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Phosphatidylinositol phosphates (PIPs) are membrane phospholipids that play crucial roles in 
a wide range of cellular processes. Their function is dictated by the number and positions of the 
phosphate groups in the inositol ring (with seven different PIPs being active in the cell). Therefore, 
there is significant interest in developing small-molecule receptors that can bind selectively to these 
species and in doing so affect their cellular function or be the basis for molecular probes. However, 
to date there are very few examples of such molecular receptors. Towards this aim, herein we 
report a novel tripodal molecule that acts as receptor for mono- and bis-phosphorylated PIPs in a 
cell free environment. To assess their affinity to PIPs we have developed a new cell free assay based 
on the ability of the receptor to prevent alkaline phosphatase from hydrolysing these substrates. 
The new receptor displays selectivity towards two out of the seven PIPs, namely PI(3)P and PI(3,4)
P2. To rationalise these results, a DFT computational study was performed which corroborated the 
experimental results and provided insight into the host–guest binding mode.

Phosphatidylinositol phosphates (PIPs) are membrane phospholipids that play crucial roles in a wide range of 
cellular functions1. There are seven biologically relevant PIPs all of which are derived from D-myo-phosphati-
dylinositol (PI—see Fig. 1)2. Reversible phosphorylation of the hydroxyl groups at the D3, D4 or D5 position of 
this inositol headgroup generates seven different combinations of phosphatidylinositols (PIs), including three 
monophosphorylated (PI(3)P, PI(4)P and PI(5)P), three biphosphorylated (PI(3,4)P2, PI(4,5)P2 and PI(3,5)P2) 
and one triphosphorylated (PI(3,4,5)P3) PI species3. Changes of cellular PIP levels and disruption of the equilib-
rium between the different PIPs have been linked to the development of a host of diseases, such as Alzheimer’s 
and cancer4, 5. 

Proteins are able to recognise different PIPs via a variety of specific domains6. This drives the recruitment of 
proteins to specific intracellular compartments where the respective domains then serve as a membrane tether for 
the rest of the protein. The Pleckstrin Homology (PH) domain forms the largest group of recognition modules7. 
It is composed of approximately 120 amino acid residues and is present in over 270 human proteins which have 
been associated with a variety of processes such as intracellular signalling, membrane trafficking, cytoskeletal 
rearrangements and lipid metabolism. A subset of PH-domains display high affinity and specificity towards 
individual PIPs, primarily towards PI(3,4)P2, PI(4,5)P2 and PI(3,4,5)P3. The FYVE domain is another important 
recognition motif for PIPs; it is a zinc finger which contains approximately 70 residues and has been identified in 
28 different human proteins8. The three distinguishing motifs of this domain are the conserved sequences based 
on WxxD, RR/KHHCR and RVC motifs, which define the positively charged binding site for PI(3)P. The FYVE 
domain has nanomolar affinity for PI(3)P and is critical for the catalytic activity of certain enzymes as well as 
their translocation to endosomal membranes.

Due to their high affinity and selectivity, these domains have been employed as tools to study and visualize 
PIPs in cellular processes. However, their large size (as compared to the PIPs) makes them impractical for some 
applications. Therefore, there is interest in the development of small molecules with high affinity and selectivity 
for specific PIPs. Such molecules would be ideal tools to study PIPs in cells and, potentially, could disrupt their 
metabolism and hence be the basis for drug development.
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Anslyn9, 10, Ahn11, Yoon12, 13, Aoki14, 15 and Best16 have previously reported receptors for inositol phosphates 
such as IP3 based on scaffolds substituted with phosphate-recognition moieties such as guanidinium, alkyl 
ammonium or imidazolium groups as well as zinc(II) complexes. While these receptors have shown high affinity 
and, in some cases, good selectivity for specific IPs (mainly IP3), their binding to PIPs (i.e. the key lipid-deriv-
atives of biological relevance) has not been reported. To address the lack of small-molecule receptors for PIPs, 
we previously developed a small-molecule (PHDM) able to bind PI(4,5)P2 with high selectivity both in vitro 
and in cellulo17. To the best of our knowledge, this is the only example of a small-molecule receptor that binds 
selectively to a PIP (rather than an IP) and is able to compete with protein domains in a cellular environment. 
Inspired by these previously reported scaffolds for IP3 as well as the recognition units in our earlier work with 
the linear PHDM receptor, herein we report a new tripodal molecule (11—see Fig. 2) able to bind to PI(3)P and 
PI(3,4)P2 selectively over several other mono-, bi- and tri-phosphorylated PIPs in a cell free environment. This 
receptor features two phenyl-thioureas, which are well-established recognition groups for oxoanions such as 
phosphates18–20. An ethyl-morpholino group was added in the para position of each of these phenyl-thioureas 
to increase the water solubility of receptor 11. The third ‘arm’ of the tripodal receptor is an amino-boronic acid 
which can potentially display three types of interactions: (1) form reversible covalent bonds with diols present in 
the corresponding PIPs21–23; (2) display hydrogen bonding interactions with the phosphate groups24, 25; (3) form 
a covalent bond with an oxygen from one of the phosphate groups (with the concomitant change of geometry 
of the boronic centre to a tetrahedral centre)26. The affinity and selectivity of 11 against several PIPs was studied 
experimentally and rationalised via DFT calculations.

Results and discussion
Synthesis of receptor.  In order to synthesise receptor 11, it was first necessary to prepare starting materi-
als 3, 5 and 9 (Fig. 2). Compound 3 was synthesised following a previously reported synthetic procedure while 
compounds 5 and 9 (which had been previously reported) were prepared via a different procedure which gave 
good yields. These three compounds were characterised by 1H and 13C NMR spectroscopy, and by mass spec-
trometry (see ESI); all the data was consistent with that previously reported for each of the three compounds.

With the key intermediate 3 in hand, the formation of the thioureas on the two free amine arms was inves-
tigated. 3 was added to a solution of 1,1′-thiocarbonyldiimidazole (TCDI) and the reaction monitored by TLC 
over time. Once all of 3 had been consumed, amine 5 was added to the reaction mixture to yield the di-thiourea 
compound 6 in good yields (ranging between 77 and 86%). This compound was subsequently treated with TFA 
to remove the BOC protecting group to yield compound 7 (see Fig. 2). 1H NMR spectroscopy confirmed the 
formation of this new compound: the benzylic CH2 groups attached to the central scaffold and adjacent to the 
thiourea shifted downfield from 3.8 (in 3) to 4.7 ppm (in 7). The 1H NMR spectrum also showed the loss of the 
singlet at 1.4 ppm corresponding to the CH3 groups of the Boc-protecting group. The integration between the 
resonances in the aromatic and aliphatic protons was consistent with the proposed formulation of 7. Furthermore, 
a resonance at 182 ppm in the 13C NMR spectrum was assigned to the C=S group confirming the formation of 

Figure 1.   Chemical structure of the seven biologically relevant phosphatidylinositol phosphates.
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the thioureas, while the disappearance of the carbonyl peak at 158 ppm and the t-butyl CH3 carbon signals at 
28 ppm confirmed deprotection of the amine. The sample was also analysed by ESI(+)-MS which confirmed that 
this intermediate product had formed (m/z = 778.4 a.m.u.).

Synthesis of 11 was achieved by alkylation of 7 with 9, followed by deprotection of the boronate ester. 1H NMR 
spectroscopy of 11 confirmed the loss of the boronate ester singlet at 1.4 ppm as did the 13C NMR spectrum, 
which no longer showed the signal at 20 ppm. Furthermore, the 1H NMR spectrum showed a broad singlet at 
9.2 ppm corresponding to the boronic acid OH-groups. All the expected aromatic and aliphatic resonances were 
present with the right integration for the proposed formulation, which was further confirmed by COSY and 
HSQC (see Supplementary Information). The ESI(+)-MS was also consistent with the proposed formulation of 
11, with a molecular peak at 962.5 a.m.u. which corresponds to [MH]+.

Phosphatase assay to determine affinity of 11 for PIPs.  Having successfully synthesised the new 
tripodal receptor 11, we then investigated its binding affinity towards different PIPs in a cell-free environment. 
Most competition assays would either employ specific inositol lipid binding proteins or phosphatases, which 
have the caveat of a narrow substrate selectivity warranting the use of several different proteins/phosphatases to 
analyse all inositol lipids17, making it difficult to compare the data between the tested inositol lipids. To avoid this 
issue, we developed a new method that uses the same competing enzyme for all tested lipids allowing for direct 
comparison of the affinity of 11 to the seven PIPs. Alkaline phosphatase, which is used widely to dephosphoryl-
ate proteins and nucleic acids, has been utilised to hydrolyse glycerophosphoinositol phosphates27. We show here 
that this enzyme hydrolyses all phosphorylated inositol lipids in vitro (see ESI), making it an ideal tool to moni-
tor inositol lipid binding in competition assays. Employing preincubated lipid/receptor 11 complexes lowers the 
freely available inositol lipid concentration for the alkaline phosphatase. The receptor’s affinity for the tested PIPs 
inversely correlates with the phosphatase activity since it will behave like a competitive inhibitor to the enzyme. 
This approach has the added benefit—as compared to other more traditional methods to assess host–guest inter-
actions—that the receptor’s affinity/selectivity is tested under more challenging conditions, namely in the pres-
ence of an enzyme that competes with receptor 11.

Figure 3 shows the activity of alkaline phosphatase towards each lipid substrate (40 µM) in the presence of 
excess amounts of tripodal receptor 11 (62.5 µM) in a cell-free environment. Mono- and bis-phosphorylated ino-
sitol lipids had much lower phosphatase activity than the tri-phosphorylated one, implying that receptor 11 binds 
reversibly to this group of lipids. Within each inositol lipid group a clear selectivity towards the 3- and 4-phos-
phorylation is detectable. The receptor shows the lowest affinity towards inositol lipids containing 5-phosphates 

Figure 2.   Reaction scheme for the synthesis of tripodal receptor 11. (1) TDCI, MeCN, at 0 °C for 20 min 
followed by 12 h at 80 °C; (2) TFA, CH2Cl2, RT, 12 h; (3) K2CO3, DMF, RT, 5 h; (4) TFA, H2O, 70 °C, 12 h.
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(PI(5)P, PI(3,5)P2 and PI(4,5)P2). Interestingly, 11 shows the strongest binding affinity towards PI(3,4)P2, which 
results in almost complete inhibition of the enzyme’s activity. However, adding another 5-phosphate to this lipid 
(PI(3,4,5)P3) completely abolished receptor 11 binding, supporting the notion that the 5-phosphate position is 
a strong discriminator in the selectivity of the receptor.

Having established that the activity of receptor 11 is dependent on the inositol phosphate position, we deter-
mined the apparent IC50 values of 11 with each of the mono- and bi-phosphorylated PIPs (representative exam-
ples of IC50 curves are shown in Fig. 4 together with all values in the corresponding table; all other plots are 
shown in the Supplementary Information).

The results indicate that under the conditions of this cell-free test receptor 11 has the highest affinity for 
PI(3)P, followed by PI(3,4)P2, PI(4)P, PI(5)P, PI(4,5)P2 and PI(3,5)P2. There seems to be a clear preference for 
the 3-phosphate position, but also a clear avoidance of the 5-position. There also seems to be a preference for 
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Figure 3.   Binding specificity of receptor 11. The affinity of 11 towards all seven naturally occurring inositol 
phospholipids was tested with a new alkaline phosphatase assay. The lipids were presented at a 40 µM 
concentration and incubated with alkaline phosphatase at a concentration adjusted for the different lipids. 
Receptor 11 was used at 62.5 µM. The absorbance is plotted as a percentage of control where no receptor is 
present (no receptor set at 100%). Data represented are the mean of two independent experiments performed in 
triplicates. Error bars represent ± standard deviation of two independent repeats carried out in triplicates (n = 6).

Figure 4.   (a) IC50 values (µM) for the dephosphorylation of six different PIPs upon addition on increasing 
amounts of receptor 11; the values shown are the average of three independent measurements with the 
corresponding error; (b) Representative examples of IC50 curves for the dephosphorylation of PI(3)P, PI(3,4)P2 
and PI(3,5)P2 by alkaline phosphatase upon addition of increasing amounts of 11.
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biphosphorylated PIPs where the phosphate are vicinal—cf. PI(4,5)P2 versus PI(3,5)P2. Given that both phosphate 
positions are equatorial and equidistant from the phosphodiester in the inositol lipid, this apparent regioselectiv-
ity of the receptor is intriguing and prompted us to investigate this further by computer modelling.

Structure and energetics of receptor 11 complexed with PIP’s.  To rationalise the selectivity profile 
of receptor 11 and to determine the structure and energetics of the host–guest interactions, DFT molecular 
modelling investigations were performed. As discussed in the introduction, boronic acids can either interact via 
reversible covalent bonds with the PIPs’ diols or via non-covalent hydrogen bonding interactions with the phos-
phate groups (see Fig. 5). Therefore, we first explored these two possible binding modes between the B(HO)2 
group of receptor 11 and PIPs using a model of PI(3)P. We note that to reduce computational time, all calcula-
tions presented in this section, were performed with simplified versions of PIPs in which the long lipid chain on 
the phosphoester (see Fig. 1) was substituted by a methyl group.

The optimised structures exploring the two binding modes mentioned above (Fig. 5) showed some striking 
differences. It is clear that for the covalently bonded case (a) there is no possibility of the PI(3)P interacting with 
the thiourea groups of the receptor whilst for the non-covalently bonded case (b) there is a clear interaction of 
the PI(3)P phosphate with the thioureas. Geometries were located (identified as local minima) for all the mono-
phosphorylated PIP’s for the non-covalent and covalently bound systems. For the three bi-phosphorylated PIPs it 
was possible to locate structures for the non-bonded systems and for two of the bonded systems. However, it was 
not possible to locate an optimised structure for PI(3,5)P2. For the non-bonded PI(4,5)P2 and bonded PI(3,4)P2 
structures, these were identified as very weak transition states with all other structures being identified as true 
minima. The difference between the two possible binding modes is confirmed when considering the relative 
energetics of the two systems (see Table 1).

These calculations established that the binding mode between receptor 11 and the PIPs is unlikely to involve 
reversible B–O covalent bonds and be dominated by non-covalent interactions. The complete computational 
details and PDB’s of the optimised structures are given in the supplementary material.

Figure 5.   Fully optimised structures of the mono-phosphorylated PI(3)P with receptor 11 bound (a) covalently 
(i.e. via B–O bonds); and (b) displaying only non-covalent interactions.

Table 1.   Interaction energies for the mono-phosphate PIP’s. The asterix next to a system indicates that it 
was characterised as a transition state, whilst those without an asterisk where confirmed as local minima by 
vibrational frequency analysis.

ΔH kJ/Mol ΔG kJ/Mol

Non-bonded system

PI(3)P − 127.38 − 35.42

PI(4)P − 119.20 − 34.08

PI(5)P − 102.40 − 18.82

PI(3,4)P2 − 118.73 − 9.48

PI(4,5)P2* − 115.16 − 18.34

PI(3,5)P2 − 107.64 − 20.93

Bonded system

PI(3)P + 28.08 − 9.51

PI(4)P + 40.61 + 3.28

PI(5)P + 16.67 − 12.04

PI(3,4)P2* + 72.30 + 43.61

PI(4,5)P2 + 95.05 + 63.72

PI(3,5)P2 N/A N/A
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For the non-covalent mono-phosphorylated PIP’s, Fig. 6 illustrates the results for PI(3)P as a representative 
example (the structure for PI(4)P and PI(5)P can be found in the ESI).

The results reveal that the receptor can form stable complexes with all three mono-phosphorylated PIPs and 
the complexes formed have clear structural similarities (see Fig. 6 and ESI). In Table S1 we highlight these simi-
larities with respect to key H-bond distances and the “bite” angle of the receptor. From this data there is little to 
differentiate the distance of the PIP’s to the receptor, however, there is a clear closing of the receptor “bite” angle 
when a PIP is complexed with it; the “bite” angle for the receptor on its own is 99.6°. The phosphoester group of 
all three monophosphorylated PIP’s form two hydrogen bonds with the boronic acid’s hydrogens. For the phos-
phate group on the inositol ring all three PIP’s hydrogen-bond to the receptor in the same way, i.e. there are two 
hydrogen bonds formed from the O3 atom of the phosphate to the HA and HC hydrogens of the receptor and 
this is mirrored by the two hydrogen bonds formed from the phosphate O5 atom to the HB and HD hydrogens.

Irrespective of which interaction energy metric is used, ΔH or ΔG, from the data shown in Table 1, it is clear 
that the most stable complex is that formed between 11 and PI(3)P, with PI(4)P being the second strongest binder 
to 11, and PI(5)P the weakest of the three in line with the experimental findings.

For the bi-phosphorylated complexes we observed similar binding motifs as seen for the mono-phospho-
rylated complexes. Figure 7a reports three views (side, top and back) for the fully optimized structures of the 
complex between 11 and PI(3,4)P2 (and for PI(4,5)P2 and PI(3,5)P2 the figures are shown in the ESI). PDB’s of 
the complexes supplied in the supplementary material should facilitate a more accessible method to assess the 
geometries.

Geometric analysis of the complexes for the bi-phosphorylated PIP complexes is more challenging than for 
the mono-phosphorylated ones, due to the addition of a second phosphate on the PIP inositol ring. Therefore, 
we illustrate the differences in the final structures from the back perspective in Fig. 7b–d.

In Table S1 we report the same structural data as for the mono-phosphorylated PIP’s, however, these data are 
best examined by referencing the PDB’s supplied in the supplementary information. One consistent observation 
is that the “bite” angle for all three complexes has increased going from mono- to bi-phosphorylated PIPs. For 
the complex of 11 with PI(4,5)P2 the hydrogen-bonding pattern for the inositol phosphates is similar to that 
of the mono-phosphates, the HA and HC of the receptor both hydrogen bond to a single oxygen, O5, of the 
phosphate at position 4 of the ring and the HB and HD with the O7 of the phosphate at position 5. For PI(3,4)
P2 and PI(3,5)P2 the hydrogen boding motifs of the inositol phosphates are mirrors of each other, for PI(3,4)P2 
HA and HC both hydrogen bond to O3, whilst for PI(3,5)P2 HB and HD both hydrogen bond to O8; in PI(3,4)
P2 HB and HD hydrogen bond individually with O7 and O6 of the inositol ring respectively whilst for PI(3,5)P2 
HA and HC hydrogen bond individually with O5 and O3 respectively.

As for the mono-phosphorylated PIP’s, we have also evaluated the relative energy ordering of the com-
plexes with the bi-phosphorylated PIP’s. The ΔH interaction energies reveals the same order of binding PI(3,4)
P2 > PI(4,5)P2 > PI(3,5)P2 as the experimental IC50 data, however, this order is reversed when the ΔG’s are evalu-
ated, PI(3,5)P2 > PI(4,5)P2 > PI(3,4)P2. The origin of this difference is the entropy contribution, in the case of 
PI(3,4)P2 the PIP is closely bound to 11 therefore the complex entropy is smaller compared to that for PI(4,5)P2 
and PI(3,5)P2 which are less tightly bound and therefore have higher entropies.

Figure 6.   (a) Fully optimised structures of the mono-phosphorylated PI(3)P with receptor 11 side, head-on 
and from behind views (left to right respectively). Hydrogen-bonding definitions for: (b) lipid phosphate end of 
PI(3)P and B–N end of receptor; (c) phosphate of PI(3)P ring and thiourea groups of the receptor. (d) Definition 
of the bite angle atoms of PI(3)P, NC-C1-ND.
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Conclusions
We have successfully prepared a new tripodal molecular receptor (11) via a multi-step synthesis. This receptor 
can be prepared in good yields and displays good solubility in aqueous buffer. In order to evaluate the affinity of 
the new receptor for PIPs in a functional manner (in a cell-free environment), we have developed a novel alkaline 
phosphatase assay in which the activity of the enzyme can be directly correlated to the affinity of the receptor 
for the headgroup of the PIP substrate. The receptor displays good selectivity towards PI(3)P and PI(3,4)P2 over 
five other PIPs—with particularly low binding observed for PI(5)P and PI(3,5)P2, and no binding observed for 
PI(3,4,5)P3. This new receptor is, to the best of our knowledge, the first example of a synthetic compound that 
can selectively recognise PI(3,4)P2 and PI(3)P. Although our initial studies have been carried out in a cell-free 
environment, compound 11 provides a good scaffold for the future development of other PIP receptors which 
might display interesting cellular properties.

To rationalise the experimental data, DFT modelling studies were performed, which indicated that all three 
mono- and three bi-phosphorylated PIPs are capable of forming complexes with receptor 11. Interestingly, these 
modelling studies have clearly shown that the preferred binding mode between the receptor and the PIPs does 
not involve the formation of reversible B–O bonds. Instead, the receptor displays a number of hydrogen bonding 
interactions with the PIPs which drives the observed selectivity. The modelling correctly predicts that PI(3)P 
forms the strongest interaction closely followed by PI(4)P, irrespective of whether ΔH or ΔG is the metric. Our 
DFT calculations indicated that the PI(5)P and the PI(3,5)P2 complexes are the weakest formed when considering 
their ΔH of interaction, which is consistent with the experimental data. The correct ordering of the complexa-
tion energy, ΔH, of 11 with PI(3,4)P2 and PI(4,5)P2 is observed with PI(3,4)P2 being the stronger binder of the 
two. The DFT studies have allowed us to establish a proposed binding mode between the PIPs and 11 as well as 
providing an overall explanation for the differences in complexation ability.

Methods
General information.  1H NMR, 13C NMR and 31P NMR spectra were recorded on either a Bruker Avance 
400 MHz Ultrashield NMR spectrometer or a Bruker Avance 500 MHz NMR spectrometer (for complete assign-
ment of 1H and 13C NMR spectra see ESI). Electrospray ionisation mass spectra were obtained on a Bruker 
Daltonics Esquire 3000 spectrometer. Compounds 128, 229 and 330 were prepared following previously reported 
procedures (see ESI). While compounds 5, 8 and 9 have been previously reported31, they were prepared by dif-
ferent routes as detailed in the ESI.

Synthesis of compound 6.  Diamine 3 (332 mg, 0.95 mmol) in anhydrous MeCN (13 mL) was added 
dropwise to a stirring solution of 1,1′-thiocarbonyldiimidazole (342  mg, 1.92  mmol) in anhydrous MeCN 
(13 mL) cooled in an ice-water bath. The reaction mixture was stirred for 30 min in an ice-bath under nitro-
gen before amine 5 (427 mg, 1.92 mmol) in anhydrous MeCN (10.0 mL) was added dropwise at a rapid rate. 
The reaction mixture was heated at reflux under nitrogen overnight. The reaction mixture was concentrated in 
vacuo and the residue was partitioned between CHCl3 (50 mL) and H2O (50 mL). The layers were separated 
and the aqueous layer back-extracted with CHCl3 (2 × 40 mL). The combined organic layers were washed with 
water (3 × 80 mL). The resulting aqueous layer was further back-extracted with CHCl3 (5 × 50.0 mL). The result-
ing combined organic layers were dried using Na2SO4 and following filtration under gravity concentrated in 

Figure 7.   (a) Complexes between 11 and PI(3,4)P2, are presented from a side, top and back perspective when 
viewed left to right. Hydrogen-bonding definitions for receptor 11 with (b) PI(3,4)P2; (c) PI(3,5)P2 and (d) 
PI(4,5)P2.
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vacuo. Flash column chromatography eluting with CHCl3/MeOH (9.8:0.2) followed by CHCl3/MeOH (9.5:0.5) 
gave thiourea 6 as a pale orange solid foam (717 mg, 86%). TLC (CHCl3/MeOH (9:6:0.4): Rf = 0.18; 1H-NMR 
(400 MHz, CDCl3) δ 1.07 p.p.m. (3H, br t, J 7.2), 1.13 (6H, br t, J 7.4), 1.43 (9H, br s), 2.61–2.64 (12H), 2.84 (6H, 
br s), 3.74–3.75 (8H, J), 4.13 (4H, m), 4.28 (2H, br s), 4.75 (4H, br s), 6.87 (4H, d, J 8.7), 7.09 (4H, d, J 8.7); 13C-
NMR (100 MHz, MeOD) δ 16.8, 16.9, 24.0, 28.8, 39.7, 44.4, 55.1, 58.7, 66.6, 67.6, 80.3, 116.0, 128.0, 132.8, 133.9, 
145.5, 145.8, 158.0, 158.4, 182.4; m/z (electrospray) 878.4654 (MH+, 40%), 439.7334 (MH2

2+, 100%) Found: 
MH+, 878.4654. C46H68N7O6S2 requires 878.4673; Δ = −2.2 ppm.

Synthesis of compound 7.  To a stirred solution of Boc-protected amine 6 (694 mg, 0.79 mmol) in anhy-
drous CH2Cl2 (18.00  mL) was added TFA (4.42  mL, 57.7  mmol). The reaction mixture was stirred at room 
temperature overnight. The reaction mixture was concentrated in vacuo. The residue was partitioned between 
CHCl3 (20 mL) and 2 M NaOH (20 mL). The layers were separated and the organic layer further washed with 
2 M NaOH (20 mL) and H2O (20 mL). The aqueous layer was back-extracted with CHCl3 (3 × 40 mL) followed 
by a 3% MeOH in CHCl3 solution (3 × 40 mL). The combined organic layers were dried using Na2SO4 and filtered 
under gravity. Flash column chromatography eluting with CHCl3/MeOH (9.5:0.5), then CHCl3/MeOH/7N NH3 
in MeOH (9.45:0.5:0.05) gave amine 7 as a white solid foam (497 mg, 81%). TLC (CHCl3/7N NH3 in MeOH 
(9:95:0.05)): Rf = 0.16; 1H-NMR (400 MHz, MeOD) δ 1.18 (9H, t, J 7.1), 2.57 (8H, m), 2.76 (10H, m), 3.69 (8H, 
m), 3.86 (2H, s), 4.11 (4H, t, J 5.5), 4.74 (4H, br s), 6.91 (4H, d, J 8.8), 7.22 (4H, d, J 8.8); 13C-NMR (100 MHz, 
MeOD) δ 16.9, 23.9, 39.4, 44.5, 55.1, 58.7, 66.7, 67.6, 116.1, 127.0, 132.4, 132.8, 137.7, 144.8, 145.4, 158.4, 182.4; 
m/z (electrospray) 778.4164 (MH+, 100%), 389.7068.2176 MH2

2+, 40%) Found: MH+, 778.4164. C41H60N7O4S2 
requires 778.4148; Δ = 2.1 ppm.

Synthesis of compound 10.  A solution of amine 7 (474 mg, 0.61 mmol) and K2CO3 (51.0 mg, 0.37 mmol) 
in anhydrous DMF (6  mL) was stirred under nitrogen for 30  min before a solution of bromine 9 (106  mg, 
0.31 mmol) in anhydrous DMF (2.50 mL) was added dropwise over 25 min. The reaction mixture was stirred 
under nitrogen at room temperature for 6 h. The reaction mixture was concentrated in vacuo and the residue 
was partitioned between CHCl3 (15 mL) and brine (15.0 mL). The layers were separated and the aqueous layer 
back-extracted with CHCl3 (2 × 10 mL). The organic layers further were washed with brine (3 × 30.0 mL). The 
resulting aqueous layer was further back-extracted with CHCl3 (3 × 40.0 mL) followed by a 3% MeOH in CHCl3 
solution (3 × 40 mL). The resulting combined organic layers were dried using Na2SO4 and following filtration 
under gravity concentrated in vacuo. Flash column chromatography eluting with CHCl3/MeOH (9.85:0.15), 
then CHCl3/MeOH (9.5:0.5) gave boronate ester 10 as an off-white foam solid (149 mg, 48%). TLC (CHCl3/
MeOH (9:98:0.02)): Rf = 0.29; 1H-NMR (400 MHz, MeOD) δ 0.90 (6H, br t, J 7.2), 1.22 (3H, m), 1.46 (12H, s), 
2.56 (12H, m), 2.78 (6H, m), 3.68 (8H, br t, J 4.6), 3.78 (2H, br s), 3.97 (2H, br s), 4.12 ( 4H, br t, J 5.4), 4.80 (4H, 
br s), 6.95 (4H, d, J 8.8), 7.13 (1H, br d, J 8.0), 7.24 (4H, br d, J 8.8), 7.44 (1H, br t, J 6.8), 7.50 (1H, br t, J 6.8), 
7.81 (1H, d, J 8.0), 7.86 (1H, d, J 8.0), 8.6 (1H, d, J 8.1); 13C-NMR (100 MHz, MeOD) δ 16.5, 16.8, 24.2, 26.6, 43.8, 
44.4, 49.0, 55.1, 58.7, 66.7, 67.6, 81.8, 116.1, 123.0, 126.2, 126.4, 128.0, 128.6, 129.6, 130.1, 130.4, 132.5, 133.3, 
135.0, 136.8, 140.0, 146.7, 147.1, 158.5, 182.4; m/z (electrospray) 1044.5657 (MH+, 100%), 522.7809 MH2

2+, 
70%) Found: MH+, 1044.5657. C58H79N7O6S211B requires 1044.5626; Δ = 3.0 ppm.

Synthesis of compound 11.  Boronate ester 10 (120 mg, 0.12 mmol) was stirred in a 70% TFA: H2O solu-
tion (5.80 mL) at 68 °C for 24 h. The solvent was removed in vacuo. The residue was taken up in CHCl3 (10 mL) 
and washed with 2 M NaOH (2 × 10 mL). The aqueous layer was further extracted with CHCl3 (5 × 7 mL). The 
combined organic layers were concentrated in vacuo. The resulting precipitate was washed several times with 
methanol and isolated the centrifuge. This process gave boronic acid 11 as an off-white powder (65 mg, 59%). 
1H-NMR (400 MHz, DMSO) δ 1.13 (6H, br t, J 7.2), 1.20 (3H, br t, J 7.3), 2.49 (8H, m), 2.69 (4H, t, J 5.8), 2.78 
(2H, br d, J 7.3), 2.97 (6H, m), 3.21 (1H, s), 2.59 (8H, m), 3.92 (2H, br s), 4.07 (4H, t, J 5.8), 4.72–4.74 (6H), 6.86 
(4H, d, J 9.0), 7.06 (2H, m), 7.34 (4H, d, J 9.0), 7.39 (1H, br d, 8.3), 7.44 (1H, m), 7.51 (1H, m), 7.80 (1H, m), 
7.87 (1H, m), 8.55 (1H, d, J 8.2), 9.04 (2H, br s); 13C-NMR (100 MHz, DMSO) δ 15.5, 15.6, 21.7, 22.1, 41.2, 42.2, 
51.3, 53.1, 56.6, 65.7, 114.2, 120.6, 124.2, 124.6, 125.1, 126.4, 127.4, 128.1, 131.4, 131.6, 132.2, 132.8, 134.0, 142.8, 
143.6, 148.8, 155.2, 180.7; LCMS trace 100%; m/z (electrospray) 962.4866 (MH+, 100%), 944.4828 (MH+–OH, 
35%) Found: MH+, 962.4866. C52H69N7O6S211B requires 962.4844; Δ = 2.2 ppm.

Experimental details for the alkaline phosphatase (AP) assay with lipid substrates.  All seven 
PIPs were presented as mixed micelles with a final octyl-glucoside concentration of 0.2% (v/v). For the calibra-
tion curve lipid solutions of increasing concentration were incubated with AP (5 or 0.5 nM, see below) in a 
96-well plate for 30 min at 37 °C in the presence of 100 mM TRIS, pH 6.8 and a total volume of 50 µL per well. 
The reaction was terminated by addition of an equal volume of phosphate detection reagent (50 µL) to quantify 
the amount of phosphate released as described before. The rate of the enzyme activity was determined as Δ 
absorbance of the reaction minus the enzyme control (enzyme was added after the phosphate detection reagent). 
The assay was optimised for each individual PIP to have comparable rates in the linear range by adjusting the 
enzyme concentration (see Figure S35). Subsequently, AP concentration of 5 nM was used for monophospho-
rylated lipids PI(3)P, PI(4)P and PI(5)P as well as PI(3,4)P2 and 0.5 nM for PI(4,5)P2, PI(3,5)P2 and PI(3,4,5)P3.

For testing the binding affinity of the receptors, the AP assay was modified into a 2-step procedure, with 
the first step being used to form lipid-receptor complexes and the second step being the application of the AP 
assay to determine the free lipid concentration. For the first step, receptors were preincubated with a constant 
concentration of PIP (40 µM) for 1 h in the presence of 100 mM TRIS, pH 6.8, 0.2% (v/v) OG and 2% (v/v) 
DMSO in a total volume of 50 µL. This was followed by the addition of AP (second step) in a 96-well plate for 
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30 min at 37 °C. The reaction was terminated by addition of and equal volume of phosphate detection reagent 
based on malachite green (50 µL) to quantify the amount of phosphate released. The turnover of the enzyme 
was determined as described above.

Computational studies.  Initial structures of the PIP’s and the receptor were constructed using the model 
building tools in Gaussview 6.1 (Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem 
Inc., Shawnee Mission, KS, 2016). These structures were then fully geometry optimised at the B3LYP level of 
theory with the 6–31++g(d,p) basis set in water, using the default SCRF = PCM model, with Gaussian 1632; all 
standard default settings were used in the optimisation process. Models were then constructed of covalently and 
non-covalently bonded complexes of the receptor with the individual PIP’s, all resulting complexes were then 
full geometry optimised at the same level as the individual PIP’s and receptor. All structures reported, PIP’s, 
receptor and complexes, were identified as minima or transition states through the calculation of the vibra-
tional spectra. All images rendered in the manuscript and in the ESI were performed with the UCSF-Chimera 
program33. PDB structures of the optimised systems, including the bonded complexes, are also provided.
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