evaluation of FFS can be done as 

mentioned earlier in Section 5.2.2.3. This would however require significantly more 

computational power and thus tools to allow for efficient running of simulations would have 

to be developed and implemented.  

5.6 Conclusions 

A framework that integrates uncertainty quantified PIMS data into evaluating the fitness-for-

service of engineering components is proposed. Using particle filtering methods, frequent 

measurements from PIMS may be used to recursively update the distribution of possible 

defect sizes in the component, consequently updating our confidence in its FFS. The 
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framework can be used to quantify the benefits of using PIMS from the perspective of 

managing the life cycle of engineering components.  

An illustrative example of managing the life cycle of a welded pipe undergoing three-point 

fatigue bending is used to demonstrate the value of the proposed framework. The pipe was 

managed by either periodic inspections only or a combination of inspection and monitoring. 

Results of the study show that the ability of PIMS to filter cases of substantial damage is an 

effective way of maintaining confidence in FFS of engineering components. This translates to 

fewer in-service inspections required that maybe costly and hazardous to conduct.  

The effectiveness of using PIMS is dependent on multiple factors such as the sensitivity and 

spatial coverage of the monitoring system, operating conditions and the failure criterion. It is 

proposed that the framework can be used for a quantitative comparison between the use of 

in-service inspections and PIMS in specific engineering applications, as well as a comparison 

between PIMS of different configurations. This framework will therefore be a useful tool for 

promoting the adoption of PIMS for damage detection in suitable engineering applications.  
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6 Remnant life predictions using rate 

measurements from permanently 

installed monitoring systems 

6.1 Introduction 

The previous three chapters focused on the use of PIMS to detect the presence of a defect. 

Once a defect is found, measurements taken from PIMS can also be used to characterise and 

track the growth of a detected defect and to perform remnant life predictions as the 

component nears final failure. Most research focuses on using PIMS as an extension to the 

conventional inspection approach of using empirical crack growth laws as discussed in 

Section 2.1.2 to perform remnant life predictions. The use of PIMS makes it possible to 

measure in-situ operating conditions [158] and perform crack detection and sizing in real-

time [159] to produce frequently updated estimates of remnant life. 

Despite the interest in using PIMS to predict the remnant life predictions of engineering 

components, little research has been conducted to utilise the continuity of data that 

monitoring can provide. One of the main benefits of using PIMS is that measurements may be 

taken much more frequently than periodic inspections. This is illustrated in Figure 6.1, which 

plots the measured crack length of a fatigue experiment against the number of loading cycles. 

The red crosses are analogous to data obtained via regular in-service inspections, while the 

blue dots represent data that can be obtained with monitoring. Frequent data collection 

enables the possibility of obtaining rate of change estimates and identification of trends in 

the data. It is proposed that rate of change information obtained from PIMS may be exploited 

for improved fatigue remnant life predictions. 
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Figure 6.1 Plot of crack length against number of loading cycles for the fatigue experiment. The red 

crosses are analogous to data obtained via regular in-service inspections, while the blue dots represent 
what a PIMS can obtain. 

Fatigue damage is an example of a positive feedback mechanism [19]; an increase in damage 

leads to an increase in the rate of damage accumulation. This positive feedback behaviour 

leads to a characteristic form of the temporal evolution of damage accumulation as seen in 

Figure 6.1. This characteristic form of damage accumulation was first noted by Voight [160], 

who subsequently developed the Failure Forecast Method (FFM), which utilises this 

characteristic form to perform remnant life predictions. The FFM has been adopted to 

evaluate various forms of failure, including volcanic eruptions [161], power-law creep 

damage [94], and fatigue damage [19]. Compared to conventional damage assessment 

methods, the FFM does not rely on assumptions of material properties, geometry, or 

operating conditions, but rather the observed response of the component. This reduces the 

number of sources of uncertainty and potentially provides more confident remnant life 

predictions. 

This chapter aims to perform a statistical analysis to evaluate the efficacy of using the FFM to 

perform fatigue remnant life predictions, and also to further develop its use for more complex 

loading conditions. The performance of the FFM, which relies on near-continuous monitoring 

data will be compared to the conventional inspection-based approach where crack length 

measurements are interpreted in isolation. The findings presented in this chapter are also 

published in [149]. 

This chapter begins by detailing the methodology of the conventional inspection approach 

and the monitoring approach using the FFM in Section 6.2 and 6.3 respectively. The two 

approaches are then used to analyse an example fatigue experiment in Section 6.4, where the 

accuracy and confidence in the predictions made by the two methods are then compared and 

discussed. Section 6.5 proposes, validates and discusses strategies to use the rate-based 
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monitoring approach for non-constant amplitude loading. Finally, conclusions are presented 

in Section 6.6. 

6.2 Inspection approach to remnant life predictions 

6.2.1 Review of methodology 

Using the conventional inspection approach, when defects are found with NDE inspections 

and sufficient information on the operating conditions, material properties and geometry of 

the component is available, empirical crack growth laws can be used to perform fatigue life 

predictions. There are many empirical crack growth laws available, again the commonly 

adopted Paris’ law will be used here as defined in the previous chapter in Eq. 5.1. By 

numerically integrating Paris’ law, the predicted remnant life, 𝑁𝑓, would be the number of 

loading cycles until a critical defect size, 𝑎𝑐𝑟𝑖𝑡 , is reached.  

As with many other modes of material failure, fatigue damage accumulation is by nature 

probabilistic, hence probabilistic methodologies are needed to quantify uncertainties and 

determine the level of conservatism required [162], [163]. As discussed in the previous 

chapter, a regularly inspected component is deemed safe for continued operation if there is 

sufficient confidence that any detected defect will not propagate and reach the critical defect 

size. A reconstructed schematic of how inspections update our estimates of probability of 

failure from DNVGL-RP-C210 is shown in Figure 6.2 [14]. If the probability of failure exceeds 

a critical value prior to the next scheduled inspection, there is no longer sufficient confidence 

in the integrity of the component, and actions will need to be taken to repair or replace the 

component. The critical probability of failure of the component is specific to each engineering 

application, mainly dictated by the risks and consequences involved should a failure occur. 

Therefore, confidence in life predictions is crucial to minimise conservatism and hence make 

it possible to safely operate the component closer to its actual failure time. 
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Figure 6.2 Schematic reconstructed from the DNVGL Recommended Practice C210 showing how the 

probability of failure updates with an inspection [14]. 

To demonstrate the inspection approach to performing fatigue life predictions, and to later 

compare with the proposed rate-based monitoring approach, a statistical analysis on a set of 

fatigue experimental data was conducted to establish the confidence of fatigue life 

predictions. The experiment uses a standard 316 stainless steel compact tension specimen; 

the geometry and loading parameters are given in Figure 6.3 and Table 6.1. The crack is 

electrical discharge machined (EDM) and fatigue precracked. This is to minimise the effect of 

the crack growth mechanism being different during initial cycles of fatigue where the fatigue 

crack initiates from the EDM “crack”. The crack propagation is monitored using a potential 

drop measurement system, but only one data point every  105 cycles are used to imitate the 

infrequent data available from inspections. 

 
Figure 6.3 Geometry of the specimen used in the experiment 
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Table 6.1 Geometry and loading parameters of the specimen in accordance to ASTM 647-15e1 [91]  
shown in Figure 6.3.  

Parameter Value 

𝑊 (mm)  50 

𝐵 (mm)  25 

𝑎 (mm)  15.5 

Maximum load, 𝑃𝑚𝑎𝑥 (kN) 11 

Load ratio, 𝑅 0.1 

 

To evaluate the confidence in the remnant life predictions, the uncertainties for all individual 

parameters will have to be quantified for the statistical analysis as detailed in Table 6.2. A 

discussion on quantifying these values is given below. It is fully recognised that the 

assumptions made on the statistical variation of the input parameters are hugely simplistic; 

the uncertainties of the parameters are assumed to be independent, and the effect of 

uncertainty in geometry is not considered. However, it is believed that these assumptions are 

sufficient to illustrate how uncertainties of each input parameter aggregate to result in the 

overall uncertainties in remnant life predictions. The assumptions made here are optimistic 

and greater uncertainties are to be expected in industrial applications. This method offers a 

framework that may be used for the analysis of more specific examples. 

Table 6.2 Table showing the quantified uncertainties for each input parameter of the empirical crack 
growth law used in the statistical analysis. 

Parameter Mean value Standard error 

Measured crack length (𝑎0) [mm] Updates with each inspection  1 

Critical crack length (𝑎𝑐𝑟𝑖𝑡) [mm] 39.3 Not considered 

Paris’ constant ( n(𝐶)) −25.5 0.26  

Paris’ exponent (𝑚) 2.88 Not considered 

Maximum load (𝑃𝑚𝑎𝑥) [𝑘𝑁] 35 3.5 

Load ratio (𝑅) 0.1 Not considered 

Geometry factor Evaluated from standards Not considered  

 

Since crack growth in only one direction is considered in this analysis, the geometry of the 

defect can be characterised by a single crack length measurement, 𝑎0. This measurement is 

updated every time an inspection is conducted. The error in defect size measured from NDE 

is assumed to be normally distributed with a standard deviation of 1 mm and no bias; this is 

approximated with the nominal capabilities of a state-of-the-art NDE system [164]. In 

practice, this would greatly depend on the NDE technique used as well as positioning and 

geometry of the defect. Other than the capabilities of the NDE technique, there are also other 
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sources of uncertainties, such as the placement of measurement probes as well as calibration 

error [165]. Overall, the assumption made here are likely optimistic. 

The critical crack length, 𝑎𝑐𝑟𝑖𝑡 , is often conservatively estimated from the plane strain 

fracture toughness of the component using linear elastic fracture mechanics. The uncertainty 

in this is not considered for the analysis as the final crack length has a relatively small effect 

on the final estimated failure cycle.  

The Paris constant, 𝐶, and exponent, 𝑚, of a specific component are very rarely known with 

accuracy as they can vary even with the same material under nominally identical conditions 

as demonstrated by Virkler [137]. The constants are typically fitted retrospectively to fatigue 

test data to capture the stochastic nature and material variability, and hence exact values are 

unavailable when making life predictions. Standardised values and standard deviations of the 

Paris’ constants from the British Standards 7910 [16] as shown in Table 2 are therefore used 

to simulate how analyses are typically done in industrial applications. 

Finally, the operating conditions of the specimen include loading cycles experienced, 

temperature of the environment and the effect of aggressive environments, all of which could 

have an effect on the crack growth characteristics. Only the nominal stress range, ∆𝜎 , is 

considered in this analysis. The error in loading is assumed to be normally distributed with a 

standard error of 3.5 𝑘𝑁 (10% of the maximum load) and no bias. The error in load ratio, 𝑅, 

is not considered. Again, an optimistic assumption is made here as the uncertainty in loading 

is highly dependent on the application and whether design load or loading data based on 

structural health monitoring is used. 

6.2.2 Statistical analysis on remnant life predictions 

Incorporating all these uncertainties, a 104 trial Monte Carlo simulation was performed to 

evaluate the probability density function (PDF) of the remnant life of the component 

described earlier. All the input parameters are sampled randomly from their statistical 

distributions defined in Table 6.2 and kept constant for each trial, and the predicted 𝑁𝑓 is 

evaluated using the Paris’ crack growth law as defined in Eq. 5.1. A log-normal distribution 

was then fitted to the simulation results to obtain statistical properties of the prediction 

[137]. 

The PDF of the predicted 𝑁𝑓  prior to the experiment (𝑁 = 0 , where 𝑁  is the number of 

loading cycles the component has experienced) is plotted in Figure 6.4. The point at which 

failure occurred during the experiment is shown with a dotted black line, which is at  
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𝑁𝑓 =  .2 × 105. From the results of the analysis the confidence in the predicting remnant 

life can be quantified. The 3𝜎 lower and upper confidence bounds at the beginning of the 

experiment were 2.1 × 105 and 2.26 × 106 respectively, showing that the confidence in the 

predicted 𝑁𝑓 is rather low, with a  confidence interval that spans over an order of magnitude. 

As previously discussed, it is necessary to adopt the lower bound estimate as the final 

prediction to ensure safe operation; large uncertainty therefore requires extreme 

conservatism. 

 
Figure 6.4 Results of the Monte Carlo simulation used to obtain the probability density function of the 

failure cycle at 𝑁 = 0. The solid line shows the fitted log-normal distribution, and the dash line indicates 
the actual failure time of the experiment, 𝑁𝑓 =  .2 × 105. 

6.2.3 Inspection updating 

With each inspection where a new crack length is obtained, the estimates of the variables ∆𝜎 

and 𝐶 can also be updated using Bayesian updating. As also described earlier in Eq. 5.2, Bayes’ 

theorem states that, 

𝑃(𝐴|𝐵) ∝ 𝑃(𝐴) × 𝑃(𝐵|𝐴) Eq. 6.1 

where 𝑃(𝐴) is the prior distribution, 𝑃(𝐵|𝐴) is the likelihood, and 𝑃(𝐴|𝐵) is the posterior 

distribution. In the context of this analysis, 𝐴 is our estimate of the variables ∆𝜎 and 𝐶, and 𝐵 

is the event of an inspection result. The likelihood function is obtained numerically by 

considering the probability of the resulting measurement given each combination of ∆𝜎 and 

𝐶. Together with the prior knowledge on the distribution of the variables as detailed in Table 

2, an updated estimate of the distribution of the variables can be obtained using Bayes’ 

theorem. This process is done recursively with each inspection as the posterior distribution 

from the inspection becomes the prior distribution during the analysis of the next inspection. 

The probability of failure after each new inspection is shown in Figure 6.5, assuming that an 

inspection was performed every 105 cycles. As seen from the results in this particular case, 



 

6. Remnant life predictions using rate measurements from PIMS 

101 

the inspection-based approach is initially overestimating 𝑁𝑓 , gradually converging to the 

actual 𝑁𝑓 with each inspection being closer to failure. Further discussion is given in Section 

6.4, where the inspection approach is compared with the monitoring approach. 

 
Figure 6.5 Fitted log-normal distribution of the predicted failure cycle at every inspection made at 

intervals of  105 cycles. 

6.3 Monitoring approach to remnant life predictions 

An alternative way of performing remnant life predictions is the rate-based monitoring 

approach. Instead of conducting periodic in-service inspections, a PIMS can be installed to 

monitor the rate at which the damage accumulates. Remnant life predictions can then be 

performed in real-time while the component is in operation using the Failure Forecast 

Method (FFM). 

6.3.1 Review of methodology 

Voight observed that the empirical relationship shown in Eq. 6.2 can be used to describe a 

wide range of rate-dependent mechanisms of material failure [166], which are also known as 

positive feedback mechanisms [19].  

(
𝑑Ω

𝑑𝑡
)

−𝛼

(
𝑑2Ω

𝑑𝑡2
) − 𝐴 = 0 Eq. 6.2 

Ω = an observable metric of damage 

𝐴 and 𝛼 = material constants 
 

 Voight proceeds to state that the equation can be integrated for α > 1 to give,  

(
𝑑Ω

𝑑𝑡
)
1−𝛼

= 𝐴(𝛼 − 1)(𝑡𝑓 − 𝑡) + (
𝑑Ω

𝑑𝑡
|
𝑓
)

1−𝛼

 Eq. 6.3 

Where 𝑡𝑓 is the failure time and 
𝑑Ω

𝑑𝑡
|
𝑓

 is the rate of damage accumulation at failure. 
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The rate of damage accumulation at failure is often orders of magnitude greater than 

accumulation rates early on in fatigue life. It is therefore reasonable to assume that the rate 

of damage accumulation at failure to be infinite. Hence, by rearranging Eq. 6.3, life estimates 

of a damage mechanism conforming to this empirical relationship can be made, 

𝑡𝑓 = 𝑡 +
1

𝐴(𝛼 − 1)
(
𝑑Ω

𝑑𝑡
)

𝛼−1

 Eq. 6.4 

It has been shown that the Paris’ crack growth law conforms to this empirical relationship. 

Corcoran [19] demonstrated that in order for a positive feedback mechanism to adhere to 

Voight’s empirical relationship, it must satisfy the following,  

𝑑𝑓(Ω)

𝑑Ω
= 𝐴𝑓(Ω)𝛼−1 Eq. 6.5 

Corcoran proceeds to provide several generic forms of damage mechanism that would satisfy 

Eq. 6.5, one of this being, 

𝑑Ω

𝑑𝑡
= 𝑘Ω𝑛 Eq. 6.6 

This closely resembles that of the Paris’ crack growth law, with time replaced by number of 

loading cycles, 𝑁 , and Ω  being a quantity that resembles crack length. Furthermore, it is 

empirically observed that 𝛼 ≈ 2  for many cases, including fatigue crack growth. A more 

detailed derivation and discussion on the appropriateness of Voight and the assumption of 

𝛼 ≈ 2 can be found in [19].  

Hence, for fatigue crack growth, Eq. 6.4 may be rewritten as, 

(
𝑑Ω

𝑑𝑁
)

−1

= 𝐴(𝑁𝑓 − 𝑁) Eq. 6.7 

so, 

𝑁𝑓 = 𝑁 +
1

𝐴
(
𝑑Ω

𝑑𝑁
)

−1

 Eq. 6.8 

where Ω now becomes a generic sensor output of a monitoring system that changes with 

crack growth. This highlights one of the benefits of the FFM, which is the flexibility that is 

afforded to the monitoring technique. As the absolute crack length is not interpreted directly, 

but rather the relative change in rate, generic sensor outputs which are symptomatic of 

damage may be used as a proxy. In the examples used in this paper, resistance measurements 

from a potential drop technique are used as a metric of crack growth. A more comprehensive 
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discussion on the requirements of the measurement and monitoring system can be found  

in [19]. 

Using Eq. 6.7, the failure cycle, 𝑁𝑓, can be estimated by performing a regression analysis on 

the inverse damage accumulation rate, (
𝑑Ω

𝑑𝑁
)

−1

, against the number of loading cycles, then 

extrapolating the regression fit and finding the x-axis intercept where crack growth rate is 

infinite as schematically demonstrated in Figure 6. By assuming α = 2 such that the regression 

becomes linear, the prediction made would be the negative ratio between the intercept and 

slope of the regression fit. This method of performing remnant life predictions is known as 

the Failure Forecast Method (FFM). 

 

Figure 6.6 Schematic illustration of the inverse damage accumulation rate (
𝑑Ω

𝑑𝑁
)

−1

 against number of 

cycles for a set of fatigue testing data to demonstrate the use of the FFM for remnant life predictions. 

 

To demonstrate the use of the FFM for remnant life predictions, the experimental results 

were analysed using the method, simulating a monitoring system being installed on a 

defective component while it continues operation. The rate of change in signal, in this case 

the resistance measurement, 𝑅, from the potential drop measurement system, is calculated 

to perform the FFM analysis without converting to crack length measurements as with typical 

analysis of potential drop measurement results. This is obtained from the slope of the linear 

regression fit performed on every 5 resistance measurements. The number of data points 

chosen are based on the precision of the measurement data; less precise data would require 

more points to obtain accurate rate measurements at the expense of fewer rate data points 

and vice versa.   

With this, the inverse of the rate of change in resistance, (
𝑑𝑅

𝑑𝑁
)

−1

, can be obtained, and a linear 

regression analysis of the data is performed to evaluate the predicted 𝑁𝑓. Figure 6.7 plots the 

results in intervals of 105 cycles. The dashed black line indicates the actual failure cycle. In 
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this analysis, a maximum of the most recent 100 
𝑑𝑅

𝑑𝑁
 data points were used as indicated on the 

plot by the two solid red lines; this chosen number of points is a balance between having 

sufficient data points to minimise uncertainty in the regression analysis, while limiting the 

effect of historical data where the damage growth mechanism may be different.  

These predictions can be made in real time as the component is fatigued, and the resulting 

predicted 𝑁𝑓 against number of fatigue cycles is plotted in Figure 6.8. Again, the dotted black 

line is where actual failure occurred. 

 
Figure 6.7 Remnant life predictions made using the FFM at intervals of 105 cycles. The vertical solid lines 

indicate the window of 
𝑑𝑅

𝑑𝑁
 data used for the FFM, and the dash line indicates the actual failure cycle. 

 
Figure 6.8 Plot of predicted 𝑁𝑓 against number of loading cycles for the fatigue experiment. Dash lines 

indicate the actual failure cycle. 
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Utilising PIMS that take frequent measurements and hence provide continuous rate estimates, 

the predicted 𝑁𝑓  can be continuously updated as more damage accumulation rate data is 

obtained in-service to provide real-time life predictions. The major advantage of using the 

FFM for life predictions is that minimal knowledge on the operating conditions is required. 

As opposed to predictions made with inspection results, parameters including loading 

conditions, material properties, geometry of the component and actual crack length 

measurements are not required. Assuming that all operating conditions remain constant, the 

only input required for the FFM is any input signal that can be used to measure the rate of 

damage accumulation. 

6.3.2 Statistical analysis of remnant life predictions 

As opposed to the inspection approach where empirical crack growth laws are used, the FFM 

simply uses the extrapolated point of infinite damage accumulation rate as the predicted 

failure time. Therefore, the only source of uncertainty for the FFM would be uncertainties in 

the damage accumulation rate measurements, which in turn results in uncertainties in the 

regression fit and the extrapolated x-axis intercept. 

The distribution of the predicted failure cycle, 𝑝(𝑁𝑓)  can be analytically evaluated as 

demonstrated by Todd et al. [167]. The analytical solution is, 

𝑝(𝑁𝑓) =
√1−𝜌2𝜎0𝜎1𝑒

𝜇1
2𝜎0
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Eq. 6.9 

e f(∗) = the error function 

𝑁𝑓 = variable for the predicted failure cycle 

𝜇𝑗 = mean estimate of the intercept and slope, denoted with subscript 0 and 1 respectively 

𝜎𝑗 = estimated standard deviation of the intercept and slope 

𝜌 = correlation coefficient of the intercept and slope of the linear regression 

 

The PDF can be obtained in real time to estimate the confidence in the predictions made using 

the FFM and updated when new data points are obtained while the component is in operation. 

The results were verified with a Monte Carlo simulation using synthetic data with random 

measurement uncertainties characterised by the actual data set from the experiment. The 

results at 𝑁 = 2 × 105 for both the analytical and 104 trial Monte Carlo simulation is shown 

in Figure 6.9. 
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Figure 6.9 Plot of the PDF of the predicted failure cycle at 𝑁 = 2 × 105 using the FFM. The histogram 

represents the results of the Monte Carlo simulation, the line graph represents the analytical solution. 

6.4 Comparison of the two approaches to remnant life 

predictions 

6.4.1 Statistical comparison between inspection and monitoring 

Using the above methods, a comparison between the inspection and monitoring approach to 

fatigue life predictions can be made. Figure 6.10 plots the median life predictions of the 

inspection and monitoring results. This shows that the predictions made using the 

monitoring approach converges much more quickly to the actual failure cycle. From  

𝑁 = 2 × 105  onwards, approximately half the life of the component, all predictions made 

using the monitoring approach were within 10% the actual failure cycle. Conversely with the 

inspection approach, there is no way of adapting or correcting for the actual operation 

conditions. Therefore, the predictions made converge slowly to the actual failure time as the 

end of life of the component approaches. 

 
Figure 6.10 Plot of the median life predictions against number of loading cycles using the inspection and 

monitoring approach. 
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Not only are the predictions more accurate with the monitoring approach, the confidence in 

the predictions made is significantly greater as shown in Figure 6.11. Consider the 

predictions made with both methods at 𝑁 = 2 × 105 . Assuming that the target level of 

confidence in the integrity of the component is 99.7% (3𝜎), the conservative remnant life 

prediction made using the inspection and monitoring approach would be 𝑁 = 2.8 × 105 and  

𝑁 = 3.5 × 105 respectively. At this point, the estimated remnant useful life of the component 

would be 0.8 × 105 cycles should the inspection-based approach be used, while with the use 

of the monitoring-based approach, the component would have an estimated remnant useful 

life of 1.5 × 105  cycles. Given that an inspection is only performed every 105  cycles, the 

component would fail to meet the required threshold of confidence in integrity before the 

next inspection. In comparison, due to significantly greater confidence, the conservative 

predictions made with the monitoring approach are much closer to the actual failure cycle. 

 
Figure 6.11 Plots of the PDFs of the predicted failure cycle at intervals of 105 cycles. The dotted graph 

represents the results from the inspection approach, the solid graph represents the results of the 
monitoring approach, the dash line indicates when the component actually failed. 

While the choices of target confidence and inspection interval here are arbitrary, the study 

demonstrates how estimations with greater confidence via the monitoring approach make it 

possible to safely operate the component closer to its actual failure time. These predictions, 

including the confidence bounds, can be made in real-time while the component is in 
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operation. Thus, the use of monitoring can provide improved awareness of the damage state 

of the component without the need of inspections, potentially reducing the duration or even 

the frequency of costly planned outages. 

6.4.2 Validity of using the FFM for fatigue life predictions 

Despite the life predictions made using the FFM having lower uncertainty, systematic errors 

resulting in bias in the predictions are also apparent at various stages of the experiment. 

From Figure 6.10 and Figure 6.11, it is evident that the remnant life is initially 

underestimated (even falling outside the confidence bounds initially), followed by a near-

constant overestimation for the remaining life. These discrepancies are due to a known 

epistemic error in the method as the fatigue damage passes through different phases of crack 

growth. Figure 6.12(a) shows a typical schematic plot of crack growth rate against stress 

intensity factor, which is a function of stress, crack length and geometry of a fatigued 

component. Figure 6.12(b) schematically shows how the subsequent plot of inverse crack 

growth rate against number of cycles would appear. This non-linear relationship between the 

inverse crack growth rate and number of cycles is the major cause of the systematic error in 

the predictions made by the FFM. The systematic error in this experiment is however not 

very significant as the specimen of this test spends most of its fatigue life within the Stage II 

crack growth regime. However, in practice, the validity of the FFM would have to be 

considered based on the expected portion of fatigue life of the monitored component that will 

be spent within the Stage II crack growth regime.  

 
Figure 6.12 (a) Illustration of a typical plot of crack growth rate against stress intensity factor, which is a 
function of stress, crack length and geometry of a fatigued component; (b) resulting plot of inverse crack 

growth rate against number of cycles. 
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The crack growth mechanism is different during initial cycles of fatigue, since the radius of a 

fatigue crack tip is orders of magnitude smaller than the “crack” that was electrical discharge 

machined (EDM). Therefore, a fatigue crack would have to “initiate” from the EDM crack. This 

would have crack growth characteristics that in some ways resemble the Stage I crack growth 

region; remnant life is thus underestimated as the slope of the regression fit of inverse crack 

growth rate against number of cycles is greater in Stage I than in Stage II crack growth. 

The subsequent overestimation of remnant life can also be explained similarly. During the 

terminal stages (Stage III) of crack growth, the crack growth rate accelerates and deviates 

from the linear relationship between crack growth rate and stress intensity factor. This is 

also reflected in the plot of inverse crack growth rate against number of cycles as 

demonstrated in Figure 6.13, resulting in the component failing earlier than predicted by the 

FFM. A linear fit is plotted to better illustrate the acceleration in crack growth, which can be 

seen at around 𝑁 =  × 105. However, since this terminal stage of fatigue crack growth is 

only a very small portion of the overall life of the component, the resulting overestimation is 

minimal. 

 
Figure 6.13 Plot of inverse signal change rate against number of cycles from the fatigue experiment, 

highlighting how the change in crack growth rate deviates from the linear relation at terminal stages of 
fatigue crack growth. 

It is therefore clear that for the FFM to provide accurate fatigue life predictions, the remnant 

fatigue life of the component must be dominated by a single damage accumulation 

mechanism. In the case of this experiment, a majority of the fatigue life of the component is 

spent at Stage II, Paris law crack growth. Thus, the predictions made in this region were 

accurate with relatively small systematic error. Such an error also exists with the inspection 

approach, but since there are such great uncertainties in the predictions, its effect becomes 

negligible. More advanced empirical crack growth laws such as the Forman equation [168] 

or the NASGRO equation [38] can be used to better model the crack growth behaviour across 
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multiple stages of fatigue crack growth. However, more input parameters, each with an 

associated uncertainty, is required for these crack growth laws, resulting in significant 

uncertainties in the prediction despite the crack growth model being more accurate. 

6.4.3 Failure criterion of the FFM 

As shown earlier in Eq. 6.7 and Eq. 6.8, it was assumed that the damage accumulation rate at 

failure is infinite, hence the x-axis intercept of the plot of inverse growth rate against number 

of cycles is the estimated point of failure. This proves to be a valid assumption as shown in 

Figure 6.13 where the last data point is very close to the x-axis. The validity of this assumption 

is determined by the requirement that the period of monitoring would need to cover a 

significant fraction of the crack propagation life of the component such that the range of crack 

growth rates measured is sufficiently large. 

In industrial engineering applications, there are numerous cases where the failure criterion 

is instead determined by the ability of the component to withstand a critical load as discussed 

in Section 2.1.2.4. In these cases, failure under nominal loading conditions is no longer the 

failure criterion for the fitness of service of the component, as assumed with the FFM. 

One potential way to accommodate this while using the FFM to perform life predictions is to 

introduce a finite critical crack growth rate failure criterion. With knowledge of the material 

properties of the component under its operating conditions as well as the correlation 

between stress intensity and crack growth rate, a maximum allowable crack growth rate 

using empirical crack growth laws can be obtained, as schematically demonstrated in  

Figure 6.14. The failure is then estimated to occur at the point where the linear regression of 

the FFM crosses a specific value of inverse crack growth rate instead of the x-axis intercept. 

However, this process requires more information on the materials properties and operating 

conditions, as well as a calibrated conversion between signal change and crack growth rate. 

This means that the advantage of using the FFM is significantly reduced as more information 

and thus uncertainties are introduced. 
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Figure 6.14 Schematic demonstration of how a finite critical crack growth rate can be introduced in the 

FFM. (a) illustration of how a critical crack growth rate can be defined from the plot of crack growth rate 
against stress intensity factor; (b) graph demonstrating how this can be implemented while using the 

FFM. 

6.5 FFM for non-constant amplitude loading 

Real-life engineering components are often subjected to varying loading conditions that 

cannot be simplified to a constant amplitude fatigue problem. It is therefore important to 

understand the capabilities of the FFM for fatigue damage monitoring under non-constant 

amplitude loading. Three cases of loading are considered and evaluated via experiments in 

this section: a step change in loading condition, single overloads, and variable amplitude 

loading. 

6.5.1 Step change in loading condition 

The first case of non-constant amplitude loading considered is a step change in loading 

conditions. This might occur, for example, when a defect is found in a power station 

component, where it is common to derate the unit to reduce the stresses and so extend the 

component life. A method of compensating for a change in loading conditions while using the 

FFM is proposed. 

Voight briefly outlined an expanded version of the integrated form of his equation to account 

for variable stresses at failure [166]. For α > 1,  

𝑑Ω

𝑑𝑡
= [𝐴(𝛼 − 1)(𝑡𝑓 − 𝑡) + (

𝑑Ω

𝑑𝑡
|
𝑓
(
𝜎

𝜎′
)

𝑛

)

1−𝛼

]

1
1−𝛼

 Eq. 6.10 

where 𝜎′ is some reference stress, 𝜎 is the estimated stress level at failure, which in the case 

of a step change in loading condition would be the new load, and 𝑛 is an empirical constant. 
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It is proposed that the above equation can be expressed in a more useful form by introducing 

the variables, 

𝑡𝑒𝑞 = 𝑡 × (
𝜎

𝜎′
)

𝑛(𝛼−1)

, 𝑡𝑒𝑞,𝑓 = 𝑡𝑓 × (
𝜎

𝜎′
)

𝑛(𝛼−1)

,   Eq. 6.11 

Substituting Eq. 6.11 into Eq. 6.10, rearranging and assuming infinite growth rate at failure, 

𝑑Ω

𝑑𝑡𝑒𝑞

= [𝐴(𝛼 − 1)(𝑡𝑒𝑞,𝑓 − 𝑡𝑒𝑞) (
𝜎

𝜎′
)

𝑛(𝛼−1)(𝛼−2)

]

1
1−𝛼

 Eq. 6.12 

Putting this in the context of fatigue crack propagation, 

𝑑 

𝑑𝑁𝑒𝑞

= [𝐴(𝛼 − 1)(𝑁𝑒𝑞,𝑓 − 𝑁𝑒𝑞) (
∆𝜎

∆𝜎′
)

𝑛(𝛼−1)(𝛼−2)

]

1
1−𝛼

 Eq. 6.13 

where, 

𝑁𝑒𝑞 = 𝑁 × (
∆𝜎

∆𝜎′
)

𝑛(𝛼−1)

, 𝑁𝑒𝑞,𝑓 = 𝑁𝑓 × (
∆𝜎

∆𝜎′
)

𝑛(𝛼−1)

  Eq. 6.14 

This definition of equivalent cycles is similar to Basquin law as mentioned in Section 2.1.2.1, 

which states that there is a power law relationship between the fatigue life of a component 

and the loading amplitude the component experiences. What is shown here is that a similar 

relation can be used in crack growth monitoring and FFM to compensate for the effect of 

change in loading. It is also observed that the empirical constant n should equate to the Paris’ 

exponent 𝑚. Recall the Paris’ law is expressed as,  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 = 𝐶(𝑌(𝑎)∆𝜎(√𝑎)

𝑚
   Eq. 6.15 

It can be seen that the crack growth rate is proportional to the stress range raised to the 

power of m, hence it would be reasonable to assume that the two empirical constants are 

equal. 

As mentioned earlier, it is reasonable to assume α = 2. Therefore, Eq. 6.13 simplifies to, 

𝑑 

𝑑𝑁𝑒𝑞

= 𝐴(𝑁𝑒𝑞,𝑓 − 𝑁𝑒𝑞) Eq. 6.16 

This is identical to Eq. 6.7, that was used for the FFM analysis in previous sections, but with 

equivalent cycles replacing the actual cycles of loading. This shows that by introducing the 
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definition of equivalent cycles 𝑁𝑒𝑞, continuity of relation between the crack growth rate and 

number of cycles can be retained despite changes in loading amplitudes. Thus, the same 

method as discussed in Section 6.3 can be used to perform fatigue life predictions while 

considering the change in operating conditions, given that the relative change in loading, 

(
∆𝜎

∆𝜎′) , and the Paris’ exponent, 𝑚 are both known. 

To validate the equivalent cycles method for compensating step changes in loading 

conditions, a fatigue experiment using a CT specimen made of S275 steel with parameters 

shown in Table 6.3 was conducted while crack growth was monitored using the front-face 

compliance method using clip gauges. The experiment simulates the case where it is 

proposed that a defective engineering component is to be operated at derated conditions to 

limit the crack growth rate and it is necessary to predict the remnant life given the new 

loading. In this example, the maximum load is reduced by 20% while the load ratio remains 

constant. The experiment compares the accuracy and confidence in the predictions made in 

the following two cases. The first case is where no monitoring system was used, so an 

inspection to measure the crack length is conducted immediately prior to the derating to 

estimate the remnant life of the component. The second case is where a monitoring system 

was installed on the component long before the derating, hence the FFM with the equivalent 

cycles method can be used to estimate the remnant life of the component using data collected 

previously. 

Table 6.3 Geometry and loading parameters of the specimen in accordance to ASTM 647-15e1 [91]  
shown earlier in Figure 6.3.  

Parameter Value 

𝑊 [mm]  80 

𝐵 [mm]  20 

𝑎 [mm]  16 

Maximum load, 𝑃𝑚𝑎𝑥 [kN] 35 for the first  × 104 cycles, 

then 28 until failure 

Load ratio, 𝑅 0.1 

 

A plot of crack length against the number of cycles of the experiment is shown in Figure 

6.15(a). The data points represented as crosses and circles are data collected before and after 

the change in loading respectively; the data collected prior to the change in loading is used 

for the FFM prediction. Figure 6.15(c) and (d) show the inverse crack growth rate against 

number of cycles and equivalent inverse crack growth rate against equivalent number of 

cycles respectively. The use of the equivalent cycles method in Figure 6.15 restores the 
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continuity of the plot of inverse crack growth rate against cycles, allowing for the use of FFM 

for fatigue failure analysis where the loading is not at constant amplitude. The 

FFM regression fits shown on the graphs were obtained using data collected from the 

first  × 104 cycles before the reduction in loading. Note that inverse crack growth rate is 

used only because calibrated measurements of crack length were readily accessible with this 

monitoring system. Should a different monitoring system that satisfies the requirements 

detailed in [19] is used, conversion from signal change to growth rate is not necessary. 

To quantify the accuracy and confidence in the use of the FFM for remnant life predictions 

with load changes using the equivalent cycles method, a statistical analysis similar to that 

discussed previously was performed. In addition to the uncertainties in damage growth rate 

measurement, the uncertainties in the loading conditions and Paris exponent now have to be 

considered. The relative change in loading is assumed to have a mean of  20% and a standard 

error of 2%. The uncertainty in the Paris exponent is not considered in BS7910. Therefore, in 

this analysis, the Paris exponent is assumed to have a mean of  𝑚 = 2.88 and a coefficient of 

variation, 𝐶𝑂𝑉 = 0.0582. The mean value is from the BS7910, while the COV was obtained 

from the statistical analysis by Gobbato [140] of the Virkler fatigue test data [137]. For 

comparison, a statistical analysis was also performed for the periodic inspection case with 

the same uncertainties shown earlier in Table 6.2. 
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Figure 6.15 Plot of (a) crack length against number of cycles; (b) crack length against number of 

equivalent cycles; (c) inverse crack growth rate against number of cycles; (d) equivalent inverse crack 

growth rate against number of equivalent cycles for the fatigue experiment with a change in loading 

conditions. Crosses and circles represent data points prior to and after the change in loading conditions. 

 

Figure 6.16 shows the results of the analysis. The dotted lines show the probability density 

functions of the remnant life estimation assuming the original loading conditions; of course 

these predictions underestimate the failure time as the true remnant life was extended by the 

derating. The corrected remnant life estimates based on the assumed change in load is shown 

in Figure 6.16 with solid lines. As with the constant load results of Figure 6.11, the uncertainty 

in the life prediction made with the FFM is lower than that from the inspection based 

approach. However, the improvement is not as large as the constant amplitude loading 

results. In order to account for the change in loading, the FFM now relies on the relative 

change in loading conditions and the Paris exponent, each with associated uncertainty, which 

translates to less confident predictions. Overall, it is demonstrated that by using this 

equivalent cycle method for FFM, more confident predictions in remnant life can be made 

prior to changes in operating conditions than conducting an inspection immediately before 

the change. 
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Figure 6.16 Plots of the fitted PDF for the predicted failure prior to the change in loading. Both the 

predictions made with and without considering the change in loading are plotted. The vertical dash line 
represents when the component actually failed. 

It can be seen from Figure 6.16 that the FFM underestimates the remnant life after the change 

in loading. This underestimation is caused by crack growth retardation as a result of local 

plastic deformation at the crack tip, similar to the effect of an overload as discussed in Section 

2.1.2.3. Figure 6.15(c) shows a sudden increase in inverse crack growth rate (i.e. decrease in 

crack growth rate) for an appreciable period after the load decreases. The initial cycles at 

high load create a comparatively larger plastic zone in front of the crack tip, which the initial 

cycles of the low load have to propagate through. This results in a decrease in crack growth 

rate and subsequently extends the life of the component beyond what would be predicted 

before derating, effectively shifting the actual failure time into the future, thus the 

discrepancy. For the inspection approach, empirical compensations have been developed to 

account for the effect [169], [170], but again more input parameters with uncertainties would 

have to be introduced, resulting in greater uncertainties in the predictions made. 

The retardation following a derating illustrates that it is important to understand how the 

use of the FFM is affected by the effect of such loading interaction effects, namely crack 

growth behaviour that is dependent on load history. This is a key step to implementing 

fatigue monitoring in industrial applications where loading is often non-constant. 

6.5.2 Isolated overloads 

To illustrate and evaluate the effect of isolated overloads on predictions made using the FFM, 

an experiment identical to the one detailed in Section 6.2 is conducted, except that two single-

cycle overloads with maximum loads 40% and 60% greater than a normal cycle were 
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introduced during the tests at around  𝑁 = 2 × 105  and 3 × 105  respectively. Figure 6.17 

plots (a) the crack length and (b) inverse signal change rate against number of cycles. Initial 

cycles after the overload are affected by the plastic zone generated by the overload, and then 

resumes as normal as the crack tip exits the overload plastic zone. As a result, an overload 

would effectively translate the plot of inverse signal change rate against number of cycles to 

the right. From Figure 6.17, it is evident that starting from approximately 5 × 104 cycles after 

an overload, the linear relation between inverse damage accumulation rate and number of 

cycles is restored and subsequent data can be used to perform life predictions using the 

standard FFM. 

In industrial applications, this means that once the component has operated for a period of 

time after the overload, it is always possible to restart the FFM prediction with only the data 

collected afterwards. It is also believed to be possible to use the gradient of the initial FFM 

fitting as a prior estimation of the slope for the FFM fitting of the data collected after the 

overload. Moreover, monitoring data can clearly indicate when an overload has occurred, and 

so is beneficial in understanding the damage state of the component. 

 
Figure 6.17 Plot of crack length (a) and inverse signal change rate (b) against number of cycles for the 

overload test. 

6.5.3 Variable amplitude loading 

Other than isolated overloads, there are also cases where overloads and underloads occur 

periodically during the life cycle of a component. These components may be subjected to 

variable amplitude loadings that can be described by a probability distribution [171]. The 

combination of high and low loads result in retardation and acceleration effects as the 

sequence of these loadings affect the state of the local stress-strain field ahead of the crack 

tip [172]. 

In order to investigate these effects, a fatigue experiment with variable amplitude loading 

was conducted. The specimen geometry was as described in Table 6.1, but with initial crack 

length of 25.5 mm. The component was loaded at a constant mean load of  .125 kN and load 
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range following a log-normal distribution where 𝜇 = 1.9 and 𝜎 = 0.1, which translates to a 

mean load range of  6.75 kN and a coefficient of variation of 0.1. Figure 6.18 shows (a) a small 

sample of the loading and (b) a plot of the distribution of load ranges; the results are shown 

in Figure 6.19. 

It can be seen that the linear relationship between inverse crack growth rate and number of 

cycles as postulated by the FFM still holds with variable amplitude loading that is statistically 

stationary. In cases where the loading of a component remains statistically stationary and 

monitoring data is collected over a significant period of time, predictions made using the FFM 

would still be valid. While individual rate data points may be skewed by load interaction 

effects, it is believed that with sufficient data points covering a long enough period of time, 

the overall prediction made by the FFM would remain accurate. This conceptually 

demonstrates how FFM can be capable of performing remnant life predictions with variable 

amplitude loading. However, it is believed that more research should be conducted with a 

wider range of distributions, particularly those of relevance in industrial applications, and 

loadings of greater variability should be tested to better understand and quantify the 

capabilities and limitations of using the FFM under variable amplitude loading conditions. 

 
Figure 6.18 Plot of (a) a small sample section of the loading and (b) distribution of load ranges measured 

from the experiment.  

 

 
Figure 6.19 Plot of (a) crack length and (b) inverse signal change rate against number of cycles for the 

random loading test. 
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6.6 Conclusions 

Compared to manual inspections, PIMS can obtain far more frequent and repeatable 

measurements, consequently enabling the possibility of attaining accurate rate of change 

measurements. In this chapter, a statistical analysis using experimental fatigue data is 

performed to compare the rate-based FFM approach and the conventional inspection-based 

approach in performing remnant fatigue life predictions. Using a combination of analytical 

methods and Monte Carlo simulations, the progression of the estimated probability 

distribution of failure cycle with the two approaches is evaluated.  The results show that more 

accurate and confident estimates of remnant life can be made using the FFM approach; with 

the fatigue data set in this study, the predictions converge to within 10% of the actual failure 

cycle when 50% of the fatigue life is reached. The FFM approach is based simply on the rate 

of increase of the damage-related signal without the need for knowledge of the loading or 

material constants. On the contrary, remnant life predictions made using the conventional 

approach relies on assumptions of material properties, loading conditions, and having 

accurate defect size measurements. Each of these parameters would have an associated 

uncertainty that subsequently aggregates to significant uncertainties in the predicted failure 

cycle. 

A method for using the FFM under non-constant amplitude loading conditions was also 

developed and validated. A modification made to the FFM can be used to accommodate step 

changes in loading, but the load change and the sensitivity to load change must be assumed, 

which may potentially increase the uncertainty. The effect of load interaction on the use of 

the FFM was also demonstrated using experimental data of a fatigue test with isolated 

overloads and random variable amplitude loading. Experimental results demonstrate that 

the FFM remains valid for random variable amplitude loading that is statistically stationary, 

while isolated overloads can be easily detected and accounted for by restarting the process. 

Overall, it is demonstrated that rate measurements obtained from PIMS can be used to 

provide remnant life predictions with greater accuracy and confidence compared to using the 

conventional, inspection-based approach. This allows for a more accurate understanding of 

the structural integrity of components with identified defects, thus aiding the decision on 

what remedial actions would be appropriate to undertake.  
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7 Conclusions 

7.1 Thesis review 

The motivations and aim of the research were introduced in Chapter 1. With an increasing 

interest in probabilistic structural integrity assessments and the use of permanently installed 

monitoring systems (PIMS) in various engineering applications, the thesis aims to develop 

strategies for integrating frequent onload data obtained from PIMS with probabilistic 

structural integrity methods in order to produce real-time, uncertainty-quantified 

diagnostics and prognostics for fatigue damage.  

In Chapter 2, a review of the current knowledge of the mechanisms and modelling of fatigue 

damage, as well as the state-of-the-art of NDE and SHM systems was given. This provides the 

fundamental understanding required to develop models for probabilistic structural integrity 

assessments and remnant life predictions.  

In Chapter 3, a framework for evaluating the detection capabilities for PIMS was developed. 

The framework builds upon existing methodologies for evaluating the detection capabilities 

of NDE techniques, which include the ROC analysis and MAPOD studies. The framework 

makes an important distinction between sources of random and systematic uncertainties, 

and incorporates statistical distributions of systematic factors when evaluating the 

confidence in the detection capabilities of PIMS.  

In Chapter 4, the spatial aspect of the detection capabilities of PIMS was addressed by 

building on the framework developed in Chapter 3. Illustrative examples of components with 

varying degrees of confidence in defect location were combined with PIMS with differing area 

coverage and sensitivity. A probabilistic structural integrity method was used to inform the 

likely damage location of the components. This was then combined with a spatial map of 

sensitivity of the PIMS to quantify and compare the detection capability of each sensor-
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component combination using key performance parameters such as 𝑃𝑂𝐷𝑒𝑥𝑝 , 𝑃𝑂𝐷95  and 

𝑎90|95.  

In Chapter 5, a framework was proposed to integrate PIMS data into probabilistic structural 

integrity assessments of engineering components. With the use of particle filtering methods, 

frequent measurements from PIMS are used to recursively update the distribution of possible 

defect size in the component to continuously update the confidence in its fitness-for-service. 

An illustrative example was used to demonstrate the benefits of implementing PIMS for life-

cycle management as opposed to using periodic inspections only.  

In Chapter 6, the use of PIMS data to perform remnant life predictions for defective 

components towards the end of life was investigated. The Failure Forecast Method (FFM) 

which utilises rate measurements obtained from PIMS to perform remnant life predictions 

was evaluated and further developed. A statistical analysis using experimental fatigue data 

was conducted to compare the rate-based FFM approach and the conventional inspection-

based approach in performing remnant fatigue life predictions. The results demonstrated 

that more accurate and confident estimates of remnant life can be made using the rate-based 

FFM approach. Additionally, a method for using the FFM under non-constant amplitude 

loading conditions was also developed and validated using experimental fatigue data, thus 

expanding the use of the FFM for remnant life predictions to more complex loading 

conditions.  

7.2 Summary of main contributions 

Throughout the research project, a number of novel academic and industrial contributions 

were made as summarised below. 

Developed a framework for evaluating the detection capabilities of PIMS 

Building upon existing methodologies for evaluating the detection capabilities of NDE 

systems, a framework to systematically evaluate the detection capabilities of PIMS has been 

proposed. Assessing the detection capabilities is an essential part of qualifying PIMS that will 

be necessary for their industrial exploitation and use for structural integrity assessments. 

The proposed framework highlights the importance of separating sources of random and 

systematic uncertainties and how they should be treated appropriately to evaluate the 

detection capabilities of PIMS.   
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Addressed the compromise between area coverage and sensitivity of PIMS 

Using the developed framework as described above, a method of evaluating the compromise 

between area coverage and sensitivity of PIMS is proposed. With the proposed method, key 

performance parameters to quantify the detection capability for a specific sensor-component 

combination can be produced. This offers a means of optimising the long-standing problem 

of compromising between area coverage and sensitivity of PIMS, tailoring the monitoring 

system to the specific structural integrity concerns of the component. This research 

demonstrates how important it is to evaluate the spatial sensitivity of PIMS in conjunction 

with the spatial uncertainty of defect location.  

This work has been submitted as a journal paper to the Proceedings of the Royal Society A 

for review.  

Developed a framework to incorporate data from PIMS for structural integrity 

assessment 

A novel approach using particle filtering methods and POD curves of PIMS to recursively 

update the fitness-for-service of a monitored component has been developed. The approach 

utilises the ability of PIMS to obtain frequent measurements to continuously update the 

confidence in structural integrity of the component. Given a sequence of negative detection 

results from PIMS, the possibility of substantial damage can be constantly filtered out, 

providing confidence that failure of the monitored component is not imminent. Results from 

this research demonstrates that this is an effective way of maintaining confidence in the 

fitness-for-service of engineering components while reducing the number of in-service 

inspections required.  

The established framework will be a useful tool for assessing and promoting the benefits of 

using PIMS for damage detection in terms of life-cycle management and also life extension. 

The framework may be applied to evaluate the use of PIMS for a wide range of engineering 

problems. This will thus aid the implementation of PIMS for appropriate real-life 

applications.  

This work is being prepared for submission as a journal paper.  
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Evaluated and further extended the use of the Failure Forecast Method for 

probabilistic remnant fatigue life predictions 

A statistical analysis using experimental fatigue data was conducted to demonstrate and 

quantify the benefits of using the rate-based FFM approach as opposed to the conventional 

inspection-based approach. A novel technique to apply the FFM in non-constant amplitude 

loading conditions was also developed and validated. This enables the use of the FFM in more 

complex loading conditions, thus advancing its potential use in real-life applications. This 

work has been published as a journal paper [149]. 

7.3 Suggested future work 

There are multiple opportunities for further research work following the findings of this 

thesis.  

Firstly, all example problems used to demonstrate and evaluate the use of PIMS are based on 

either simulated examples or data from laboratory experiments. While these are useful at 

earlier stages of development for proof of concept and illustration purposes, evaluation of 

more realistic engineering applications will be needed to fully recognize the capability of 

using the proposed strategies to integrate results of PIMS for probabilistic structural integrity 

assessment. Considerations should be taken when choosing an appropriate application that 

favours the use of monitoring. As discussed, cases where inspection is ineffective (e.g. limited 

accessibility or disruptive) and those where defect growth is rapid such that frequent 

inspections are required would favour the use of PIMS. Examples of this may include 

applications in nuclear power stations or offshore structures, where access to critical 

components may be costly and hazardous.  

Application in real-life engineering applications would require a combination of 

computational studies, accelerated experimental tests and field studies to comprehensively 

evaluate the benefits and practical implications of using PIMS. Careful consideration and 

optimisation to minimise the amount of experimental and field studies would be required, as 

these can be costly and time-consuming to conduct.  

When using model-assisted methods to evaluate the detection capabilities of PIMS, only a 

limited number of parameters were investigated in the example problems used. In practise, 

consideration of many more parameters are likely needed, increasing the dimensionality of 

the problem and therefore exponentially increasing the computational effort. As a result, 

advanced methods for more efficient computation would be needed. This include both an 
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efficient evaluation of how various systematic factors affect the detection capabilities of PIMS, 

and also efficient sampling and resampling techniques when using particle filtering methods 

to evaluate the confidence in fitness-for-service of monitored components.  

The research in this thesis focused on SHM systems that are used for localised damage 

detection and monitoring. SHM systems that obtain real-time measurements of operating 

conditions can also be of great value to assessing the structural integrity of engineering 

components [158]. Development of a framework that incorporates information obtained 

from SHM systems for both operating conditions monitoring and localised damage detection 

would be valuable to enable better-informed decisions on developing an optimised strategy 

for component life-cycle management.  

The implementation of cost analysis would also be greatly beneficial in developing a stronger 

business case for using PIMS for localised defect detection and monitoring. A wide range of 

research has already been done on methods to evaluate the cost of using SHM systems in 

various engineering applications [116], [133], [173]. A review and implementation of 

appropriate methods for cost analysis would further strengthen the justification of adopting 

PIMS for the management of engineering components and structures.  

With regards to the use of the FFM for remnant life predictions, only the evaluation of Stage 

II Paris crack growth is being studied in this thesis. Further development and evaluation of 

using the FFM for earlier stages of crack growth can be done to add versatility to the method 

and enable remnant life predictions to be made at an earlier stage in component life. 

Continued research on the FFM has been carried out with collaborators in parallel to this 

thesis, and a draft paper titled “A Bayesian Implementation of the Failure Forecast Method 

for Fatigue Prediction” has been submitted for review.  

Finally, this thesis has only focussed on the problem of fatigue damage. Many of the 

methodologies developed in this thesis may be adapted to other modes of failure. Further 

research can be carried out on how the proposed strategies can be used to quantitatively 

evaluate the benefit of PIMS for detection of damage from other modes of failure.  
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9 Appendix A: The weakest-link theory 

for fatigue damage 

The underlying concept of the weakest-link theory is that the larger the component, the more 

potential there is for the component to contain flaws or aberrant material where damage are 

likely to initiate.  

Consider a reference specimen of standardized dimension with surface area 𝐴𝑟𝑒𝑓 . The 

probability of survival (no life-limiting damage initiating) of the reference specimen is 𝑃𝑠,𝑟𝑒𝑓. 

By dividing the surface of the reference specimen into elements of equal surface area, 𝐴(𝑖), 

𝑃𝑠,𝑟𝑒𝑓  can be expressed as the probability of all the individual elements on the reference 

specimen surviving (no life-limiting damage initiating on any of the elements), 𝑃𝑠(𝑖) . In 

mathematical terms, 

𝑃𝑠,𝑟𝑒𝑓 = 𝑃𝑠(1) × 𝑃𝑠(2) × …× 𝑃𝑠(𝑚𝑖) = ∏𝑃𝑠,𝑖

𝑚𝑖

𝑖=1

= (𝑃𝑠,𝑖)
𝐴𝑟𝑒𝑓

𝐴(𝑖) , 𝑚𝑖 =
𝐴𝑟𝑒𝑓

𝐴(𝑖)
 Eq. 9.1 

Rearranging gives, 

𝑃𝑠(𝑖) = (𝑃𝑠,𝑟𝑒𝑓)
1
𝑚𝑖 Eq. 9.2 

The probability of failure (a life-limiting damage initiating) of element 𝑖, 𝑃𝑓,𝑖 , can therefore be 

defined as, 

𝑃𝑓(𝑖) = 1 − 𝑃𝑠(𝑖) = 1 − (𝑃𝑠,𝑟𝑒𝑓)
1
𝑚𝑖 = 1 − (1 − 𝑃𝑓,𝑟𝑒𝑓)

1
𝑚𝑖 Eq. 9.3 

The significance of this equation is that it can be used to evaluate the probability of failure of 

an arbitrary surface using the results of a reference specimen. For instance, results from 

laboratory tests using standardized specimens can be applied to any component with stress 
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field obtained from finite element results, and 𝐴(𝑖) becomes the surface area of an element. 

This comes with the additional benefit of evaluating how likely is a life-limiting damage going 

to initiate for each of the element on the component. 

For fatigue damage, the probability of failure is mainly dependent on the equivalent stress 

amplitude corrected for mean stress effects, 𝑆𝑎
′ , and the number of loading cycles, 𝑁 . As 

discussed in Section 2.1.2.1, the expected number of cycles to failure, 𝑁𝑓
̅̅ ̅, is given by the 

Basquin law [128]. Rearranging Eq. 2.3 and incorporating the mean stress effect in loading 

stress amplitude gives, 

𝑁𝑓
̅̅ ̅ = e  [𝐶1 − 𝐶2  n(𝑆𝑎

′ )] Eq. 9.4 

where 𝐶1 and 𝐶2 are material constants that are a function of the fatigue strength coefficient 

and exponent of the material as shown in Eq. 2.3. There is inevitably uncertainty in the actual 

cycles to failure, 𝑁𝑓 , of a component. Assuming that 𝑁𝑓  is lognormally distributed, we can 

express Eq. 9.4 as,  

𝑁𝑓 = e  [𝐶1 − 𝐶2  n(𝑆𝑎
′ ) + 𝑧𝜎] Eq. 9.5 

where 𝑧~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) and 𝜎 is the shape parameter of the lognormal distribution. There is 

a range of literature discussing the most appropriate distribution type for fatigue damage, 

such as lognormal [174], Weibull [175], or generalised extreme value distribution [176]. A 

lognormal distribution is used here as this is common practice and most applicable in 

engineering design with readily available data for common materials in standards [12], [174].  

To evaluate the probability of failure for any given combination of 𝑆𝑎
′  and number of loading 

cycles, 𝑁, Eq. 9.5 can be rearranged to give, 

𝑧 =
1

𝜎
[ n(𝑁) − 𝐶1 + 𝐶2  n(𝑆𝑎

′ )] Eq. 9.6 

Here, 𝑧  can be seen as a generalised parameter which follows the standard normal 

distribution that define the contour lines of equal probability of failure in the 𝑆𝑎
′ -𝑁 space as 

illustrated in Figure 9.1. The cumulative probability of failure of a standard specimen, 𝑃𝑓,𝑟𝑒𝑓, 

is thus simply the cumulative distribution function of the standard normal distribution, 

denoted as Φ(𝑧). Substituting this into Eq. 9.6  gives, 

𝑃𝑓(𝑖) = 1 − (1 − Φ(𝑧))
1
𝑚𝑖 Eq. 9.7 
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Figure 9.1 Plot of 𝑆𝑎

′  against 𝑁 with selected contour lines of probability of failure, 𝑃𝑓,𝑟𝑒𝑓 . 

With this, the probability of failure of an arbitrary surface, 𝑖, can be evaluated with Eq. 9.7 if 

the following is known: 

• Area of the surface, 𝐴(𝑖) 

• Material constants, 𝐶1 and 𝐶2 for Eq. 9.4 evaluated with a specimen of standardized 

geometry with surface area, 𝐴𝑟𝑒𝑓 

• Equivalent loading amplitude experienced by the surface, 𝑆𝑎
′  

• Number of loading cycles experienced by the surface, 𝑁 

Several assumptions are made when applying the weakest-link theory to fatigue damage in 

this analysis. Firstly, as stated above, it is assumed that fatigue damage manifests at the 

surface of a component. This is a valid assumption if no significant voids are present within 

the material. This assumption is especially valid in the case of bending fatigue as the 

maximum stress amplitude experienced by the beam is at its bottom surface. In the case of 

other damage mechanisms, the volume of an element instead of surface area is usually 

considered [124]. It is also assumed that life-limiting damage initiating from the component 

does not interact. This is a valid assumption for high-cycle fatigue where the number of life-

limiting damage is small and thus sparsely distributed  [126].  

 


