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Abstract
Objective.We aim at characterising the encoding of bladder pressure (intravesical pressure) by a
population of sensory fibres. This research is motivated by the possibility to restore bladder
function in elderly patients or after spinal cord injury using implanted devices, so called
bioelectronic medicines. For these devices, nerve-based estimation of intravesical pressure can
enable a personalized and on-demand stimulation paradigm, which has promise of being more
effective and efficient. In this context, a better understanding of the encoding strategies employed
by the body might in the future be exploited by informed decoding algorithms that enable a precise
and robust bladder-pressure estimation. Approach. To this end, we apply information theory to
microelectrode-array recordings from the cat sacral dorsal root ganglion while filling the bladder,
conduct surrogate data studies to augment the data we have, and finally decode pressure in a
simple informed approach.Main results.We find an encoding scheme by different main bladder
neuron types that we divide into three response types (slow tonic, phasic, and derivative fibres). We
show that an encoding by different bladder neuron types, each represented by multiple cells,
offers reliability through within-type redundancy and high information rates through semi-
independence of different types. Our subsequent decoding study shows a more robust decoding
from mean responses of homogeneous cell pools. Significance.We have here, for the first time,
established a link between an information theoretic analysis of the encoding of intravesical pressure
by a population of sensory neurons to an informed decoding paradigm. We show that even a
simple adapted decoder can exploit the redundancy in the population to be more robust against
cell loss. This work thus paves the way towards principled encoding studies in the periphery and
towards a new generation of informed peripheral nerve decoders for bioelectronic medicines.

1. Introduction

A new paradigm for the treatment of diverse medical
conditions has recently emerged: the development
of ‘bioelectronic medicines’ [1] which modulate the
peripheral nerve signaling by means of implanted
devices. This alternative to molecular medicine has
promise as a localized and permanent remedy for
conditions as varied as hypertension and tachycar-
dia [2, 3], sleep apnea [4], rheumatoid arthritis [5]

and many others. Most current neuromodulation
devices still operate in a simple open-loop fashion,
acting in a preset way, independent of changes in
the physiological processes they try to influence.
In the future, bioelectronic medicines are expected
to become more advanced and include real-time
feedback about current organ states. By only blocking
or stimulating when necessary, closed-loop devices
can be expected to become much more efficient and
effective [6–8], and even capable of dynamically
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managing conditions, e.g. detecting parasympath-
etic bronchoconstriction in asthma and suppressing
it [9].

To enable the use of feedback control, physiolo-
gical quantities of interest may bemeasured by chem-
ical, mechanical, or other sensors that are implanted
in addition to the nerve interface [10–15]. While this
approach seems straightforward from an engineering
point of view, surgery becomes more difficult and the
probability of complications (e.g. device movement,
tissue damage, loss of signal [10, 16]) post surgery
rises. An alternative approach is to harness, where
possible, the body’s own sensors for monitoring and
control of organs. Thousands of afferent fibres con-
tinuously transmit signals about organ physiological
state. These existing biological sensors are sensitive
and may offer a stable source of organ state inform-
ation as an elegant alternative to implanted artificial
sensors. In order to take full advantage of these sig-
nals, however, we need a better understanding of how
physiological quantities are encoded by populations
of peripheral afferent fibres. We can then implement
informed decoders tailored to the encoding strategies
present in the periphery, and use them as a robust
and precise feedback in next generation bioelectronic
medicines.

The bladder provides an ideal testbed for the
development of closed-loop bioelectronic medicines.
It has amain parameter of interest—its fullness, char-
acterized by both volume and resulting intravesical
pressure—which can easily be manipulated and
recorded. The bladder wall is further covered by
numerous stretch sensors that monitor this central
quantity. It is thus a good candidate for investigat-
ing the encoding of an organ parameter by a mul-
titude of cells. Developing closed-loop bioelectronic
medicines for the bladder is furthermore clinically
important, as bladder dysfunction is a common con-
dition both in the elderly population [17], and after
spinal cord injury [18, 19]. The resulting incontin-
ence has devastating effects on a patient’s quality of
life [20, 21]. In addition, other malfunctions such
as detrusor-sphincter dyssynergia and hyper-reflexia
can occur in specific patient groups and cause renal
damage, repeated urinary tract inflammations and
kidney infections [22, 23].

The lower urinary tract (LUT), consisting of the
bladder, urethra and sphincter, is innervated by the
pelvic, the pudendal, and the hypogastric nerves
[24]. The pelvic nerve projects to the internal pel-
vic organs including bladder, urethra, bowel, and
vagina [25, 26]. The pudendal nerve goes to the pel-
vic floor including urethra, sphincter, anal sphincter,
perineal region, genitalia [27–29]. The hypogastric
nerve forms a plexus with the pelvic nerve, innervat-
ing similar regions, including the bladder neck/prox-
imal urethra. We are therefore mainly interested in
pelvic nerve fibres that originate in the sacral-level

dorsal root ganglion (DRG) to innervate the blad-
der wall. In the cat, most cell bodies giving rise to
the afferent fibres projecting through the pelvic nerve
to the bladder can be found in sacral-level S1 and S2
DRG [30, 31]. Of the approximately 40 000 cell bod-
ies in the cat sacral DRG S1 and S2 [32], about 1000
innervate the bladder [31, 33–35]. This population is
composed of both small myelinated Aδ and unmy-
elinated C-fibres, of which the former are generally
accepted to transport the mechanoreceptor impulses
and trigger the normalmicturition reflex [24, 36–38].
C-fibres are associated with nociception but have
been reported to sense bladder pressure (intravesical
pressure) in addition to Aδ fibres [39]. The bladder
neuron responses were characterized as tonic (Aδ)
and phasic (C-fibres) [40], sometimes described as
pressure (Aδ) and volume (C) receptors [41] and
are usually found to have a diversity of activation
thresholds within each diameter range [39, 42–44].
Some exhibit hysteresis [45]. While the large body
of physiological studies draws a detailed descriptive
picture of bladder afferents, elucidating the physiolo-
gical significance of the different cell types for pres-
sure encoding has not been attempted. The question
of why the diverse bladder neuron responses exist is
one we seek to answer in this work.

Just as physiologists have led a rich variety of
studies on the afferent innervation of the blad-
der, engineers explored various ways to decode
intravesical pressure, volume and contractions from
peripheral nerve activity in the past. Intravesical
pressure is the most informative quantity, as all
other events like for example the onset of (reflexive)
detrusor contractions can be detected from the pres-
sure time course. Decoders using pelvic [16, 46, 47],
pudendal [48, 49] or spinal nerves [50, 51] have been
proposed. Targeting these nerves, however, requires
a difficult surgery and recordings using the com-
mon cuff interface often lack good signal-to-noise
ratio (SNR) without severely damaging the nerve
[50]. As an alternative, one can interface with sacral-
level dorsal root ganglion (DRG) where cell bod-
ies of both pelvic and pudendal nerve fibres reside.
Recording cell bodies with penetrating microelec-
trode arrays (MEA) is more invasive than the cuff
electrode, but leads to a good signal-to-noise ratio
at high spatial resolution. The development of axon-
sized electrodes (microns or tens of microns dimen-
sions) will minimize immune responses as a result
of electrode insertion, making this approach feasible
despite its high invasiveness. Moreover, the activa-
tion of efferent pathways can be accomplished at the
same site through reflex circuits [52, 53]. Decoding
from microelectrode arrays implanted in the DRG
has been demonstrated [42, 54, 55], with a stable
interface over weeks [53]. While many of the above
decoding approaches, be it from a peripheral nerve
or from the DRG, estimate intravesical pressure quite
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accurately, none of them directly draw on insights
from physiological studies of the encoding.Most pro-
posed solutions rely on single cell responses (if spa-
tial resolution and SNR allow) and are assumed to be
stable over time. If a change in the recording setup
occurs, however, e.g. due to electrode migration, cell
death, etc, the decoder has no means of detecting this
change, and can quickly lose its prediction quality
without retraining.

In the present work, we investigate both the
encoding of pressure across the many afferent fibres
innervating the bladder wall, and draw conclusions
towards building better decoders that exploit the
observed encoding strategies. We conducted this
research based on microelectrode array recordings
from the sacral dorsal root ganglion levels S1 and
S2 in cats (see figure 1(a) for the experimental
apparatus) during a slow filling at a near physiolo-
gical rate. We distinguished three distinct stereotyp-
ical response types that recur across experiments:
slow tonic, phasic, and derivative. For each type, we
used information theory to quantify the informa-
tion it individually carries about intravesical pres-
sure, and further estimated the benefits of combin-
ing different bladder neuron types—on both real
and simulated data. Taking advantage of the insights
gained from this information theoretic encoding ana-
lysis, we propose an informed decoding strategy from
stereotypical groups of fibres that proves to be robust
and accurate.

2. Methods

2.1. Experiments
We analyse here data previously collected for a
study of single-unit hysteresis [45] and a compar-
ison of intravesical pressure decoding algorithms [54]
(experiments 1–5) and a study on real-time decod-
ing of intravesical pressure [55] (experiments 6–8).
Full details of experimental procedures can be found
in those respective publications. In short, 8 adult
male cats of approximately 1 year of age were used.
All procedures were approved by the University of
Michigan Institutional Animal Care and Use Com-
mittee, in accordance with the National Institute of
Health guidelines for the care and use of laboratory
animals. For experiments 1 and 5, a 5× 10 micro-
electrode array (Blackrock Microsystems, Salt Lake
City, Utah, USA) was inserted in the left S1 DRG and
a 4× 10 microelectrode array into the left S2 DRG.
For experiments 2, 3 and 4, 5× 10 arrays were inser-
ted bilaterally in S1 and 4× 10 arrays were inser-
ted bilaterally in S2. Experiments 6 to 8 had 4× 8
electrode arrays in left and right S1. Microelectrode
shank lengths were either 0.5 or 1.0 mm with 0.4 mm
inter-shank spacing. Intravesical pressure was recor-
ded simultaneously with a catheter either inserted
through the urethra or inserted into the bladder

dome, at a sampling rate of 1 kHz and low-pass
filtered for further analysis at 4 Hz.

The experimental apparatus is shown in
figure 1(a). We emptied the bladder using the
bladder catheter before filling it with saline at a
near-physiological rate of 2 ml min−1 [56]. This
filling cystometry rate was just above the maximal
physiological rate typically reported for felines (up to
15× 1.1 ml kg hr−1, which is 1.1–1.7 mlmin−1 for
the animals in this study) [57]. Inflow was stopped
when we observed dripping from the external meatus
or, if present, around the urethral catheter. The saline
had room-temperature (22 ◦C) in experiments 1–4
and 6–8 and body-temperature (41 ◦C) in experi-
ment 5. Two filling cystometry trials per experiment
with only non-voiding bladder contractions form
the basis of the following analysis (without the final
voiding phase). Trials took 17 min on average (min-
imum 5min, maximum 30min). Neural signals were
recorded at 30 kHz with a Neural Interface Processor
(Ripple LLC, Salt Lake City, Utah).

After data collection, voltage signals on each
microelectrode channel had an amplitude threshold
between 20 and 35 µV applied (3–5.5 times the root-
mean-square of the signal) to identify spike snippets
of neuron action potential firings. Spike snippets were
sorted conservatively by experienced researchers in
Offline Sorter v3.3.5 (Plexon, Dallas, TX), using prin-
cipal component analysis, followed by manual review
to identify unique spike clusters. In MATLAB (Math-
works, Natick, MA), instantaneous firing rates for
each cell were then calculated by smoothing with a
non-causal triangular kernel [58] of width 3 s.

2.2. Fibre selection and characterization
We first inspected fibre responses manually. In this
process, we observed different but recurring response
characteristics across experiments. Some cells would
respond with a gradual change to rising pressure,
and some would mainly respond to quick changes
and decay into inactivity for phases of constant pres-
sure, even if high. Among the fibres responding to
quick components, some seemed to respond to posit-
ive changes in pressure rather than reacting to the raw
pressure and then adapting. From thismanual inspec-
tion of the responses that were all different from
each other, we defined three main distinct response
types, (1) ‘slow tonic’: a mainly monotonic rise in fir-
ing rate with mean pressure across long time scales
without coverage of the quick non-voiding contrac-
tions, (2) adapting ‘phasic’ fibres which respond to
quick changes in intravesical pressure during con-
tractions but, because they adapt over time, do not
report the mean pressure with the same fidelity as
‘slow tonic’ ones, and (3) ‘derivative’ fibres which
only respond to phases of rising pressure and are,
similar to phasic fibres, weakly indicative of the mean
pressure. The firing rates of derivative fibres have a
similar appearance to phasic fibres, but in fact their
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Figure 1. Intravesical pressure is encoded by distinct groups of stereotypical cells. (a) Microelectrode array (MEA) recording of
cells from the first and second sacral dorsal root ganglion (DRG S1/S2) along with the intravesical pressure. The bladder was filled
through a catheter in the bladder dome (solid line) or urethra (dotted line). Graphic adapted from [45]. (b) When plotting all
fibres of all trials in the 2D-plane of the correlations of firing rates with high-pass filtered pressure (x-axis) and derivative of
pressure (y-axis), we can associate regions of this correlation-feature plane with the different bladder neuron types shown in (B).
Crosses indicate the cluster centers obtained through k-means clustering and large circles show the manually selected initial
centers. (c) Example firing rates of bladder neurons along with the corresponding intravesical pressure are shown for different
trials. By the indices the plots can be related to the scatter in panel B. The cells stem from the following experiments and trials (E:
Experiment, T: trial, C: cell index). 1: E1 T57 C1, 2: E3 T100 C15, 3: E4 T28 C22, 4: E4 T29 C23, 5: E5 T57 C5, 6: E6 T24 C1, 7: E7
T19 C2, 8: E8 T68 C7, 9: E2 T9 C1, 10: E2 T11 C7, 11: E3 T74 C10, 12: E4 T28 C12, 13: E4 T29 C3, 14: E7 T18 C1, 15: E2 T11 C2,
16: E5 T57 C1, 17: E5 T58 C7, 18: E8 T67 C1.

firing rates were shifted in time with respect to each
other, the derivative fibres reacting earlier than the
phasic fibres.

In a next step, we sought to associate the cells of
our experiments automatically to these three types
across all experiments. As pressure time courses
varied from trial to trial, we could not directly
compare the firing rate time courses of the bladder
neurons across different trials. We therefore devised
features that described the reaction of each neuron

to the intravesical pressure. The three features we
selected were the Pearson correlation coefficients
between firing rates and (1) low-pass filtered pres-
sure below 0.01 Hz, (2) high-pass filtered pressure
above 0.005 Hz, and (3) derivative of pressure5 for
every fibre of every trial. The high- and low-pass

5 The pressure was first low-pass filtered at a high frequency of
0.25 Hz to remove noisy transients. The derivative was computed
as the step-wise difference between samples of this filtered pressure.
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filter cutoff frequencies were chosen to separate the
pressure signal into a slow mean component without
contractions and the contractions only. As a first step
of our automated selection and typing procedure, we
only considered neurons as bladder units that had a
raw correlation ρ above 0.4 to at least one of these
filtered intravesical pressure variants. This is an arbit-
rary cut-off that we selected based on experience from
previous decoding studies where including weakly
correlated fibres did not improve decoding perform-
ance [54]. As our experiments contained many can-
didate cells (∼1000) to choose from, we could afford
an increased selectivity to be sure to only consider
unambiguously relevant neurons.

We obtained the two-dimensional plane of the
correlation measures between firing rate and high-
pass filtered pressure (x-axis) and derivative of pres-
sure (y-axis), shown in figure 1(b). The 2D-plane of
the two high-frequency correlation features gave us
all the relevant information, because we had already
removed cells without correlation to any of the three
pressure signal variants. Thus, cells with low correl-
ations to both derivative and high-pass filtered pres-
sure were implicitly identified as only highly correl-
ated to the slow component. In the scatter plot of
figure 1(b), the fibres occupy different regions.

To associate bladder neurons globally across all
trials with the three response types we identified
manually, we chose to conduct a k-means cluster-
ing with k set to 3 in in this ‘correlation-feature’
plane. The converged and initial centers are shown
in figure 1(b). This approach will be referred to as
‘feature clustering’ and forms the basis of associat-
ing each cell to one of the three bladder neuron types:
slow tonic, phasic, and derivative.

We emphasize that the clustering in feature-plane
does not claim to uncover number and character-
istics of fibre types in a purely data-driven, unsu-
pervised clustering approach. It is part of a semi-
automatic cell typing in which each bladder neuron
is associated to one of the three types we identified
manually in a reproducible, objective manner. The
semi-automatic nature of our method is especially
obvious for the lower cluster that we separated into
slow tonic and phasic fibres where no clear separa-
tion is visible. We could have united the two parts
into a single cluster. However, while some cells exhib-
ited mixed responses, many of them clearly corres-
ponded to either a phasic or a slow tonic behavior.
See figure 1(c) for examples. Therefore, reducing to
two clusters would have combined neurons of clearly
different response characteristics to a single type. As
the constraints of our experimental data (number of
neurons, recording length, and repetitions) did not
allow us to divide the cells fully automatically, we
chose to keep some degree of subjectivity, trusted the
initial manual cell typing, and split the large lower
cluster into the two types slow tonic and phasic. Any
overlap in response characteristics was interpreted

Table 1. Surrogate fibre responses in relation to a stimulus s(t ′).
The operation ∗hLP indicates convolution with a low-pass filter.

Fibre type Response formula

Tonic r(t ′) = s(t ′)
Linear r(t ′) = a+ b · t ′
Slow r(t ′) = s(t ′) ∗ hLP
Derivative r(t ′) =max( ds(t

′)
dt ,0)

Phasic dr(t ′)
dt =max( ds(t

′)
dt ,0)− 1

τ
r(t ′)

as noise. We note that the simplification into three
response types may (1) misclassify cells, especially
the ones of mixed type and (2) shadow more subtle
differences within pseudo-homogeneous types. How-
ever, we believe classification is essential, to isolate
independent information. As a side note, no finer fre-
quency analysis was possible, as the pressure signals
did not contain spectral power above approximately
0.2 Hz.

Clustering by correlation-features relied on the
availability of the pressure signal and its differently
filtered variants. As an unsupervised alternative that
could, for instance, be carried out on-line in an
implanted device, we also clustered fibres hierarchic-
ally in each trial based on the pairwise Pearson cor-
relation coefficients between their firing rates (num-
ber of clusters fixed to the number of fibre types in
each trial). This step allowed us to identify clusters of
similarly evolving firing rates—and therefore fibres of
similar bladder neuron characteristics—without rely-
ing on the intravesical pressure. We will denote this
approach ‘activity clustering’. Clustering by activity
was only possible within each trial, not across trials,
as pressure dynamics differed between trials.

2.3. Surrogate data
The dataset had three inconvenient properties which
affected the analyses: (1) the low-frequency power
of the pressure signal was correlated with the high-
frequency power as non-voiding contractions mostly
occur at high pressures, (2) not all cell types we
distinguished were present in all experiments, and
(3) the recording length complicated the estimation
of information theoretic quantities (detailed in the
next section). To partially overcome these limita-
tions for the encoding analysis, we created surrogate
cells (single cells or populations of similar cells) that
approached the behavior of the main bladder neuron
types, and drove them by idealized stimuli (‘pressure
signals’). A surrogate cell consisted of an ‘intended
firing’ rate with was derived from the pressure sig-
nal (e.g. a low-pass filtered version of the pressure
signal) that defined, together with an intended mean
firing rate, the rate parameter of an inhomogeneous
Poisson process to generate a spike train. See table 1
for a list of the implemented fibre response types. We
define a theoretical ‘tonic’ fibre whose intended firing
rate perfectly matches the intravesical pressure and a
theoretical ‘linear’ fibre that rises linearly with time
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(coefficients a and b fit to data). The remaining three
types of simulated cells match the response character-
istics we found experimentally. The ‘slow’ fibres fol-
low the low-pass filtered pressure at 0.0005Hz, ‘deriv-
ative’ cells were driven by the pressure derivative, and
‘phasic’ responses were defined using a decay para-
meter τ in seconds that regulates howquickly the fibre
adapts. From the spike times output by the inhomo-
geneous Poisson process, we computed the continu-
ous firing rate just as we did in the real data by a non-
causal triangular kernel of width 3 s.

2.4. Information theoretic analysis
Information theory [59, 60], originally developed for
the study of communication channels in engineered
systems, has proven to be a useful tool in neuros-
cience for quantifying the information carried by a
single cell or a population of neurons about a vari-
able of interest [61–65]. We here consider a common
information theoretic quantity, the Shannon mutual
information (MI), to estimate (1) howmuch inform-
ation each fibre carries about the pressure stimulus,
and (2) how much benefit there is in combining the
information from two different fibres or fibre types.
In the continuous case, mutual information I(X,Y) is
computed between two variables X and Y of probab-
ility distributions pX(x) and pY (y) and joint distribu-
tion p(X,Y)(x, y). In our case, X could for instance be
the firing rate of a selected cell and Y could be the
intravesical pressure signal. I(X,Y) then quantifies
the amount of entropy of variable X that is lost when
knowing what values Y assumes in all joint measure-
ments of X and Y :

I(X,Y) =

ˆ
Y

ˆ
X
p(X,Y)(x,y) log

(
p(X,Y)(x,y)

pX(x)pY(y)

)
dxdy,

(1)

In addition to the two-variable case, we can also
quantify the joint mutual information that two vari-
ables X and Y carry together about a third variable of
interest Z:

I(X,Y;Z) = I(X;Z)+ I(Y;Z|X), (2)

where for I(Y;Z|X) we have to adapt equation (1) by
replacing all distributions of X and Y by condition-
als to Z and integrate over the distribution of Z. We
can further combine the individual mutual informa-
tion measures of both X and Y and their joint mutual
information about Z to a quantity called ‘fractional
redundancy’,R, which can assume values between−1
and 1 and indicates how much less information the
ensemble of X and Y contains about Z than the sum
of the parts,

R(X,Y;Z) =
I(X;Z)+ I(Y;Z)− I(X,Y;Z)

I(X,Y;Z)
. (3)

Note that negative values of redundancy imply syner-
gistic interaction between variables.
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Figure 2. Finite sampling bias results in mild
overestimation of mutual information and joint mutual
information, but a slight underestimation of redundancy.
Mutual information, joint mutual information and
redundancy were computed from the firing rate of a
simulated tonic fibre (pair) and an idealized pressure signal.
Firing rate was set to 20 s−1 for single fibres, and 10 s−1 for
each fibre in a pair; 5 repetitions for each signal length. See
section 2.3 and figure 6 for details of the simulated data.

We compute the described information theoretic
quantities from firing rate and pressure at a sampling
rate of 1 s−1 using the Kraskov mutual information
estimator for continuous signals [66], implemented
in the JIDT toolbox [67]whichwe run fromMATLAB
(Mathworks, Natick, MA). The conditional mutual
information needed for the joint MI (equation (2))
was computed in the full joint space [68, 69] as imple-
mented by the JIDT toolbox.

As our trials were of limited length (1036 ±
399 samples), mutual information estimates were
upwardly biased due to finite sampling effects, which
are incompletely removed by the Kraskov estimator.
This is illustrated in figure 2 for a single and a
pair of simulated tonic fibre(s). At 1000 samples,
mutual information of a single fibre was overestim-
ated by approximately 7%, joint mutual information
by approximately 14%, and redundancy was under-
estimated by 12%. From 10 000 samples, joint and
single mutual information as well as the redundancy
stabilized.

2.5. Decoding
So far we described the quantification of inform-
ation that individual fibres and fibre combinations
carry about pressure—on both real and surrogate
data. Using the following approach, we made use of
our refined understanding of the physiological encod-
ing and designed an adapted decoder. When estim-
ating intravesical pressure from nervous activity, we
face two main areas of choice to be made. (1) The
pre-processing of the neural signal: whether we sort
cells or take some measure of activity per electrode,
what cells we choose if sorted, how we compute the
spike rate, and (2) the type of decoding algorithm
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we use: Optimal Linear Estimator (OLE), Kalman fil-
ter, neural networks, etc We focus here on the pre-
processing based on the sorted cell responses and fix
the decoding algorithm to an OLE [70] and a Kalman
filter [71] for comparison. For the optimal linear fil-
ter, the decoded pressure p̂OLEt is then obtained from
the firing rates vector ft and the regression coefficients
β at a given time t:

p̂OLEt = βT · ft, (4)

where β minimizes the mean-squared error E (N
number of time-points):

E(p, p̂) =
N∑
t=1

(pt − p̂t)
2. (5)

From our encoding results, we compare three signal
variants to decode from in both estimation error and
robustness against cell loss—a common problem due
to electrode migration or cell death:

• all single sorted cells,
• cells of each fibre type pooled (as in figure 1(a)),
• cells of each activity cluster pooled.

For pooled signal variants, we normalized the fir-
ing rate of each cell by itsmean tomake sure their con-
tributions were added with equal weight. We tested
the robustness of these different pre-processing vari-
ants to cell loss by training on all fibres, and remov-
ing a randomly chosen 20% of the cells before test-
ing. As a measure of decoding quality, we computed
the normalised root mean squared error (NRMSE)
between decoded pressure p̂ and true pressure p as
in equation (6) with pmin/max minimum and max-
imum pressure and N number of samples. All errors
were averaged across 5 cross-validation folds within
trials.

NRMSE=
1

pmin − pmax

√∑N
t=1(pt − p̂t)2

N
. (6)

2.6. Statistical tests
To compare decoding performances and mutual
information measures statistically, we conducted
paired t-test across trials. For decoding, the statist-
ical tests were repeated with only the first trial of
each experiment to exclude that the independence of
observations was violated. Where appropriate, a one-
way ANOVA was carried out before the paired tests
and in case of multiple tests on the same set of results,
a Bonferroni–Holm correction at significance level
0.05 was applied [72].

3. Results

We found 185 bladder-units within 1044 overall fibres
across 22 trials in 8 animals by thresholding the Pear-
son correlation coefficient between firing rates and
the pressure signals (see section 2.2 for details). The
discarded fibres usually had very low firing rates: 70%
of them fired below 0.5 l s−1 compared to only 5% of
the fibres we kept. We treat these 185 fibres as separ-
ate from each other even though some will have been
recorded repeatedly across multiple trials of the same
experiments.

3.1. Groups of stereotypical bladder neuron types
exist
As shown in figure 1(b) and described in section 2.2,
in order to associate each cell with one of the three
types we defined, we first clustered cells globally
by the correlation of their firing rates to the high-
pass filtered pressure and the pressure derivative
(‘correlation-features’). In this way, we distinguished
89 cells as slow tonic, 81 as phasic and 15 as derivative.
The derivative cells were clearly separated from the
other types in correlation-feature plane (figure 1(b)).
It is noteworthy that 12 of 15 derivative cells stem
from the two trials of one experiment. Tonic and
phasic showed a more gradual transition. Some slow
tonic fibres also responded to quick contractions to
some extent, and some phasic fibres did not com-
pletely decay to inactivity for stimulus plateau phases.
In addition to these overlapping receptor properties,
the stimulus signal did not separate phases of high
low-frequency power and high high-frequency power
well, as non-voiding contractions mostly occurred in
the high-pressure regime. In many trials, this caused
the firing rates of quick phasic fibres to be correlated
with the slow component of the pressure as well. It is
thus to be expected that some cells were misclassified
as a certain type. We further reiterate that the separ-
ation into three distinct types is a deliberate simpli-
fication. An overview of the cell types in each trial is
given in table 2. Each trial was usually dominated by
one or two fibre type(s).

The clustering described above required know-
ledge of the pressure signal in order to compute the
correlation-features. As an alternative, we attempted
to retrieve the cell types in an unsupervised way by
grouping similarly firing cells within each trial to
activity clusters. Because similar response character-
istics should produce similar outputs given the same
stimulus, the activity clusters should correspond to
feature clusters (cell types) we observed across all tri-
als. As table 3 shows, activity clusters often repro-
duce cell types well. We here assigned a cell type
label to each cluster from the dominant type. Figure 3
shows an example of an activity clustered trial with
a clean separation of fibre types. In the normalized
single neuron firing rate traces in figure 3(b) the
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Table 3. Clustering by activity within trial often recovers the cell types obtained from clustering in correlation feature plane. Rows show
the dominant fibre type in each activity cluster, columns give the fibre type identities from correlation feature plane clustering.

Fibre types contained in cluster

Slow tonic Phasic Derivative

Slow tonic 74 15 0
Phasic 14 65 1

Dominant fibre type
in cluster

Derivative 1 1 14

slow tonicpressure

1.00.80.60.40.20.0
correlation distance between firing rates

phasic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A

B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1

2

Figure 3. Activity clusters per trial correspond to bladder
neuron types; example trial E4T29. (a) The correlation
distance matrix shows the two main clusters. Overall, both
clusters are quite homogeneous in their cell type content
(see colored squares). (b) The time course of all normalized
bladder unit firing rates along with the intravesical pressure.

diversity of cell responses within each type, especially
within the slow tonic type, is visible. Table A1 gives a
more detailed overview of the relation between activ-
ity clusters and cell types in all trials.

The presence of imperfectly tuned fibres that
respond to both static pressure and to quick pressure
changes complicated a clean clustering into bladder
neuron types, particularly a clean distinction of the
types phasic and tonic. Also, slow tonic fibres could
have low pairwise similarity complicating the activ-
ity clustering. We still often retrieved the same fibre
groups by both global clustering across all trials based

A B
slow tonic phasic derivative

Figure 4. Example distribution of cell types on the MEAs.
(a) Experiment 2, trial 11. Right S1 DRG. (b) Experiment 4,
trial 29. Right S1 DRG. Microelectrode arrays with most
cells shown.

Table 4. Cell types only cluster at electrodes to a chance consistent
degree. Electrodes recorded from up to 3 bladder neurons. The
values are the shares of the dominant fibre type within each
electrode across trials (mean± standard deviation). The shuffled
values give an estimation of what share would be expected if the
cell types were randomly distributed across the electrodes (cell
types shuffled 10 times).

# neurons
Share

dominant type Shuffled

1 (N= 120) 1.000± 0.000 1.000± 0.000
2 (N= 25) 0.820± 0.245 0.794± 0.134
3 (N= 5) 0.800± 0.183 0.733± 0.033

on correlation-features and by simply grouping simil-
arly firing fibres per trial. It was thus feasible to cluster
cells on-line in an unsupervised way into different
bladder neuron groups by their activity.

The bladder neuron types were not localized at
distinct electrodes within the MEA. Most often, one
electrode recorded from one neuron only. If mul-
tiple cells were recorded by a single electrode, these
were rarely of a single type. Figure 4 shows two
example maps of two experiments where many elec-
trodes recorded from multiple cells and table 4 lists
the share of the dominant fibre type per mixed elec-
trode (multiple neurons). E.g., if an electrode records
from 3 cells, the dominant share can be either 1 (3/3)
or 0.667 (2/3) or 0.333 (1/3). Because fibre types
were not uniformly distributed within trials, we also
provide the shares after randomly shuffling the elec-
trode types, showing what values would be expec-
ted if cell types were distributed randomly across the
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electrodes. The dominant shares of the real data were
chance consistent, meaning that there was no group-
ing of bladder neuron types within the MEAs. Still,
the cell types per electrode were quite homogeneous
because often the entire trial was dominated by one
fibre type.

3.2. Encoding by groups of stereotypical bladder
neurons is efficient and robust
We have shown that different but recurring bladder
neuron responses exist exist in the studied animals
and separated them into three types. In the follow-
ing section, we aim to identify reasons for both the
observed response diversity (different types) and the
presence of multiple very similar bladder neurons.
The analysis of this section is based on a global clus-
tering by fibre type as we can in this way relate results
of each type across trials. The results hold for activ-
ity clusters per trial as they correspond closely to fibre
typesein, see table A1.

Fibres of the same type were highly redundant,
as indicated by the diagonal elements of figure 5(a)6.
A straightforward way of making use of such a
redundancy and quantifying the benefit of duplicat-
ing sensors is to pool these fibres into a single com-
pound activity signal. Such pooling of similar sensors
enhances the mutual information: the MI of the aver-
aged firing rates of one fibre type on the diagonal of
figure 5(b) is substantially higher (at least by a factor
of 4, often more) than the average single fibre mutual
information shown on the diagonal of figure 5(d)
(according to the small values the heatmap appears
very dark, see tables B3 and B4 for allMI values). This
difference was statistically significant for tonic (p =

0.000 026) and phasic fibres (p= 0.000 040). As single
unitsmap intravesical pressure (or an aspect of it such
as the slow rise) imperfectly due to both their tun-
ing (e.g. activation threshold) and the spiking nature
of their output, pooling many similar cells increases
the information content. The signal-to-noise ratio is
enhanced through averaging many imperfect sensor
outputs [73]. Figure 5(e) further illustrates the benefit
of averaging over multiple redundant cells: informa-
tion rises with fibre count in almost every case.

Pooling redundant fibres increases information
rate. Still, the average firing rate across all fibres of all
types does not lead to the highest attainable mutual
information between population activity and pres-
sure. Even though the pooled rate of all fibres car-
ries a higher mutual information (figure 5(c), 1.082
± 0.362 bits) than the average firing rate of each
individual fibre type (on-diagonal in figure 5(b),
at most 0.886 ± 0.305), it is inferior to the joint
mutual information of two different fibre types com-
bined shown on the off-diagonal entries of figure 5(b)

6 As single fibre responses were often too noisy to obtain mean-
ingful redundancy estimates, we here computed it between within-
type average firing rates.

(at least 1.255 ± 0.410 bits; see table B3 for all
MI values). This difference between pooled rate and
grouped rate is statistically significant7. The bene-
fit of keeping different fibre types as separate signals
can be understood from the low fractional redund-
ancy8 between types shown in the off-diagonal entries
of figure 5(a): the firing rates of different types are
almost independent of each other (fractional redund-
ancy approximately 25%, see table B2). It is there-
fore important for the transmitted information to
keep the signals from different fibre types separ-
ate. Combining them all into one signal (pooled fir-
ing rate) blurs the messages of the different types
(figure 5(c) vs figure 5(b) off-diagonal). Combin-
ing the same fibres, however, only increases inform-
ation content, see figure 5(e). To further illustrate
that mutual information depends on preserving cell
type-identity, figure 5(f) displays the evolution of
joint mutual information between two fibre pools
of increasing size while (1) only averaging within-
type (solid line) and (2) mixing types to generate two
inhomogeneous pools from which the average firing
rate was computed9 In the case of the cleanly distin-
guished fibre groups of Experiment 4 (see figure 3),
the joint mutual information of the mixed popula-
tions was inferior to the homogeneous populations.
In Experiment 3, the difference between mixed and
not-mixedwas less pronounced because of the imper-
fect tuning of some fibres in that experiment (partly
slow tonic and partly phasic at the same time). As we
saw in the beginning of this section, averaging across
similar (redundant) fibres reduces noise without sig-
nal loss. As we see now, in figure 5(a) and (b) vs (c),
averaging across multiple dissimilar (independent)
fibres, on the other hand, washes out the messages of
each homogeneous fibre group and destroys informa-
tion. We therefore observe a coding in separate, semi-
independent groups.

In figure 6, we confirmed the benefit of dif-
ferent homogeneously tuned fibre pools in surrog-
ate data (see section 2.3). This additional simula-
tion study enabled us to partially overcome the three
main shortcomings of the in vivo data: (1) not all
cell types were recorded in each trial, (2) the low-
and high-frequency power of the pressure signal
were correlated, and (3) the relatively short record-
ing duration was likely to cause finite sampling biases

7 P-values: pooled vs (tonic, phasic) 0.00 000 078, pooled vs (tonic,
derivative) 0.0037, pooled vs (phasic, derivative) 0.0038. Pairwise
tests were done after a one-way ANOVA (p-value 7.2× 10−10).
8 Derivative fibres are by themselves not very informative of the
raw pressure signal and their within-type fractional redundancy
becomes less meaningful. If we compute redundancy relative to the
derivative of the pressure signal as shown in figure C1, fractional
redundancy also reaches high values for this fibre type.
9 Illustration only; differences are not statistically significant. The
shown example trials were chosen because they had at least 4 slow
tonic and 4 phasic fibres.

10



J. Neural Eng. 18 (2021) 016014 C H Lubba et al

1.
2

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

slow tonic

phasic

derivative

slo
w to

nic

ph
as

ic

de
riv

at
ive

joint mutual information (bits)

al
l p

oo
le

d

E

without mixing
with mixing

1.8

1.6

1.4

1.2

1.0

0.8

0.6

jo
in

t m
ut

ua
l i

nf
or

m
at

io
n 

(b
its

)

E4 T28
E4 T29

E3 T100

1 2 3 4 5 6 7 8 9
# fibres per class

F

1.
4

slow tonic

phasic

derivative

0.30.20.10.0
fractional redundancy 

0.4 E2 T9
E3 T100
E4 T28
E4 T29
E7 T14
E8 T50

E8 T52
E8 T68
E8 T72

E2 T9
E3 T74
E3 T100
E4 T28
E4 T29

E5 T57
E5 T58

0 5 10 15
# fibres

1.8

0.6

0.2

1.4

1.0

0 5 10 15
# fibres

0 5
# fibres

m
ut

ua
l i

nf
or

m
at

io
n 

(b
its

)

slow tonic derivativephasic

slo
w to

nic

ph
as

ic

de
riv

at
ive

A

B
C

D

1.8

0.6

0.2

1.4

1.0

1.8

0.6

0.2

1.4

1.0

Figure 5. Combining complementary fibre groups leads to high joint mutual information at a moderate redundancy. Real data.
(a) Fractional redundancy between average firing rates within fibre types. For on-diagonal entries, fibres were split into two
equally large subpopulations of randomly chosen fibres of the same type five times between which the joint mutual information
was computed and then averaged over repetitions; trials had to contain at least 4 fibres of the same type. (b) Mutual information
between average firing rates within fibre type and pressure on the diagonal, averaged across trials. Joint mutual information
between average firing rates of two different types and pressure in off-diagonal entries. (c) Mutual information of the average
firing rate of all fibres and pressure, mean across trials. (d) Mean mutual information of single fibres across trials on the diagonal
and joint mutual information of two fibres in the off-diagonal entries. (e) Mutual information between the average firing rate
across an increasing number of fibres and pressure. (f) Joint mutual information between the mean firing rates of two growing
pools of fibres; phasic and slow tonic. Pools either contain one fibre type (solid line) or are mixed (dashed line). Average firing
rates computed from normalized firing rates.

in our estimates of information theoretic quantit-
ies. In simulation, we selected a simple idealized
pressure time course consisting of a linear slope
and a sinusoid of constant amplitude (period 100 s,
see figure 6(a)). The different idealized responses are
shown in figure 6(a) (slow) and (b) (fast). As an inter-
esting observation, the intended firing rates of the
phasic fibre became very similar to the derivative
response for very short (1 s) decay time constants.
Making use of the increased degrees of freedom of
a simulation, we implemented multiple phasic fibres
with different decaying constants τ (see table 1 for its
meaning). After driving an inhomogeneous Poisson
spiking process atmean firing rate 20/s with the ideal-
ized rates (shown in figures 6(a) and (b)) and kernel-
smoothing the spikes to an estimated spike rate (see
section 2.3 for details), the heatmap of joint mutual
information in figure 6(c) could be generated. Its val-
ues were similar to the mutual information from real
data in figure 5(b) but it provides a more detailed pic-
ture. Both within the fast bladder neuron types on the
lower right and the slow types on the upper left, the
joint mutual information stayed low at about 0.5 bits.
Within the fast group, the combination of derivative
and phasic fibres with intermediate decay constants
(τ = 30 s) reached slightly higher values as already

seen in real data. Only the combination of slow and
quick fibres achieved high information rates: slow
tonic (and linear) and phasic fibres combined reached
the highest mutual information (∼1.1 bits). We fur-
ther observed a match between the rate of decay in
phasic fibres (τ = 30 s) and the dominant frequency
(period T = 100 s) in the pressure signal. When
increasing the sinusoid frequency, smaller values of
τ reached higher mutual information and vice versa
(not shown). Fractional redundancy was high within
the group of slow fibres and between phasic fibres of
high and medium decay constants. As fibres became
less relevant to the raw pressure signal (derivative and
quickly-decaying phasic fibres), fractional redund-
ancy decreased to about zero and the expected higher
values became visible when computing redundancy
towards the high-frequency component of the pres-
sure signal (see figure C2). Between the cleanly sep-
arated bladder neuron types of the simulated data,
the off-diagonal fractional redundancieswere all close
to zero—fibres were truly independent. The positive
effect of averaging on mutual information that we
observed in real data (figure 5(e)) was confirmed in
figure 6(e) where MI rises with increasing number
of fibres to average over. When comparing the MI
between the fibre types and different pressure variants
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in the subplots of figure 6(e), linear and phasic fibres
are both informative of the raw pressure, derivat-
ive and phasic provide information about the quick
components, and the fit between the intended fir-
ing rate and the pressure derivative causes an excep-
tionally high MI for derivative fibres and a much
smaller relative benefit for added derivative fibres.
In figure 6(f) we repeated the analysis of figure 5(f)
with a fixed number of 10 selected fibres from each
population at a firing rate of 2 s−1 each. If we
kept track of the fibre identities and only average
within-type, the joint mutual information of the two
fibre group mean firing rates was higher than when
mixing the fibres randomly into two inhomogen-
eous groups—averaging between fibre types destroys
information.

In summary, a partly redundant (within-type)
and partly independent (between-type) coding
scheme offers reliability and high SNR per channel

by redundancy and a high information rate through
complementary groups of bladder neurons.

3.3. A robust decoder based on stereotypical
bladder neuron clusters
After identifying different recurring cell types by both
global clustering in correlation-feature plane and
by local activity clustering within trials, we demon-
strated the functional significance of these groups for
pressure encoding using information theory. In this
last section we want to apply our encoding insights to
the design of adapted decoding strategies to be used in
next generation closed-loop bioelectronic medicines
for bladder dysfunction. First of all, figure 7 shows
example traces of two different trials using an OLE
and a Kalman filter and different pooling methods.
Single cells and pooled cell groups perform almost
equally well, Kalman seems to cause less exaggerated
peaks than OLE.
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Figure 7. Single cells and pooled cells lead to similar
decoding performances. (a1) E4 T29 decoded with an OLE.
(a2) E4 T29 decoded with a Kalman filter. (b1) E8 T68
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them for the shown decoding.

The information theoretic analysis showed that
averaging within fibre type and keeping distinct types
separate leads to a higher information rate than any
single fibre and than all fibres pooled. We therefore
hypothesised that a decoding from fibre type aver-
ages should perform similarly well as a decoding from
single fibres. A simple optimal linear estimator and a
Kalman filter for comparison were therefore trained
on both single fibres and on the mean firing rates

within fibre types or activity clusters (see table A1 for
their relationship). Figure 8 gives a visual overview of
the decoding error across trials for both decoders. The
bars display the 5-fold cross validated error within-
trial when both training and testing on intact fibre
populations. In some trials, only very few fibres were
recorded and single cell firing rates were equivalent
to pooled responses. This explains the low differences
between single and pooled performance in experi-
ments 1, 7, and 8. See also table A1.

For a quantitative comparison, we refer to table 5.
It can be seen that decoding from average firing rates
(both fibre type mean and activity cluster mean) per-
forms mildly10 but significantly11 worse than decod-
ing from all single cell responses. Decoding from
fibre type mean firing rates tends to be marginally
more successful than from activity cluster means.
For comparison, we added the decoding errors for
‘electrode pools’, meaning we pooled cells per elec-
trode (multi-unit activity, not raw threshold cross-
ings). Performance was quite similar to the cell type
and activity clusters as expected from the homogen-
eous electrodes, see table 4. We finally also give the
decoding error for a one-dimensional signal with all
cells pooled. This variant leads to the highest decod-
ing error for both decoders, especially the OLE. This
outcome was expected from the lower information
content of the pooled activity given in figure 5(c)
compared to the off-diagonal entries of figure 5(b).
Mixing different fibres destroys information. The
decoding error is significantly higher than when aver-
aging over fibres (p-value 0.0073 (OLE), 0.0066 (Kal-
man)) and activity clusters (p-value 0.0026 (OLE),
0.0089 (Kalman)).

We test the robustness of our proposed decoding
scheme by removing 20% of the cells after training
and testing on a corrupt fibre set from which mean-
responses were re-calculated. As can be seen in
figure 8, the decoding error from single cells often
became much larger after cell loss than when decod-
ing from average responses, especially in cases like
experiment 4 where many cells of each type allowed
for reliable cluster mean responses despite cell loss.
The results are not unique to the Optimal Linear
Estimator (figure 8(a)), but are very similar for a Kal-
man filter (figure 8(b)). The values in table 5 confirm
that the decoding error after cell loss from single cells
was 18% higher than from subpopulation averages.
The decoding error thus became significantly higher
after cell loss for both decoders trained on single cells

10On average the decoding error was 9% (OLE), 5% (Kalman) and
12% (OLE), 5% (Kalman) higher for fibre type and activity cluster
means than for single cells.
11 P-values for the hypothesis that the decoding error is the same
for grouped cells and single cells: 0.00 048 (OLE), 0.0019 (Kalman)
for fibre type and 0.00 070 (OLE), 0.00 064 (Kalman) for activity
cluster means in a paired t-test; 0.032 (OLE) 0.058 (Kalman) and
0.025 (OLE), 0.055 (Kalman) for the first trials of each experiment
only.
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Table 5. Decoding from pooled fibre subpopulations is more
robust. Values are mean and standard deviation of NRMSE across
trials.

Signal type No cell loss 20% cell loss

Single fibres 0.121± 0.034 0.176± 0.049OLE
Fibre type 0.132± 0.030 0.149± 0.036
Act. cluster 0.136± 0.035 0.149± 0.037
Electrode 0.133± 0.039 0.155± 0.045
All 0.146± 0.041 0.154± 0.040

Single fibres 0.128± 0.031 0.186± 0.059Kalman
Fibre type 0.134± 0.028 0.150± 0.038
Act. cluster 0.135± 0.030 0.149± 0.036
Electrode 0.135± 0.033 0.160± 0.058
All 0.140± 0.031 0.149± 0.032

than when trained on fibre groups12. This difference
is not only significant but also functionally relevant
as the increase in decoding error after cell loss for
decoders trained on single fibres often exceeded the
difference in decoding error between animals and tri-
als, see figure 8, while pooled variants stayed almost
unchanged. Redundancy leads to reliability.

Clustering can have advantages for decoding
beyond an increased robustness against cell loss.
Grouping fibres periodically by their recorded activ-
ities may allow for a continuous identification of
relevant cells without knowledge of the pressure signal.

12 P-values for the hypothesis that decoding error is the same for
grouped and single cells after cell loss: 0.00 088 (OLE), 0.00 087
(Kalman) for fibres grouped by type and 0.00 027 (OLE), 0.000 088
(Kalman) for fibres grouped by activity; p-values when considering
the first trials of each experiment only: 0.051 (OLE), 0.054 (Kal-
man) for fibre type and 0.039 (OLE), 0.051 (Kalman) for activity
cluster.

Similarly firing fibre groups are most likely driven
by the same stimulus and if a subset of these similar
fibres is already known to be bladder units, clustering
offers an unsupervised way of identifying new relev-
ant fibres on-line in the face of varying recording con-
ditions caused by e.g. electrode migration.

4. Discussion

We have shown that bladder neurons of stereotyp-
ical response characteristics exist and assigned them
to three types—slow tonic, phasic and derivative.
Together, the different types implement a partly
redundant, partly complementary encoding scheme
for intravesical pressure that achieves a reliable and
effective information transmission. We clustered
fibres globally across all trials from their correlations
to differently filtered variants of the pressure signal
and reproduced these fibre types through unsuper-
vised activity clustering within trials. In both real
data and surrogate cell populations, we quantified
the benefit of within-type redundancy (reliability,
enhanced signal-to-noise ratio) and between-type
tuning differences (maximization of transmitted
information by complementary channels) using
information theory. Building on these encoding
insights, we proposed an informed decoding scheme
that builds on cluster (feature-based or activity-
based) mean firing rates and thereby offers increased
robustness at a moderate accuracy reduction.

One limitation of our study was the sparse
sampling of fibres. Using microelectrode arrays, we
could record from 6 to 125 cells in each trial—of
which at most 23 were identified as bladder-units.
Given the high number of cell bodies in the S1
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and S2 DRG of cats (∼12 000 [32]) and bladder-
units (∼1000 [31, 33–35]), we thus recorded from
at most 2% of the overall bladder-unit population.
This sparseness may well be the cause of the observed
variability in the distribution of cell types across tri-
als shown in table A1 and leaves uncertain whether
cell types exist in consistent ratios across animals.
The study is further limited by the pressure sig-
nal that drove the bladder neurons we were ana-
lyzing. Firstly, the pressure did not contain much
high frequency power, keeping us from conducting
a sophisticated frequency-analysis or bladder neuron
responsiveness mapping such as spike triggered aver-
aging. Secondly, the non-stationary nature of the
pressure signal and the limited reproducibility of the
pressure signal across trials prevented a principled
error-analysis of our information theoretic measures
(e.g. by bootstrapping) and may have biased our cell
typing. Lastly, the high-frequency events (contrac-
tions) usually took place at high stationary pressure.
Therefore, the firing rates of fibres responding to
high-frequency events (phasic and derivative) were
usually high in correlation to the slow signal com-
ponents simply by correlation of slow and fast stimu-
lus components. This made it difficult to distinguish
‘purely phasic’ and mixed phasic and slow tonic blad-
der neurons. The only way of overcoming these lim-
itations is to record more data, best while enforcing
isobaric and isovolumetric conditions.

Our clustering into three types of fibres is, as we
state from the beginning, a deliberate simplification.
As can be seen in figure 1(b), tonic and phasic fibres
do overlap in the correlation-feature space and this is
at least partly due to a mixed bladder neuron tuning.
It remains to be seenwhether this overlap in responses
is an imprecision of the bladder neuron expression
that induces noise or is in fact a feature of the trans-
mission strategy that our analysis does not acknow-
ledge. Given the availability of more data, we could,
instead of classifying cells as distinct types, assume a
continuum of cell responses and infer the densities of
latent parameters of a generating model. This more
advanced analysis is left for future work onmore data.

The main limitation of our decoding study
was the lack of controlled repetitions. We therefore
emphasize that the advantages of clustering have to
be confirmed on data with cells sorted across tri-
als. Another limitation of the decoding scheme we
proposed is its dependency on on-line spike sort-
ing which in itself complicates the interface con-
siderably. We did not observe clustering of the cell
types within the electrode arrays beyond the degree
expected by chance across experiments. Therefore,
an unsorted ‘electrode-activity’ will often not provide
a clean separation of fibre types (see figure 4 and
table 4). It is further possible that for much larger cell
pools, a decoder would automatically select redund-
ant sensors without the pre-processing step of expli-
citly grouping cells. It is also conceivable that the loss

function of the decoder could be adapted to e.g. pen-
alize uneven fibre contributions. We hope that our
approach sparks research towards better informed
decoders that exploit the encoding of a quantity of
interest by a population of neurons.

In addition to reliability and the benefits of aver-
aging over imperfect sensors, other reasons for imple-
menting multiple similar fibres are conceivable from
a perspective of neural design. Looking at the blad-
der and its feedback loop into the spinal cord as a
control system, we observe that no quick control is
required. The fastest events, single contractions, take
seconds to tens of seconds. The peripheral nervous
system can thus afford a considerable lag between
intravesical pressure and the response by its control
centers in the spinal cord and higher neural levels and
can implement feedback by energetically cheap thin,
slowly conducting fibres as it is observed [24, 36–38].
These thin fibres, however, do not fire at high fre-
quencies, imposing a limit on the information rate
per fibre [73]. The observed high number of thin sim-
ilar fibres can therefore be viewed as the result of
an energetic optimization of the information channel
that ensures a sufficient information rate at an afford-
able lag [74].

The different groups of bladder neurons can be
understood as reporting the twomain components of
the physiological pressure signal: the bladder (1) fills
steadily at a very low rate of pressure change and (2)
contracts ‘quickly’. It is not surprising that sensors for
those twomain signal components exist in slow fibres
on the one hand and fast phasic and derivative fibres
on the other hand. This mapping of bladder neuron
responsiveness to signal components has been repor-
ted in many studies on nervous sensory processing,
for instance as receptive fields in the visual and aud-
itory cortex [75, 76].

Finally, many organ systems use an afferent
encoding scheme based on stereotypical bladder
neuron subpopulations, similar to our findings in
the bladder. Phasic and tonic fibres have been repor-
ted in the colon [77–79], gall bladder [80], the
lung (slowly- and rapidly-adapting sensors) [81–84],
similarly separate subpopulations were observed in
muscle spindles [85, 86]. We hypothesize that the
same benefits may have led the evolution of all these
sensory populations towards an identical encoding
scheme: complementary channels, each reliable due
to within-type redundancy, independently encode
different (quick and slow) aspects of the quantity of
interest and together achieve a high information rate.
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Appendix B. Tables of mutual information
and redundancy

The following tables give the numerical values for
mutual information and fractional redundancy
shown in figure 5(a), (b), and (d).

Table B2. Figure 5(a). Fractional redundancy between within-type
mean firing rates; mean across trials. All values in bits.

Slow tonic Phasic Derivative

s 0.346± 0.152 0.268± 0.184 0.242± 0.149
p 0.268± 0.184 0.426± 0.118 0.243± 0.133
d 0.242± 0.149 0.243± 0.133 0.040± 0.057

Table B3. Figure 5(b). Joint mutual information between
within-type mean firing rates; mean across trials. All values in bits.

Slow tonic Phasic Derivative

s 0.886± 0.305 1.374± 0.375 1.281± 0.362
p 1.374± 0.375 0.865± 0.410 1.255± 0.410
d 1.281± 0.362 1.255± 0.410 0.709± 0.267

Table B4. Figure 5(d). Joint mutual information between single
fibre firing rates, mean over all fibres of all trials for each type
after MI calculation. All values in bits.

Slow tonic Phasic Derivative

s 0.182± 0.210 0.137± 0.177 0.209± 0.179
p 0.137± 0.177 0.214± 0.145 0.199± 0.147
d 0.209± 0.179 0.199± 0.147 0.036± 0.039

Appendix C. Redundancy towards fast
pressure components

Fractional redundancy of two firing rates only evalu-
ates to meaningful values when computed in relation
to a relevant signal with which at least one firing rate
has a high mutual information. We therefore obtain
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Figure C1. Derivative fibres only show their within-type
redundancy with respect to the derivative of pressure. Real
data. Fractional redundancy of fibre type average firing
rates and the derivative of pressure.
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Figure C2. Fast fibres only show their mutual redundancy
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data. Fractional redundancy of simulated firing rates and
the high-pass filtered pressure above 0.001 Hz.

very small fractional redundancies in relation to the
raw pressure signal for very quick phasic and derivat-
ive fibres. Here, we repeat the redundancy computa-
tion in relation to only the quick components of the
pressure.
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