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Abstract— Deep neural networks exhibit limited general-
izability across images with different entangled domain fea-
tures and categorical features. Learning generalizable fea-
tures that can form universal categorical decision bound-
aries across domains is an interesting and difficult chal-
lenge. This problem occurs frequently in medical imaging
applications when attempts are made to deploy and im-
prove deep learning models across different image acqui-
sition devices, across acquisition parameters or if some
classes are unavailable in new training databases. To ad-
dress this problem, we propose Mutual Information-based
Disentangled Neural Networks (MIDNet), which extract gen-
eralizable categorical features to transfer knowledge to
unseen categories in a target domain. The proposed MID-
Net adopts a semi-supervised learning paradigm to alle-
viate the dependency on labeled data. This is important
for real-world applications where data annotation is time-
consuming, costly and requires training and expertise. We
extensively evaluate the proposed method on fetal ultra-
sound datasets for two different image classification tasks
where domain features are respectively defined by shadow
artifacts and image acquisition devices. Experimental re-
sults show that the proposed method outperforms the
state-of-the-art on the classification of unseen categories
in a target domain with sparsely labeled training data.

Index Terms— Representation disentanglement, domain
adaptation, semi-supervised learning, image classification.

I. INTRODUCTION

DEPLOYING deep neural networks (DNNs) in real-world
clinical scenarios is challenging due to the problem of

domain shift [1]. Domain shift corresponds to the feature
distribution difference between training data and test data,
which leads to performance degradation of DNNs from train-
ing to testing. This problem is ubiquitous in many clinical
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Fig. 1: The proposed method (MIDNet) learns to extract
generalized features (FC , FD) across domains from sparsely
labeled training data. Generalized categorical features (FC)
are able to correctly classify unseen categories in the target
domain. This is of particular importance for real-world appli-
cations such as improving diagnostic classification in medical
imaging, especially when some categories are unavailable in
new datasets for training.

applications such as image classification [2]–[4] and image
segmentation [5]–[9]. For example, performance degradation
can be observed when applying a model that has been trained
on images from one particular imaging device to images from
another device. Addressing the problem of domain shift can
contribute to a wider and efficient utilization of DNNs for
image analysis in various clinical applications.

Domain shift can be categorized into (a) covariate shift
(different latent feature distributions), (b) prior probability shift
(change of labels) and (c) concept shift (different relationship
between latent features and the desired label) [10], [11].
Covariate shift is the key reason for the lack of generalizability
of DNNs. In medical imaging, covariate shift can be the result
of the use of different imaging modalities (e.g., magnetic
resonance imaging and ultrasound), different image acquisition
devices within the same modality or different combinations
of specific image features (e.g., anatomical structures and
artifacts).

In contrast to the human visual system, DNNs exhibit weak



2 ACCEPTED BY IEEE TRANSACTIONS ON MEDICAL IMAGING

generalizability when confronted with previously unseen en-
tangled image features. This is the problem which we address
in this paper. We postulate that DNNs should be able to learn
generalizable features to transfer the knowledge from known
entangled image features to new entangled image features.
As outlined in Fig. 1, we want to improve the performance
of DNNs on unseen categories in a target domain where all
categories from a source domain and a subset of categories
from a target domain are available for training. This task
can greatly contribute to diagnostic classification in medical
imaging. For example, detecting a certain pathology which
rarely occurs in a particular geographic region but might be
common in other places.

Fine-tuning DNNs on task-specific datasets is a possible
solution but often infeasible due to the lack of sufficient
annotated data in the target domain. Domain adaptation algo-
rithms have been widely studied to tackle the domain shift
problem by extracting domain-invariant features (e.g., [5]–
[9] in medical applications), aiming to transfer knowledge
from a source domain to a target domain [12]. Previous
approaches can be categorized into three main groups: (1)
Discrepancy measurement approaches aim to align the feature
distributions of source and target domain by measuring the
discrepancy between representations, such as Maximum Mean
Discrepancy (MMD) [13]–[15] or correlation distance [16];
(2) Adversarial-based approaches use DNNs to encourage the
extracted features to be invariant for domain discrimination,
instead of computing the discrepancy metric, and includes non-
generative models [5], [17], [18] and generative models [19],
[20]; (3) Reconstruction-based approaches align the source
and the target domain by image reconstruction which uses
a cycle-consistency constraint to preserve domain-invariant
features [21], [22].

Existing domain adaptation methods can be practically pro-
hibitive in real applications because a large amount of labeled
data from source domains is needed. Although adversarial
adaptation alternatives can perform well, optimizing adversar-
ial objectives remains difficult and unstable in practice [23].
Most importantly, previous methods make no explicit attempt
to disentangle domain-invariant features from domain features,
which results in the inability of dealing with previously unseen
categories in the target domain.

In this paper, we propose mutual information-based disen-
tangled networks (MIDNet) for representation disentanglement
to address the problem outlined in Fig. 1. The proposed
approach extracts generalized categorical features by explicitly
disentangling categorical features and domain features via
mutual information minimization [24]. Note that the categor-
ical features in this paper refer to the features relevant to
identities of classes or categories. We introduce the supervision
from labeled images for an enhanced disentanglement via a
feature clustering module, which estimates the similarity of
categorical features from both domains. Image reconstruction
is used to guarantee that the separated categorical and domain
features are not random noise and are representative for the
input images. To further explore an improved categorical
classification, we structure a categorical feature space by
considering inter-class relationships. On top of the proposed
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Fig. 2: Examples of fetal US images and intensity histograms.
(a) The fetal US dataset, including shadow-free (SF) and
shadow-containing (SC) images of different anatomical struc-
tures. Red arrows show examples of acoustic shadow artifacts.
(b) The fetal US dataset with images acquired by different
devices, device A (GE Voluson E8) and device B ( Philips
EPIQ V7 G).

MIDNet model, we incorporate distance metric learning to
increase inter-class variance. The proposed method is a non-
adversarial method which mitigates the difficulty and insta-
bility of adversarial model training. Our method is a semi-
supervised learning method, which only requires a small
number of labeled samples during training while unlabeled
data is integrated using a strategy similar to the MixMatch
approach [25].

We demonstrate the practical applicability of our method on
a challenging medical application, the classification of stan-
dardized fetal ultrasound (US) views during prenatal screen-
ing. In many countries, US imaging is clinical routine for
prenatal health care. The classification of standardized views
is important for a consistent, cross-institutional identification
of possible abnormalities [26]. Early detection of pathological
development can inform following treatment and delivery
options [27], [28]. DNNs have shown promising performance
to support this task [29]. However, ultrasound images are
often hard to interpreted [30]. Anatomical structures have
inconsistent appearance [29] and contain different orientations
and shapes of anatomical landmarks [31]. Labeled training
data is often insufficient as annotating medical images requires
significant expertise and is prohibitively expensive in both
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time and labor. Manifestation of acoustic shadows [32], [33]
as shown in Fig. 2(a) as well as different imaging devices
as shown in Fig. 2(b) can lead to a domain shift problem
for vanilla DNN classifiers. Exploring domain adaptation in
fetal US enables DNN classifiers to be effectively utilized on
a wider range, which supports identification of abnormalities
from varying data sources. This can benefit prenatal healthcare.

The main contributions of this paper are summarized as
follows:
• We investigate a challenging domain adaptation prob-

lem for medical image classification: the translation of
decision boundaries to a target domain, which lacks
training samples for several categories. We propose end-
to-end trainable Mutual Information-based Disentangled
Networks (MIDNet) for learning generalized categorical
features to classify unseen categories in the target domain.

• We develop MIDNet as a non-adversarial learning ap-
proach to show a more effective alternative to difficult
and unstable adversarial training. Mutual information is
utilized to separate categorical features from domain
features, which is further supervised by labeled images
via a feature clustering module. Image reconstruction is
introduced to ensure the separated features are represen-
tative and meaningful for the input images.

• The proposed method extends the body of literature
about semi-supervised domain adaptation (SSDA), which
integrates unlabeled data from both source and target
domain to alleviate the demand for annotated data, and
thus MIDNet can be considered a new SSDA variant.

• We utilize our method for anatomical classification in
fetal US, which, to the best of our knowledge, is the first
exploration of transferring knowledge to unseen data in
a practical application in medical imaging.

II. RELATED WORK

1) Representation disentanglement: Disentangling repre-
sentations aims at interpreting underlying interacted factors
within data [34], [35] and enables the manipulation of relevant
representations for specific tasks [36]–[38]. Traditional models
include techniques such as Independent Component Analysis
(ICA) [39] and bilinear models [40] as well as learning-based
models such as InfoGAN [41] and β-VAE [42], [43]. Recent
work by Mathieu et al. [44] proposes a conditional generative
model to disentangle latent representations into specified and
unspecified factors of variation via adversarial training. For
the same task, Hadad et al. [38] proposes a simpler two-step
adversarial training approach for more efficient learning of
various unspecified features. Their method directly utilizes
the encoded latent space for unspecified factors instead of
assuming the underlying distribution. On top of adversarial
training, Peng et al. [45] adds mutual information to disentan-
gle more specific features, including class-irrelevant features,
domain-invariant features and domain specific features. To
use disentangled representations for identifying images with
unseen entangled features in real applications, Meng et al. [46]
proposed to disentangle category and domain-specific features
using an adversarial regularization in a multi-task learning

framework. In contrast to these previous works, we propose
a non-adversarial method that evaluates mutual information
between latent features to disentangle categorical features and
domain features (Sec. III-C). Additionally, our method uses
sparsely labeled data during training.

2) Semi-supervised learning (SSL): The goal of SSL is to
address the scarcity of labeled data by leveraging unlabeled
data. Various approaches have been proposed for SSL [47]–
[52]. Recently, Zhang et al. [51] proposed MixUp as learning
paradigm to train a model on convex combinations of samples
and their corresponding labels. This principle encourages the
model to favor linear behavior between samples and allevi-
ates problems arising from mislabelled examples. Extending
this work, Berthelot et al. [25] introduced a SSL method,
MixMatch, which estimates low-entropy labels for unlabeled
samples and then applies MixUp to mixed labeled and unla-
beled samples for training the model. In this paper, we utilize
MixMatch to integrate unlabeled samples from both source
and target domain during training (Sec. III-E).

3) Domain adaptation: Previous domain adaptation ap-
proaches consider three domain adaptation settings regard-
ing to the number of domains, including one-to-one domain
adaptation, multi-source domain adaptation and multi-target
domain adaptation. One-to-one domain adaptation considers a
single source domain and a single target domain. Unsupervised
domain adaption [11], [17], [53] is a typical one-to-one domain
adaptation, which requires plenty of labeled samples from
the source domain during training and categories in both
domains are the same. Multi-source domain adaptation learns
universal knowledge from multiple source domains to a single
target domain [54]. Domain generalization [7], [55] is a
special case of multi-source domain adaptation, which learns
knowledge for an unseen target domain from many labeled
samples of multiple source domains. In domain generaliza-
tion, each category in the target domain has been seen in
at least one source domain. Multi-target domain adaptation
learns knowledge from a single source domain to multiple
target domains. Domain agnostic learning [45] is a multi-
target domain adaptation method, which also requires plenty of
labeled samples from the source domain. In domain agnostic
learning, all categories in target domains have been seen in
the source domain.

In this paper, we consider a one-to-one domain adaptation
setting. In contrast to other works of one-to-one domain
adaptation, in our work, the categories in the target domain
are a subset of the categories in the source domain. Our
ultimate goal is to learn categorical-discriminative knowledge
from available categories in both domains to separate unseen
categories in the target domain. Fig. 3 compares the different
task settings between our work and other domain adaptation
works.

4) Transfer learning: Our problem setting also contains
flavors of transfer learning, according to the nomenclature
in [12]. Transfer learning is a broader field that tackles do-
main shift and transfers knowledge between different datasets.
Domain adaptation is a subcategory of transfer learning [12].
Problem settings with different tasks between source and
target domains are close to inductive transfer learning [56].
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Fig. 3: The differences between our method and other existing
domain adaptation methods. We compare two aspects, the
problem setup and the training paradigm in this taxonomy.

Problem settings considering domain shift between source and
target domains within a single task are similar to domain
adaptation or transductive transfer learning [57]. Unsupervised
transfer learning is a special case of inductive transfer learning,
where only unlabeled data is available in both domains during
training. In this paper, we focus on transferring knowledge
from a source domain to a target domain for a single task and
tackle covariate shift (Sec. I). Therefore, as suggested in [12],
we frame our problem setting within the context of domain
adaptation.

III. METHOD

Our goal is to disentangle categorical features from domain
features to obtain generalizable features, so that our model can
classify the categories in the target domain which have not
been seen during training. We formulate our task as follows:
let XS = {xSi }

|CS |
i=1 be the images from a source domain

which contain categories CS and X T = {xTi }
|CT |
i=1 be images

from a target domain with categories CT , CT ⊂ CS . In both
domains, categorical labels are available for part of the images
as YS ,YT . We want to train a network to maximize the cat-
egorical prediction performance of the classifier on images in
the target domain from new categories {xT |xT ∈ CS − CT }.

To solve this task, we propose MIDNet in combination with
semi-supervised learning. The architecture of our model is
shown in Fig. 4. Two independent encoders E are utilized
to respectively extract categorical features FC and domain
features FD from labeled data {XL,YL} = {xi|xi ∈ XS ∪
X T , yi|yi ∈ YS ∪ YT } and unlabeled data XU = {xj |xj ∈
XS ∪ X T }. The classifier C is responsible for predicting
class distributions from FC for both XL and XU while the
decoder D combines FC and FD for the reconstruction of
input images. The mixer M aims to linearly mix labeled and
unlabeled samples so that the model is trained to show linear
behavior between samples for further leveraging of unlabeled
data. For representation disentanglement, mutual information
between FC and FD is minimized to encourage FC to become
domain-invariant and maximally informative for categorical
classification. Feature clustering contains feature alignment

and distance metric learning. Feature alignment aims at keep-
ing the feature consistency between labeled images to promote
the independence of FC . Distance metric learning considers
inter-class relationships, which clusters similar samples while
separating dissimilar samples to optimize FC for improving
classification performance.

A. Image reconstruction
The first step of MIDNet is to employ an Encoder-Decoder

framework for independent extraction of two internal rep-
resentations from the input data x. Two encoders E1, E2

are built to respectively generate latent vectors that aim to
represent categorical features FC and domain features FD,
where FC = E1(x;φ1) and FD = E2(x;φ2). The decoder
D is utilized to guarantee that the combination of these
features is capable of recovering original input data, where
x̂ = D(FC ,FD;ψ). Here, x ∈ XL ∪ XU and φ1, φ2, ψ are
the parameters of E1, E2, D, respectively. The cost function
of this reconstruction is

Lrec = ‖x̂− x‖2F . (1)

We concatenate layers between E2 and D to integrate high-
frequency features from E2 into the reconstruction, which
helps FD to contain valid information instead of noise. This
image reconstruction extracts two groups of features from
internal representations of original data. The rest of our
networks are designed and trained to enable FC to only
contain categorical information, thus becoming separated from
FD that only contains domain information.

B. Classification
We use a classifier C to predict |CS | labels for labeled

data, which encourages FC to be maximally informative
about categorical classification. E1, E2 and C are updated by
minimizing the cross-entropy loss

Lcls = −E{x,y}∼{XL,YL}
|CS |∑
t=1

1[y = t]log(C(FC ; δ)). (2)

Here δ refers to the parameters of C. At the same time, C
predicts the class distribution of the unlabeled data x ∈ XU
as PC(ŷ|x; δ), ŷ ∈ ŶU . The predicted PC(ŷ|x; δ),x ∈ XU
will be utilized in SSL-based regularization (Sec. III-E). The
classifier on its own is unlikely to ensure that categorical
features FC are domain-invariant. This is because the training
objective in Eq. 2 only ensures that FC contains as much
information as possible for the target classification task.

C. Mutual information disentanglement
To address the problem from Sec. III-B, we minimize the

mutual information between FC and FD. This minimiza-
tion forces FC to contain less domain information and thus
separates categorical features from domain features. Mutual
information is defined as

I(DFC ;DFD ) =

∫
X×Z

log
dPXZ

dPX
⊗

PZ
dPXZ , (3)
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Fig. 4: (a) An overview of MIDNet. We extract disjoint features (FC ,FD) through mutual information minimization in
the latent space and apply a feature consistency constraint to extract domain-invariant categorical features FC for further
disentanglement. E1, E2 are separate encoders, C is a classifier and D is a decoder. (b) We integrate unlabeled data by a mixer
M for semi-supervised learning.

where PXZ is the joint probability distribution of
(DFC ,DFD ), PX =

∫
Z dPXZ and PZ =

∫
X dPXZ are

respectively marginal distributions of DFC and DFD . We
utilize Mutual Information Neural Estimation (MINE) [24]
to approximate the lower-bound of mutual information on n
samples by a neural network T with parameters θ ∈ Θ,

̂I(DFC ;DFD )n = sup
θ∈Θ

EP(n)
XZ

[Tθ]− log(EP(n)
X

⊗
P̂(n)
Z

[
eTθ
]
).

(4)
Practically, the expectations in Eq. 4 are estimated by Monte-
Carlo integration [45] with shuffled samples along the batch
axis (F ′D), and thus the cost function of the mutual information
disentanglement is

LMI = − ̂I(DFC ;DFD )n

= −(
1

n

n∑
i=1

T (FC ,FD, θ)− log(
1

n

n∑
i=1

eT (FC ,F ′
D,θ))).

(5)

Here, (FC ,FD) are sampled from joint distributions while
(FC ,F ′D) are sampled from the product of marginal distribu-
tions.

D. Feature clustering
To introduce the supervision from labeled samples for an

enhanced disentanglement, we aim at aligning categorical
features between source and target domains. We hypothesize
that categorical features of a certain category are supposed
to be consistent between different domains. Therefore, we
further enhance FC to be domain-invariant by minimizing the
distance of categorical features between source domain and
target domain for samples in XL with

Lalign =
1

|CT |

|CT |∑
i=1

(
1

nci

nci∑
j=1

‖fScij − f
T
cij‖

2
F ), (6)

where nci is the number of samples in category ci, ci ∈ CT
and fScij , f

T
cij are the categorical features of the jth sample

from category ci in the source domain and the target domain,
respectively. This loss is computed within categorical features
FC in order to enhance mutual information disentanglement.
This is different from feature alignment in other domain
adaptation approaches (e.g., [16], [58]), where the feature
alignment directly aligns the whole latent features of inputs. In
addition, our categorical feature alignment uses the Frobenius
norm as the distance metric since labeled samples from both
domains are available, whereas many other domain adaptation
approaches (e.g., [14], [15]) utilize Maximum Mean Discrep-
ancy (MMD) [13] to diminish the discrepancy between a
labeled source domain and an unlabeled target domain.

After feature alignment, We additionally consider inter-
class relationships. To further cluster samples from the same
category and separate samples from different categories in the
latent space, we introduce distance metric learning with triplet
loss [59] on FC of labeled images from both domains,

Ltrip = max{0, d(fciq , fcip)− d(fciq , fckn) + ξ}. (7)

Here, d(·, ·) is the squared Euclidean distance. fciq is the
categorical feature of one query sample from category ci. fcip
and fckn are respectively categorical features of one support
sample from the same category ci and one negative sample
from a different category ck, where ci, ck ∈ CS ∪ CT . The
selection of the query sample, the support sample and the
negative sample is essential for converge. For implementation,
we utilize the online semi-hard triplet mining strategy in [59].

Considering both feature alignment and separation, the
feature clustering loss is

Lclus = Lalign + ηLtrip (8)

where η is a hyper-parameter. In practice, we mainly focus
on feature alignment and set η = 0 as the proposed method
because feature alignment is the key point to keep consistency
between both domains. In our applications, we conduct both
experiments, i.e., with and without Ltrip, to evaluate the
importance of inter-class relationships.
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E. SSL-based regularization
Conventional fully supervised learning requires a large

number of annotated input images with categorical labels
and domain labels. However, in practice, labeled data is not
easily available at any granularity. Berthelot et al. [25] propose
a SSL-based method, MixMatch, integrating unlabeled data
during training to reduce the dependency on labeled data. We
adopt a simplified MixMatch using a mixer M to leverage
unlabeled data. As shown in Fig. 4 (b), M is utilized to linearly
combine two random samples (x1,x2) and their corresponding
labels (y1, y2) from labeled data and unlabeled data by

xmix = M(x1,x2;β) = βx1 + (1− β)x2,

ymix = M(y1, y2;β) = βy1 + (1− β)y2.
(9)

where β = max(ξ, 1− ξ), ξ ∼ Beta(α, α). Here, x1 ∈ Xcat,
x2 ∈ X ′cat. Xcat = [XL,XU ] is the concatenation of XL and
XU . X ′cat is the shuffled Xcat along the batch axis. Similarly,
y1 ∈ Ycat with Ycat = [YL, ŶU ], and y2 ∈ Y ′cat. Note that
ŶU is the collection of the predicted labels for unlabeled
data according to Sec. III-B. We denote that xmix ∈ XL/U ,
ymix ∈ YL/U . The goal of this SSL-based regularization is
to encourage the linear behavior of the classifier, and thus the
objective function is

LSSL = ‖ymix − PC(ŷmix|xmix; δ)‖2F , (10)

where PC(ŷmix|xmix; δ) = C(xmix; δ) is the predicted label
of xmix via classifier C.

F. Optimization
Our model is an end-to-end trainable framework and the

overall objective is a linear combination of all cost functions

min{λ1Lrec+λ2Lcls+λ3LMI +λ4Lclus+λ5LSSL}, (11)

where λ1 to λ5 are hyper-parameters chosen experimentally
depending on the dataset. We optimize the MINE and the
rest of our model in an alternating fashion. Inspired by [24],
we use the Adam optimizer (beta = 0.9, learning rate =
10−5) to train the network parameters θ based on Eq. 5
and use Stochastic Gradient Descent (SGD) with momentum
optimizer (momentum = 0.9, learning rate = 10−5) to update
the parameters of encoders, decoders and classifier based on
Eq. 11. We apply L2 regularization (scale = 10−5) to all
weights during training to prevent over-fitting and we apply
random image flipping as data augmentation. Classes are kept
balanced on labeled data during training. Our model is trained
on a Nvidia Titan X GPU with 12 GB of memory.

IV. EXPERIMENTS

We evaluate the proposed method on two fetal US standard
plane classification tasks, where the domain shifts are respec-
tively caused by shadow artifacts (Fig. 2(a)) and different
image acquisition devices (Fig. 2(b)). For both tasks, images
from source and target domains are unpaired and collected
independently. We show the key results in the main paper and
detailed implementation, network architectures as well as more
results in the supplemental Appendix.

A. Experiment settings

We conduct comprehensive evaluations for each application
in the following. (1) We compare the proposed method with
the state-of-the-art algorithms for domain adaptation. (2) We
explore the effectiveness of different key components in MID-
Net via an ablation study. (3) To demonstrate the importance
of unlabeled data, we compare the classification performance
with and without unlabeled training data on the target domain.
(4) By training MIDNet with different percentage of labeled
data, we evaluate the performance of our model in a semi-
supervised setting. In addition, we discuss the influence of
common categories on the classification performance of un-
seen categories in the target domain.

We utilize three groups of test data for the evaluation: (i)
test data from the source domain TSource, (ii) test data from
the target domain whose image features have been observed
during training TTarget, and (iii), most importantly, test data
from the target domain whose image features are absent during
training TNewTarget.

We adopt commonly-used statistical metrics, F1-score, re-
call and precision, to quantitatively evaluate classification per-
formance. Recall = TP/(TP+FN), Precision = TP/(TP+
FP ) and F1-score is the the harmonic mean of precision and
recall. We report the average scores of these metrics for all
examined methods. As suggested by [60], we utilize the A-
distance as a measure of domain divergence to quantitatively
evaluate the separation of categorical and domain features.
Similar to [17], [61], we train a SVM as a domain classifier
to compute ε (the error of classifier) for the A-distance,
d̂A = 2(1− 2ε).

B. Comparison methods and ablation study

We evaluate a VGG network [62] which is trained on
data only from the source domain, namely Source only, as a
baseline to demonstrate that the domain shift problems affects
the generalizability of deep models. To verify that MIDNet
is able to extract generalized features across domains, we
compare MIDNet with a VGG network [62] and a VGG
network with residual unit [63] (Res-VGG). We further com-
pare MIDNet to the state-of-the-art feature disentanglement
algorithms for addressing the task in this work, including
a two-step disentanglement method1 [38] and a multi-task
learning based disentanglement method2 [46]. Note that we
implement the method in [38] differently from the original pa-
per. Specifically, we train the model simultaneously to enable
it to be suitable for our task setup. We denote Two-step-fair
as [38] with an adversarial network using unspecific features
(Z) for category classification and denote Two-step-Unfair
as [38] with an adversarial network using specific features (S)
for domain classification. We keep the original experimental
settings for the method in [46] (namely Multi-task). All com-
parison methods above are fully-supervised. Additionally, we
compare the proposed method with the state-of-the-art domain
adaptation methods, including domain-adversarial training of

1https://github.com/naamahadad/A-Two-Step-Disentanglement-Method
2https://github.com/qmeng99/Multi-task-Representation-Disentanglement
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TABLE I: Different combination of key components in MID-
Net for the ablation study. Lrec is for reconstruction, Lcls is for
classification, LMI is for mutual information disentanglement
and LSSL is for integrating unlabeled data. For Lclus, η = 0
only considers feature alignment and η 6= 0 considers both
feature alignment and inter-class relationships.

Methods Lrec Lcls LMI
Lclus

η = 0
LSSL

Lclus

η 6= 0

MIDNet-I
√ √

MIDNet-II
√ √ √

MIDNet-III
√ √ √

MIDNet-IV
√ √ √

MIDNet w/o LSSL
√ √ √ √

MIDNet w/o Lclus
√ √ √ √

MIDNet w/o LMI
√ √ √ √

MIDNet
√ √ √ √ √

MIDNet+Ltrip
√ √ √ √ √

η is experimentally selected for different tasks when η 6= 0.

neural networks (DANN)3 [17] and semi-supervised domain
adaptation via MiniMax Entropy (MME)4 [61]. These two
comparison methods are semi-supervised. For all comparison
methods with hyperparameters, we run several sets of parame-
ter values (including the values in corresponding papers). The
hyperparameters with the best experimental results are selected
for the following evaluation.

For the ablation study, we remove different loss components
to obtain different combinations of components in MIDNet.
The detailed combinations of ablations are shown in Table. I.

C. Experiments on fetal US with and without shadows

The fetal US dataset consists of ∼ 7k 2D fetal US images
sampled from 2694 2D US examinations with gestational ages
between 18− 22 weeks (iFIND Project 5). Eight different US
systems of identical make and model (GE Voluson E8) were
used for the acquisitions to eliminate as many unknown image
acquisition parameters as possible. Six different anatomical
standard plane locations have been selected by an experienced
sonographer, including Four Chamber View (4CH), Abdomi-
nal, Femur, Lips, Left Ventricular Outflow Tract (LVOT) and
Right Ventricular Outflow Tract (RVOT). The images have
additionally been classified by an expert observer as shadow-
containing or shadow-free. In this experiment, the source
domain contains shadow-free images (see Fig. 2 (b) SF) while
the target domain has shadow-containing images from less
favorable imaging conditions (see Fig. 2 (b) SC). Training data
consists of all six standard planes from the source domain
as well as Abdominal, LVOT and RVOT from the target
domain. We aim to separate anatomical features (categorical
features) and shadow artifacts features (domain features) to
obtain generalized anatomical features for achieving high
performance of standard plane classification on TNewTarget (4CH,
Femur and Lips from target domain). Here, TSource contains
4CH, Abdominal, Femur, Lips, LVOT and RVOT from the

3https://github.com/pumpikano/tf-dann, Jan 2018
4https://github.com/VisionLearningGroup/SSDA MME
5http://www.ifindproject.com/

(a) Source: shadow-free;
Target: shadow-containing

(b) Source: device A;
Target: device B

Fig. 5: Domain discrepancy based on categorical features and
domain features in MIDNet. A high A-distance score means
a high domain difference.

source domain and TTarget contains Abdominal, LVOT and
RVOT from the target domain. Hyper-parameters λ1 to λ5 in
Eq. 11 are λ1 = 1, λ2 = 10, λ3 = 10−4, λ4 = 10, λ5 = 10 for
the proposed MIDNet model and η = 0.005 is additionally
for MIDNet+Ltrip.

Results: We compare the A-distance of categorical features
and domain features. Fig. 5 (a) shows that domain difference
is higher in domain features than in categorical features.
This indicates that domain features contain more domain
information whereas categorical features are more domain-
invariant. Fig. 6 shows the t-SNE plot of categorical features
in both domains for MIDNet. From Fig. 6 (a), we observe
that the categorical features learned by MIDNet enable the
anatomical classification. Fig. 6 (b) shows that the learned
categorical features are domain-invariant.

The experimental results of the state-of-the-art and the abla-
tion study are shown in Table. II. In this table, we observe that
the MIDNet model outperforms all the state-of-the-art methods
on the most important test data TNewTarget for average F1-score,
recall and precision. MIDNet+Ltrip performs better than
MIDNet on TSource and TTarget, demonstrating that metric
learning is important and efficient for improving classification
performance on images whose features have been observed
during training. In the ablation study, MIDNet outperforms
other variant models, especially MIDNet w/o LSSL, MIDNet
w/o Lclus and MIDNet w/o LMI , illustrating the effectiveness
of all proposed components in MIDNet. In addition, Fig. 7 (a)
shows that the A-distance of MIDNet w/o LMI is higher than
that of MIDNet. This demonstrates that mutual information
disentanglement (LMI ) contributes to learn domain-invariant
categorical features.

We further compare the performance of MIDNet with and
without unlabeled data on the target domain. Here, the with
unlabeled data setting utilizes the training data containing
30% labeled data and 70% unlabeled data, while the without
unlabeled data setting only uses the 30% labeled data. The
confusion matrices in Fig. 8(a) show the effectiveness of
unlabeled data in the proposed method, for example, the
classification accuracy of TNewTarget in MIDNet (e.g., 4CH and
Lips) improves when integrating unlabeled data.

To explore the importance of labeled data, we evaluate
the performance of MIDNet and MIDNet+Ltrip based on
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(a) (b)

Fig. 6: Feature visualization of MIDNet with t-SNE. We
plot categorical features from both domains. (a) The color
represents categories. (b) The color represents domains. We
observe that the categorical features are domain-invariant and
enable the anatomical classification.

(a) Source: shadow-free;
Target: shadow-containing

(b) Source: device A;
Target: device B

Fig. 7: Domain discrepancy of MIDNet and MIDNet w/o LMI

based on categorical features. A high A-distance score means
a high domain difference. Experiment setting is the same with
Table II.

using 15%, 30%, 60% and 100% labeled data during training.
Fig. 9 (a) shows the average F1-score on three groups of
test data. From this figure, we observe that the classification
performance improves with increasing labeled data.

Finally, correctly classified and mis-classified examples of
TNewTarget using MIDNet are presented in Fig. 11 (a).

D. Experiments on cross-device fetal US

The previous experiment on fetal US images is supported
by data restricted to one US imaging device. Here, we evalu-
ate MIDNet for a standard plane classification task on data
from different imaging devices (different device domains).
Device A is “GE Voluson E8” which is the same device
in Sec. IV-C, which acquired ∼ 6K 2D fetal US images.
Device B is “Philips EPIQ V7 G” which acquired another
∼ 5K images sampled from about 500 2D US examinations
with gestational ages between 20-32 weeks (see Fig. 2 (b),
iFIND Project 5). In this experiment, we use four different
anatomical standard plane locations with sufficient images in
both domains, including Abdominal, Brain, Femur and Lips,
which are selected by an 10-year-experienced sonographer. In
this experiment, the source domain is set as device A while the
target domain is device B. Training data consists of all four
standard planes from the source domain as well as Abdominal
and Brain from the target domain. We aim to separate anatom-

With unlabeled data Without unlabeled data

(a) Source: shadow-free; Target: shadow-containing

With unlabeled data Without unlabeled data

(b) Source: device A; Target: device B

Fig. 8: Confusion matrices of TTarget & TNew
Target in MIDNet

with and without unlabeled data. For the with unlabeled
data setting, 30% of training data are labeled and the rest
are unlabeled. The without unlabeled data setting only uses
the 30% labeled data for training, without using unlabeled
data. (a) Classification on fetal US with/without shadows. (b)
Classification on fetal US from different acquisition devices.

ical features (categorical features) and imaging device features
(domain features) to obtain generalized anatomical features for
achieving high performance of standard plane classification on
TNewTarget (Femur and Lips). Here, TSource contains Abdominal,
Brain, Femur and Lips from the source domain and TTarget
contains Abdominal and Brain from the target domain. Hyper-
parameters λ1 to λ5 in Eq. 11 are λ1 = 1, λ2 = 10, λ3 =
10−4, λ4 = 50, λ5 = 50 for the proposed MIDNet model and
η = 2× 10−4 is additionally for MIDNet+Ltrip.

Results: The classification performance of baselines and
the proposed model are shown in Table. III. We observe that
MIDNet outperforms the state-of-the-art on on the most impor-
tant test data TNewTarget for average F1-score and recall. Among
all the models in the ablation study, MIDNet+Ltrip achieves
the best performance on TSource and TTarget, demonstrating
that metric learning contributes to the separation of seen
categories in both domains. MIDNet outperforms MIDNet w/o
LSSL, MIDNet w/o Lclus and MIDNet w/o LMI on TNewTarget,
illustrating the importance of all proposed components in
MIDNet for the classification of unseen categories in the target
domain. In addition, Fig. 7 (b) shows the effectiveness of
mutual information disentanglement (LMI ) to learn domain-
invariant categorical features.

The confusion matrices in Fig. 8(b) show the effectiveness
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TABLE II: Comparison of the state-of-the-art and ablation study for the fetal US standard plane classification task using
data with/without shadow artifacts. 30% of training data are labeled data and the rest are unlabeled data. Average F1-score,
Recall and Precision are measured on three groups of test data. Best results are shown in bold.

Methods TSource TTarget TNew
Target

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision

Source only 0.4878 0.4933 0.4914 0.4341 0.4067 0.4693 0.5496 0.5867 0.5170
VGG [62] 0.5347 0.5400 0.5335 0.4492 0.4667 0.4337 0.5495 0.5400 0.5614
Res-VGG [62], [63] 0.4669 0.4800 0.5229 0.5482 0.5867 0.5293 0.5722 0.5467 0.6182
Two-step-fair [38] 0.4531 0.4500 0.4572 0.4400 0.4467 0.4338 0.5008 0.4933 0.5095
Two-step-Unfair [38] 0.4894 0.4933 0.4895 0.4515 0.4733 0.4319 0.4571 0.4400 0.4769
Multi-task [46] 0.4622 0.4667 0.5524 0.5787 0.5667 0.6220 0.6393 0.6533 0.6491
DANN [17] 0.5939 0.6100 0.6598 0.6642 0.7000 0.6400 0.5525 0.5533 0.5700
MME [61] 0.5723 0.5700 0.7496 0.8163 0.8000 0.8458 0.4852 0.5200 0.5006

MIDNet-I 0.4643 0.4767 0.5891 0.5796 0.5933 0.5944 0.6280 0.6133 0.6947
MIDNet-II 0.4760 0.4867 0.5336 0.6185 0.6533 0.6056 0.6559 0.6200 0.7412
MIDNet-III 0.4929 0.5100 0.5498 0.5620 0.5800 0.5512 0.6887 0.6667 0.7267
MIDNet-IV 0.4636 0.4833 0.5403 0.5746 0.5867 0.5705 0.6378 0.6400 0.6732
MIDNet w/o LSSL 0.5379 0.5533 0.6007 0.5976 0.6600 0.5612 0.6603 0.6000 0.8119
MIDNet w/o Lclus 0.4195 0.4367 0.5102 0.5657 0.5800 0.5637 0.6025 0.6000 0.6539
MIDNet w/o LMI 0.5339 0.5467 0.5948 0.6654 0.7067 0.6449 0.7091 0.6600 0.8255
MIDNet 0.5484 0.5667 0.6683 0.6809 0.7000 0.6803 0.7399 0.7267 0.7830
MIDNet+Ltrip 0.6257 0.6367 0.7082 0.7728 0.8533 0.7146 0.6880 0.6200 0.8396

The baselines and ablation study models are introduced in Sec. IV-B. DANN, MME and the proposed models are semi-supervised
while other comparison methods are fully-supervised which only use the 30% labeled images.

(a) Source: shadow-free; Target: shadow-containing (b) Source: device A; Target: device B

Fig. 9: Average F1-score of standard plane classification with different percentage of labeled data (15%, 30%, 60%, 100%) for
semi-supervised learning based on MIDNet model and MIDNet+Ltrip. (a) Classification on fetal US with/without shadows.
(b) Classification on fetal US from different image acquisition devices.

of unlabeled data in the proposed method. The classification
accuracy of Femur and Lips in MIDNet improves when using
unlabeled data.

From Fig. 9 (b), we observe that classification performance
improves with the increase of labeled data in most cases.
However, the performance reaches its peak after a certain
percentage of labeled data is added. For example, the peak
point is 60% in this experiment.

In addition, we utilize t-SNE plots for feature visualization
in Fig. 10. Comparing Fig. 10 (a) and Fig. 10 (b), we observe
that with mutual information disentanglement, (1) samples
from the same category are more tightly clustered (see the
top row) and (2) the source domain and the target domain
are overlap more (see the bottom row). This indicates that
mutual information disentanglement is important for learning

categorical-focused and domain-invariant features. Fig. 10 (a),
(c)-(d) show that the proposed method outperforms other state-
of-the-art methods for learning category-discriminative and
domain-invariant features, especially for unseen categories in
the target domain (e.g., (a) vs. (d)).

We further present correctly classified and mis-classified
examples of TNewTarget using MIDNet in Fig. 11 (b).

The influence of common categories: We further explore the
influence of common categories on this cross-device fetal US
classification task. We evaluate the classification performance
on the unseen category in the target domain (i.e., Lips) with
an increased number of common categories in both domains.
In this experiment, 60% of training data are labeled data
and the rest are unlabeled data. Table. IV shows that the
classification performance of the unseen categories in the
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TABLE III: Comparison of Source only, the state-of-the-art methods and ablation study for the fetal US standard plane
classification task with data from different acquisition devices (Source domain: Device A, Target domain: Device B).
30% of training data are labeled data and the rest are unlabeled data. Best results in bold.

Methods TSource TTarget TNew
Target

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision

Source only 0.7665 0.7700 0.7656 0.6971 0.6750 0.7305 0.6742 0.7050 0.6899
VGG [62] 0.7565 0.7600 0.7553 0.6853 0.6750 0.6964 0.7039 0.7250 0.7011
Res-VGG [62], [63] 0.9196 0.9200 0.9229 0.5582 0.6200 0.5092 0.6880 0.6300 0.8728
Two-step-fair [38] 0.7979 0.7975 0.8007 0.3965 0.4050 0.3919 0.7491 0.7400 0.7644
Two-step-Unfair [38] 0.7899 0.7900 0.7903 0.3869 0.4050 0.3831 0.6069 0.6150 0.6013
Multi-task [46] 0.8124 0.8150 0.8383 0.3964 0.4200 0.4186 0.7522 0.7800 0.7955
DANN [17] 0.9572 0.9575 0.9588 0.5507 0.6100 0.5521 0.5611 0.5050 0.7784
MME [61] 0.9526 0.9525 0.9537 0.5400 0.7150 0.4345 0.4293 0.3600 0.9595

MIDNet-I 0.9623 0.9625 0.9642 0.5572 0.5600 0.6256 0.3236 0.5000 0.2393
MIDNet-II 0.9520 0.9525 0.9592 0.6665 0.6600 0.6731 0.3139 0.3950 0.6811
MIDNet-III 0.8948 0.8950 0.8948 0.7125 0.8000 0.7383 0.7400 0.6750 0.9630
MIDNet-IV 0.9446 0.9450 0.9486 0.1992 0.1300 0.4261 0.2473 0.5000 0.1471
MIDNet w/o LSSL 0.9100 0.9100 0.9102 0.6099 0.6700 0.5738 0.7961 0.7100 0.9074
MIDNet w/o Lclus 0.9421 0.9425 0.9466 0.3406 0.2350 0.6586 0.2264 0.4900 0.1472
MIDNet w/o LMI 0.9425 0.9425 0.9436 0.5015 0.4950 0.5118 0.7913 0.7950 0.7904
MIDNet 0.9281 0.9275 0.9327 0.7434 0.7300 0.7676 0.8383 0.8600 0.8497
MIDNet+Ltrip 0.9649 0.9650 0.9658 0.7768 0.8500 0.7177 0.6614 0.6000 0.8009

.

(a) MIDNet (b) MIDNet w/o LMI (c) DANN [17] (d) MME [61]

Fig. 10: Feature visualization with t-SNE. We plot categorical features on both domains. The color in the top row represents
categories. The color in the bottom row represents domains. Experiment setting is the same with Table III. We observe that
the categorical features learned by the proposed method are more domain-invariant and categorical-discriminative than other
methods.

target domain improves as increasing the number of common
categories between the source and the target domain. This
might because more common categories can introduce more
information about data distributions in the target domain.

V. DISCUSSION

Current disentanglement methods and domain adaptation
methods are able to extract domain-invariant categorical fea-
tures. However, these methods can hardly transfer knowledge
to unseen categories in the target domain because (1) they only
consider labeled data and extract domain-invariant features
with imitated generalizability (e.g., Two-step-Unfair [38] and

Multi-task [46]), (2) they have model-specific limitations, for
example, MME [61] optimizes categorical clusters only from
available categories of both domains and may negatively affect
classification of unseen categories, and (3) they neglect intra-
class relationships between both domains. Our method extracts
domain-invariant categorical features with a semi-supervised
paradigm and further explicitly aligns the these features within
each category.

The utilization of distance metric learning in feature clus-
tering (Sec. III-D) contributes to further increasing inter-class
variance. This results in improved classification performance
on TSource and TTarget (MIDNet vs. MIDNet+Ltrip in Ta-
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TABLE IV: Average F1-score of the unseen categories in
the target domain (i.e., Lips), when an increasing number of
common categories between the source domain (S) and the
target domain (T ) is available during training. Best results
in bold. 60% of training data are labeled and the rest are
unlabeled.

Methods S: Abd., Brain, Femur, Lips

T : Abd. T : Abd., Brain T : Abd., Brain, Femur

MIDNet 0.7816 0.8047 0.8187
MIDNet+Ltrip 0.6442 0.7179 0.7727

Abd. is Abdominal and hyperparameters are the same as in Sec. IV-D.

G
T 4CH Femur Lips

T
P

4CH Femur Lips

FP

Abdominal Lips LVOT
(a) Source: shadow-free;

Target: shadow-containing

Femur Lips

Femur Lips

Abdominal Abdominal
(b) Source: device A;

Target: device B

Fig. 11: Examples of classification results on TNewTarget using
MIDNet in Table II and Table III. Top row (GT) contains
ground truth labels. Middle row (TP) contains true positive
results and bottom row (FP) contains false positive results.

ble. II and Table. III). However, MIDNet+Ltrip models are
sometimes outperformed by MIDNet for unseen categories in
the target domain TNewTarget. This may be caused by supervised
distance metric learning. The distance metric learning encour-
ages latent feature clusters of different seen categories in both
domains to move away from each other, shown in the top
row of Fig. 12. Such movement of the seen categories may
lead to the inter-class mixture between unseen categories and
seen categories (e.g., Fig. 12 bottom row, lips and femur), and
results in increased difficulty for identifying unseen categories
in the target domain.

Medical images contain complex entangled image features.
For example, shadow artifacts in US imaging are caused by
anatomies through blocking the propagation of sound waves
or destructive interference. Traditional DNN-based classifiers
jointly learn shadow features and anatomical features with-
out understanding the underlying semantics. By observing
classification performance on source and target domain after
separating entangled image features, our model can be poten-
tially used to interpret the effective factors for target tasks.
For example, the classification performance of TSource and
TTarget (Table. II MIDNet and MIDNet+Ltrip) indicate that
shadow features can be more informative for some categories
than the actual anatomy in anatomical classification.

The performance of semi-supervised learning usually pos-
itively correlates with the percentage of labeled data. In our
experimental setting, excessive labeled data may lead to in-
creased class imbalance. This may result in slightly decreased
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(a) MIDNet (b) MIDNet+Ltrip

Fig. 12: Comparing categorical feature clusters between MID-
Net and MIDNet+Ltrip. The clusters are visualized by t-SNE
plots. The top row is the source domain (device A) and the
bottom row is the target domain (device B). We observed that,
in MIDNet+Ltrip, the features of unseen categories are mixed
with those of seen categories in the target domain (see the
right bottom), although the features of seen categories are more
separated.

classification performance in Fig. 9 (b) when the percentage
of labeled training data increases from 60% (i.e., all classes
contain the same number of labeled images: 951 images) to
100% (i.e., Abdominal: 1448 labeled images vs. Lips: 1760
labeled images). A similar observation is made for a digits
classification task in Appendix.

The proposed model is effective for learning knowledge
from a source domain with a large training set and a target
domain with a relatively small training set. This is demon-
strated in the cross-device fetal US classification experiment,
where the data from the source domain and the target do-
main contain respectively 2694 and 500 examinations. In the
reversed scenario, the decision boundaries that successfully
classify categories in a source domain with a small training
set might have difficulty to classify unseen categories in a
target domain with many samples. This might be the reason for
a low classification performance for TNewTarget when switching
the source and the target domains in the cross-device fetal
US classification task (Sec. IV-D). Nevertheless, our model
is meaningful for practical applications since it is reasonable
to initially learn from a domain containing data from many
patients and subsequently integrate knowledge from secondary
datasets with smaller patient populations.

In experiments where the domain shift is caused by shadow
artifacts, shadow-containing and shadow-free images are sep-
arated by an expert observer. To evaluate potential inter-
observer variability, another two expert observers have been
consulted to annotate a subset of 120 images as shadow-
containing and shadow-free (10 shadow-containing/shadow-
free images are randomly chosen for each category). The
results show that 93.3% and 94.2% of the labels from these
two experts are identical with the labels from the initial expert
observer. A paired sample t-test between the label distributions
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TABLE V: Classification performance on TNewTarget with MID-
Net and DADA [45]. Best results in bold.

Methods Source: device A; Target: device B

F1-score Recall Precision

DADA [45] 0.6198 0.6950 0.6067
MIDNet (Ours) 0.8383 0.8600 0.8497

yields p-values of 0.7973 and 0.3674. These high p-values
indicate that there is no significant difference between the
label distributions, hence the task is relatively straight-forward
for skilled sonographers and thus inter-observer variability is
negligible.

Hyper-parameters are highly debated in many related works.
Our method has five hyper-parameters which are determined
by extensive experiments. We fix λ1 = 1 in Eq. 11 and
adjust the other four hyper-parameters as follows. (1) We
initialize these parameters according to their importance, e.g.,
the parameter for the cross-entropy loss is initially relatively
high since classification is our main task. (2) We adjust
these parameters to ensure that losses decrease as expect on
validation data. This adjustment is performed because losses
may have different magnitudes, e.g., in Eq. 11, Lcls is cross-
entropy, LMI is mutual information, Lclus and LSSL are the
Frobenius norm. (3) We run hyper-parameter combinations
with grid search according to the results of the previous
step, λ2 ∈ {10, 20, 50}, λ3 ∈ {10−4, 5 × 10−4, 10−3}, λ4 ∈
{10, 50, 100}, λ5 ∈ {10, 50, 100}. (4) We select the hyper-
parameters combination with the best result on validation data.

In this work, we compare the proposed method with
the state-of-the-art methods that aim at one-to-one domain
adaptation, i.e., require a single source/target domain. We
compare two domain adaptation methods which represent two
groups of methods. DANN [17] is a typical adversarial-based
method, which is widely used and MME [61] is a recent
semi-supervised method using feature alignment for domain
adaptation. Other types of domain adaptation frameworks
(shown in Fig. 3) focus on a different domain adaptation
scenario from ours and need multiple source/target domains.
For example, domain generalization approaches requires mul-
tiple source domains and aim at learning universal knowledge
from these multiple source domains. Domain agnostic learning
approaches require multiple target domains and focus on
transferring knowledge to multiple different target domains.
Therefore, to ensure fair comparisons, our work excludes
such multi-source/multi-target approaches. As closest related
surrogate, we further compare the proposed method with a
domain agnostic learning method that uses mutual information
(DADA6 [45] with a single target domain). Table V shows
that our proposed method is better for improving classification
performance on unseen categories in the single target domain.

For the classification task with shadow-free/shadow-
containing fetal US images, acoustic shadows cause the do-
main shift. We explore to reduce this effect by 50% dropout in

6https://github.com/VisionLearningGroup/DAL

TABLE VI: Comparison between domain-relevant data aug-
mentations (elastic transformation) and MIDNet. Average F1-
score is shown in the table. Augment includes dropout, contrast
shift and brightness shift. Augment† includes Gaussian blur,
contrast shift and brightness shift. Best results in bold.

Methods Source: shadow-free; Target: shadow-containing

TSource TTarget TNew
Target

VGG+dropout 0.5846 0.6501 0.6438
VGG+Augment 0.5723 0.6424 0.7080
Res-VGG+dropout 0.5003 0.5988 0.6878
Res-VGG+Augment 0.5067 0.5758 0.6492
MIDNet (Ours) 0.5484 0.6809 0.7399

Methods Source: device A; Target: device B

TSource TTarget TNew
Target

VGG+Augment† 0.7515 0.7016 0.7232
Res-VGG+Augment† 0.9149 0.5725 0.5979
MIDNet (Ours) 0.9281 0.7434 0.8383

VGG is VGG [62] and Res-VGG is Res-VGG [62], [63] in Table II and Table III.

a VGG [62] and Res-VGG [62], [63]. However, Fig. VI shows
that MIDNet outperforms VGG/Res-VGG+dropout, illustrat-
ing that dropout alone has limitation to reduce the domain
shift caused by shadows in this task.

A naive alternative to tackle distribution shift is data
augmentation with elastic transformations, including contrast
shift, brightness shift and Gaussian blur. Table VI com-
pares the proposed method with data augmentations. For the
classification task with shadow-free/shadow-containing fetal
US images, contrast shift and brightness shift are used as
data augmentation for VGG [62] and Res-VGG [62], [63]
with dropout. For the cross-device fetal US classification
task, contrast shift, brightness shift and Gaussian blur are
adopted for data augmentation. Table VI shows that MID-
Net outperforms VGG/Res-VGG+Augment and VGG/Res-
VGG+Augment†. This demonstrates that the proposed method
is better than naive data augmentation for tackling domain
shift, especially for classification of unseen categories in the
target domain.

VI. CONCLUSION

In this paper, we discuss a problem that is rarely evaluated
but important in practical scenarios: transferring knowledge
from known entangled image features (e.g., categorical fea-
tures and domain features) to unseen entangled image features
(e.g., categories from a target domain that are not available
during training). We propose Mutual Information-based Dis-
entangled Neural Networks (MIDNet) to extract generalizable
features, which are essential for such scenarios. Our model
is developed with a semi-supervised learning paradigm. Ex-
periments on fetal US images demonstrate the efficiency and
practical applicability of our method compared with the state-
of-the-art. Source code will be publicly available after the
review phase.
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APPENDIX

A. Experiments on handwritten digits data
In this section, we demonstrate the efficiency of our method

on an additional handwritten digits classification task (Fig. 13).
MNIST is the source domain while MNIST-M is the target
domain. Except Source only, all the methods are trained on
digits 0 to 9 from the source domain and digits 0 to 4 from
the target domain. We aim to separate digital features (cate-
gorical features) from domain features to obtain generalized
digital features, and thus to achieve high digit classification
performance on TNewTarget (digits 5 to 9 from target domain).
Here, TSource contains digits 0 to 9 from the source domain
and TTarget contains digits 0 to 4 from the target domain.
Detailed data split of this experiment is shown in Table. VIII.
In this experiment, we focus on the effectiveness of our method
on the unseen categories in the target domain. According to
the two applications in the main paper, the feature clustering
component mainly improves the classification performance
of categories that are available during training. Therefore,
we eliminate the feature clustering component in the pro-
posed model and conduct the same evaluation on the digits
classification task. Hyper-parameters λ1 to λ5 in Eq. 11 are
experimentally chosen as λ1 = 1, λ2 = 10, λ3 = 10−3, λ4 =
102, λ5 = 103.

M
N

IS
T

M
N

IS
T-

M

Fig. 13: Examples of handwritten digits dataset, containing
MNIST [64] and MNIST-M [65].

Results: The experimental results of baselines and the
ablation study are shown in Table. IX. From this table, we
observe that the MIDNet model outperforms other baselines
on all test data for average F1-score, recall and precision.
For example, MIDNet achieves average F1-score of 0.9906,
0.8204 and 0.7166 for TSource, TTarget and TNewTarget, respec-
tively, while the highest average F1-score of other baselines on
the corresponding test data are 0.9802 (Res-VGG [62], [63]),
0.7357 (MME [61]) and 0.5794 (Two-step-fair [38]). Addi-
tionally, MIDNet-III performs slightly better than MIDNet on
TTarget and TNewTarget, demonstrating that feature consistency
is important for digit classification. The results of MIDNet-
IV and MIDNet-I (similarly, MIDNet-VI vs. MIDNet-II and
MIDNet-VIII vs. MIDNet-V) illustrate the effectiveness of
SSL based regularization in the proposed MIDNet.

We further compare the performance of MIDNet in a semi-
supervised setting and a fully-supervised setting. Here, the
semi-supervised setting utilizes the training data containing
30% labeled data and 70% unlabeled data, while the fully su-
pervised setting only uses the 30% labeled data. The confusion
matrix in Fig. 14 shows the effectiveness of unlabeled data in
our proposed method, for example, the classification accuracy
of TNewTarget greatly improves when integrating unlabeled data
(semi-supervised).

To explore the importance of labeled data, we evaluate
the performance of MIDNet based on using 15%, 30%, 60%
and 100% labeled data during training. Fig. 15 shows the
average F1-score of these experiments on three groups of
test data. From this figure, we observe that the classification
performance only slightly improves with increasing labeled
data. This indicates that MIDNet is capable of achieving
expected performance with sparsely labeled data. Additionally,
excessive labeled data may lead to increased class imbalance.
This may result in decreased classification performance as
shown in Fig. 15 when the percentage of labeled training data
increased from 60% (i.e., all classes contain the same number
of labeled images: 4294 images) to 100% (i.e., Digit 1: 10768
labeled images vs. Digit 5: 4336 labeled images).

B. Network architectures
We use residual units for the Encoders E1/E2 and Decoder

D of the proposed model. The implementation of the residual
units has been integrated from the publicly available DLTK
framework 7. Our implementation is on Tensorflow. The
parameter settings (e.g., filters and strides of encoders and
decoders, hidden units of the classifier) for these experiments
are shown in Table. VII.

TABLE VII: The parameter settings of the MIDNet architecture
for different experiments. N is the batch size. Digits refers to
the handwritten digits classification task that separates digit
features from domain features. Fetal US refers to the fetal
US standard plane classification tasks that disentangles (1)
anatomies from shadow artifacts and (2) anatomies from image
acquisition devices.

Digits Fetal US

Input dimension (N , 28, 28, 3, 1) (N , 224, 288, 1, 1)
Filters (E1/E2/D) (8, 16, 32, 8) (8, 16, 32, 64, 8)
Strides (E1/E2/D) (1, 2, 2, 1) (1, 2, 2, 2, 1)

Hidden units (C) (128, 128) (128, 128)

C. Details of data split
In this section, we provide detailed train/validation/test data

split for fetal US classifications on two different datasets.
Table. X is the fetal US data split for standard plane clas-
sification that separate anatomical features from artifacts
features. Table. XI is the fetal US data split for standard plane
classification that disjoin anatomical features from imaging
devices features.

D. Additional classification results
We further show randomly selected true positive and false

positive inference examples (images) from the three classifi-
cation tasks in Fig. 16.

7https://dltk.github.io/
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TABLE VIII: Data split of digits classification task. Blue test data is TSource, Green test data is TTarget and red test data is
TNewTarget. In this case, all labeled data is ∼ 30% of all training data. Train:validation is about 8:2.

MNIST (Source domain)

0 1 2 3 4 5 6 7 8 9 Unlabeled
Train 1087 1087 1087 1087 1087 2174 2174 2174 2174 2174 31690

Validation 1185 1349 1192 1227 1169 1085 1184 1253 1171 1190 –
Test 980 1135 1032 1010 982 892 958 1028 947 1009 –

MNIST-M (Target domain)

Train 1087 1087 1087 1087 1087 – – – – – 19039
Validation 1185 1349 1192 1227 1169 – – – – – –

Test 980 1135 1032 1010 982 892 958 1028 947 1009 –

TABLE IX: Comparison of baselines, the state-of-the-art and ablation study (MIDNet-I to MIDNet) for digit classification
task. 30% of training data are labeled data and the rest are unlabeled data. Average F1-score, Recall and Precision are measured
on three groups of test data. Best results in bold.

Methods TSource TTarget TNew
Target

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision

Source only 0.9253 0.9254 0.9256 0.5309 0.5293 0.5340 0.5114 0.5118 0.5213
VGG [62] 0.9151 0.9162 0.9146 0.7334 0.8412 0.6517 0.6152 0.5208 0.7552

Res-VGG [62], [63] 0.9802 0.9802 0.9802 0.7236 0.9338 0.5953 0.5228 0.3595 0.9631
Two-step-fair [38] 0.8704 0.8707 0.8704 0.6908 0.7806 0.6203 0.5794 0.5002 0.6911

Two-step-Unfair [38] 0.7465 0.7492 0.7591 0.5839 0.6407 0.5428 0.2983 0.2598 0.3894
Multi-task [46] 0.9318 0.9315 0.9332 0.6203 0.7824 0.5171 0.5053 0.3695 0.8368

DANN [17] 0.9678 0.9679 0.9681 0.6818 0.8901 0.5579 0.4506 0.3023 0.9091
MME [61] 0.9709 0.9704 0.9726 0.7357 0.9426 0.6205 0.4858 0.3287 0.9722

MIDNet-I 0.9836 0.9837 0.9835 0.7039 0.9115 0.5797 0.4956 0.3376 0.9431
MIDNet-II 0.9841 0.9842 0.9842 0.7059 0.9160 0.5809 0.4916 0.3322 0.9501
MIDNet-III 0.9869 0.9869 0.9870 0.8333 0.9780 0.7298 0.7511 0.6137 0.9765
MIDNet-IV 0.9858 0.9860 0.9859 0.7439 0.9569 0.6169 0.5207 0.3566 0.9771
MIDNet-V 0.9863 0.9862 0.9864 0.8051 0.9766 0.6903 0.6821 0.5295 0.9807
MIDNet-VI 0.9868 0.9869 0.9868 0.7532 0.9602 0.6253 0.5541 0.3900 0.9689
MIDNet-VII 0.9881 0.9881 0.9881 0.8223 0.9779 0.7140 0.7280 0.5820 0.9791

MIDNet 0.9906 0.9905 0.9906 0.8204 0.9803 0.7108 0.7166 0.5704 0.9806

Semi-supervised Fully-supervised

(a) TSource

Semi-supervised Fully-supervised

(b) TTarget & TNew
Target

Fig. 14: Confusion matrices for digit classification: semi-supervised setting versus fully-supervised setting with MIDNet-VIII
model as backbone. For the semi-supervised setting, 30% of training data are labeled data and the rest are unlabeled data. The
fully-supervised learning in this experiment only uses the 30% labeled data for training, without using unlabeled data.
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Fig. 15: Average F1-score of digit classification with different percentage of labeled data (15%, 30%, 60%, 100%) for semi-
supervised learning based on MIDNet model.

TABLE X: Data split of fetal US standard plane classification (anatomies vs. artifacts). Blue test data is TSource, Green test
data is TTarget and red test data is TNewTarget. In this case, all labeled data is ∼ 30% of all training data. Train:validation is
about 8:2.

Shadow-free fetal US (Source domain)

4CH Abdominal LVOT RVOT Lips Femur Unlabeled
Train 202 101 101 101 202 202 2125

Validation 139 63 115 106 166 167 –
Test 50 50 50 50 50 50 –

Shadow-containing fetal US (Target domain)

Train – 101 101 101 – – 710
Validation – 119 73 60 – – –

Test 50 50 50 50 50 50 –

TABLE XI: Data split of fetal US standard plane classification (anatomies vs. imaging devices). Blue test data is TSource,
Green test data is TTarget and red test data is TNewTarget. In this case, all labeled data is ∼ 30% of all training data. Train:validation
is about 8:2.

Fetal US from imaging device A (GE Voluson E8)(Source domain)

Abdominal Brain Femur Lips Unlabeled
Train 237 237 475 475 3456

Validation 180 180 420 440 –
Test 100 100 100 100 –

Fetal US from imaging device B ((Philips EPIQ V7 G)(Target domain)

Train 237 237 – – 992
Validation 182 184 – – –

Test 100 100 100 100 –
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Ground truth 5 5 6 6 7 7 8 8 9 9

True positive

5 5 6 6 7 7 8 8 9 9

False positive

0 3 4 0 2 1 3 4 4 4
(a) Handwritten digits TNew

Target (target domain is MNIST-M)

Ground truth 4CH 4CH Femur Femur Lips Lips

True positive

4CH 4CH Femur Femur Lips Lips

False positive

Abdominal LVOT Abdominal Lips LVOT Femur
(b) Fetal US data TNew

Target (target domain is shadow-containing image)

Ground truth Femur Lips

True positive

Femur Lips

False positive

Abdominal Abdominal
(c) Fetal US data TNew

Target (target domain is image from device B,
Philips EPIQ V7 G)

Fig. 16: Inference examples of three classification tasks on three datasets using MIDNet. We show true positive and false
positive samples from TNewTarget. Ground truth contains ground truth labels and labels under images are predicted labels. (a)
Handwritten digits classification. (b) Fetal US standard plane classification that separate anatomical features from shadow
artifacts features. (c) Fetal US standard plane classification that disjoin anatomical featurs from imaging device features.
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E. MIDNet+Ltrip with/without unlabeled data

We further compare the performance of MIDNet+Ltrip with and without unlabeled data on the target domain (extended
experiments of Fig. 8). Here, the with unlabeled data setting utilizes the training data containing 30% labeled data and 70%
unlabeled data, while the without unlabeled data setting only uses the 30% labeled data. The confusion matrices in Fig. 17 show
the effectiveness of unlabeled data. For example, the classification accuracy of TTarget in MIDNet+Ltrip (e.g., Abdominal,
LVOT and RVOT in Fig. 17 (a) and Brain in Fig. 17 (b)) improves when integrating unlabeled data.

With unlabeled data Without unlabeled data

(a) Source: shadow-free; Target: shadow-containing

With unlabeled data Without unlabeled data

(b) Source: device A; Target: device B

Fig. 17: Confusion matrices of TTarget & TNew
Target in MIDNet+Ltrip with and without unlabeled data. For the with unlabeled

data setting, 30% of training data are labeled data and the rest are unlabeled data. The without unlabeled data setting only
uses the 30% labeled data for training, without using unlabeled data. (a) Classification on fetal US with/without shadows. (b)
Classification on fetal US from different image acquisition devices.

F. Clinical Relevance

In this section, we discuss in detail the connection between our work and clinical scenarios. The problem of domain shift is
probably one of the key reasons hindering deployment of machine learning models in patient care at scale. Specifically, when
a machine learning model is trained in one clinic, it rarely performs well in other clinics where different imaging devices and
acquisition protocols are used. New medical devices, software and hardware alike, have to show consistent performance to be
approved by regulators and to become acceptable for wide adoption.

A naive solution is to train a model on data from potentially thousands of sites but this is infeasible because of
regulatory/economical constraints and data sharing limitations. Data often can not be shared because of (1) legality and (2)
potential future revenue considerations.

Another possible solution is to train a new model at each clinical site. However, this solution is infeasible because it requires
new clinical trials at high costs and introduces more risks for patients every time a new model is established.

Therefore, we need domain adaptation methods to reliably transfer models from one clinical site to another and understand
their error margins. Fig. 18 shows the utilization of deep learning models in clinical scenarios with and without domain
adaptation.
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…

Model 1
Classification
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Fig. 18: A diagram of the utilization of deep learning models in clinical scenarios with and without domain adaptation.

Generalizing models across datasets with different feature distributions, i.e., domain adaptation, enables a wider and more
effective utilization of deep learning models for clinical applications. This helps clinicians from different clinical sites in a
wide range of geographic areas to use the same task-specific model for the analysis of their own data (e.g., obtained by
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different image acquisition devices), and subsequently provide diagnostic decisions and treatment suggestions to their patients.
In the medical image analysis community, many previous studies (e.g., [5]–[9]) have focused on domain adaptation in different
image modalities (e.g., MRI and CT) and organs (e.g., brain and heart) for various clinical applications (e.g., brain lesion and
cardiac segmentation). MICCAI (the leading international conference for medical image analysis) has a dedicated session and
workshops (e.g., DART) about the topic “domain adaptation”. This demonstrates that domain adaptation addresses a common
problem in medical imaging and is important for various clinical applications, and thus is relevant to clinical usage and patient
care.

Specifically in our work, the proposed method is applied to a real-world clinical application, the classification of standardized
fetal ultrasound views during prenatal screening. Standardization of anatomical view planes is key to empower the front-line-
of-care during screening, making measurements comparable across patients and to accurately predict outcomes. We focus on
domain adaptation between fetal ultrasound datasets with different feature distributions, which are caused by imaging artifacts
and different acquisition devices. Our study enables learning-based classifiers to be effectively utilized on a wider range of
fetal ultrasound images. This helps early detection of pathological development independent from the used imaging setup.
The detection of abnormalities can inform downstream treatment decisions and delivery options [28]. Fig. 19 illustrates and
compares the potential impact of our method and other domain adaptation methods on machine learning for patient care in
the context of fetal screening.
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Fig. 19: (a) The use of other domain adaptation methods. (b) The proposed method.


