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Abstract 

A unified semi-analytical solution based on graphical conformal mapping and complex 

variable methods is proposed to calculate the in-plane stress around an arbitrarily-shaped hole 

in isotropic or anisotropic materials. The method requires only the outline coordinates of the 

hole, the elastic moduli of the material, and the magnitude and direction of the far-field 

stresses. Comparison with many published results for a wide range of shapes, such as 

triangles, squares, ovaloids, and ellipses, has been carried out to validate the method. The 

method has also been applied to a highly irregular geometry that has been observed in a 

breakout of a subsurface borehole. The solution is essentially closed-form, in the sense that it 

can be explicitly expressed in terms of the mapping coefficients, and parameters that depend 

only on the elastic moduli of the materials. With such a degree of flexibility, the method will 

be useful to study the effect of hole geometry on the stress distribution around holes in 

isotropic or anisotropic materials. 
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1. Introduction 

Accurate prediction of the stresses around underground openings or holes in mechanical 

components is of great importance, and is necessary for various purposes. Highway tunnels, 

underground mining, oil and gas wells, and other engineering designs often require 

preliminary evaluation to assess the stability and safety of the structure. In general, for such 

preliminary studies, the knowledge of the stress state acting around the structure, coupled 

with the strength characteristics of the material, is essential for predicting the potential risk. 

This can be addressed by means of analytical (or semi-analytical) solutions, or numerical 

analysis such as finite element or boundary element methods. Recent advances in computing 

capability have enabled such numerical analysis to become the standard procedure among 

practitioners and researchers. Nevertheless, analytical solutions are still very useful in 

providing upfront information about the stress state around openings in elastic materials. 

Moreover, analytical solutions offer a great advantage to allow for a parametric investigation 

for such preliminary analyses, such as the influence of material properties or the geometry of 

the openings. 

Several authors have proposed analytical solutions for the calculation of elastic stresses 

around holes of various shapes. For instance, Daoust and Hoa[1] proposed a closed-form 

solution to investigate the stress around a triangular hole in anisotropic plates typically found 

in the design of aircraft windows. Gercek[2,3] investigated the stress around an arched roof 

with either a flat or parabolic floor, such as are widely used in mining and civil engineering. 

Greenspan[4] investigated square and ovaloid holes in isotropic plates, to assess the stress 

concentration around the hole contour. In general, the shape of the hole considered in their 

respective solutions involved simplified geometries such as a circle, ellipse, oval, triangle, 

square, or other shapes that slightly depart from such standard shapes; this is also true for the 

analytical solutions for various shapes of holes given by Lekhnitskii[5] and Savin[6].  

In the above-mentioned studies, the stress is calculated using conformal mapping and the 

complex displacement potential method developed by Kolosov[7] and Muskhelisvili.[8] The 

conformal mapping facilitates the transformation of any given hole shape in one domain into 

a unit circle in another domain by an appropriate selection of the constants in the mapping 

function. The solution for the stress components will then be solved in this circular geometry 

using complex potentials. In practice, the challenge often lies in the determination of the 

mapping constants that can accurately reproduce the contour of interest, particularly in the 

regions associated with high stress concentration. It is therefore necessary to have an 
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appropriate mapping procedure that is capable of producing an approximated contour having 

a minimum misfit with the desired hole shape. 

One such method is the Schwarz-Christoffel (SC) integral that applies for polygons. A 

comprehensive reference on this method has been written by Driscoll and Trefethen[9] and 

supplemented with a conformal mapping toolkit, i.e. a Matlab®-based program using the SC 

method. Despite its robustness, the SC method is mathematically complex, especially for 

holes having a relatively smooth contour with a continuously changing tangent. For this type 

of hole contour, it is possible to use a graphical approach proposed by Melentiev[10] that is 

mathematically more convenient.  

Several authors[1-6,11-12] have solved specific problems in two-dimensional elasticity 

using a specific mapping function in which the conformal mapping coefficients of the hole are 

already known. Mitchell[13] and Exadaktylos et al.[14] presented a numerical approach to 

obtain appropriate conformal mapping constants for the stress calculation in a notched 

circular hole. Exadaktylos and Stavropoulou[15] proposed a method to compute the conformal 

mapping function for a hole described by numerical values of its boundary points, and applied 

it to the solution for the stresses around a horseshoe-shaped tunnel in an isotropic material. 

Sobey[16] implemented Melentiev’s iterative procedure for a doubly-symmetric hole. 

Although the above-mentioned methods are general, in that they can be used for any shape of 

hole, these solutions pertain only to isotropic media. 

Thus, it would be very useful to develop a method that allows the calculation of the 

stress around an arbitrary hole of given contour in isotropic or anisotropic media. This paper 

aims to propose a unified procedure in which the stress components around an arbitrary hole 

contour can be computed without prior knowledge of the conformal mapping constants. The 

hole contour, whose outline coordinate is known, is conformally mapped into a unit circle 

using the successive approximation method proposed by Melentiev. Although Melentiev’s 

method is discussed in some detail in the monograph by Kantorovich and Krylov[17], there 

seem to be few if any examples of it being implemented, in the English-language open 

literature. 

The proposed solution is derived by assuming that the material is anisotropic, and the 

body is subjected to a uniaxial far-field tensional or compressional stress. Using the principal 

of superposition, the solution can be extended to the more general case of biaxial loading. 

Moreover, by taking the two roots of the material characteristic equation to be nearly equal, 

i.e. �� ≈ �� (see below), the solution can be used for isotropic materials. In this regard, see 

the discussion given by Gaede et al.[18]  
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Comparison with several published results for a wide range of possible shapes has been 

carried out to validate the method. As an example of a non-symmetrical and irregular shape, 

an actual wellbore shape reported by Zoback et al.[19] has been digitised, and the stress around 

the wellbore wall has been calculated to identify a region with high stress concentration. 

In the subsequent sections, the procedure of conformal mapping using the graphical 

method proposed by Melentiev will be first discussed. Subsequently, the theory of complex 

stress and displacement potentials will be presented as the basis of the derivation of the 

proposed semi-analytical solution. Finally, a comparison with several published results will 

be presented. 

 

2. Conformal mapping 

Conformal mapping can be used to transform a region external to a given hole in the �-

plane into the region external to the unit circle in the �plane. (The mapping can also be done 

to the interior of the unit circle in the  �-plane. In this paper, the mapping will be done from 

exterior to exterior). Kantorovich and Krylov[17] provide a detailed discussion of a graphical 

approach to conformal mapping that was originally developed by Melentiev[10]. Melentiev’s 

method does not seem to have been used in the English-language open literature, although 

Sobey[16] used it in a report to the UK Ministry of Aviation in 1964. The procedure ensures 

that the region outside the unit circle is conformally mapped onto a simply connected region 

outside a hole in the �-plane, by an analytic function of the form 

� = � ������

�

���

= ��� + �� + ����� + ⋯ (1) 

in which �� = �� + ��� are the complex conformal mapping coefficients, and � = � + ��. 

The function in eq. (1) maps the region outside of the unit circle in the �plane into the region 

outside of the given contour in the �-plane.  
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Figure 1. Conformal mapping of the region outside of unit circle in the in the �plane into the 

region outside of a given contour in the �-plane. 

 

In practice, the method of Melentiev involves mapping the unit circle in the �plane 

onto the given contour in the �-plane. The required calculations therefore involve only points 

on the two contours, and hence many of the subsequent equations in this section are only 

intended to be valid on the unit circle, |�| = 1. However, the structure of eq. (1) guarantees 

that the mapping will be conformal throughout the regions outside of the two contours. On the 

circle |�| = 1, the Fourier series of the real and imaginary parts of � can be written as 

� = � �� cos(1 − �)�

�

���

− �� sin(1 − �)� (2) 

� = � �� cos(1 − �)�

�

���

+ �� sin(1 − �)� (3) 

Melentiev suggested working with the ratio � = � �⁄ , rather than with � itself. This 

ratio can be written as 

� =
�

�
= � + �� = � �����

�

���

 (4) 

Hence, the expansion of � and � in a Fourier series can be written as[17] 

� = � �� cos ��

�

���

+ �� sin �� (5) 

� = � �� cos ��

�

���

− �� sin �� (6) 
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Since both series contain the same coefficients, it is sufficient to only calculate one of the 

functions, � or �. Subsequent steps will therefore be based on eq. (5). Since in practice the 

mapping function must be truncated at a finite number of terms, a series containing (� 2⁄ ) +

1 terms will be constructed, i.e., 

� = � ������

� �⁄

���

= ��� + �� + ����� + ⋯ + �� �⁄ ���(� �⁄ ) (7) 

which leads to 

� =
�

�
= � �����

� �⁄

���

= �� + ����� + ����� + ⋯ + �� �⁄ ��(� �⁄ ) (8) 

so that on the contour, the real part of w takes the form 

� = � �� cos �� + �� sin ��

� �⁄

���

 (9) 

The total angle 2� of the circle in the �-plane is now divided into � equal parts. Sets of 

rays are constructed from the origin (Fig. 2). By allowing the angle � to take on the values 

2� �⁄ , 4� �⁄ , … ,2�, the value of � for each ray can be calculated as follows: 

�� = � �� cos �
2��

�
� + �� sin �

2��

�
�

� �⁄

���

 (10) 

⋯ �� = � �� cos(2��) + �� sin(2��)

� �⁄

���

 (11) 

This set of equations can be solved for the coefficients �� and ��, as follows[17]: 

�� =
2

�
� ��

�

���

cos �
2���

�
� (12) 

�� =
1

�
� ��

�

���

 (13) 

�� �⁄ =
1

�
�(−1)�

�

���

�� (14) 

�� =
2

�
� ��

�

���

sin �
2���

�
� (15) 

�� = − � ��

� �⁄

���

 (16) 
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Although the final coefficient �� �⁄  cannot be computed, for a sufficiently large value of �, 

this coefficient can be taken to be zero.[17]  

 

Figure 2. Construction of rays around the shape in the �-plane. 

An iterative process is required to determine the most appropriate values of the 

coefficients �� such �� such that the approximated contour is as close as possible to the 

desired contour in the �-plane. For instance, assume that some values for {��, ��, … , ��} have 

successfully been determined. The coefficients �� such �� can then be calculated from the 

equations given above. The �� can then be calculated as 

�� = � �� cos �
2���

�
� − �� sin �

2���

�
�

� �⁄

���

 (17) 

Finally, by using �� and ��, the points {�′�, �′�, … , �′�} can be constructed as an 

approximation to the desired values of {��, ��, … , ��} that lie on curve L in the �-plane 

(Fig. 1). However, it will generally not be the case that the initial values of ��, which can be 

denoted by ���
(�)

, ��
(�)

, … , ��
(�)

�, satisfy the desired condition in the first instance, i.e. the 

initial estimated values ���
(�)

, ��
(�)

, … , ��
(�)

� will slightly depart from the desired values 

{��, ��, … , ��}.  

Melentiev[10] proposed an iterative method to transfer the value �′� to be arbitrarily 

close to the desired position ��. As illustrated in Fig. 3, a line is drawn from the point ��
(�)

 to 
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the origin, and the intersection of this line with the curve L is taken to be the new point ��
(�)

. 

The ray �−��
(�)

 is then projected onto the ray �−��
(�)

, which defines the new value, ��
(�)

.  

 

Figure 3. A step in the iterative procedure to transfer point ��
(�)

 to the contour L. 

 

To start the computation, the first approximation, ��
(�)

, is taken as 

��
(�)

=
1

�
�(�� + ��)

�

���

 (18) 

The ��
(�)

 values can then be computed from eq. (17), thereby locating the initial point, ��
(�)

. 

The misfit between ��
(�)

 and the desired value �� can be quantified as follows: 

� =
1

�
�� ���

(���)
− ��

(�)
�

�
�

���

 (19) 

Iterations continue until � is less than some tolerance, taken here to be 10-6. 

Figure 4 shows an example of the region outside a triangle conformally mapped into the 

region outside the unit circle. The closed curves and quasi-radial lines in the �-plane 

correspond to constant values of the angular and radial coordinates in the �-plane. The 

orthogonality of these curves in the �-plane shows that the mapping is indeed conformal. 
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Figure 4. Conformal mapping of the region outside a triangular shape in the �-plane into the 

region outside the unit circle in the �-plane. 

 

3. Complex stress-displacement potentials in anisotropic elastic materials 

For a plane problem in elasticity, under the plane stress assumptions of ��� = ��� =

��� = 0, the generalised Hooke’s law can be written as  

�

���

���

���

� = �

��� ��� ���

��� ��� ���

��� ��� ���

� �

���

���

���

� (20) 

where the �����
 
are the elastic compliances of the material. The stress components can be 

written in terms of the Airy stress function �(�, �), as follows: 

��� =
���

���
      ��� =

���

���
      ��� = −

���

����
 (21) 

For a plane problem, the only non-trivial compatibility relation is 

�����

���
+

�����

���
−

�����

����
= 0 (22) 

If the constitutive equation (20) is inserted into the compatibility relation, (22), the following 

governing fourth-order partial differential equation is obtained: 

���

���

���
− 2���

���

�����
+ (2��� + ���)

���

������
− 2���

���

�����
+ ���

���

���
= 0 (23) 

The solution to this PDE depends on following characteristic equation,  

����� − 2����� + (2��� + ���)�� − 2���� + ��� = 0 (24) 
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the four roots of which can be written as 

�� = �� + ���,    �̅� = �� − ���,    �� = �� + ���,    �̅� = �� − ��� (25) 

The general solution for the Airy stress function can be written in terms of two complex 

potentials, ��(��) and ��(��), as[21] 

�(�, �) = ��(��) + ��(��) + ��(��)�������� + ��(��)�������� (26) 

where �� = � + ���. Two new complex functions that are the derivatives of the original pair 

are now defined as  

�(��) = ��
�(��),   �(��) = ��

�(��)  (27) 

Finally, the in-plane stress components can be expressed as follows: 

��� = 2��[��
���(��) + ��

���(��)] (28) 

��� = 2��[��(��) + ��(��)] (29) 

��� = −2��[����(��) + ����(��)] (30) 

The roots of the characteristic equation (24) depend on the material’s elastic moduli. 

Three cases are possible. The roots may be complex and different, they may be complex and 

equal, or they may be different and purely imaginary. Some specific examples are given by 

Lekhnitskii[5], who points out that the case of purely real roots can be ruled out by energy 

considerations. Finally, note that to apply this formalism to the problem of plane strain, it is 

merely necessary to replace �����
 
in the characteristic equation with ��� = ��� − ������ ���⁄ . 

 

4. Solution for the stresses around an arbitrarily-shaped hole 

To find the stresses around an arbitrarily-shaped hole in a medium subject to a given 

far-field stress, the two stress potentials defined in eq. (27) need to be found. Recall the 

mapping function given by eq. (1), truncated to N terms: 

� = �(�) = � ������

�

���

 (31) 

The auxiliary variables �� and �� are related to � by[6,12,20] 

�� = � + ��� =
(1 − ���)

2
� +

(1 + ���)

2
�̅ (32) 

and similarly for �2. Substituting eq. (31) into eq. (32) yields, for j = 1 or 2,   

�� =
1

2
��1 − ������

�

���

���� + �1 + ��������̅�� + �� + ��������� + ��� − ������̅�� (33) 
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On the unit circle, where � = ��� and �̅ = ���� = 1 �⁄ , these relations take the form 

�� =
1

2
��1 − ������

�

���

���� + �1 + ��������(���) + �� + ��������� + ��� − ������(���) (34) 

The complex potentials defined above must also satisfy the following boundary 

conditions on the hole contour[5,21] 

2��[�(��) + �(��)] = − � ��

�

�

�� + �� ≡ �� (35) 

2��[���(��) + ���(��)] = � ��

�

�

�� + �� ≡ �� (36) 

where �� and �� are the traction components acting on the hole contour, S is a point on the 

contour, and the Ci are constants of integration. The focus of the present paper is on the 

problem of a traction-free hole in an infinite body, subjected to a far-field state of uniform 

stress. In this case, �� = �� = 0. Moreover, although the Ci will influence the displacements, 

they have no effect on the stresses, and so for the present purposes they can be set to 0. 

Consequently, �� = �� = 0 in the two previous equations. 

In this case, the two potentials take the following general form[6] 

�(��) = �∗�� + ��(��),       �(��) = (��∗ + ���∗)�� + ��(��) (37) 

where the potentials having subscript 0 are analytical functions outside of the hole, and the 

constants can be expressed in terms of the far-field stresses, as follows:  

�∗ =
���

� + (��
� + ��

�)���
� + 2�����

�

2[(�� − ��)� + (��
� − ��

�)]
 (38) 

��∗
=

(��
� − ��

� − 2����)���
� − ���

� − 2�����
�

2[(�� − ��)� + (��
� − ��

�)]
 (39) 

��∗
=

(�� − ��)���
� + [��(��

� + ��
�) − ��(��

� + ��
�)]���

� + [(��
� + ��

�) − (��
� + ��

�)]���
�

2��[(�� − ��)� + (��
� − ��

�)]
 (40) 

Substitution of eq. (37) into eqs. (35) and (36) shows that the 0-subscripted potentials must 

satisfy the following boundary conditions:  

2��[��(��) + ��(��)] = −2��[�∗�� + (��∗ + ���∗)��] ≡ ��
� (41) 

2��[����(��) + ����(��)] = −2��[���∗�� + ��(��∗ + ���∗)��] ≡ ��
� (42) 

By combining eqs. (41) and (34), the first boundary function  can be expressed, on the 

hole contour, as[20]  
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��
� = −

1

2

⎣
⎢
⎢
⎢
⎢
⎡ (�� + ���) � ��

�

���

���� + (��� + ��) � ��

�

���

��(���)

+(�� + ���) � ������

�

���

+ (��� + ��) � ��

�

���

��(���)

⎦
⎥
⎥
⎥
⎥
⎤

 (43) 

in which the constants �� are defined by  

�� = �∗(1 − ���) + (��∗ + ���∗)(1 − ���),   �� = �∗(1 + ���) + (��∗ + ���∗)(1 + ���) 

�� = �∗(�� + �) + (��∗ + ���∗)(�� + �),       �� = �∗(�� − �) + (��∗ + ���∗)(�� − �) 
(44) 

Following the same process, the second boundary function can be expressed, on the hole 

contour, as  

��
� = −

1

2

⎣
⎢
⎢
⎢
⎢
⎡ (�� + ���) � ��

�

���

���� + (��� + ��) � ��

�

���

��(���)

+(�� + ���) � ������

�

���

+ (��� + ��) � ��

�

���

��(���)

⎦
⎥
⎥
⎥
⎥
⎤

 (45) 

in which the constants Ki are defined by  

�� = ���∗(1 − ���) + ��(��∗ + ���∗)(1 − ���),    �� = ���∗(1 + ���) + ��(��∗ + ���∗)(1 + ���) 

�� = ���∗(�� + �) + ��(��∗ + ���∗)(�� + �),       �� = ���∗(�� − �) + ��(��∗ + ���∗)(�� − �) 
(46) 

It can be verified that, on the unit circle, both expressions (43) and (45) are purely real, as 

required by eqs. (41) and (42). 

Since ��and �� are each known functions of �, the two 0-subscripted potentials, which 

can now be denoted as ��(�) and ��(�), can be found by contour integration, as explained on 

p. 155 of Savin[6], modified to account for the fact that in the current formulation, the 

mapping is made from the region outside the unit circle, rather than inside the unit circle: 

��(�) =
−�

4�(�� − ��)
� (����

� − ��
�)

� + �

� − �

��

�
+ ��

�

 (47) 

��(�) =
�

4�(�� − ��)
� (����

� − ��
�)

� + �

� − �

��

�
+ ��

�

 (48) 

where � is the unit circle in the �-plane, and the �� are constants whose values are known, but 

which will be ignored here, as they have no influence on the stresses. Note that this formula is 

usually discussed for situations in which the interior of the unit circle in the �-plane is 

mapped into the region outside of the physical hole. In the present formulation, the exterior of 

the unit circle in the �-plane has been mapped into the region outside of the physical hole. 

The connection between the two situations is discussed by Muskhelishvili[8], p. 268. The two 
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approaches are essentially identical, since one can imagine a two-stage mapping in which the 

first stage is an inversion, � = 1 �⁄ , that first maps the interior of the unit circle into its 

exterior. This would merely change the signs of the power exponents in the mapping function 

given by eq. (1), but would not change the numerical values of the mapping coefficients.  

In light of eqs. (43) and (45), the parenthesised terms in eqs. (47) and (48) are series that 

involve terms of the form ��, for non-zero integer values of �. Since the relevant values of � 

lie outside the unit circle, the integrals have the following values[22]: 

� �� ∙
�

� + �

� − �

d�

�
= 0,             �

1

��
∙

�

� + �

� − �

d�

�
= −4����� (49) 

in which � is taken to be a positive integer, and a constant term on the right side of each 

integral has been ignored, as they do not contribute to the stresses. Note also that the �� term 

in the mapping function (1), which would contribute terms in the integrand having � − 1 =

� = 0, represents a rigid-body translation of the hole contour, and therefore has no influence 

on the boundary stresses. Non-zero values of �� that may be generated by the Melentiev 

iterative mapping procedure can therefore be set to zero, when computing the stresses. Hence, 

there is no need to consider the case � = 0 in eq. (49).   

Substituting ��
� and ��

� from eqs. (42) and (45) into expressions (47) and (48), and 

making use of the integrals in eq. (49), leads to the following expressions for the two 

potentials:  

��(�) = ������� + ������� + �� � ��

�

���

���� + �� � ��

�

���

���� (50) 

��(�) = ������� + ������� + �� � ��

�

���

���� + �� � ��

�

���

���� (51) 

in which the constants �� are given by 

�� =
1

2(�� − ��)
[��(��� + ��) − (��� + ��)] (52) 

�� =
1

2(�� − ��)
[��(��� + ��) − (��� + ��)] 

(53) 

�� =
1

2(�� − ��)
[��(�� + ���) − (�� + ���)] 

(54) 

�� =
1

2(�� − ��)
[��(�� + ���) − (�� + ���)] 

(55) 

�� =
−1

2(�� − ��)
[��(��� + ��) − (��� + ��)] (56) 
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�� =
−1

2(�� − ��)
[��(��� + ��) − (��� + ��)] (57) 

�� =
−1

2(�� − ��)
[��(�� + ���) − (�� + ���)] (58) 

�� =
−1

2(�� − ��)
[��(�� + ���) − (�� + ���)] (59) 

The stress components can now be calculated as 

��� = ���
� + 2�����

���
�

(��) + ��
���

�
(��)� (60) 

��� = ���
� + 2�����

�
(��) + ��

�
(��)� (61) 

��� = ���
� − 2��[���′�(��) + ���′�(��)] (62) 

in which the derivatives of the potentials can be computed using the chain rule, as follows: 

�′�(��) =
���(�)

��

��

���
=

�′�(�)

��
�(�)

 (63) 

�′�(��) =
���(�)

��

��

���
=

�′�(�)

��
�(�)

 (64) 

The tangential and radial stress components can be calculated using the following 

transformation[23]: 

��� − ��� + 2��� = ���� − ��� + 2�������� (65) 

��� + ��� = ��� + ��� (66) 

in which � is the rotational angle from the �-axis to the radial axis � (see Fig. 4). For biaxial 

tension or compression, the principal of superposition can be used. 

 

5. Validation of the proposed methodology 

 The general workflow of the proposed method is as follows. The hole contour, whose 

outline coordinates are known in the �-plane, is conformally mapped into the outside of the 

unit circle using Melentiev’s successive approximation method, to obtain the mapping 

coefficients, ��. The characteristic equation (24) is then solved for the characteristic roots, 

after which the B and C constants appearing in the stress potentials can be computed from 

knowledge of these roots and the far-field stresses, using eqs. (38-40). The potentials are then 

given by eqs. (50,51), and the derivatives of the two potentials are calculated using eqs. 

(63,64). The stress components can then be calculated using eqs. (60-62), and can be 

converted into polar coordinates using eqs. (65,66). 

To demonstrate the robustness of this method, the following section provides validation 
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by comparing the stresses obtained with the proposed method against several known 

formulations and published results. The validation covers a wide range of possible shapes, 

such as ellipses, triangles, squares, ovaloids, etc., in both isotropic and anisotropic plates. 

 

5.1 Elliptical hole 

For an elliptical hole in isotropic medium, Jaeger et al.[23] showed that the stress 

concentration around the hole contour is given by the following equation: 

�� = �� �
2�� + (�� − ��) cos 2� − (� + �)� cos 2(� − �)

(�� + ��) − (�� − ��) cos 2�
� (67) 

in which � denotes the angle between the direction of the far-field stress �� with the �-axis, 

and � and � are the lengths of the ellipse’s axes in the � and � directions, respectively. Figure 

5 shows ellipses with � � = 3 2⁄⁄  and � � = 2 3⁄⁄ . The elliptical coordinate � is related to the 

polar coordinate � by tan � tan �⁄ = � �⁄ [22]. Savin[6] gave the following alternative 

expression for the hoop stress in this problem: 

�� = �� �
(1 + �)� sin�(� + �) − sin�� −�� cos� �

sin�� + �� cos� �
� (68) 

in which � = � �⁄ . 

The conformal mapping constants for an ellipse with � �⁄ = 3 2⁄  that are obtained using 

Melentiev’s method, with seven terms in the mapping function, are �� = 0.9976, �� =

0.0017, �� = 1.999, �� = 0.0002 and �� = �� = �� = 0.0001. The hoop stresses that 

are computed with the present method are compared in Fig. 6 to those given by the analytical 

expressions (67) and (68), for three different orientations of the far-field stress. The 

agreement is extremely good, for all angles around the ellipse, and for all three loading cases.  

 

Figure 5. Elliptical holes with (a) � � = 3 2⁄⁄  and (b) � � = 2 3⁄⁄ , showing the mapped 

curves that correspond to the lines of constant � and constant � in the �-plane. 
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Figure 6. Hoop stress around an elliptical hole having � � = 3 2⁄⁄ , in an isotropic medium, 

subjected to a far-field stress acting at an angle � to the �-axis. The hoop stress is normalised 

against the far-field stress. 

 

The proposed method can also be tested against results for an elliptical hole in an 

anisotropic medium. Savin[6] considered an anisotropic material with a Young’s modulus ratio 

of �� ��⁄ = 12. For this material, the roots of the characteristic equation are �� = 3.08� and 

�� = 1.12�. Elliptical holes with � � = 3⁄  and � � = 1 3⁄⁄  were considered, and the far-field 

stress was taken to be parallel to the x-axis. The normalized hoop stress is plotted in Fig. 7, 

with the curves showing the values computed by the present method, and the data points 

taken from Tables 38 and 39 of Savin[6]. Again, the agreement is excellent.  

 

 

 

 



Second revised draft, submitted to the IJSS on 19 February 2020 

 17

 

Figure 7. Normalised hoop stress around elliptical holes in an anisotropic medium, having (a) 

� � = 3⁄  and (b) � � = 1 3⁄⁄ , subjected to a far-field stress parallel to the �-axis. The curves 

show the values computed by the present method; the data points are taken from Savin[6].  

 

5.2 Triangular hole 

The distribution of stress around a triangular hole is given by Savin[6] for the case of an 

isotropic material. The equation of the hole contour was given by 

� = cos � +
1

3
cos 2� ,    � = − sin � +

1

3
sin 2� (69) 

which corresponds to a triangle that is “pointing towards” the positive �-axis. Using 

Melentiev’s approximate method, the conformal mapping constants of this triangle are found 

to be �� = 0.9978, �� = 0.0020, �� = 0.0019, �� =  0.3303, �� = 0.0006, �� =

0.0002 and �� = �� = �� = �� = 0.0001. The stress distributions around the triangular 

hole, for the two cases in which the far-field stress is parallel to the �-axis or parallel to the �-

axis, are shown in Fig. 8. The results of the present method, shown as solid curves, are in an 

excellent agreement with those of Savin, which are shown as dots taken from Tables 5 and 6 

of Savin[6]. 
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Figure 8. Normalised hoop stress around a triangular hole in an isotropic infinite plates, when 

the far-field stress is aligned with the (a) �-axis or the (b) �-axis. The solid curves are the 

predictions of the present method; the dots are taken from Savin[6].  

 

Daoust and Hoa[1] proposed an analytical solution for a family of quasi-triangular holes 

in isotropic or anisotropic materials. The shape of their triangles was controlled by a shape 

factor , in which smaller values of � correspond to more rounded corners:  

� = cos � + � cos 2� ,       � = − sin � + � sin 2� (70) 

The shapes of the triangles for � = 1 4⁄  and � = 1 8⁄  are shown in Fig. 9, on the left. The 

tangential stresses around the contour are plotted for several values of �, with the curves 

showing the predictions of the present method, and the data points taken from Daoust and 

Hoa[1]. Note that the curve for � = 1 3⁄  agrees closely with Savin’s result, which corresponds 

to this same value of �Again, the newly computed values agree very closely with the values 

taken from the literature. 
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Figure 9. Quasi-triangular holes described by eq. (53), for (a) � = 1 4⁄  and (b) � = 1 8⁄ . (c) 

Normalised hoop stress around the hole, in an isotropic material, when the far-field stress is 

aligned with the �-axis, for various values of �. The solid curves are the predictions of the 

present method; the dots are taken from Daoust and Hoa[1].  

 

Daoust and Hoa[1] also considered an anisotropic plate described by the following roots 

of the characteristic equation: �� = 2.3992� and �� = 0.6757�. The tangential stress along 

the hole is shown in Fig. 10, for the case � = 1 3⁄ , and a far-field stress aligned with the �-

axis. The agreement is again very good. 

 

Figure 10. Quasi-triangular hole described by eq. (70), for � = 1 3⁄ , in an anisotropic material 

(see text for details), when the far-field stress is aligned with the �-axis. The solid curves are 

the values obtained by the present method; the dots are taken from Daoust and Hoa[1].  
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5.3 Ovaloid hole 

Greenspan[4] presented an analytical solution for an “ovaloid” hole in an infinite 

isotropic plate subjected to far-field uniaxial tension. He defined the ovaloid as a square hole 

with semi-circles appended at each of two opposing ends, and described its contour by the 

following equation: 

� = 2.063 cos � − 0.079 cos 3� ,    � = 1.108 sin � + 0.079 sin 3�  (71) 

(Lekhnitskii[5] also addressed this problem, but used a slightly different equation for the hole 

that he described as “ovaloid”, which explains the slightly different stresses obtained by these 

two authors). Greenspan showed that when the far-field stress is parallel to the �-axis, the 

hoop stress is given by  

�� = ��
� �

4.915 − 7.133 cos 2�

3.723 − 2.316 cos 2� + cos 4�
� (72) 

and when the far-field stress is parallel to the �-axis, the hoop stress is given by  

�� = ��
� �

1.079 + 7.517 cos 2�

3.723 − 2.316 cos 2� + cos 4�
� (73) 

In the present study, the conformal mapping constants of the ovaloid defined in eq. (71) 

are found to be �� = 1.5818, �� = 0.0029, �� = 0.4768, �� =  −0.0003, �� =

−0.0771 and �� = −0.0003. The hoop stresses for the two loading cases, according to the 

analytic solution of Greenspan[4] and the present method, are shown in Fig. 11. Again, the 

agreement is very good. 

 

Figure 11. (a) Ovaloid hole described by eq. (71). Normalised hoop stresses when the far-field 

stress aligned with the �-axis (b), and with the �-axis (c). Solid curves are the predictions of 

the present method, and dashed curves are expressions (72) and (73) derived by Greenspan[4].  
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5.4 Square hole 

Stresses around a square hole in an infinite plate subjected to a far-field stress have been 

studied by many authors, including Greenspan[4], Lekhnitskii[5], and Savin[6]. Savin modelled 

a square hole using two terms of the Schwarz-Christoffel mapping:  

� = cos � −
1

6
cos 3�,      � = − sin � −

1

6
sin 3� (74) 

and showed that the tangential stress around this hole is given by 

�� =
8��

5 + 4 cos 4�
�

3

8
−

9

7
cos 2� cos 2� −

3

5
sin 2� sin 2�� (75) 

where again � denotes the angle of rotation from the �-axis to the line of action of the far-

field stress. 

Using Melentiev’s method, the conformal mapping constants of this quasi-square 

defined by eq. (74) are found to be �� = 0.9975, �� = 0.0012, �� =  0, �� =  −0.0011, 

�� = −0.1629, �� = −0.0009, �� = −0.0002 and �� = −0.0001. The hoop stresses for 

the two loading cases of � = 0° and � = 45°, are shown in Fig. 12, according to the analytic 

solution of Savin[6] and the present method.  

Figure 12. Stress around a quasi-square hole (a) in isotropic medium, when the external load 

is (b) aligned with the �-axis, and (c) rotated by 45° from the �-axis. The solid curves are the 

predictions of the present method, and the dashed curves are from the analytical solution 

derived by Savin[6].  

 

Ukadgaonker and Rao[20] considered terms up to ����in their conformal mapping, in 

order to obtain a closer approximation to an actual square. The non-zero coefficients in their 
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mapping function were (in the present notation) �� = 1, �� = 1 6⁄ , �� = 1 56⁄ , ��� =

1 176⁄ , ��� = 1 384⁄  and ��� = 7 4864⁄ . They considered an anisotropic material whose 

characteristic roots were �� = 3.6404� and �� = 0.2747�.  For the cases of far-field loading 

oriented at angles of � = 0°, 45o, and 60o, the hoop stresses are shown in Fig. 13, where they 

are compared with the values obtained by the present method. The agreement is very good, 

and the present method is clearly able to capture the high stress concentration at the corners. 

 

 

Figure 13. Hoop stress around a square hole, for far-field loadings at angles of � = 0°, 45o, 

and 60o, in an anisotropic medium whose characteristic roots are �� = 3.6404� and �� =

0.2747�. The solid curves are the predictions of the present method, and the points are from 

Ukadgaonker and Rao[20].  

 

Ukadgaonker and Rao[20] also considered more complicated shapes, such as the 

distorted quasi-square with truncated corners shown in Fig. 14. For the same anisotropic 

material as considered in the previous problem, with characteristic roots of �� = 3.6404� and 

�� = 0.2747�, the hoop stresses are shown in Fig. 14, for the case of loading along the �-axis, 

i.e., � = 0°. The agreement between their results and those obtained by the present method is 
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reasonably close. 

 

Figure 14. (a) A distorted quasi-square with truncated corners. (b) Normalised hoop stress 

around the hole, for a far-field loading oriented in the x-direction, in an anisotropic medium 

whose characteristic roots are �� = 3.6404� and �� = 0.2747�.  Solid curves are the 

predictions of the present method; dashed curves are from Ukadgaonker and Rao[20].  

 

6. Stress around a non-symmetrical and irregularly shaped hole 

The previous examples all involved holes having some degree of symmetry, and shapes 

that were in some sense reasonably “simple”, such quasi-polygons. However, this unified 

methodology that can compute the stresses around an arbitrarily-shaped hole will perhaps find 

its greatest usefulness for holes that have very irregularly and rough shapes. 

One source of such shapes are subsurface boreholes, which are initially drilled as 

circular holes, but then often suffer from “breakouts”, in which small regions of rock at the 

borehole wall break off (and fall into the borehole, to be swept away by the drilling fluid) due 

to local failure, leading to a non-circular shape. The remaining rock can be treated as elastic, 

and the method developed in this paper can be used to compute the new stresses, to check if 

an equilibrium shape has been reached. Pre-drilling wellbore stability analysis is often carried 

out by assuming a circular wellbore and with the aid of a downhole caliper tool, and it is 

known that actual wellbores rarely have the shape of an ideal circle. It is of great interest for 

drilling practice to understand the stability of a wellbore by identifying the region around the 

wellbore wall that has a high stress concentration. 

Although extensive examples will be the subject of a future paper, one example will be 

given here to illustrate the potential usefulness of the new methodology. Zoback et al.[19] 

presented several wellbore shapes reconstructed from ultrasonic borehole televiewer images. 

In the present paper, one of the wellbore shapes reported by Zoback et al.[19] has been 



Second revised draft, submitted to the IJSS on 19 February 2020 

 24

digitized, and the stress around the wellbore wall has been calculated, using the methodology 

outlined above. The tangential stresses shown in Fig. 15 indicate the compressive and 

tensional regions around the wellbore. As expected, high stress concentrations occur around 

the wellbore at locations that have relatively sharp edges. 

 

Figure 15. (a) Wellbore breakout in and isotropic medium, after Zoback et al.[19], and (b,c) the 

tangential stress around the hole, under uniaxial far-field compression. 

 

7. Validity of Solution away from the Hole Contour 

Although the method used to determine the mapping functions was different, the 

method used in the present paper to determine the complex potentials is very close to that 

used by Ukadgaonker and Rao[20]. Their method was criticised by Lu et al.[12], who claimed 

that the potentials ��(�) and ��(�) thus derived will be analytical functions on the hole 

contour, but will not be analytical in the region exterior to the contour; see [12] for the details 

of their argument. They concluded that although the computed stresses will be correct on the 

hole boundary, the stresses away from the boundary “should not be correct”, although no 

evidence was given of this assertion.  

To verify the validity of the stresses computed by the present methodology at points in 

the body that are not situated along the hole contour, comparison can be made to the stresses 

that were computed numerically by Lu et al.[12], using commercial finite element software, 

around a “Reuleaux triangle” hole in an orthotropic material; see Figs. 10-12 in [12], and Fig. 

16 below. This is one of the few, if not the only, examples available in the literature in which 
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the stresses have been plotted along one of the co-ordinate axes, moving away from a non-

circular hole in an anisotropic material. In this example, the elastic anisotropy was 

characterised by �� = 1.3733� and �� = 0.9242�, and the far-field stress state was taken to 

be ���
� = 10 MPa, ���

� = 15 MPa, and ���
� = 0 MPa.  

 

Figure 16. (a) The Reuleaux triangle shape, and (b) the conformal mapping of the hole. 

 

The hoop stresses along the hole boundary that have been computed using the proposed 

method are compared in Fig. 17b against those computed numerically in [12]. The agreement 

is excellent. The stress components ��� and ���, along the �-axis, are plotted in Fig. 17b. 

Again, the agreement between the present method and the numerical calculations of [12] is 

excellent. Furthermore, it should be noted that the stresses computed by the present 

methodology converge smoothly to the correct far-field stresses at distances of roughly five 

“hole diameters” from the hole boundary, proving that the present methodology does not 

become inaccurate away from the hole. 
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Figure 17. (a) The hoop stresses around the Reuleaux triangular hole boundary shown in Fig. 

16, and (b) the two normal stresses along the �-axis. The symbols are the values computed in 

[12] using finite elements; the curves show the stresses computed by the present method.   

 

8. Conclusions and Discussion 

A unified method has been presented in which the stress distribution around an arbitrary 

cross-sectional hole is calculated by coupling the graphical conformal mapping of Melentiev, 

with the complex stress potential method. A new representation of the stress potentials has 

been derived which depends on the conformal mapping constants obtained using Melentiev’s 

iterative procedure. The method allows the calculation of the in-plane stress components 

around an arbitrary hole for any given contour shape, in isotropic or anisotropic media. 

Validation against several known results has been carried out for a wide range of hole shapes 

and anisotropic materials, including non-symmetrical and irregular shape such as wellbore 

breakouts. The methodology has also been shown to yield accurate stresses in the “interior” of 

the material, away from the hole boundary. The method therefore provides a unified and 

accurate approach for studying the effect of hole geometry on stress distribution around holes 

in isotropic or anisotropic materials, and should be particularly useful for irregularly-shaped 

holes that are not symmetrical or quasi-polygonal. 
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