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Abstract

Novel vector control measures such as the release of Wolbachia-infected Aedes aegypti offer

a promising new pathway for dengue control. However, to realistically model the likely impact

of these measures, improved mathematical models of Aedes aegypti population dynamics are

needed, with the final goal being spatially explicit models of Aedes aegypti population dynamics,

calibrated against high quality entomological data.

Here we begin to address the challenge of developing such models by (i) examining the role

of spatial structure in shaping the dynamics of Aedes aegypti populations at fine spatial scales

and (ii) using advanced inferential methods to fit a dynamical model of Aedes aegypti population

dynamics to entomological field data, while allowing for the highly variable nature of mosquito

trapping data.

We explore the effects of larval breeding habitat fragmentation on fine-scale Aedes aegypti

population dynamics for a variety of different landscapes, examining how features of the

underlying landscape and the dispersal behaviour of the mosquito affect the dynamics observed.

In addition, by modelling the same population at different levels of spatial granularity, we

investigate the appropriate level of spatial granularity for models to adopt to represent the

fine-scale dynamics of Aedes aegypti populations.

We examine the results of a small-scale field trial testing the use of Wolbachia as a tool for

Aedes aegypti population suppression in Singapore by calibrating a stochastic model of Aedes

aegypti population dynamics against the detailed entomological data collected during the trial.

We model both the underlying population dynamics and the trapping process, thereby accounting

for variability in mosquito trapping data when estimating the impact of the trial on local Aedes

aegypti populations.

Thus the work presented in this thesis represents an important step forward in the challenge

of developing models needed to realistically assess the likely impact of novel vector control

measures.
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Chapter 1

Introduction

1.1 Dengue Burden and Natural History

As the world’s most prevalent arboviral disease, dengue poses a major challenge to public health

globally. Since the virus was first isolated in Japan in 1943 [3], rapid spread across the globe has

ensued with the virus now endemic in more than 100 countries across the tropics and subtropics,

and approximately half of the world’s population currently at risk from infection by dengue [4].

Increased trade, urbanization and globalization, combined with a lack of effective vector control,

have led to the expansion of its primary (Aedes aegypti) and secondary (Aedes albopictus)

vectors, and the spread of dengue has followed [5]. Recent years have seen outbreaks increasing

in both severity and length [4], and localised transmission occurring for the first time in several

European countries including France [6] and Croatia [7].

Dengue is a single stranded RNA virus belonging to the genus Flavivirus, other members of

which include yellow fever, Zika and Japanese encephalitis. Four antigenically distinct but

closely related serotypes of the virus exist (DENV-1, 2, 3, 4), and all four serotypes co-circulate

globally. Transmission of the virus occurs via the bite of an infective female mosquito, and once

transmitted, the virus incubates in the human host for between three and ten days (the intrinsic

incubation period) (Figure 1.1) [8, 9]. Towards the end of this period viraemia develops, and this

may be accompanied by the acute onset of fever and a range of non-specific symptoms including

headache, joint pain, and vomiting [10]. Viraemia typically lasts for between two and seven days

[9]. Should a naı̈ve vector take a blood meal from an infected person during the viraemic phase,

it may contract the virus. Following an incubation period of typically between four and ten days in

the mosquito (the extrinsic incubation period) [11], the mosquito is then capable of transmitting
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the virus for the rest of its lifetime. The transmission cycle is hence repeated.

Figure 1.1: Dengue Timelines. Course of dengue infection and timings of diagnosis. Reprinted with permission from
[9] (See Appendix A - Figure Permissions).

One of the most distinguishing features of dengue is its complex immunology. While recovery

from primary infection by one of the four serotypes will provide lifelong immunity to that serotype,

only short-term protection against the remaining serotypes is conferred [9, 10, 12]. The exact

duration of cross-protection is unknown, and estimates of duration vary widely [13–16]. Early

work by Sabin indicated a waning of complete protection against heterologous serotypes after

two months [13], however more recent studies have estimated a duration of cross-protection

of approximately two years [15], between one and three years [14], and between three and

ten months [16]. Once cross-protection has waned, secondary infection with a heterologous

serotype substantially increases the risk of developing severe dengue (also known as dengue

haemorrhagic fever), symptoms of which include severe abdominal pain, persistent vomiting and

haemorrhagic manifestations [9, 10]. This increase in risk is believed to occur as the result of an

antibody-dependent enhancement mechanism, whereby antibodies produced during the primary

infection crucially fail to neutralise virus particles present following infection by a heterologous

serotype, thereby enhancing the severity of secondary infection [10, 17]. Recent analysis has

shown that this mechanism is dependent on the level of dengue antibodies in the blood at the

time of exposure to secondary infection, with an intermediate level of antibodies (pre-existing

titres of <1:40) providing an environment in which this enhancement mechanism can occur [12,

18]. Subsequent tertiary and quaternary infections, while known to occur, are rarely reported
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and often not severe [19–21]. Thus, how these infections contribute both towards transmission

intensity and the burden of dengue remains poorly understood.

Indeed estimates of the global burden of dengue are both variable and uncertain. In 2013, Bhatt

et al. estimated an annual burden of 390 million dengue infections, with 96 million apparent

infections (95% credible interval (CrI) 67-136 million) [22]. This was more than three times the

burden previously estimated by the World Health Organisation (WHO) of 50-100 million infections

per year [4]. Using data collected through the Global Burden of Disease Study 2013, Stanaway

et al. estimated that there were 58.4 million apparent infections in 2013 (95% CrI 23.6-121.9

million) with an associated total global cost of US$8.9 million [23]. The global burden of dengue

is particularly difficult to estimate for several reasons. First, the majority of dengue infections

are asymptomatic [9, 10, 12], and thus data collected via disease surveillance systems primarily

only capture clinically apparent infections. Hence they are likely to substantially underestimate

the true prevalence of dengue among a given population [24]. Furthermore, should a (mild)

symptomatic infection develop, symptoms are often non-specific and may be similar to those

developed upon infection by other viruses such as Zika or chikungunya. Thus, in the absence

of confirmed laboratory diagnosis, clinical misdiagnosis can easily occur [4]. In addition, dengue

transmission intensity is highly heterogeneous, varying across time, space and between serotypes

[25]. The quality of healthcare and surveillance systems also varies geographically, and thus it

is difficult to achieve consistency in both reporting and diagnostic criteria used across a range of

settings [26].

1.2 Treatment and Control of Dengue

Currently there is no known antiviral treatment for dengue. Therefore, treatment is limited to

alleviating symptoms during the course of infection. Developing a safe and effective vaccine

against dengue is particularly challenging owing to interactions between different serotypes

and the risk of disease enhancement [27, 28]. Recent years however have seen considerable

progress in dengue vaccine development. In December 2015, Dengvaxia ® (CYD-TDV), a

live, attenuated, tetravalent, recombinant vaccine based on the yellow fever 17D vaccine strain

developed by Sanofi Pasteur Ltd., became the first dengue vaccine to be licensed for use in

Mexico and is now licensed for use in 20 countries [29] . Uptake and roll-out of the vaccine has

been slow however due to concerns over the long-term safety of the vaccine and its complex
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efficacy profile [28].

The first glimpse into this complex efficacy profile was provided by the Phase 2b trials conducted

in Thailand and Latin America, where vaccine efficacy was found to vary according to serotype,

with the vaccine least efficacious against DENV2 [30]. Large-scale multi-country phase 3 trials

subsequently conducted in Latin America [31] and Southeast Asia [32] found a similar result,

and, furthermore, revealed that vaccine efficacy also varied by age and serostatus at the time of

vaccination. Pooled analysis of the data collected across both of these trials estimated vaccine

efficacy of 65.6% against confirmed dengue infection and 80.8% against hospitalization in

children aged 9 or above, compared to 44.6% efficacy against confirmed infection and 56.1%

against hospitalization in children under 9 [33]. Vaccine efficacy was reduced for participants

seronegative at the time of vaccination (81.9% efficacy against confirmed dengue infection

for seropositive individuals compared with 52.5% for seronegative individuals, among children

aged 9 or above). Moreover, analysis of the long-term follow-up data revealed a greater than

7 fold increase in the risk of hospitalization for vaccinated children aged 2-5 years, and an

overall increase in risk of hospitalization for vaccinated children under 9 [33]. However, the

vaccine still had a protective effect against hospitalization for children in other age groups. Using

mathematical modelling to translate these results into potential population level effects, Ferguson

et al. [34] found that the overall potential impact of the vaccine would depend on the transmission

setting and level of seroprevalence in the population. Namely, the vaccine would most likely have

an overall beneficial effect in moderate to high transmission settings, but could increase the risk

of severe dengue in low transmission settings.

Based on these analyses, in July 2016 the WHO initially recommended the vaccine for use only

in countries with seroprevalence greater than 70% (and not less than 50%) and in individuals

aged 9-45 [35]. However, additional analysis of the long-term safety follow-up data revealed

an increased risk of hospitalization and severe dengue for seronegative individuals in all age

groups [36]. Thus, in April 2018, the WHO revised this recommendation, advising instead that

the vaccine should only be administered to dengue-seropositive individuals, with serostatus

confirmed prior to vaccine administration [37].

Several other candidate dengue vaccines are currently in development [38], and results obtained
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to date from small-scale trials have been promising. The two candidates furthest along in

development are DENVax (TAK-003) [39], a two-dose tetravalent vaccine based on a DENV2

backbone developed by Takeda Pharmaceuticals Ltd., and TV-003, a single-dose tetravalent

vaccine with a backbone based on three of the four dengue serotypes (DENV-1,3,4) developed by

the U.S. National Institute of Heath [40]. Both vaccines were well tolerated in small-scale clinical

trials, and observed to elicit an antibody response against all four dengue serotypes, irrespective

of baseline dengue serostatus [41–43]. Large-scale Phase 3 trials in Southeast Asia and Latin

America (DENVax) [44], and in Brazil (TV-003) [45] are currently ongoing.

Given the lack of antiviral treatment and the challenges in dengue vaccine development, vector

control methods thus remain at the core of current local and global dengue control strategies [4].

1.3 Vector Behaviour and Habitat

The life cycle of the mosquito is comprised of four main stages, and begins with an adult female

mosquito laying eggs in a suitable breeding site following a blood meal. While some mosquito

species including Anopheles mosquitoes lay eggs on the surface of water [46], Aedes spp.

typically oviposit eggs above the water line [47, 48]. Then, once the oviposited eggs have been

submerged in water, they hatch and develop into larvae. Following several stages of development,

the larvae become pupae, which in turn develop into adult mosquitoes. The total length of this

cycle (egg-larva-pupa-adult) is dependent on temperature, however for Aedes spp. this typically

takes between 8 and 10 days in tropical areas [48]. Adult females typically oviposit every 3

days [49], and can lay eggs in a single breeding site or across multiple breeding sites, so called

skip-oviposition behaviour [50, 51]. Interestingly, eggs laid by Aedes spp. are able to withstand

desiccation, and thus can survive in a dry state for several months [52, 53]. In addition, eggs

laid by Aedes albopictus can enter diapause in response to seasonal changes in temperature

and daylight [54, 55]. This ability, combined with increased trade, is believed to be an important

contributing factor to the expansion of Aedes albopictus to more temperate regions including North

America and Europe (Figure 1.2) [56–58].
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Figure 1.2: Predicted Global Distribution of Aedes Albopictus. The probability of occurrence of Aedes Albopictus

globally at a spatial resolution of 5km x 5km. Reprinted with permission from [58] (See Appendix A - Figure
Permissions).

While all mosquitoes experience the same life cycle, breeding habitats differ between species.

Aedes spp. are adapted to an urban environment, and primarily breed in rain-filled man-made

habitats such as household containers, buckets and discarded tyres (Table 1.1) [47, 59–61].

Thus, there can be several breeding sites per household, and breeding occurs both indoors

and outdoors, in residential and non-residential areas [60]. Aedes albopictus also often breed

in natural habitats in more densely vegetated areas and, as mentioned above, are capable of

breeding in both tropical and cooler, more temperate climates [56, 57].

Container Category Description

Cooking (N=20,396) Pot, pan, plate, pitcher, cup, and drinking glass.

Plastic containers (N=225,666) Bucket, bowls, basins, washtubs, and storage

containers.

Large tanks (N=6,633) Water storage tanks (cement or fiberglass), pools,

some metal tanks

Medium storage (N=12,216) 55-gall drums, sinks, converted appliances

(refrigerators, washing machines, small metal

tanks)

Non-traditional (N=1,324) Ditches, holes, depressions in floor, drains, puddles,

plastic tarps or bags, rain gutters, PVC tubing

Tires (N=4,061) Used car tires, usually intact, sometimes cut in half or

pieces

Miscellaneous (N=3,122) Discarded car parts, toys, boxes, ice chests, and

furniture

Table 1.1: Aedes Aegypti Breeding Habitats. Description of the container categories most productive for Aedes

aegypti in Iquitos, Peru, between January 1999 and August 2002. Reproduced in part with permission from [47] (See
Appendix A - Figure Permissions).
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The density of larvae produced by an individual breeding site varies between sites and is

dependent on the type of habitat [47] and a range of environmental factors including rainfall

and temperature [59]. Inherent limitations in resources at the breeding site limits the density

of larvae a breeding site can support, with this limit referred to as the carrying capacity of the

site. Larval populations are hence subject to regulation [59, 62–66]. It is generally assumed that

larval population regulation is dominated by density-dependent competition, whereby larvae of

the same species compete with one another for food and other resources [59, 62–66]. While

this has the primary effect of increasing larval mortality [59, 62, 64, 66–71], a high degree of

density-dependent competition may also lead to longer larval development times and a reduction

in the size of adult mosquitoes emerging from the breeding site [62, 64, 70].

Dispersal allows adult mosquitoes to search beyond their immediate environment for blood meals,

breeding sites, mates, resting places and nectar resources [72]. Both Aedes aegypti and Aedes

albopictus are daytime feeders and, while Aedes aegypti primarily feed on human hosts, Aedes

albopictus are more opportunistic feeders, taking blood meals from a range of domestic and wild

animals, as well as humans [73]. The average distance travelled by the mosquito varies between

species, location and environment, and is primarily estimated through mark-release-recapture

(MRR) studies [74]. Owing to their largely urban habitat, Aedes aegypti typically disperse

relatively short distances. A series of MRR experiments carried out in Thailand found a range of

mean dispersal distances for Aedes aegypti of between 28 and 199 metres [75], while an earlier

MRR study in northern Kenya found a mean dispersal distance of 44.2 metres per day and 57

metres per day, for male and female Aedes aegypti mosquitoes respectively [76]. Similar average

dispersal distances for Aedes aegypti have been observed in studies conducted in northern

Australia [77]. Although rare, long-range dispersal events are possible. A study of the dispersal

range of Aedes aegypti and Aedes albopictus mosquitoes in Brazil found that these species could

potentially travel 800 metres or more over the course of six days [78].

1.4 Vector Control

1.4.1 Traditional Methods

Traditional vector control strategies for Aedes spp. typically focus on source reduction, and

include a variety of environmental and chemical interventions such as improving water storage
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and supply facilities, the removal of potential breeding sites, larviciding, and perifocial spraying

(Figure 1.3) [79, 80].

Figure 1.3: Aedes Aegypti Control Methods. Existing methods (upper green region) and methods under
development (lower yellow region) are shown in accordance with the life-stage of the mosquito they target. Reprinted
with permission from [79] (See Appendix A - Figure Permissions).

While rigorous application of these methods can lead to large reductions in vector population

density as seen for example in Central and South America in the 1970s [81], Singapore in the

1970/80s [82], and Cuba in the 1980/90s [83], concerns persist over the long-term sustainability

and effectiveness of these methods. These interventions are highly resource-intensive, and

resistance to many commonly used insecticides, including pyrethroids and organophosphates,

has emerged in many countries and is an ever growing problem [84–88]. Moreover, despite

sustained vector control efforts, dengue has re-emerged in several countries following long

periods of low incidence [82, 89]. Therefore, new sustainable vector control tools are urgently

needed to help prevent and limit the spread of dengue [79, 80].
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1.4.2 Novel Vector Control Methods

Novel vector control methods for Aedes spp. currently being tested include Sterile Insect

Technique (SIT), Incompatible Insect Technique (IIT), Release of Insects carrying a Dominant

Lethal gene (RIDL), and the release of male and female Wolbachia-infected Aedes aegypti. These

approaches seek to reduce disease transmission by utilising particular aspects of the biology of

the mosquito, and broadly fall into two categories; those which aim to modify the vector population

such that vectors have a reduced capacity for dengue transmission (release of male and female

Wolbachia-infected mosquitoes) and those which aim to suppress the vector population (SIT, IIT,

RIDL).

Population Modification

Wolbachia is a maternally-transmitted endosymbiotic intracellular bacterium naturally present in

40%-60% of all insect species [90, 91]. Once present in a host, it manipulates the reproductive

system of that host to give a reproductive advantage to Wolbachia-infected females relative to

uninfected females, which in turn allows Wolbachia to spread throughout the host population.

This is most commonly achieved through cytoplasmic incompatibility (CI) [90]. CI renders eggs

laid following mating of an uninfected female with a Wolbachia-infected male non-viable (they

do not hatch), whereas Wolbachia-infected females lay viable Wolbachia-infected eggs following

mating with infected or uninfected males (Figure 1.4). While Wolbachia provides a reproductive

advantage to infected hosts, it may also carry considerable fitness costs such as increased

mortality and reduced fertility [90].

Figure 1.4: Cytoplasmic Incompatibility. Illustration of how cytoplasmic incompatibility (CI) gives Wolbachia-infected
females a reproductive advantage. CI renders progeny of uninfected females and infected males non-viable, whereas
viable progeny result from all other potential crosses. Reproduced in part from [92]. No permission required as author
of study (See Appendix A - Figure Permissions).

Although naturally present in some mosquito species including Aedes albopictus [93] and Culex
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pipiens [94], Wolbachia is not naturally present in Aedes aegypti. It can however be introduced

into Aedes aegypti via transinfection, as was first illustrated by Xi et al. in 2005 [95]. Initially it

was hypothesised that Wolbachia could potentially be used as a vehicle for gene-drive, with CI

allowing transgenes to be introduced into Aedes aegypti populations. However, after infection

with the highly virulent wMelPop Wolbachia strain was observed to substantially reduce the

lifespan of Drosophila melanogaster fruit flies [96], it was proposed that Wolbachia could instead

be used to reduce the lifespan of Aedes aegypti, potentially to below the extrinsic incubation

period of dengue, thereby dramatically reducing transmission of the virus [97, 98].

Both wMelPop, and the less virulent wMel Wolbachia strain, were subsequently successfully

transinfected from Drosophila melanogaster into Aedes aegypti, with associated mortality

costs of approximately 50% and 10% respectively [97, 99]. The Wolbachia-infected Aedes

aegypti lines created also showed almost perfect CI and maternal transmission. Moreover,

unexpectedly, infection with wMel or wMelPop was shown to strongly inhibit dengue virus

replication in Aedes aegypti [99, 100]. No evidence of dengue virus was found in the saliva of

wMelPop-infected mosquitoes 14 days after infection with DENV2 virus, compared with 80.2%

of wild-type mosquitoes [99]. While some evidence of dengue virus was found in the saliva of

4% of wMel-infected mosquitoes, further examination of these saliva samples suggested that

this may have been caused by imperfect maternal transmission [99]. In light of these results,

it is the reduced ability of Wolbachia-infected mosquitoes to transmit dengue, rather than the

life-shortening fitness costs associated with Wolbachia infection, that now forms the basis of

utilising Wolbachia for dengue control.

To test the viability of Wolbachia-infected Aedes aegypti successfully invading wild-type

populations in the field, large-scale field trials were conducted in Australia and Vietnam. Field

trials of wMel began near Cairns, Australia in January 2011 and demonstrated that successful

invasion and fixation was possible, with a Wolbachia frequency of 90% evident five weeks

after releases had ceased [101]. Analysis conducted 2-3 years after the initial releases began

revealed that there was no evidence of reduced maternal transmission or CI, and that the

average long-term Wolbachia frequency among Aedes aegypti was 94% [102]. Moreover,

no reduction in the virus-blocking ability of wMel-infected Aedes aegypti was observed [103].

Large-scale field trials of the more virulent wMelPop conducted in Australia and Vietnam in
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2012 and 2013 respectively revealed that, owing to high fitness costs, high initial frequencies

of wMelPop-infected mosquitoes dropped dramatically after releases had stopped [104]. This

indicated that establishment of wMelPop-infected Aedes aegypti in the field would be very

challenging.

The primary aim of these trials was to establish the sustainability of this approach, and

thus entomological endpoints alone were considered. However large-scale field trials (using

wMel-infected Aedes aegypti) with both entomological and epidemiological endpoints are

currently under way in Indonesia [105], Vietnam [106], Brazil and Columbia [107]. These trials

will provide critical insight into the viability of this approach as a measure for dengue control

across a range of transmission settings. Meanwhile, the first empirical epidemiological evidence

of reduced dengue transmission following the establishment of Wolbachia in local Aedes aegypti

populations has recently been reported. In the four years since wMel was successfully established

in local Aedes aegypti populations in Townsville, northern Australia, no confirmed local dengue

transmission has occurred, despite an increasing number of imported dengue cases and local

transmission occurring each year since 2002 [108].

Population Suppression

The use of Wolbachia as a tool for dengue control is not limited to vector population modification.

The CI phenotype induced by Wolbachia infection also allows Wolbachia to be used a tool for

vector population suppression through the release of Wolbachia-infected males only (IIT). Indeed

IIT was first successfully used as a vector control strategy in Myanmar in 1967 [109], during a

pilot study conducted to control Culex quinquefasciatus, a vector of lymphatic filariasis. More

recently, small scale field studies testing this approach have taken place in French Polynesia

[110, 111], Kentucky [112, 113], California [114], Queensland [115, 116], and Singapore [117].

In French Polynesia, the release of Wolbachia-infected male Aedes polynesiensis (also a vector

of lymphatic filariasis) over a 30 week period in 2009/10 resulted in a significant decrease in

the proportion of females producing hatching egg broods (76% in the release area, compared

with 93% in the control area) [111]. In 2014, Aedes albopictus males transinfected with the

wPip Wolbachia strain (isolated from Culex pipiens) were released during a pilot study of IIT

in Kentucky, resulting in a reduction in both the egg hatch rate and the mean number of adult

females trapped [113]. Field studies conducted in California, Queensland and Singapore have
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involved the release Wolbachia-infected male Aedes aegypti. While detailed results of the

studies carried out in California and Queensland are yet to be published, initial reports have

been positive. An average reduction of 68% and 80% in the occurrence of female Aedes aegypti

in release areas compared with control areas has been reported for trials conducted California

[114] and Queensland [115] respectively. The field study conducted in Singapore in 2016/2017

is the first of a series of small-scale field studies which will be undertaken to explore the use of

Wolbachia as a tool for Aedes aegypti suppression in Singapore. Wolbachia-infected male Aedes

aegypti were released into residential blocks in two areas of the city, and the design and results

of this study will be discussed in detail in Chapters 5 and 6. To date, IIT has not been tested at a

large scale.

A more traditional tool for insect population suppression is SIT which involves irradiating or

chemically treating male insects so that they become sterile and therefore produce no viable

offspring. Although widely used in the agricultural sector for pest control, most notably for the

control of screw-worm and fruit flies [118], only a few small-scale field studies (and no large-scale

studies) testing this approach in the context of mosquito population suppression have taken

place [119]. Results obtained to date from small-scale studies have been mixed. A three year

small-scale study conducted across multiple sites in northern Italy examining the potential impact

of this technology on Aedes albopictus population size reported induced egg sterility ranging

from 18% and 68% between sites [120, 121].

Another potential tool for Aedes aegypti population suppression is the release of

genetically-engineered male mosquitoes which carry a dominant lethal gene (RIDL), a technology

developed by Oxitec Ltd [122]. Crucially this lethal gene can be switched off by the addition

of tetracycline to the diet of mosquito larvae, which in turn allows large numbers of these

modified male mosquitoes to be reared. Two different transgenic Aedes aegypti strains have

been developed to date, OX513A and OX3604C. OX513A males carry a late acting gene which

causes all offspring resulting from crosses between modified males and wild-types females to

die during the late stages of larval development [122]. Small-scale field trials testing this strain

have been conducted in the Cayman Islands [123] and Brazil [124], resulting in 80% and 81-95%

suppression respectively. Unlike OX513A which targets offspring of both sexes, OX3046C males

carry a gene which targets female offspring only, rendering them flightless and thus unable
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to feed and survive [125]. While initial laboratory results for this strain were promising [125],

subsequent large-scale cage trials showed a mating disadvantage of approximately 60% for this

strain, suggesting these males may not be suitable for large-scale releases [126].

Successful implementation of vector population suppression technologies is particularly

challenging for several reasons. Irradiating, genetically engineering or chemically treating male

mosquitoes may impose substantial fitness costs on the mosquito [126, 127], potentially reducing

mating competitiveness and their ability to survive in the wild. For the intervention to be

successful, large numbers of males need to be continuously released over a long period of time

[128], and immigration of wild-type mosquitoes from surrounding areas may substantially limit

the effectiveness of the intervention. Moreover, mosquito populations may quickly rebound after

releases have ceased unless other effective vector control interventions are in place. Accurate

sex separation of mosquitoes prior to release is also required, which can be both difficult and

expensive [128]. In the case of IIT, the unintended release of Wolbachia-infected females

risks Wolbachia spreading through the population, thereby modifying rather than suppressing

vector populations. A combined SIT/IIT approach, which involves irradiating Wolbachia-infected

mosquitoes, prior to release, has been suggested as a possible method of reducing this risk [127,

129, 130].

1.5 Modelling Spatial Dynamics

As mosquito population density varies geographically, so too does dengue transmission intensity,

with high levels of spatial heterogeneity evident across all spatial scales, ranging from the global

[22] to the individual household level [16]. While this heterogeneity stems from a variety of

environmental, human and social factors including climate [131, 132], levels of urbanization [5,

133], and levels of immunity to dengue among the human population [16, 134], the primary

cause of heterogeneity in transmission intensity is variation in vector density [134]. Thus, an

understanding of the fine-scale dynamics (i.e. those within an area of approximately 1km2 or

less) of vector populations is critical to understanding the drivers of spatial heterogeneity in

disease transmission and persistence at fine spatial scales, and the potential impact of vector

control measures. Mathematical models provide a framework within which these dynamics can

be explored, and hence play an important role in developing our understanding of the factors

which shape the dynamics of mosquito populations at fine spatial scales. Therefore, there is a
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large literature of models of mosquito population dynamics, particularly in relation to Anopheles

mosquitoes, and malaria transmission and control [135]. Here, we focus on the spatial models

developed to explore the fine-scale dynamics of Aedes aegypti populations.

1.5.1 The Metapopulation Approach

When modelling spatial dynamics, metapopulation or multi-patch models often prove a popular

and flexible approach. The roots of the metapopulation concept can be traced back to the seminal

work of Richard Levins in 1969, where he examined the potential effectiveness of a pest control

program for “a population of populations in which local extinctions are balanced by remigration

from other populations” [136]. Thus, a metapopulation is defined as a set of spatially separated

local populations (‘patches’) which interact through individuals moving among these populations

[137]. This concept describes a move away from considering spatially separated populations in

isolation to instead considering these populations as a network of local populations (connected

through movement between local populations), which together form a single larger population.

This, in turn, allows the role of spatial structure in population growth and persistence to be

explored. This is particularly important when population sizes are small as, in any given network

of populations, a combination of demographic and environmental stochasticity may render small

local populations unstable. Small local populations are therefore at continual risk of extinction.

However, coupling of these local populations via dispersal may have a “rescue effect” and allow

local populations to persist where otherwise extinction may occur [138, 139]. Nonetheless, this

is dependent on the level of dispersal between local populations, with poorly connected small

local populations at greater risk of extinction than better connected local populations of a similar

size [138, 140]. This continuous cycle of extinction and recolonization means that, although

persistence at the local level may be quite unstable, persistence of the population as a whole

may remain stable [139]. Metapopulation models therefore often seek to describe the balance

between extinction and recolonization required for a metapopulation as a whole to persist, and to

determine the likely length of population persistence [141].

Several different types of metapopulation model have been developed and, since Levins first

introduced the concept of a metapopulation [136], metapopulation models have increased in terms

of both complexity and realism [142, 143]. Levins’ model, often termed a ‘classical metapopulation

model’ [143], is a deterministic model which considers how the proportion of patches occupied
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across a fragmented landscape changes over time [136]. Under this model, local populations

are classified as either present or absent, all patches are assumed to be the same size and

equally connected, and each local population is assumed to experience a significant risk of

extinction [136]. Thus, while this model provides a useful framework for exploring changes in

habitat occupancy across a landscape, the assumptions underlying the model only describe

a small subset of real-world metapopulations and landscapes. Therefore, metapopulation

models subsequently developed have sought to allow for more realistic characterisations of

fragmented landscapes and species behaviour. For example, shortly after the Levins’ model was

published, Boorman and Levitt proposed the concept of a mainland-island metapopulation model

[143, 144], whereby the metapopulation is comprised of one, large stable local population (the

‘mainland’) and several small, unstable local populations or ‘islands’, with persistence of these

‘island’ populations dependent on emigration from the mainland [143, 144]. Thus this model

allows patches of in a metapopulation model to differ in size [143, 144]. Subsequent advances

in metapopulation modelling resulted in the development of ‘spatially-explicit’ metapopulation

models, which allow for distance-dependent migration between local populations [143, 145].

These models therefore describe more realistic landscapes where not all local populations

are equally connected, and where interaction only occurs among neighbouring populations

[143, 145]. Further extensions of this approach have led to the development of stochastic

“spatially-realistic” metapopulation models which, in addition to distance-dependent migration,

allow for the patch area and location to be accounted for within the modelling framework [143,

145].

Adopting a metapopulation framework allows population dynamics to be explored at different

spatial scales, and therefore metapopulation models, in combination with empirical studies,

have been extensively used in ecology and conservation biology to explore the population

dynamics and persistence of a range of different species, across a variety of landscapes.

Examples of species shown to exhibit metapopulation structure include several butterfly and

bird species [146–152], round-tailed muskrats [153], the American pika [154, 155], aquatic

snails [156], and populations of bull trout [157]. Evidence of the vulnerability of small local

populations to extinction is common to all of these studies, with local populations experiencing

a high rate of population turnover owing to recurrent extinction and recolonization at the local level.
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Indeed the dynamics of the American pika population in Bodie, California is considered one of

the best known examples of a real-world metapopulation, and hence is the subject of long-term

empirical study which has been in place since the 1970’s [143, 154, 155]. In this region, the

species inhabits a network of small, connected habitats of broadly similar size, with all local

populations having a significant risk of extinction [143, 154, 155]. Empirical evidence collected

throughout this study has shown that, although individual patches experiencing a high rate of

population turnover, patch occupancy in the northern half of the study area has remained stable

during the study period [154, 155]. Conversely, patch occupancy in the southern half of the

study area steadily declined over the course of the study, resulting in the eventual collapse

of the population in the southern half [154, 155]. Interestingly, metapopulation modelling of

this system suggests that the population decline in the southern half of the study area can

largely be attributed to an imbalance between extinction and recolonization in this part of the

metapopulation, rather than any substantial environmental changes [154]. Thus, this study

highlights how critical maintaining a balance between extinction and recolonization is to local

persistence in real-world metapopulations, and the importance of metapopulation structure to

shaping the spatial dynamics of fragmented populations across a landscape.

In addition to exploring the mechanisms of species persistence, metapopulation models have

also been used to explore a variety of ecological processes including,, for example, predator-prey

interactions [158], and the population dynamics of multiple species [159, 160] in a fragmented

landscape. In addition, metapopulation models have been used in the context of infectious

disease modelling to provide insight into the persistence of disease and the fine-scale dynamics

of disease transmission [161, 162]. For example, metapopulation models have been used to

show that the Bubonic plague can persist in small rodent populations in the absence of newly

imported cases [163], and that heterogeneous biting and poor mixing between mosquitoes and

human hosts may lead to slower and more variable spread of a mosquito-borne pathogen through

a human population [164].

1.5.2 Spatial Models of Aedes aegypti Population Dynamics

Metapopulation models have also been used to explore the fine-scale dynamics of Aedes

aegypti populations, with models varying in structure, complexity and underlying biological

assumptions. One of the most detailed models which has been developed is ‘Skeeter Buster’, a
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spatial stochastic simulation model of Aedes aegypti population dynamics which models juvenile

populations at the individual breeding container level, and adult populations at the individual

household level [165]. Each patch in the model thus represents an individual household which

contains a number of different breeding sites, and adult mosquitoes can disperse from one

patch to another. This model extends an earlier non-spatial deterministic life table model of

Aedes aegypti population dynamics developed by Focks et al. [166] which incorporates a high

level of detail on both the life cycle and environment of the mosquito, including pupal size,

temperature dependent development rates, the type of breeding container and the availability

of food resources. In addition to accounting for individual breeding container and household

spatial structure, Skeeter Buster also allows the genetic structure of the mosquito population to

be included in the model. Thus it is designed to be customized to individual locations [165], and

has been shown to broadly replicate Aedes aegypti population dynamics observed in Iquitos,

Peru and Buenos Aires, Argentina [167].

Otero et al. [168] also used a metapopulation approach, developing a spatial stochastic

compartmental model which, while considerably simpler in structure than Skeeter Buster, still

accounts for the full life cycle of the mosquito and temperature-dependent development and

mortality rates. This model has also been calibrated against data from Buenos Aires [168], and

recent extensions of the model have included a more detailed hatching and pupation process

[169]. However the model is primarily designed to capture population dynamics at the city block

level, and dispersal is limited to adjoining neighbouring patches only. Lutambi et al. [170] use both

a continuous space and metapopulation approach to explore the effects of mosquito dispersal in

an environment where human hosts and mosquito breeding sites are distributed heterogeneously

across patches. The full life cycle of the mosquito is considered and, while these models were

originally parameterized to represent the dynamics of Anopheles gambiae populations, they

could also be used to explore the fine-scale dynamics of Aedes aegypti. However, one of the

main limitations of the metapopulation model developed is that dispersal is limited to directly

adjoining patches.

A small number of agent based models have also been developed to explore the fine-scale

dynamics of Aedes aegypti. de Almeida et al. [171] developed a detailed multi-agent model

which includes mosquitoes, humans and some animals as agents, and accounts for a variety
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of environmental and human factors including the availability of human and animal blood meal

sources, the availability of breeding sites, climate and vegetation. More recently, Maneerat and

Daudé [172] developed an agent based model of female Aedes aegypti population dynamics

which also accounts for a wide range of factors including features of the underlying landscape,

climate, and the biting and dispersal behaviour of the mosquito.

1.6 Modelling the Impact of Novel Vector Control Measures

Part of the work presented in this section formed the basis of my contribution to:

I. Dorigatti*, C. McCormack*, G. Nedjati-Gilani*, & N. M. Ferguson. Using Wolbachia

for Dengue Control: Insights from Modelling. Trends in Parasitology, vol. 34, no. 2,

pp.102-113, 2018 (* equal contributions)

Mathematical modelling has played a key role in advancing our understanding of the potential

impact of novel vector control measures, highlighting key factors and challenges in the application

of these technologies. Models which have been developed to explore the dynamics of population

suppression and modification measures include:

• deterministic delay-differential equation models which typically describe the mosquito

population using a single equation but may be extended to include age structure [122,

173–176]

• spatial and non-spatial compartmental models which account for the life-cycle of the

mosquito and other factors such as environmental heterogeneities and seasonal changes

in mosquito abundance [177–183]

• reaction-diffusion models which describe the spatial spread of Wolbachia [184–186]

• population genetic models which, rather than focusing on changes in abundance, instead

primarily describe the infection frequency required for Wolbachia to successfully invade a

host population and consider the population as comprised of either discrete or overlapping

generations [186–189]

Indeed, the importance of infection frequency for the use of Wolbachia as a tool for population

modification was first illustrated by Caspari and Watson using a discrete generation population

genetic model [187]. Here the authors demonstrated that, owing to the trade-off between the
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fitness benefits and costs incurred by infection with the bacteria, Wolbachia advances through

a population with bistable dynamics. Namely, once introduced into a population, Wolbachia

frequency reaches a stable equilibrium at one of two states - one where infection frequency is zero

and the other where there is a high proportion of infected individuals (Figure 1.5). For Wolbachia

to successfully invade a population and reach this non-zero equilibrium, initial infection frequency

must exceed a threshold value determined by the trade-off between the relative reduction in

fecundity of Wolbachia-infected females and the relative reduction in the proportion of viable

eggs among all eggs laid owing to incompatible matings between Wolbachia-infected females

and wild-type males.

Figure 1.5: Bistable Dynamics of Wolbachia. CI allows Wolbachia-infected mosquitoes to displace wild-type
mosquitoes (blue curve) if introduced into a population above a threshold frequency (dashed line) which is determined
by the fitness costs of Wolbachia. If introduced below this threshold frequency (red curve), Wolbachia-infected
mosquitoes are out-competed by the wild-type, despite CI. Reproduced in part from [92]. No permission required
as author of study (See Appendix A - Figure Permissions).

Extensions of this model accounting for overlapping generations [190] and imperfect maternal

transmission [184] provided further insight into these dynamics, showing that this critical threshold

would also depend on the degree of vertical transmission of the bacteria and the age structure

and growth rate of the population. Although this threshold value will vary between populations,

initial analyses suggested that, for Wolbachia to spread throughout a population, the critical

threshold frequency could not exceed 0.5 [186, 191]. However, more recent analysis has shown

that the speed of spatial spread slows dramatically as the critical threshold approaches 0.5,

suggesting that, in practical terms, a critical threshold frequency of 0.35 or less is necessary to

initiate spatial spread of Wolbachia in a population [192].

Spatial spread is not a relevant factor for population suppression technologies. However, common
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factors predicted to influence the effectiveness of both population suppression and population

modification technologies include mosquito behaviour [175, 185, 192], the age and spatial

structure of the mosquito population [177, 178, 181, 184, 190, 193, 194], density-dependent

effects [122, 173, 195], the release strategy employed [174, 181, 182, 192, 193] and features of

the surrounding environment [178, 179, 196, 197].

The importance of accounting for density-dependent effects when exploring the potential impact

of these technologies has been recognised from an early stage, with Barclay and Mackauer

using a simple logistic growth model to illustrate that accounting for density-dependent effects

would be key to understanding the potential effectiveness of SIT [173]. More recently, Phuc

et al. used mathematical modelling to investigate how density-dependent regulation of larval

populations would affect the potential effectiveness of RIDL. The authors found that targeting

mosquito populations during the later stages of larval development, after density-dependent

regulation has occurred, would require fewer males to be released and substantially reduce

the risk of inadvertently increasing population size via reduced larval competition, thereby

maximising the potential of this technology [122]. The interaction between density-dependent

competition and release size is also a key consideration for population modification strategies,

as mathematical modelling has predicted that larger releases may be required to initiate spatial

spread of Wolbachia in populations subject to a greater degree of competition [180, 181, 183].

Release strategy is a critical factor for all population suppression and modification technologies,

as potential impact is predicted to depend strongly on the number, frequency, timing and size

of releases [174, 182, 193]. For example, a modelling study by White et al. [174] showed that,

in the context of population suppression technologies such as SIT and RIDL, smaller, more

frequent releases may be more effective than larger, less frequent releases. In addition, this

study suggested that, given mosquito abundance typically varies seasonally, potential impact

would also depend on the timing of releases [174]. Hancock et al. showed a similar result in the

context of population modification strategies, finding that Wolbachia releases performed early in

the wet season to coincide with the early stages of population growth were more likely to result in

successful Wolbachia establishment [182].

Effectiveness of novel vector control measures will also depend on the dispersal behaviour of
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the mosquito. As noted earlier, dispersal of wild-type mosquitoes from surrounding areas may

substantially reduce the potential impact of population suppression technologies such as SIT

and IIT [128, 175, 193]. In terms of population modification, the typical dispersal range of the

mosquito is predicted to affect the speed at which Wolbachia spreads through a population, with

long range dispersal predicted to slow the speed of spatial spread [192]. The speed of spread is

furthermore likely to strongly depend on the level of heterogeneity in the underlying landscape

with environmental heterogeneities, such as sharp changes in mosquito population density or

the quality of larval habitats, predicted to slow or even halt the spatial spread of Wolbachia

unless migration of infected mosquitoes from neighbouring areas is sufficient to allow the critical

threshold frequency to be exceeded at the local level [185, 192, 196, 197].

Although many models have been developed to explore the impact of novel vector control

measures on mosquito population dynamics, to date, few models have been developed which

explore the potential impact of these measures on dengue transmission. Atkinson et al. [198]

initially explored of the potential impact of RIDL on dengue transmission dynamics using a

simple single serotype non-spatial compartmental model of dengue transmission, showing that

this technology could have a large impact on dengue transmission, if the logistical challenges

of implementing this type of intervention could be overcome. A more detailed analysis of the

potential impact of RIDL was subsequently undertaken by Alphey et al. [176] using a two

serotype model of dengue transmission and accounting for likely cost of this type of intervention.

Assuming that released transgenic males were fully competitive and that the genetic construct

was 100% lethal, the authors estimated that sustained releases over a long period had the

potential to (cost-effectively) eliminate dengue in different settings over a very short timescale.

Several modelling studies have explored the potential impact of Wolbachia as a tool for vector

population modification on disease transmission [92, 182, 199–202]. Simplified compartmental

models of dengue transmission have been used to explore the potential impact of Wolbachia

on transmission in non-endemic settings [200–202], primarily in the context of outbreak size.

Hancock et al. [182] examined the impact of Wolbachia on transmission of a malaria-like disease,

comparing male-biased and equal sex ratio releases. Here the authors found that male-biased

releases could also lead to Wolbachia establishment, and hence to a substantial reduction in

disease transmission. Hughes and Briton [199] explored the potential impact of Wolbachia on
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dengue transmission dynamics for a variety of transmission settings, concluding that Wolbachia

would have the largest impact in low transmission settings.

The potential impact of Wolbachia (as a tool for vector population modification) on transmission for

different dengue serotypes has been investigated by Ferguson et al. [203]. Using a mathematical

model which coupled data collected through experiments to assess the level of viral suppression

in wMel-infected Aedes aegypti upon challenge with blood from dengue patients, with data on the

dynamics of dengue infection within the human host, the authors examined the likely impact of

wMel infection on the basic reproduction number of dengue (the average number of secondary

human infections generated by a single human infection in a fully susceptible population), R0, for

each dengue serotype. wMel-infection was predicted to reduce R0 by 66% for DENV1 and 75%

for DENV-2,3,4. Incorporating these estimates into a four-serotype model of dengue transmission,

Dorigatti et al. [92] estimated that the widespread release of wMel-infected Aedes aegypti

could allow dengue to be eliminated permanently in low to moderate transmission settings, and

for several decades in high transmission settings, with transmission only resuming when herd

immunity in the human population declines.

1.7 Overview of Thesis

Given the advances made in recent years in the development of novel vector control measures,

the landscape of dengue control is evolving. These approaches offer a promising new pathway

for the control of Aedes aegypti populations, and thus for the control of dengue across a wide

range of transmission settings. Mathematical modelling has an important role to play in assessing

the likely impact of these new measures, and in developing our understanding of the challenges

which may be faced in successfully implementing these approaches. While models of novel

vector control measures developed to date offer valuable insights into the potential impact

of these approaches, improved models of fine-scale Aedes aegypti dynamics are needed to

realistically model the likely impact of novel vector control measures, with the final goal being

spatially explicit stochastic models of fine-scale Aedes aegypti population dynamics, calibrated

against high quality entomological data. However, development of such models is challenging, as

some important gaps in our knowledge remain.

First, while several very detailed mathematical models of fine-scale Aedes aegypti population
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dynamics have been developed, such as Skeeter Buster [165], the complexity of these models

hinders our ability to disentangle the different factors driving population dynamics at fine spatial

scales - mosquito behaviour, spatial structure, temperature, climate, availability of resources,

and genetic factors. On the other hand, simpler models often consider population dynamics

at a lower level of spatial granularity [168, 170] (for example, at the city block level rather

than at the individual household level, thereby often limiting dispersal to nearest neighbours

only). Alternatively they have largely been developed to explore the potential impact of novel

vector control measures [180–182], and therefore have not been developed with the primary

aim of examining the role of spatial structure in shaping the fine-scale dynamics of Aedes

aegypti populations. Furthermore, although larval populations of Aedes aegypti are often

highly fragmented [47, 61], mathematical models of dengue transmission [198, 204, 205], which

consider larval population dynamics, largely adopt a non-spatial approach to represent the

dynamics of Aedes aegypti larval populations. Thus some fundamental questions about the

fine-scale dynamics of Aedes aegypti populations remain. Namely, how important is spatial

structure in shaping the dynamics of Aedes aegypti populations at fine spatial scales? How do

vector populations persist in fragmented landscapes? What is an appropriate level of spatial

granularity for models to adopt to best represent the fine-scale dynamics of Aedes aegypti

populations?

Second, although many models assessing the likely impact of population suppression strategies

have been developed, to date, none have been calibrated against the detailed entomological data

collected during field studies testing these approaches. Therefore, the insight they provide into

the challenges of implementing these strategies in real urban environments is limited.

In this thesis, we aim to address these gaps in our knowledge by examining the appropriate

level of spatial granularity models of fine-scale Aedes aegypti population dynamics should adopt,

and by developing a framework which allows us to calibrate stochastic models of Aedes aegypti

population dynamics against high quality entomological data, while allowing for the highly variable

nature of mosquito trapping data.

Chapters 2-4 of this thesis explore the role of spatial structure in shaping the dynamics of Aedes

aegypti populations at fine spatial scales. In Chapter 2 we present the model of fine-scale
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Aedes aegypti dynamics developed, and examine the impact of larval habitat fragmentation

on Aedes aegypti population dynamics in spatially homogeneous landscapes. In Chapters

3 and 4 we build on the work presented in Chapter 2 by exploring how spatial heterogeneity

in carrying capacity and the level of spatial granularity in our model affects the dynamics observed.

In Chapters 5 and 6 we extend the model developed in Chapter 2 to analyse the results of a small

scale field trial testing the use of Wolbachia as a tool for Aedes aegypti population suppression

in Singapore by calibrating a model of IIT against the detailed entomological data collected

during this trial. In Chapter 5 we describe the study design, the model developed and inferential

framework developed. In Chapter 6 we present our results and discuss the implications of our

findings for population suppression strategies.

We conclude in Chapter 7 by discussing the key findings of this thesis, their importance in

the context of modelling fine-scale Aedes aegypti population dynamics and novel vector control

measures, and future directions of this work.
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Chapter 2

Homogeneous Landscapes

In Chapters 2-4, I explore the role of spatial structure in shaping the dynamics of Aedes aegypti

populations at fine spatial scales, with the aim of understanding what is an appropriate level

of spatial granularity for models to adopt when representing the fine-scale dynamics of Aedes

aegypti populations.

2.1 Introduction

In any given environment, the density of adult mosquitoes is largely determined by two key

factors. First, the mortality rate of adult mosquitoes and, second, the rate at which new adult

mosquitoes emerge from larval breeding sites. The capacity of larval breeding sites to produce

new adult mosquitoes is constrained however by the availability of resources at those sites, and

thus larval populations are regulated [59, 62–66]. It is generally assumed that such regulation is

dominated by density-dependent intraspecific competition, whereby larvae in a single breeding

site compete for food and other resources [59, 62–66].

Larval breeding sites of Aedes aegypti are often highly fragmented [47, 59, 60], with mixing

among the population determined by the dispersal [72, 206] and oviposition behaviour [50, 207]

of the mosquito. Thus, given that density-dependent competition is a non-linear process, the

dynamics of larval population regulation in a fragmented landscape are likely to be complex.

However, our understanding of the importance of this underlying fragmented spatial structure in

shaping the fine-scale dynamics of Aedes aegypti populations is limited.

Mathematical models of fine-scale Aedes aegypti population dynamics which have been
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developed to date are often highly complex in structure [165, 171, 172], incorporating a wide

range of detail on environmental and biological factors. Simpler models tend to model population

dynamics at lower levels of spatial granularity (e.g. city block level) [168, 170], or alternatively

focus on exploring the likely impact of vector control measures, rather than role of spatial

structure per se [180–182]. Furthermore, mathematical models of dengue transmission which

consider larval population dynamics [198, 204, 205] tend to adopt a very simple representation

of density-dependent competition. Namely, the entire larval population is treated as a well-mixed

population coming from a single large breeding site, and the larval mortality rate is assumed to

increase linearly with larval population size. However, as mentioned above, density-dependent

competition is a non-linear process, and hence it cannot be assumed that modelling a single

large well-mixed larval population will generate the same dynamics as a model which explicitly

represents a network of fragmented local populations.

Ecological research has shown that habitat fragmentation can lead to increased population

instability and decreased population persistence, as a combination of demographic and

environmental stochasticity places small local populations at continual risk of extinction [138–140,

160, 208]. Nonetheless, coupling between fragmented local populations can offset these effects

as migration from neighbouring habitats may allow extinct populations to be reseeded, thereby

increasing local population persistence. Examples of species whose persistence in the face

of habitat fragmentation has been enabled by metapopulation effects include several butterfly

species [208–210] and the American pika [154, 155].

If similar results hold for Aedes aegypti populations, this could have important implications for

mathematical models of Aedes aegypti population dynamics, which consider larval population

dynamics, particularly in the context of estimating the potential impact of novel vector control

measures and vector population persistence at fine spatial scales. Hence, to explore the

impact of accounting for the fragmented structure of larval populations when modelling the

dynamics of Aedes aegypti populations at fine spatial scales, we developed a stochastic

metapopulation model of fine-scale Aedes aegypti population dynamics, and considered the

effects of fragmentation on the dynamics observed by modelling the same mosquito population at

different levels of spatial granularity - corresponding to different levels of fidelity in representing the

true underlying spatial structure of mosquito populations. We explored how habitat fragmentation,
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features of the underlying landscape and the level of spatial granularity in the model affect the

dynamics observed, with the overall aim of understanding the role and importance of spatial

structure in shaping the dynamics of Aedes aegypti populations at fine spatial scales.

This, and the following two, chapters describe the results of this work. In this chapter, I present

the metapopulation model of fine-scale mosquito population dynamics developed and then begin

our analysis by exploring the impact of habitat fragmentation on fine-scale mosquito population

dynamics for urban landscapes with no spatial variation in larval carrying capacity across patches.

At the end of this chapter and Chapter 3, a brief summary and discussion of the results contained

therein is provided, and a more general discussion of the implications and importance of our

results for models of Aedes aegypti population dynamics is provided at the end of Chapter 4.

2.2 Methods

2.2.1 Model Structure

We developed a fine scale stochastic metapopulation model of mosquito population dynamics,

where patches are arranged in an n x n grid, and each individual patch (i, j) represents a

local mosquito population (1 ≤ i, j ≤ n). Local populations are comprised of an egg, larval

and an adult female mosquito population. Thus, when n = 1, the model reduces to the single

patch model with homogeneous mixing. Local populations are connected through adult mosquito

dispersal, where adult mosquitoes can move to and lay eggs in neighbouring patches, and the

deterministic dynamics of a local mosquito population in patch (i, j) are described by the following

set of equations:

dEij(t)

dt
= bgOij(t)− γEEij(t)− µEEij(t) (2.1)

dLij(t)

dt
= γEEij(t)− γLLij(t)− µL

(

1 +
(Lij(t)

Kij(t)

)Ω
)

Lij(t) (2.2)

dAij(t)

dt
=Mij(t) + γLLij(t)− µAAij(t) (2.3)

Oij(t) = g−1Aij(t) (2.4)

Here Eij(t), Lij(t) and Aij(t) denote the egg, larval and adult population in the patch at time t

respectively, Mij(t) denotes the net migration of adult mosquitoes into the patch at time t, Kij(t)

denotes the larval carrying capacity of the patch at time t, Ω describes the strength of density
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dependence, Oij(t) denotes the number of adult mosquitoes laying eggs in the patch at time

t, b denotes the oviposition rate, γE and γL denote the development rate of eggs and larvae

respectively, g denotes the length of the gonotrophic cycle of adult female mosquitoes, and µE ,

µL and µA denotes the egg, larval and adult mosquito mortality rate respectively.

The basic mosquito reproduction number, RM , for our model is defined as the average number

of adult females produced by a single female mosquito during her lifespan in the absence of

population regulation, and is given by

RM = b
γE

γE + µE

γL
γL + µL

1

µA
(2.5)

Here b
µA

describes the average number of eggs laid by a female over the course of her

lifetime, while the terms γE
γE+µE

and γL
γL+µL

account for mortality during the egg and larval stage

respectively when determining the average number of females produced. Here, the value of b is

assigned so that RM remains fixed.

To approximate the continuous time dynamics described by equations 2.1-2.4 above, we

implemented a discrete time stochastic version of this model as detailed below. We chose

a timestep of one eighth of a day (δt = 0.125) as this was sufficiently small to avoid any

timestep-dependent effects in model results. Large timesteps (e.g. δt = 1) could potentially

introduce timestep-dependent effects in model results, particularly when local population sizes

are small. However, we observed quantitatively similar model results for δt = 0.125, δt = 0.0625

and δt = 0.03125, hence decided δt = 0.125 was sufficiently small.

The model was implemented as follows:

Egg Population

In a time step of size δt = 0.125, we draw Oij(t), the number of adult mosquitoes laying eggs in

patch (i, j) at time t, from a Binomial distribution

Oij(t) ∼ Bin(Aij(t), g
−1) (2.6)
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and NE
ij (t) the number of eggs laid in patch (i, j) at time t, from a Poisson distribution

NE
ij (t) ∼ Poisson(bgOij(t)δt) (2.7)

We then determine NL
ij(t) and DE

ij(t), the number of new larvae and deaths during the egg stage

in patch (i, j) at time t respectively, using a competing hazards model as follows:

hEij(t) = γE + µE (2.8)

pEij(t) = 1− e(−h
E
ij(t)δt) (2.9)

TEij (t) ∼ Bin(Eij(t), p
E
ij(t)) (2.10)

NL
ij(t) ∼ Bin

(

TEij (t),
γE

hEij(t)

)

(2.11)

DE
ij(t) = TEij (t)−NL

ij(t) (2.12)

where hEij(t) describes the total hazard of leaving the egg population in patch (i, j) at time

t, pEij(t) describes the probability of leaving the egg population in patch (i, j) at time t, and

TEij (t) denotes the total number of eggs leaving patch (i, j) at time t. The hazard describes the

instantaneous rate of a particular event occuring in a small time interval (t, t + δt) [211]. As we

have a discrete-time model, we convert this rate into a probability (as described in equation 2.9

above) to enable us to model transition between compartments of our model.

The egg population in patch (i, j) at time (t+ 1) is given by

Eij(t+ 1) = Eij(t) +NE
ij (t)−NL

ij(t)−DE
ij(t) (2.13)

Larval Population

A similar competing hazards model is used with respect to the larval population to determine the

number of new adult mosquitoes (NA
ij (t)) and larval deaths (DL

ij(t)) in (i, j) at time t. Thus we

have

hLij(t) = γL + µL

(

1 +
(Lij(t)

Kij(t)

)Ω
)

(2.14)

pLij(t) = 1− e(−h
L
ij(t)δt) (2.15)

TLij (t) ∼ Bin(Lij(t), h
L
ij(t)) (2.16)
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NA
ij (t) ∼ Bin

(

TLij (t),
γL

hLij(t)

)

(2.17)

DL
ij(t) = TLij (t)−NA

ij (t) (2.18)

where hLij(t) denotes the total hazard of leaving the larval population in (i, j) at time t, pLij(t)

denotes the probability of leaving the larval population in (i, j) at time t, and and TLij (t) denotes

the total number of larvae leaving patch (i, j) at time t. The larval population in patch (i, j) at time

(t+ 1) is therefore given by

Lij(t+ 1) = Lij(t) +NL
ij(t)−NA

ij (t)−DL
ij(t) (2.19)

Adult Mosquito Population

We define hAij(t), the total hazard with respect to an individual adult mosquito of leaving the adult

population in patch (i, j) at time t, as

hAij(t) = r + µA (2.20)

where r denotes the dispersal rate of an individual adult mosquito, and µA denotes the adult

mosquito mortality rate. We determine the number of adult mosquito deaths (DA
ij(t)) and the total

number of adult mosquitoes dispersing from patch (i, j) at time t (Fij(t)), as follows

pAij(t) = 1− e(−h
A
ij(t)δt) (2.21)

TAij (t) ∼ Bin(Aij(t), h
A
ij(t)) (2.22)

DA
ij(t) ∼ Bin

(

Tij(t),
µA

hAij(t)

)

(2.23)

Fij(t) = TAij (t)−DA
ij(t) (2.24)

where pAij(t) describes the probability of leaving the adult population in patch (i, j) at time t and,

TAij (t) denotes the total number of adult mosquitoes leaving patch (i, j) at time t

To model the dispersal dynamics of a local adult mosquito population, we characterise the

distance travelled by an adult mosquito in terms of the distance between the centroids of patches

on the grid, with d(ij)−(i′j′) denoting the distance between patches (i, j) and (i′, j′). We set

d(ij)−(ij) = d0 = 0.5214 (the average distance travelled between two random points in a unit
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square) to allow for the scenario where mosquitoes disperse but remain within the same patch.

While the number of mosquitoes dispersing at at time t is dependent on the size of the timestep,

the distance travelled by dispersing mosquitoes is not timestep-dependent.

To determine the number of mosquitoes dispersing a distance d, we use a discretised version of

a continuous space negative exponential dispersal kernel of the form

1

2πa2
e(−

d
a
), a > 0 (2.25)

where m = 2a describes the mean distance travelled [212]. A negative exponential kernel

was chosen to reflect that Aedes aegypti typically disperse short distances, and that long range

dispersal events are rare [75, 76]. To aid computational efficiency we set a maximum dispersal

distance D. Thus, for patches (i, j) and (i′, j′), a mean dispersal length m, and dispersal distance

d , we set

q(d(ij)−(i′j′)) =















1
2πa2

e(−
d(ij)−(i′j′)

a
) for d ≤ D

0 for d > D

(2.26)

Mosquitoes are assumed not to disperse outside of the modelled population. Thus to obtain

p(d(ij)−(i′j′)), the probability of dispersing the distance d(ij)−(i′j′) (Figure 2.1), we normalise the

values generated by the kernel in the following way:

p(d(ij)−(i′j′)) =















q(d(ij)−(i′j′))

S + (1−
sij
S ) for d = d0

qij(d(ij)−(i′j′))

S for d0 < d ≤ D

(2.27)

where

sij =
∑

(i′,j′)|d(ij)−(i′j′)≤D

q(d(ij)−(i′j′)) (2.28)

S = max
(i,j)

{sij} (2.29)
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Figure 2.1: Dispersal Probabilities. The probability of dispersal from the patch at the centre of the grid to patches
elsewhere on the grid when (A) the mean dispersal length is 1 and (B) the mean dispersal length is 5. Probability
values are shown on a natural logarithm scale.

The hazard (with respect to an individual adult mosquito) of dispersing to a specific patch at

distance d∗ from (i, j) is given by

hij(d
∗) = rp(d∗)nij(d

∗) (2.30)

where nij(d
∗) denotes the number of neighbours of patch (i, j) at distance d∗ from (i, j), p(d∗)

denotes the probability of dispersing distance d∗, and r denotes the dispersal rate. Hence we

have

D
∑

d∗=d0

hij(d
∗) = r (2.31)

Having found the total number adult mosquitoes dispersing from patch (i, j) at time t (Fij(t))

(equation (2.24)), we determine the number of those mosquitoes dispersing to each distance d∗

(Fij(t, d
∗)) using a competing hazards model as follows

Fij(t, d
∗) ∼ Bin

(

Fij(t)−
d∗
∑

d=d0

Fij(t, d),
p(d∗) · nij(d

∗)

r −
∑d∗

d=d0
p(d) · nij(d)

)

(2.32)

Thus we have
D
∑

d∗=d0

Fij(t, d
∗) = Fij(t) (2.33)

For each adult mosquito dispersing a distance d∗ from (i, j) its destination patch is randomly
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chosen from among its nij(d
∗) neighbours at this distance.

The adult population in patch (i, j) at time (t+ 1) is hence given by

Aij(t+ 1) = Aij(t) +NA
ij (t)−DA

ij(t) + F ′

ij(t)− Fij(t) (2.34)

where F ′

ij(t) denotes the number of adult mosquitoes dispersing into patch (i, j) at time t. Thus

Mij(t) = F ′

ij(t)− Fij(t) (2.35)

describes the net migration to (i, j) at time t.

2.2.2 Landscape Model

Spatially homogeneous landscapes are created by assuming the same carrying capacity and

initial conditions for each patch. Each patch has the same initial egg, larval and adult population,

and the local population is at its deterministic equilibrium at the start of each simulation. Thus, if

L∗

ij denotes the larval population of patch (i, j) at deterministic equilibrium, E∗

ij and A∗

ij , the egg

and adult population of (i, j) at deterministic equilibrium respectively, are given by

E∗

ij =
bγLL

∗

ij

(µA(µE + γE))
(2.36)

A∗

ij =
γLL

∗

ij

µA
(2.37)

and we set K̄ij , which denotes the mean carrying capacity of patch (i, j), as

K̄ij =
L∗

ij

γL
µL

(

bγE
µA(γE+µE) − 1

)

− 1

∀(i, j) (2.38)

Larval carrying capacity is varied seasonally using a sinusoidal function of the form

Kij(t) = K̄ij(1 + ∆(cos(2π(t+ φ)))) (2.39)
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where here t is in years, ∆ and φ denote the amplitude and phase of seasonal variation in

carrying capacity respectively, and K̄ij denotes the mean carrying capacity of patch (i, j) across

the year.

We explore the population dynamics across two types of landscape. First, we consider

landscapes where a stable mosquito population is already present to reflect urban environments

where Aedes aegypti are established. Second, we consider the invasion dynamics resulting from

mosquitoes being seeded into an otherwise unoccupied landscape. The reflects scenarios where

Aedes aegypti are newly introduced or reintroduced into a landscape following, for example,

temporary suppression of the vector populations resulting from vector control interventions or

seasonal declines in mosquito abundance.

2.2.3 Model Assumptions

Adult Female Mosquitoes Only

We chose not to consider the adult male population, and to model adult females alone, for

several reasons. While female Aedes aegypti lay several batches of eggs over the course of

their lifetime, they typically only mate once with an adult male [48]. Thus, provided the size of

the adult male population remains sufficiently large for adult females to find a mate, the dynamics

of Aedes aegypti populations are more heavily influenced by changes in adult female density

than those in adult male density. Furthermore, as only adult female Aedes aegypti transmit

disease, the dynamics of the adult female population are of greater interest in the context of

vector control, and disease transmission and control. Consequently, mathematical models of

Aedes aegypti population dynamics (excluding those exploring the potential impact of novel vector

control measures) largely consider adult female populations alone, and assume that the density

of adult males is sufficient to allow females to mate successfully [168, 203–205]. Hence, in line

with these studies, we adopt a similar approach here.

Functional Form of Density Dependence

For each patch (i, j), we represent density-dependent competition during the larval stage of

mosquito development by increasing larval mortality as the size of the local larval population

approaches the carrying capacity of the patch. We chose to represent density-dependent

competition during the larval life stage (as opposed to other life stages) in light of the results of
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empirical laboratory and field studies exploring the impact of resource limitations and increased

larval density at breeding sites on the dynamics of Aedes aegypti populations [59, 62, 64, 66–71].

One of the earliest field studies exploring density-dependent effects on mosquito populations

considered Aedes aegypti populations in Thailand [66]. Here, the authors established that

mortality during the early stages of larval development was indeed density-dependent. More

recent field studies undertaken across a variety of different settings including Mexico [62,

67], Venezuela [59], and Australia [64] showed a similar negative relationship between larval

population density and larval survival, owing to density-dependent intraspecific competition

for resources at breeding sites. Similar results have also been observed in larval populations

reared under laboratory and semi-field conditions, for both Aedes aegypti [68–71] and Aedes

albopictus [213]. In addition to increasing larval mortality, empirical studies have shown

that density-dependent competition during the larval life stage may also lead to slower larval

development and smaller adult mosquitoes emerging from the breeding site [62, 64, 70].

Furthermore, a reduction in the size of adult mosquitoes emerging from the breeding site may

in turn affect both the oviposition and mortality rate of adult females, as empirical studies have

indicated that smaller adult female Aedes aegypti may lay fewer eggs over the course of her

lifespan [214] and have a higher mortality rate [215], compared with larger females.

The effects of density-dependent competition could therefore have been represented in our

model in several different ways. For example, we could have represented density-dependent

competition by varying the oviposition rate (b) or the larval development rate (γL) with larval

density (instead of, or in addition to, varying the larval mortality rate). However, we chose to

represent density-dependent competition solely through changes in larval mortality, in accordance

with changes in larval population density, as this is the approach most commonly used in models

of mosquito population dynamics, which consider larval populations [168, 204, 205, 216, 217].

Spatial Granularity

We vary the level of fidelity we have in our model in representing the true underlying fragmented

structure of Aedes aegypti larval populations by varying the number of patches used to

represent the dynamics of the mosquito population across a given landscape, with more patches

corresponding to greater fidelity. The lowest level of spatial granularity in our model corresponds

to the single patch approach as here we do not account for the fragmented structure of larval
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populations and consider the population as a single, well-mixed population coming from one large

breeding site. Finer levels of spatial granularity allow us to account for the fragmented structure

of larval populations and spatially heterogeneous mixing among populations, at different levels.

In choosing the finest level of spatial granularity in our model, we consider the typical oviposition

and dispersal behaviour of adult female Aedes aegypti.

As discussed in Chapter 1, Aedes aegypti primarily breed in urban domestic environments, and

there can be several breeding sites per individual household [47, 48, 61]. MRR studies indicate

that, owing to their domestic habitat, Aedes aegypti typically disperse very small distances

(e.g. 20m-100m [75], 56m [77]), often only travelling to neighbouring households, with most

mosquitoes released in individual households during MRR studies recaptured within the house of

release [75]. Thus, mixing of Aedes aegypti among households is spatially heterogeneous [47,

61, 75].

Within individual households, mixing among larval populations is also dependent on the

oviposition behaviour of adult females. Aedes aegypti often lay eggs from a single batch across

multiple breeding sites (skip-oviposition) [207, 218], and thus may distribute their eggs across

a household. Nonetheless, empirical field studies indicate that adult female Aedes aegypti

actively choose oviposition sites, and thus do not distribute eggs randomly among breeding

sites [207, 218]. Based on their analysis of egg laying behaviour of Aedes aegypti in Iquitos,

Peru [207], Wong et. al conclude that Aedes aegypti breeding site selection is primarily driven

by conspecific attraction, whereby members of the same species tend to breed where other

members of the species are present or have recently laid eggs. The authors hypothesise that

using these cues may allow female Aedes aegypti to identify more stable breeding sites, in terms

of the availability of water and nutrients for example [207]. In addition, the physical properties of

individual breeding containers may also play an important role in attracting gravid females, with

empirical evidence suggesting that adult females prefer to breed in larger sites, both in terms of

diameter and volume [218]. However, while larger breeding sites are likely to have greater food

resources, it is unclear to what extent oviposition site selection is driven by the desire to maximise

food resources for offspring. Wong et al. suggest that, while this is a factor, conspecific attraction

and physical attributes of the breeding site play a more important role [207]. On the other hand,

empirical laboratory studies have indicated that, beyond a larval density of approximately 1 larva
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per millimetre of water, gravid females are less likely to be attracted to a given breeding site, even

if conspecific larvae are present [219].

Given the variety of factors which contribute towards oviposition site selection within an individual

household, we make the simplifying assumption that mixing within individual households is

spatially homogeneous. While these processes may play a role in shaping the dynamics

of populations within an individual household, our motivation for this work is not to develop

a highly detailed, biologically-accurate model of Aedes aegypti population dynamics at the

individual breeding container level. Rather, we aim to explore how allowing different levels of

spatial heterogeneity in mixing among larval populations, and our choice of representation of

spatial structure (if represented at all) influence our understanding of Aedes aegypti population

dynamics at fine spatial scales. Thus, we chose the finest level of spatial granularity in our model

to correspond to modelling at the individual household level as movement between patches at

this level of granularity is characteristic of the typical dispersal length of Aedes aegypti.

Here, we consider an example urban landscape comprised of 1024 households. Thus, at the

finest level of spatial granularity in our model, we have a 32x32 spatial grid. We assume each

square of this 32x32 grid represents an area of approximately 20mx20m. We reduce the level

of spatial granularity in our model by doubling the size of each patch. Hence, as we move from

a 32x32 grid to a 16x16 grid, each patch now corresponds to a group of 4 households and an

area of 40mx40m. We examine the effect of further coarsening the representation of space in

our model until we represent the dynamics of the Aedes aegypti population across the landscape

using a single patch, where the population is assumed to mix homogeneously.

2.2.4 Parameter Values

Unless otherwise stated, all parameter values used are as shown in Table 2.1, and parameter

values were chosen where possible from the literature to represent the characteristics of Aedes

aegypti.

Our choice of parameter values used to represent the typical dispersal behaviour of Aedes

aegypti at the individual household level were guided by estimates of the mean dispersal distance

derived from MRR studies. As discussed above, MRR studies indicate that Aedes aegypti
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typically disperse very short distances [75–77]. While estimates of the mean dispersal distance

vary between studies and locations, a distance of approximately 50m is typical of values the

mean dispersal distance of Aedes aegypti estimated by MRR studies [75–77].

These estimates however largely correspond to the mean distance travelled over the course of an

adult female’s lifespan, rather than over the course of a single day. Hence, we sought to choose

values of the daily dispersal rate and mean dispersal length (at the 32x32 grid level) to correspond

to a mean lifetime dispersal distance of approximately 50m. We chose these parameter values

by first using our model to explore the range of mean lifetime dispersal distances generated by

combinations of the daily dispersal rate (r) and mean dispersal length (m) (keeping the adult

mosquito mortality rate (µA) fixed).

To calculate the mean lifetime dispersal distance for a given combination of the daily dispersal

rate and mean dispersal length in model run n, we first set the oviposition rate (b) to zero, and

seed 1000 adult females in the same patch (i′, j′) at the centre of our 32x32 grid. Setting the

oviposition rate to zero ensures that no new adult females enter the population. We then record

the cumulative number of deaths in each patch on the grid at the end of the run, and calculate

the Euclidean distance between each patch and the seeded patch. The mean lifetime dispersal

distance for run n (MLDn) is then given by

MLDn =
1

1000

∑

(i,j)

Cij(n)d(ij)−(i′j′) (2.40)

where Cij(n) denotes the cumulative number of adult female deaths in patch (i, j) at the end of

run n, and d(ij)−(i′j′) denotes the distance between patch (i, j) and the seeded patch (i′, j′). To

get a final estimate of the mean lifetime dispersal distance, we take the average across 1000

model runs (seeding in the same patch in each run).

The results of this exercise are presented in Figure 2.2 below. We found that, using a negative

exponential kernel, a daily dispersal rate of 0.08 and mean dispersal length of 5 patches gave

a mean lifetime dispersal distance of approximately 50m. Hence we chose these values as the

default parameter values in our model. However, we tested sensitivity of our modelling results

to different values of these parameters to explore how the underlying population dynamics are

affected by different dispersal behaviours.
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Figure 2.2: Mean Lifetime Dispersal Distance. Comparison of the estimated mean lifetime dispersal distance of
adult mosquitoes for different values of the daily dispersal rate and mean dispersal length per day, for a homogeneous
landscape on a 32x32 grid. This was calculated as described in equation 2.40 above. Figures A and B show estimates
in terms of Euclidean distance between patches, and Figures C and D show estimates in terms of metres (assuming
each patch in our 32x32 grid represents an area of approximately 20mx20m).

As the level of granularity in our model is reduced, we adjust the daily mean and maximum

dispersal lengths accordingly. For example, as we move from a 32x32 grid to a 16x16 grid, we

double the size of each patch. Thus the mean and maximum dispersal lengths are halved.

In line with existing models of Aedes aegypti population dynamics [168, 170, 198, 204, 205], we

assume density-dependence during the larval stage is linear (i.e. Ω = 1). In Chapter 4, we allow

this parameter to vary when exploring whether the dynamics observed using the metapopulation

model can be reproduced using the single patch model.

At the individual household level (32x32 grid) we chose a range of low equilibrium larval

population sizes (1-10 per patch) to explore the dynamics of Aedes aegypti populations across

different landscapes. We chose this range of values as empirical studies of Aedes aegypti

populations at the individual household level have shown that the number of adult Aedes aegypti

per household is often very low [61, 220, 221]. For example, empirical studies of Aedes aegypti

population dynamics in Thailand and Puerto Rico estimated an average of 11 ± 2 and 7 ± 2 adult
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mosquitoes (male and female) were captured per weekly collection per individual household in

study areas in Thailand and Puerto Rico respectively [221].

We run the model for a period of 7 years to ensure an equilibrium has been reached, and to allow

us to explore the effects of seasonal changes in carrying capacity on population dynamics. We

consider than an equilibrium has been reached when we observe quantitatively similar dynamics

over the course of several years. I coded the model in C++.

Parameter Definition Value Reference

g Length of gonotrophic cycle 3 days [49]

RM Mosquito reproduction number

2.69

(based on estimate of

female fecundity of

0.269/day and adult

mosquito mortality rate

of 0.1/day)

[190]

b Number of eggs laid by an adult mosquito Assigned to match RM -

1
γE

Mean development time of mosquito eggs 4 days [64]

1
γL

Mean development time of mosquito larvae 15 days [64]

µE Egg mortality rate 0.01/day [222]

µL Larval mortality rate 0.025/day [222]

µA Adult mosquito mortality rate 0.1/day [223]

m Mean dispersal length of an adult mosquito 5 patches [75–77]

D Maximum dispersal length of an adult mosquito 12 patches [75–77]

r Dispersal rate of an adult mosquito 0.08/day [75–77]

K̄ij Mean larval carrying capacity of patch (i, j) Variable -

Ω Strength of density dependence 1 -

Table 2.1: Model Parameter Values. Definition and values of parameters used in the simulation model at the 32x32
grid level. For a mean dispersal length of 5 patches, the probability of dispersal to much larger distances is negligible
and hence we set a maximum dispersal length of 12 patches to aid computational efficiency.
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2.3 Results

2.3.1 Impact of Fragmentation

To explore the impact of fragmentation alone, we first considered the dynamics of an established

mosquito population in a homogeneous landscape with no spatial or temporal variation in

carrying capacity across patches. We observed that fragmentation may lead to a reduction in

both total population size and patch occupancy levels, compared with the single patch model.

The magnitude of this effect depended on the carrying capacity of each patch (represented as

the deterministic equilibrium larval population size in Figure 2.3). For the non-spatial single

patch model, population size scaled linearly with carrying capacity as expected, while the

relationship was non-linear for the metapopulation model, especially in the absence of dispersal.

As expected, the largest differences occurred when the carrying capacity of individual patches in

the metapopulation was low, as the probability of stochastic extinction is then highest.

Figure 2.3: Impact of Fragmentation on an Established Mosquito Population. Mean final total population size and
patch occupancy for a mosquito population modelled as a single patch and as a metapopulation on a 32x32 grid, using
a dispersal rate of 0.08 per day and a mean dispersal distance of 5 patches. The initial population of each patch is at its
deterministic equilibrium at the start of each simulation, and the total initial adult population in the single patch model
is 32x32 times the initial adult population of each patch in the metapopulation model. The dashed black line represents
the results observed under the single patch model, the sodid lines show the mean value, and the shaded areas show
the 95% confidence interval. Figures (A) and (B) compare the results observed for a homogeneous landscape with
no temporal or spatial variation in larval carrying capacity. For each scenario, the mean is calculated across 1000
realisations of the stochastic model.

The dispersal of adult mosquitoes across the landscape counteracted these effects by enabling

extinct local populations to be reseeded, thereby rescuing these populations and increasing

population persistence and patch occupancy. For patches with low carrying capacity and hence

an unstable local population, this recurring cycle of extinction and recolonization leads to a
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continuous fluctuation in patch occupancy at the local level. However, at the global level, patch

occupancy levels remained stable, indicating that a balance between extinction and recolonization

across the metapopulation as a whole is maintained, thereby allowing the overall population to

persist.

2.3.2 Dispersal Dynamics

The extent to which dispersal counterbalanced the effects of fragmentation was dependent both

on the dispersal rate and mean dispersal length of the mosquito. Total population size and patch

occupancy were highest when both the dispersal rate and mean dispersal length of the mosquito

were high, as frequent and widespread movement of adult mosquitoes across the landscape

enabled more rapid recolonization of patches following local extinction (Figure 2.4). Moreover,

we observed that the rate of dispersal played a greater role in increasing local persistence than

the mean dispersal length of the mosquito, as frequent highly local dispersal led to larger total

population sizes and higher patch occupancy than less frequent dispersal over a wider distance.

Figure 2.4: Dispersal Dynamics in Homogeneous Landscapes. Comparison of population dynamics observed for
varying rates and lengths of dispersal in homogeneous landscapes on a 32x32 grid with a equilibrium larval population
of 3 (A-C) or 6 (D-F) larval mosquitoes per patch. Results are compared with respect to mean final total population
size (A,D), patch occupancy at equilibrium (B,E) and the mean time between extinction and recolonization of individual
patches (C,F). The maximum dispersal range was set to 20 patches. For each scenario, the mean was calculated
across 1000 realisations of the stochastic model.
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Further stabilizing mechanisms of the metapopulation were evident from exploring the relationship

between the degree of dispersal across the landscape and the variability of larval populations at

the local level. Indeed, dispersal can make individual patch populations more stable than isolated

patches. Examining the variance to mean ratio of the larval population in individual patches, we

observed a move from over-dispersion to under-dispersion as the rate of dispersal increased

(Figure 2.5). This change arises since at high rates of dispersal, the birth process in individual

patches becomes decoupled from the population in the patch itself, and thus increased regulation

is required at the local level to stabilize the population.

Figure 2.5: Impact of Increasing the Dispersal Rate. Variance to mean ratio of a local larval population at the final
time step in a metapopulation comprised of 1024 (32x32) patches with no temporal or spatial heterogeneity in carrying
capacity, and where each patch has an equilibrium larval population of 3,6, or 9 larval mosquitoes. The dashed red line
denotes the crossover point from over- to under- dispersion relative to the Poisson distribution. A negative exponential
dispersal kernel with a mean dispersal distance of 5 patches was used. For each scenario, the mean and variance
were calculated across 1000 realisations of the stochastic model.

2.3.3 Invasion Dynamics

Next, we examined the effects of landscape fragmentation on population invasion in an

otherwise unoccupied landscape, while taking account of seasonal variation in carrying capacity.

In the single patch model we observed fast population growth, with almost all model runs

resulting in population persistence (Figure 2.6A). However, in a fragmented landscape, a more

complex picture emerges, with fragmentation hindering both population persistence and growth,

particularly when the dispersal rate is low and movement beyond the seeded patch is limited.

When individual patches have a low carrying capacity, local populations are highly vulnerable to

extinction from stochastic effects, which in turn reduces the likelihood of sustained invasion upon

seeding and reduces the speed of population spread across the landscape (Figures 2.6A,B).

Moreover, for model runs which resulted in population persistence, fragmentation also reduced

the level of population growth and patch occupancy across the landscape (Figures 2.6B,C). In
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addition, fragmentation increased the amount of variability in populations size during the early

stages of population growth, prior to the population stabilizing, compared with the single patch

model (Figure 2.6D).

Figure 2.6: Impact of Fragmentation on Population Invasion. Population dynamics observed when a single patch in
a landscape with temporal variation in carrying capacity is seeded with an adult mosquito population, and is modelled
as a single patch (dashed lines) or as a metapopulation (with a dispersal rate of 0.08 per day) on a 32x32 grid (solid
lines). We consider the dynamics for landscapes with a mean equilibrium larval population of 3, 6 or 9 larvae per patch
(L*), seeded with 3,6 or 9 adult mosquitoes respectively, and where the amplitude and phase of seasonal variation in
carrying capacity are 0.7 and 0.5 respectively. The results are compared with respect to the mean proportion of models
runs which resulted in sustained invasion (final total adult population >1) (A), the mean proportion of patches occupied
(B), mean total adult mosquito population size (C), and the standard deviation of total adult mosquito population size
(D). A mean dispersal distance of 5 patches was used. For each scenario, the mean and variance were calculated
across 1000 realisations of the stochastic model.

Again we found that the population dynamics observed in fragmented landscapes were heavily

dependent on the dispersal behaviour of the mosquito. A high rate of movement across the

landscape resulted in increased final population size (approaching that of the single patch model),

increased patch occupancy and a faster speed of invasion, even when dispersal was highly local

(Figures 2.7). Increasing mean dispersal length had a similar overall effect, but also resulted in

smoother spatial population spread, particularly when the dispersal rate was low, as this resulted

in faster local establishment in unoccupied areas of the landscape, despite seasonal fluctuations

in carrying capacity (Figures 2.7E-H).
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Figure 2.7: Impact of Dispersal Behaviour on Population Invasion. Population dynamics observed when a
landscape with temporal variation in carrying capacity and a mean equilibrium larval population of 6 larvae per patch is
seeded with 6 adult mosquitoes, and modelled as a single patch (dashed lines) or on a 32x32 grid (solid lines). A mean
dispersal length of 1 patch (A,C,E,G) and 5 patches (B,D,F,H) was used, the amplitude and phase of seasonal variation
in carrying capacity are 0.7 and 0.5 respectively. Results are compared with respect to mean total adult mosquito
population size (A,B), the standard deviation of total adult mosquito population size (C,D), the mean proportion of
patches which have been occupied at least once (E,F), and the mean proportion of patches occupied (G,H). For each
scenario, the mean and variance were calculated across 1000 realisations of the stochastic model.
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Invasion dynamics showed increased sensitivity to seasonal variation in carrying capacity in

fragmented landscapes compared with the non-spatial single patch model, as the likelihood of

sustained invasion upon seeding was more sensitive to the timing of seeding (Figure 2.8). For

landscapes with a low mean carrying capacity, sustained invasion was least likely when seeding

occurred prior to the onset of a seasonal trough in carrying capacity, and most likely when

carrying capacity remained above the seasonal average immediately after seeding (Figure 2.8).

Increasing the amplitude of seasonal increased the magnitude of these effects.

Figure 2.8: Timing of Population Invasion. Mean proportion of model runs which resulted in sustained invasion (final
total adult population >1) when a landscape with temporal variation in carrying capacity and mean a equilibrium larval
population of 6 larvae per patch is seeded with 6 adult mosquitoes, and modelled as a single patch or on a 32x32 grid
(with a dispersal rate of 0.08 per day and a mean dispersal length of 5 patches). The amplitude of seasonal variation
in carrying capacity was 0.7, and seeding occurred when carrying capacity was at its seasonal peak (phase=0), mean
value (phase=0.25, 0.75), or trough (phase=0.5). For each scenario, the mean was calculated across 1000 realisations
of the stochastic model.
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2.4 Discussion

In this chapter, we developed a stochastic metapopulation model of fine-scale Aedes aegypti

population dynamics. We examined the impact of larval habitat fragmentation on mosquito

population dynamics and explored the mechanisms which enable vector populations to persist in

a fragmented landscape.

We found that fragmentation of larval populations can have a large impact on the dynamics

observed, by leading to a reduction in population size and patch occupancy (compared with

a single well-mixed population), with the largest reductions occurring when individual patches

had low carrying capacities and thus a substantial risk of stochastic population extinction. The

dispersal behaviour of adult mosquitoes played a key role in counterbalancing these effects,

enabling increased local population persistence and allowing stability of the metapopulation as

a whole to be maintained. Habitat fragmentation rendered successfully establishing a mosquito

population in an unpopulated landscape considerably more difficult, with fragmentation reducing

the likelihood of sustained invasion upon seeding, and the speed and extent of spatial population

spread across the landscape strongly dependent on the frequency and range of adult mosquito

dispersal.

These results suggest that using non-spatial models to represent the fine-scale dynamics of

Aedes aegypti populations may substantially underestimate the stochastic volatility of those

populations and the frequency at which local mosquito populations go extinct. This in turn may

lead to over-estimates of vector population persistence and the speed at which Aedes aegypti

populations are likely to invade unoccupied landscapes. The risk of extinction through stochastic

effects is highest for small local populations and, given that density-dependent competition gives

rise to non-linear dynamics during the larval stage of population growth, the dynamics observed

when the fragmented structure of larval populations is explicitly represented cannot be exactly

reproduced using a single patch (non-spatial) model. In a regime where local stochastic effects

are substantial, total mosquito population size will be smaller (and population volatility larger)

than predicted by a single patch model with the same total carrying capacity.

Before discussing the implications of these results further, we first seek to develop a fuller

understanding of the effects of metapopulation structure on fine-scale Aedes aegypti population
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dynamics by considering how spatial heterogeneity in the underlying landscape affects the

dynamics observed and how the results we have obtained depend on the level of spatial

granularity in our model. We thus proceed to explore these effects.
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Chapter 3

Heterogeneous Landscapes

We showed in Chapter 2 that accounting for larval habitat fragmentation when modelling the

dynamics of mosquito populations at fine spatial scales can have a large impact on the dynamics

observed, but limited our analysis to spatially homogeneous landscapes. Here we extend the

landscape model presented in Chapter 2 to allow for spatial heterogeneity in carrying capacity

across patches, and explore how features of the underlying landscape influence fine-scale

mosquito population dynamics. All other features of the metapopulation model remain unchanged

and are as presented in Chapter 2.

3.1 Methods

3.1.1 Landscape Model

To compare the dynamics observed in landscapes with different levels of spatial heterogeneity

in carrying capacity to those observed using the single patch model, we want total and mean

carrying capacity across the landscape to remain fixed. We thus created spatially heterogeneous

landscapes as follows.

To create a landscape with a fixed mean larval carrying capacity K̄∗ and a specified level of

variability σ2 around this mean value, we first draw a sequence of positive values Xij from a

log-normal distribution

Xij ∼ logN(K̄∗, σ2) (3.1)

To keep the total carrying capacity across the landscape fixed, we apply a transformation of the
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form aXb
ij to the generated values, where the values of a and b are such that

E[aXb
ij ] = K̄∗ (3.2)

Var[aXb
ij ] = σ2 (3.3)

We then set K̄ij = aXb
ij , where K̄ij denotes the mean carrying capacity of patch (i, j) across the

year. Values of a and b such that equations (3.2) and (3.3) hold are found numerically using linear

interpolation.

To create spatially heterogeneous landscapes with varying levels of spatial correlation (Figure

3.1) we use a similar approach to that adopted by Hancock et al. in [196] . An n2 x n2 correlation

matrix C with entries

Cij = e−αd (3.4)

is created, where d denotes the distance between a pair of patches, and α controls the degree of

correlation between values, with very small values of α giving a high degree of correlation. Taking

the Cholesky decomposition of C gives a matrix L such that C = LLT . Thus for X ∼ N(0, I), we

have that [224]:

Corr[LX] = E[(LX)(LX)T ] = E[L(XXT )LT ] = LE[XXT ]L=LLT = C (3.5)

Then, setting Y = eLX , a similar approach to that described directly above by equations (3.2) and

(3.3) is then used to transform the values of Y to give a landscape with a mean larval carrying

capacity K̄∗ and variance σ2.

Figure 3.1: Example Landscapes. Examples of a landscape with a fixed total and mean carrying capacity: (A)
homogeneous landscape, (B) heterogeneity in carrying capacity without clustering and (C) heterogeneity in carrying
capacity and a high level of clustering across the landscape.
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3.2 Results

3.2.1 Spatial Heterogeneity and Dispersal Dynamics

The impact of non-clustered spatial heterogeneity in carrying capacity across the landscape on

the population dynamics observed was dependent both on the mean value of carrying capacity

and the underlying dispersal dynamics. Increasing inter-patch variability, while keeping the total

carrying capacity fixed, increases the risk of local stochastic extinction as a higher proportion of

patches have low carrying capacities. However, this can have either positive or negative effects

on overall population persistence, depending on the mean value of carrying capacity and the rate

of dispersal. For landscapes with an established mosquito population, a low mean patch carrying

capacity and a low rate of dispersal, increased spatial heterogeneity resulted in increases in total

population size and patch occupancy compared with a spatially homogeneous landscape (Figure

3.2). This is because a small fraction of patches now have carrying capacities high enough to

sustain local population persistence for an extended period. However, for higher values of mean

patch carrying capacity, inter-patch variability increases the risk of stochastic extinction compared

with a homogeneous landscape (Figure 3.2) - due to an a higher proportion of patches having

carrying capacities too low to allow local populations to persist.

Figure 3.2: Impact of Fragmentation in Spatially Heterogeneous Landscapes. Mean final total population size and
patch occupancy for a mosquito population modelled as a single patch and as a metapopulation on a 32x32 grid, using
a dispersal rate of 0.08 per day and a mean dispersal distance of 5 patches. The initial population of each patch is at its
deterministic equilibrium at the start of each simulation, and the dashed black line represent the results observed under
the single patch model.The sodid lines show the mean value, and the shaded areas show the 95% confidence interval.
Figures (A) and (B) compare the single patch model to the metapopulation model with dispersal, for a heterogeneous
landscape with the level of spatial heterogeneity in carrying capacity across patches characterised by the coefficient of
variation (CV) and no temporal variation in carrying capacity. For each scenario, the mean was calculated across 1000
realisations of the stochastic model.
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Population dynamics also showed non-monotonicity in relation to the dispersal rate. For

established populations, with low between-patch variability, local persistence and thus overall

population size was highest for high dispersal rates (Figures 3.3A,C). However, increasing

between-patch variability resulted in reduced overall population size, with population size lowest

for high dispersal rates due to dispersal-driven depopulation of patches with high carrying

capacity (Figure 3.3). A similar pattern was observed with respect to patch occupancy for

landscapes with very low mean carrying capacity (Figure 3.3B). However as mean carrying

capacity increases, patch occupancy was less sensitive to changes in the dispersal rate as

even patches with lower than mean carrying capacity were less vulnerable to local extinction

(Figure 3.3D). Nonetheless, patch occupancy still decreased with increasing inter-patch variability

(Figures 3.3B,D).

Figure 3.3: Spatial Heterogeneity and Dispersal. Population dynamics observed for an established mosquito
population in landscapes with a varying degree of spatial heterogeneity, characterised by the coefficient of variation
(CV), modelled as a single patch (dashed lines) or as a metapopulation on a 32x32 grid (solid lines). Figures (A,B)
correspond to a landscape with an equilibrium mean larval population of 3 larvae per patch, while (C,D) correspond to
a landscape with an equilibrium mean larval population of 6 larvae per patch. A mean dispersal distance of 5 patches
was used. For each scenario, the mean was calculated across 1000 realisations of the stochastic model.
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3.2.2 Spatial Heterogeneity and Invasion Dynamics

Spatial heterogeneity in carrying capacity across patches also had a large impact on population

invasion. The likelihood of sustained invasion upon seeding decreased with increasing inter-patch

variability, owing to an increased chance of seeding in an area of low carrying capacity (Figure

3.4A). Furthermore, while the speed of spatial spread increased monotonically with the dispersal

rate, it decreased with increasing inter-patch variability as patches with low carrying capacity

pose a barrier to local establishment and onwards spatial spread (Figure 3.4B). Increasing

inter-patch variability therefore also led to reduced total population size and patch occupancy,

particularly when dispersal was high local (Figures 3.4C,D)

Figure 3.4: Invasion Dynamics in Spatially Heterogeneous Landscapes. Population dynamics observed when
a landscape with spatial and temporal variation in carrying capacity and mean a equilibrium larval population of 6
larvae per patch is seeded with 6 adult mosquitoes, and modelled as a single patch(dashed lines) or on a 32x32 grid
(solid lines). The level of spatial heterogeneity in carrying capacity across patches is characterised by the coefficient
of variation (CV). A mean dispersal length of 5 patches was used, the amplitude and phase of seasonal variation in
carrying capacity are 0.7 and 0.5 respectively. Results are compared with respect to the likelihood of sustained invasion
(A), the speed of population spread across the landscape (B), mean total adult mosquito population size (C), and the
mean proportion of patches occupied (D). Speed is characterised in terms of the average number of patches travelled
per day, calculated by dividing the time taken until all patches have been occupied at least once by the number of
patches in the metapopulation. For each scenario, the mean was calculated across 1000 realisations of the stochastic
model.
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3.2.3 Impact of Spatial Clustering

More realistic heterogeneous landscapes tend to show a high degree of local spatial correlation

in carrying capacity, where patches with similar levels of carrying capacity are clustered together.

Thus in a highly clustered landscape, the dispersal behaviour of the mosquito is critical to allowing

mixing between areas of high and low carrying capacity, and hence is the key factor in driving the

dynamics observed in these landscapes.

At high rates of dispersal and low mean dispersal length, increasing spatial correlation resulted

in increases in the mean equilibrium population size (Figure 3.5A), but decreases in mean patch

occupancy (Figure 3.5B). This arises from improved local population persistence in areas with

high patch carrying capacity, but poorer local persistence in areas of low carrying capacity. As

mean dispersal length is increased, more frequent dispersal from areas of high carrying capacity

to areas of low carrying capacity occurs, and hence this improves local persistence in areas of

low carrying capacity. However, while this in turn leads to increased patch occupancy (Figure

3.5B), it also leads to a reduction in mean total population size (Figure 3.5A), with behaviour

tending towards that of a non-clustered landscape with the same level of heterogeneity in carrying

capacity across patches.

Figure 3.5: Spatial Correlation and Dispersal Length. Population dynamics observed in a spatially heterogeneous
landscape comprised of 1024 patches, with a deterministic mean equilibrium larval population of 6 larvae per patch,
spatial heterogeneity characterised by the coefficient of variation relative to this mean value, and no temporal variation
in carrying capacity. A coefficient of variation of 2 and a dispersal rate of 0.3 per day was used. A medium and high
correlation were defined as α=0.3 and α=0.01, respectively (Equation 3.4). The dashed black line describes the results
obtained under the single patch model, and results are compared with respect to final total adult population size (A)
and the proportion of patches occupied across the landscape (B). For each scenario, the mean was calculated across
1000 realisations of the stochastic model.

Population invasions into an unpopulated landscape more often result in early extinction and

a lack of establishment in spatially correlated landscapes, due to the increased chance that
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invasion will occur in an area of low carrying capacity (Figure 3.6A). Moreover, when dispersal is

highly local, a high degree of spatial clustering substantially slows the speed of invasion, as local

population establishment in areas of low carrying capacity becomes more difficult (Figure 3.6B).

As we observed for established populations, this leads to increased population size compared

with less correlated landscapes with the same level of spatial variability in carrying capacity, but

also reduced patch occupancy (Figures 3.6C,D). As mean dispersal length increases, we again

observe a reversal of this pattern.

Figure 3.6: Spatial Correlation and Invasion Dynamics. Population dynamics observed when a single patch in
a spatially heterogeneous landscape comprised of 1024 patches, with temporal variation in carrying capacity and a
deterministic mean equilibrium larval population of 6 larvae per patch, is seeded with 6 adult mosquito population,
and is modelled as a single patch (dashed lines) or as a metapopulation on a 32x32 grid (solid lines). A coefficient
of variation of 2 and a dispersal rate of 0.3 per day was used. A medium and high correlation were defined as α=0.3
and α=0.01, respectively (Equation 3.4). The results are compared with respect to the mean proportion of models runs
which resulted in sustained invasion (final total adult population >1) (A), the mean proportion of patches which have
been occupied at least once (B), mean total adult mosquito population size (C), and the mean proportion of patches
occupied across the landscape (D). A mean dispersal distance of 5 patches was used. For each scenario, the mean
and variance were calculated across 1000 realisations of the stochastic model.

3.3 Discussion

As discussed in Chapter 1, Aedes aegypti is a highly adaptive species, breeding in a wide range

of indoor and outdoor domestic habitats. Therefore, in any urban environment, larval carrying

capacity will vary spatially in accordance with the size and availability of breeding habitats.

69



Understanding how heterogeneity in carrying capacity, combined with seasonal variation in

mosquito abundance and the dispersal behaviour of the mosquito, shapes fine-scale mosquito

population dynamics is thus an intrinsic part of understanding how vector populations persist in

fragmented landscapes. In this chapter, we aimed to provide insight into these dynamics.

While local population extinction is a recurrent event in all fragmented landscapes with low

mean carrying capacity, we observed that recovery from extinction was largely more difficult

in spatially heterogeneous landscapes, with inter-patch variability reducing persistence of

small local populations. This in turn resulted in a smaller total population sizes and reduced

patch occupancy across the landscape (compared with a homogeneous landscape of similar

carrying capacity). Successful population invasion into unoccupied landscapes also proved more

challenging in spatially heterogeneous environments, with inter-patch variability reducing the

likelihood of sustained invasion upon seeding and slowing the speed of spatial spread across the

landscape. For highly local dispersal, spatial clustering of habitat of similar quality resulted in

increased total population size, but at the cost of reduced patch occupancy across the landscape

and a slower speed of invasion.

While potentially accounting for seasonal variation in carrying capacity, adopting a non-spatial

approach to representing the fine-scale dynamics of vector populations does not account for

the fact that larval populations across a landscape are likely to experience varying degrees of

density-dependent competition, with areas of higher carrying capacity able to support larger

larval populations and more densely populated areas subject to more intense competition. Our

results illustrate the importance of these heterogeneities in driving fine-scale Aedes aegypti

population dynamics, and thus suggest that, to gain a deeper insight and understanding of the

drivers of vector population persistence at fine spatial scale, features of the underlying landscape

need to be considered.

How mathematical models choose to represent a landscape however is determined by the level of

spatial granularity in a model, and we now explore how the choice of spatial granularity affects the

population dynamics observed when modelling Aedes aegypti populations at fine spatial scales.
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Chapter 4

Spatial Granularity

In the previous two chapters we demonstrated the importance of habitat fragmentation, mosquito

behaviour and features of the underlying landscape in shaping the fine-scale dynamics of Aedes

aegypti populations. The question now remains of how the dynamics we have observed depend

on the level of spatial granularity in our model. Would we observe similar dynamics at lower

levels of spatial granularity? In this chapter, I address this question, and explore if the dynamics

observed under the metapopulation model can be approximated using a non-spatial single patch

model.

4.1 Methods

4.1.1 Varying Spatial Granularity

To model the effect of different levels of representation of spatial granularity, we need to ensure the

dispersal range remains fixed as granularity is reduced. Thus, as the level of spatial granularity in

the model is varied, the mean dispersal length and dispersal range (measured in units of patches)

are adjusted accordingly. For example, if we move from a n x n to a n
2 x n

2 grid then, as the size of

each patch is doubled, both the mean dispersal length and dispersal range are halved. All other

model parameters remain fixed as spatial granularity is varied.

4.1.2 Single Patch Approximations

To recap, the deterministic dynamics for the non-spatial (single patch) model are described by

the following set of equations:
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dE(t)

dt
= bgO(t)− γEE(t)− µEE(t) (4.1)

dL(t)

dt
= γEE(t)− γLL(t)− µL

(

1 +
( L(t)

K(t)

)Ω
)

L(t) (4.2)

dA(t)

dt
= γLL(t)− µAA(t) (4.3)

O(t) = g−1A(t) (4.4)

where E(t), L(t) and A(t) denote the egg, larval and adult population at time t respectively,

K(t) denotes the larval carrying capacity at time t, O(t) denotes the number of adult mosquitoes

laying eggs at time t, Ω describes the strength of density dependence, b denotes the oviposition

rate, g denotes the length of the gonotrophic cycle of adult female mosquitoes, and µE , µL and

µA denote the egg, larval and adult mosquito mortality rate respectively.

We explored if the invasion dynamics observed under the metapopulation model could be

approximated by varying parameters in the corresponding (non-spatial) single patch model

whose values are not constrained by directly observed ecological processes - namely mean

larval carrying capacity (K̄), and the strength of density dependence (Ω). We then compared the

results obtained using the metapopulation model and adjusted single patch model, and adopted

a least squares approach to determine the combination of values of K̄ and Ω best approximating

the metapopulation dynamics. The population characteristics we sought to approximate included

the mean and variance of the equilibrium total adult mosquito population, and the time until the

population reaches equilibrium (which acts as a proxy for the growth rate of the population).

More formally, for a homogeneous landscape where L∗

ij denotes the deterministic equilibrium

larval population of each patch (i, j) in the metapopulation model, we allow K̄ and Ω to vary

in the corresponding single patch model (irrespective of the value of L∗

ij and keeping all other

parameter values fixed), denoting these varying parameters K̄ ′ and Ω′. If we wish to approximate

the mean and variance of the equilibrium total adult mosquito population observed under the

metapopulation model for example, we define the sum of squared errors associated with the

approximation, ǫ(L∗

ij , K̄
′,Ω′), as

ǫ(L∗

ij , K̄
′,Ω′) =

[

M(K̄ ′,Ω′)−M(L∗

ij)

M(L∗

ij)

]2

+

[

V (K̄ ′,Ω′)− V (L∗

ij)

V (L∗

ij)

]2

(4.5)
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where M(L∗

ij) and M(K̄ ′,Ω′) denote the mean equilibrium total adult mosquito population

observed under the metapopulation model and adjusted single patch model respectively, and

V (L∗

ij) and V (K̄ ′,Ω′) denote the variance of the equilibrium total adult mosquito population

observed under the metapopulation model and adjusted single patch model respectively. The

combination of (K̄ ′,Ω′) which minimise this error is then selected as the best fitting values of K̄ ′

and Ω′.

We follow the same approach for all combinations of characteristics approximated.

4.2 Results

4.2.1 Varying Spatial Granularity

When modelling the dynamics of an established mosquito population or those of a newly seeded

population, the dynamics observed were strongly dependent on the level of spatial granularity

assumed in the model. As spatial granularity is reduced, this leads to an increase in patch

size and thus in the carrying capacity of individual patches. For example, as we reduce spatial

granularity in a 32x32 grid with a carrying capacity of 3 larvae per patch, we obtain a 16x16 grid

with a carrying capacity of 12 larvae per patch, an 8x8 grid with a carrying capacity of 48 larvae

per patch and so forth. Reducing spatial granularity therefore in turn reduces the probability of

stochastic extinction in individual patches (Figures 4.1A,B). Thus in a context where dispersal

rates were low to moderate, a reduction in the level of spatial granularity largely resulted in

increases in long term mean population sizes, population persistence, and patch occupancy, with

the behaviour of the metapopulation largely tending towards that of the single patch model as

spatial granularity is further reduced (Figures 4.1C-F).

The largest differences between different levels of granularity were therefore observed for

landscapes where, at the highest level of spatial granularity, individual patches had a low carrying

capacity and thus a high probability of stochastic extinction. Changes to parameter values which

improved population persistence, such as increasing equilibrium larval population size or the

dispersal rate, reduced the magnitude of the differences observed between higher and lower

levels of spatial granularity (Figure 4.1).
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Figure 4.1: Modelling Established Populations at Different Levels of Spatial Granularity. Population dynamics
observed when a homogeneous landscape with an equilibrium larval population (at the 32x32 level) of 3 (A,C,E) or
6 (B,D,F) larvae per patch is modelled at different levels of spatial granularity. A dispersal rate of 0.08 was used and
mean dispersal length (at the 32x32 level) is 5 patches. The maximum dispersal range (at the 32x32 level) was set to
32 patches. Figures (A) and (B) are Kaplan-Meier curves showing the time to first extinction of an individual breeding
site in the landscape. For each scenario, the mean was calculated across 1000 realisations of the stochastic model.

While behaviour of the metapopulation always tended towards that of the single patch model as

spatial granularity is reduced for landscapes where a stable mosquito population was already

established, this was not always the case for unoccupied landscapes newly seeded with a

mosquito population. Here, the invasion dynamics observed depend heavily on both the level of

spatial granularity in the model and the dispersal rate and kernel. Thus, a more complex picture

emerges. For both low and high values of single patch carrying capacity, if dispersal across the

landscape at the highest level of spatial granularity is very local then, as granularity is reduced,

movement beyond the seeded patch becomes less likely. Therefore, at lower levels of granularity,
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population spread and growth beyond the seeded patch may not occur, despite a very low risk

of extinction through stochastic effects in neighbouring patches (Figure 4.2). Thus, behaviour

tending towards the single patch model as granularity is reduced is not necessarily guaranteed,

and relies on sufficient movement between patches at lower levels of granularity.

Figure 4.2: Modelling Invasion Dynamics at Different Levels of Spatial Granularity. Population dynamics
observed when a landscape with temporal variation in carrying capacity and an equilibrium mean larval population
of 6 larvae per patch (at the 32x32 level) is seeded with an adult population of 6 mosquitoes and modelled at different
levels of spatial granularity. The dispersal rate was 0.08 per day. (A,C,E) correspond to dynamics observed when the
mean dispersal length (at the 32x32 level) is 1 patch, and (B,D,E) correspond to the dynamics observed when the
mean dispersal length (at the 32x32 level) is 5 patches. The maximum dispersal range (at the 32x32 level) was set
to 32 patches. For each scenario, the mean and variance were calculated across 1000 realisations of the stochastic
model.
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4.2.2 Single Patch Approximations

We explored if the invasion population dynamics observed under the metapopulation model

could be approximated by varying mean larval carrying capacity (K̄) and the strength of density

dependence (Ω) in the corresponding single patch model. To approximate the mean equilibrium

total adult mosquito population size and growth rate observed under the metapopulation model,

we first allowed K̄ alone to vary while keeping Ω = 1 fixed (i.e. assuming density dependence

remained linear). Reducing mean larval carrying capacity enabled us to closely approximate

equilibrium population size (Figures 4.3A-B, 4.4A-B). However, owing to the rapid speed of

population growth in the single patch model, this approach led us to overestimate the growth rate

of the population and underestimate the variability in population size during the early stages of

population growth (Figures 4.3C-D, 4.4C-D), particularly when equilibrium larval population size

was small and movement across the landscape was limited.

Instead allowing both K̄ and Ω to vary resulted in a better approximation of the growth rate

of the population (Figures 4.3A-D, 4.4A-D), with reducing both K̄ and Ω giving the best fitting

combination of values for fragmented landscapes where individual patches have a low carrying

capacity (Figure 4.5). This is because Ω < 1 and reduced K results in higher larval mortality

and thus slower population growth when larval density is low compared with single patch models

where Ω = 1 and K is larger. This in turn allowed us to better replicate the full temporal curve of

population growth observed under the metapopulation model.

However, while this combined approach improved our approximation of the growth rate, we

remained unable to capture the increase in variability during the early stages of population growth

(Figures 4.3C-D, 4.4C-D). Furthermore, in some cases where the carrying capacity of individual

patches was low, this led to an over-estimate of the variance of the equilibrium adult population

(Figures 4.3C, 4.4C). Approximating the variance of the equilibrium adult population, in addition

to the mean equilibrium adult population and the growth rate of the population, improved our

estimate of the variance of the population but at the cost of then overestimating the speed of

population growth (Figures 4.3E-H, 4.4E-H). Similar patterns were observed when approximating

the mean and variance of the equilibrium adult population only, and not taking account of the

growth rate.
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Figure 4.3: Single Patch Approximations - Example 1. Comparison of results obtained when we approximate the
invasion dynamics observed when a homogeneous landscape comprised of 1024 patches, with an equilibrium larval
population of 3 larvae per patch, is seeded with 3 adult mosquitoes. A mean dispersal length of 5 patches and for
a dispersal rate of 0.10 (A,C,E,G) and 0.30 (B,D,F,H) was used. (A-D): We approximate mean equilibrium total adult
mosquito population and the growth rate of the population. (E-H): We approximate the mean and variance of the total
adult mosquito population in addition to the growth rate of the population. For each scenario, the mean and variance
were calculated across 1000 realisations of the stochastic model.
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Figure 4.4: Single Patch Approximations - Example 2. Comparison of results obtained when we approximate the
invasion dynamics observed when a homogeneous landscape comprised of 1024 patches, with an equilibrium larval
population of 6 larvae per patch, is seeded with 6 adult mosquitoes. A dispersal rate of 0.1 and a mean dispersal
length of 1 patch (A,C,E,G) and 5 patches (B,D,F,H) was used. (A-D): We approximate mean equilibrium total adult
mosquito population and the growth rate of the population. (E-H): We approximate the mean and variance of the total
adult mosquito population in addition to the growth rate of the population. For each scenario, the mean and variance
were calculated across 1000 realisations of the stochastic model.
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As expected, the largest adjustments to the single patch model were needed for fragmented

landscapes where individual patches had a very low carrying capacity and where dispersal

beyond the seeded patch was limited (Figure 4.5). Where changes to parameter values such as

increasing the dispersal rate, the mean dispersal length or the equilibrium larval population size

resulted in more rapid population growth and increased population size in the metapopulation

model (and thus behaviour similar to the unadjusted single patch model) smaller adjustment to

the single patch model were required. Thus we could more closely approximate the dynamics

observed under the metapopulation model.

Figure 4.5: Single Patch Approximations - Magnitude of Adjustment. Example of difference between the best
fitting values of K̄ and Ω in the adjusted single patch model (solid lines) and the corresponding values in the unadjusted
single patch model (dashed lines). Here we approximate mean total population size and the growth rate of the
population, and use a dispersal rate of 0.10. (A,B): Results corresponding to a mean dispersal length of 1 patch
(C,D): Results corresponding to a mean dispersal length of 5 patches.
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4.3 Discussion

When accounting for the fragmented structure of mosquito populations, the level of fidelity

we have in representing this underlying spatial structure is determined by the level of spatial

granularity in our metapopulation model. In the previous two chapters, we demonstrated the

importance of this spatial structure to the fine-scale dynamics of Aedes aegypti populations,

finding that larval habitat fragmentation, the dispersal behaviour of the mosquito and features

of the underlying landscape combine to shape population dynamics at fine spatial scales. In

this chapter, we found that the population dynamics we observed were heavily dependent on

the level of spatial granularity represented in our model, as reductions in granularity reduced

the risk of extinction through stochastic effects, thereby increasing population persistence, patch

occupancy, and the speed of population spread across the landscape.

Approximating the dynamics observed at high levels of spatial granularity using the non-spatial

single patch model is therefore difficult. Typically, as carrying capacity is an unmeasurable

and quite theoretical concept, modellers calibrate models to reproduce observed population

characteristics, such as population size or density. In that context, our results indicate that single

patch models will underestimate population volatility, and over-estimate invasion speeds (e.g.

following population troughs). We found that varying both carrying capacity and the strength of

density-dependence allowed us better capture the dynamics observed in fragmented landscapes

and, moreover, interestingly, found that stochastic volatility can be better captured by a single

patch model if the intensity of density-dependent is assumed to be less than linear. However,

even this adjustment is unable to capture the slower invasion dynamics and increased variability

associated with the spatial structuring of the mosquito population when local populations are

small and dispersal is limited.

As noted as the end of Chapter 2, our results suggest that using non-spatial models to represent

the fine-scale dynamics of mosquito populations may substantially underestimate the stochastic

volatility of those populations. However, given that these effects are greatest for landscapes

where the carrying capacity of individual patches is low and adult mosquito dispersal is relatively

local, assessing whether such effects are in fact relevant to real-world Aedes aegypti populations

therefore requires consideration of what is the appropriate level of representation of spatial

structure in these populations. The results obtained in this chapter suggest that, to capture
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the impact of the fragmentation of larval breeding sites on fine-scale Aedes aegypti population

dynamics in a meaningful way, models should aim to capture the population dynamics observed

when modelling at a level of spatial granularity such that movement between patches is

representative of the typical dispersal length of the mosquito. If granularity is reduced such that

movement between patches goes beyond the typical dispersal length, the vulnerability of small

local populations to extinction is masked by the increase in patch size and consequent reduction

in the risk of extinction through stochastic effects, and thus we fail to observe the potential impact

of habitat fragmentation with populations are small.

Field studies have shown that Aedes aegypti populations in dengue-endemic areas range

between under 0.5 to over 3 adult females per person - namely in the range 2 to 20 per

household, depending on household size [61, 220, 221], and furthermore can drop to very low

numbers at the household level during seasonal troughs in mosquito abundance [221]. Empirical

research has found that Aedes aegypti exhibit considerable spatial variation in abundance, even

at the individual household level, with clustering among households of similar levels of carrying

capacity often occuring [47, 59, 61, 220, 221, 225, 226]. In addition, mark-release-recapture

experiments suggest the dispersal range of Aedes aegypti mosquitoes is in the range of 20-100

meters [75–77], with most released Aedes aegypti being recaptured in the house of release [75]

and under 10% being captured more than 3 households away. Thus modelling at the individual

household level seems appropriate for this species. Therefore, given these observations, the

effects of larval habitat fragmentation and local dispersion described here may be highly relevant

to the modelling of real-world Aedes aegypti populations.

These effects are also therefore likely to be of particular importance for the modelling of the

potential impact of novel vector control measures. Indeed, recent analysis of the spread of the

bacterium Wolbachia among local Aedes aegypti populations in northern Australia has shown that

both the pattern and speed of spatial spread of Wolbachia is highly heterogeneous, largely owing

to environmental factors, including fine-scale variation in Aedes aegypti population density [197].

The potential success of both populations modification and population suppression technologies

relies on the successful integration of modified mosquito populations into wild-type Aedes aegypti

populations. Hence, a deep understanding of fine-scale Aedes aegypti population dynamics is

fundamental to understanding the likely impact of such approaches. Our results suggest that
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underestimating the stochastic volatility of local populations, and failing to represent the underlying

fragmented spatial structure of these populations at an appropriate level of spatial granularity,

may lead to over-estimates of the speed of spatial spread of such technologies. Moreover, this

may make it more difficult to identify potential barriers to local establishment and persistence,

across a range of heterogeneous environments. This is in general agreement with dynamics

observed by Hancock et al. who, using a 1-dimensional metapopulation model of the spread of

Wolbachia, find that spatial heterogeneity may considerably slow the speed of spatial spread

across a landscape [196]. Furthermore, in the context of population suppression approaches,

understanding the role of spatial structure is likely to be an important factor in mitigating the

risk of reduced efficacy owing to migration of wild-type mosquitoes from surrounding areas,

and in assessing the speed at which the population may rebound once interventions have ceased.

It is important to note however that, while our results may be highly relevant for modelling Aedes

aegypti populations, this may not necessarily be the case for models of other mosquito species

as typical dispersal length varies between species. For example, measured mean dispersal

distances are an order of magnitude further for Anopheles gambiae than Aedes aegypti -

500m or greater [227, 228] - meaning appropriate patch sizes (both in terms of dimension and

population size) for modelling the fine-scale dynamics of these populations can be expected to

be considerably larger - perhaps village level. Thus the effects of landscape heterogeneity, local

stochastic extinction and reseeding predicted by our modelling to be significant for Aedes aegypti

are likely to be less so for Anopheles gambiae. The exception might be in environments where

Anopheles gambiae density is exceptionally low - for example during seasonal troughs in areas

such as the Sahel [229, 230].

The work presented here also has several limitations. As discussed in Chapter 2, we

assumed that density-dependent effects occur during the larval stage of mosquito development

through changes in the larval mortality rate in accordance with larval density alone. However,

density-dependent competition may also lead to longer larval development times or smaller adult

females emerging from the breeding site [62, 64, 70], which in turn may reduce the oviposition

rate of adult females [214]. Thus, the effects of density-dependent competition could instead,

for example, been represented by varying the larval development rate or oviposition rate in our

model in accordance with larval density.
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For landscapes where Aedes aegypti populations are already established, we hypothesise that

quantitatively similar equilibrium population dynamics would have been observed for alternative

functional forms of density-dependence. For example, if we increase larval development times

with increased larval density (rather than increasing the larval mortality rate), then this would also

lead to fewer new adults emerging from the habitat at higher larval densities in a given timestep.

Consequently, in subsequent timesteps, fewer eggs are laid and fewer new larvae develop. Thus,

for a given landscape, these different forms of density dependence are likely to produce similar

dynamics.

However, for landscapes where we’re seeding a mosquito population, we hypothesise that

alternative formulations of density-dependence may have a larger impact on the dynamics,

compared with landscapes where an Aedes aegypti population is already established. For

example, reducing the speed of larval development or the oviposition rate with increased larval

density may in turn lead to a slower speed of population spread across the landscape, as it

may take longer for populations to become established in individual patches. Consequently, this

may also lead to a potentially longer period of population instability during the early stages of

population growth, particularly when the dispersal rate across the landscape is low. However,

overall, our results suggest that the primary driver of the dynamics observed is the increased risk

of local extinction through stochastic effects, arising from larval habitat fragmentation. Hence,

we hypothesise that changing the functional form of density-dependence used in our model is

unlikely to have a large impact on the results obtained and key patterns observed.

Our results concerning approximating metapopulation dynamics using the non-spatial single

patch model, by varying both carrying capacity and the strength of density-dependence, may

also depend on the functional form of density-dependence adopted. Alternative formulations of

density-dependence may have improved or worsened our approximations, however we have not

explored this here.

In addition, although appropriate values for model parameters were sourced where possible

from the existing literature, the model presented was not explicitly fitted to entomological data.

We have also assumed that larval development times and the lifespan of adult mosquitoes are
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exponentially distributed, however the rate at which mosquito larvae develop is temperature

dependent [64] and older adult mosquitoes may experience increased mortality [231, 232].

Finally, as we consider the dynamics of Aedes aegypti populations alone, the extent to which our

results may affect models of dengue transmission, which consider larval population dynamics,

is unknown. A model which incorporates both vector and disease dynamics would offer much

greater insight into the potential impact of larval population fragmentation on the fine-scale

transmission dynamics of dengue.

In conclusion, our work highlights the importance of choices made about representations of the

spatial structure of larval populations when modelling the dynamics of Aedes aegypti populations

at fine spatial scales. Our results demonstrate that, for low mosquito population densities,

adopting a non-spatial approach to model the fine-scale dynamics of Aedes aegypti larval

populations may substantially underestimate the stochastic volatility of mosquito populations

and over-estimate the speed of population invasion and growth. Accounting for the fragmented

structure of larval populations allows us to better capture the dynamics of density-dependent

competition, and understand how the level of connectivity between local populations and features

of the underlying landscape shape Aedes aegypti population dynamics at fine spatial scales.

Our results indicate that the individual household level is likely to be an appropriate level of spatial

granularity for models to adopt to represent the fine-scale dynamics of Aedes aegypti populations.
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Chapter 5

Project Wolbachia Singapore: Data &

Model Development

In Chapters 5 and 6, I move to addressing the second aim of this thesis - namely to develop an

inferential framework which allows us to calibrate a stochastic model of Aedes aegypti population

dynamics against entomological data, while accounting for the highly variable nature of mosquito

trapping data. I then use this framework to explore the results of a small-scale field study of IIT

conducted in Singapore.

5.1 Introduction

With its tropical climate and high levels of urbanisation, Singapore provides an ideal setting for

dengue transmission. Dengue is thus endemic in Singapore, with all four serotypes co-circulating

and a high degree of viral diversity within serotypes [233, 234]. However, despite these favourable

conditions for transmission, dengue seroprevalence in Singapore is low compared with other

countries in Southeast Asia such as Thailand and Vietnam where dengue is hyperendemic.

Analysis of serology data collected during recent vaccine trials estimated a seroprevalence rate

of 48.7% among adults aged 18-45 in Singapore, compared with 94.5% among the same age

group in Vietnam [235].

The relatively low level of dengue transmission in Singapore can largely be attributed to the

intensive vector control measures which have been in place since the late 1960’s. Following the

first reported case of dengue haemorrhagic fever in Singapore in 1966, a multifaceted active

vector control strategy was introduced which combined vector surveillance, source reduction,
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legal enforcement and education of the public on the risks associated with breeding Aedes

aegypti mosquitoes. This in turn resulted in a drop in the premises index (defined as the

proportion of inspected premises found to have containers with Aedes aegypti larvae or pupae)

from approximately 50% in 1966 to less than 5% in 1973 [82, 236]. Consequently, incidence of

dengue also dropped dramatically during this period.

Although intensive vector control efforts have been sustained and the premises index remains

below 1% [236], there has been a resurgence of dengue in Singapore since the late 1980’s [82,

237]. Dengue epidemics now occur approximately every 5-6 years, with the size of outbreaks

increasing in recent years [236, 238]. The largest outbreak to date occurred in 2013-2014,

resulting in a total of 22,170 cases in 2013 and 18,338 cases in 2014, corresponding to an

incidence rate of 410.6 and 335 per 100,000 population in 2013 and 2014 respectively [236]. The

number of cases reported was approximately 1.7 times the number reported during the previous

largest outbreak which occurred in 2005 [236, 238].

Several hypotheses have been proposed to explain this resurgence. One reason suggested is

that, as a consequence of the long period of low transmission in the 1970’s and early 1980’s

following successes in vector control, herd immunity among the population is low, thereby

leaving the adult population more susceptible to outbreaks of dengue [82]. Indeed, dengue

now predominantly affects the adult population in Singapore [238, 239]. The highest incidence

of dengue during outbreaks in 2005, 2007 and 2013-2014 was observed in older age groups

[236, 238, 240], and the median age of infection increased from 14 in 1973 to 37 in 2007 [238,

241]. Recent outbreaks have been caused by switches in the predominant circulating serotype

(primarily between DENV1 and DENV2) [239], and seroprevalence surveys have shown that

previous exposure to dengue is low among young adults in Singapore [242].

Another hypothesis is that the location of dengue transmission in Singapore has changed,

with transmission now often occurring outside of the home environment [82, 237, 243]. As

noted above, dengue now predominantly affects the adult population. Incidence of dengue has

also been greater in males than females during recent outbreaks [236, 238, 240]. In addition,

a substantial rise in seroconversion has been observed in children aged 6 and above which

coincides with the age children typically start school in Singapore [243].
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Several other environmental, social and immunological factors have also been suggested as

possible contributing factors to the resurgence of dengue in Singapore. Increased travel,

urbanisation and human population density may have facilitated increased virus transmission

[236], and the high degree of diversity within virus serotypes may allow for selection of strains with

higher fitness [234]. Recent years have also seen a change in emphasis from vector surveillance

to early case detection [82].

In light of this resurgence, new vector control tools are sought to improve dengue control in

Singapore and, since 2012, the National Environment Agency (NEA) in Singapore has focused

on exploring the use of Wolbachia as a tool for vector population suppression. This in turn has

led to the creation of Project Wolbachia Singapore which, through a series of field studies, aims

to examine whether releasing Wolbachia-infected male Aedes aegypti can be used to suppress

the Aedes aegypti population in Singapore. The first small-scale field study (Phase 1) testing this

approach began in October 2016, and here we analyse the results of this study by calibrating a

model of IIT against the detailed entomological data collected during this study.

In this chapter, I describe the Phase 1 study design and the data collected over the course of this

study. I then describe the model of IIT developed, and the inferential methods used to calibrate the

model against the mosquito trapping data collected during the study. Model fitting results using

simulated data are presented at the end this chapter, and results using the Phase 1 field study

data are presented and discussed in Chapter 6.

5.2 Phase 1 Field Study

Phase 1 of Project Wolbachia Singapore began in October 2016, with the aim of exploring

if the Aedes aegypti population in Singapore could be suppressed through releasing

Wolbachia-infected male Aedes aegypti into the urban environment. This small-scale study

involved the release of male Aedes aegypti, transinfected with the wAlbB Wolbachia strain

(isolated from Aedes albopictus), into residential blocks in two areas of the city, Tampines and

Yishun (Figure 5.1).
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Figure 5.1: Project Wolbachia Phase 1 - Study Sites. Wolbachia-infected male Aedes Aegypti were released in
Tampines and Yishun.

5.2.1 Release Strategy

In Tampines, Wolbachia-infected males were released weekly for a period of 31 weeks,

from October 2016 to May 2017, across 29 residential blocks (Figure 5.2A). The number of

Wolbachia-infected males released per week varied during the release period, ranging from

9,814 when releases commenced to 46,061 at the end of the release period. This resulted in a

total release size of 579,735 Wolbachia-infected males (Figure 5.3A). The corresponding control

site was comprised of 21 residential blocks.

In Yishun, a slightly different release strategy was adopted, as releases of Wolbachia-infected

males were performed only in a subset of 10 of the 35 residential blocks at the release site

(Figure 5.2B). Thus, compared with Tampines, fewer Wolbachia-infected males were released

over a smaller area. This approach was adopted to test the dispersal of Wolbachia-infected

males beyond the boundary of where releases occurred. Therefore, although releases only

occurred across 10 blocks, data was collected from all 35 residential blocks at the release site.

The corresponding control site was comprised of 29 residential blocks.

Releases in Yishun also began later than in Tampines. Three initial single releases of 3,500

Wolbachia-infected males took place at three different residential blocks in November and

December 2016, and January 2017 (Figure 5.3B). The aim of these releases was to test the
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longevity and vertical dispersal range of Wolbachia-infected males. Bi-weekly releases of

Wolbachia-infected males across all 10 residential blocks subsequently began in February 2017,

and continued for a period of 15 weeks. 10,500 Wolbachia-infected males in total per week were

released during this period, and the release size remained constant (Figure 5.3B). A total of

216,900 Wolbachia-infected males were thus released in Yishun. In both Tampines and Yishun,

all Wolbachia-infected males were released at the ground floor level.

Figure 5.2: Release Sizes Number of Wolbachia-infected male Aedes aegypti released in Tampines (A) and Yishun
(B) during the Phase 1 field study.

Tampines

(Control)

Tampines

(Release)

Yishun

(Control)

Yishun

(Release)

Number of Wolbachia-infected

Males Released
- 579,735 - 216,900

Number of Releases - 31 - 18

Frequency of Releases - Weekly - Bi-weekly

Number of Residential Blocks 21 29 29 35 (10)

Number of Gravitraps (adults) 145 182 218 243 (73)

Number of Ovitraps (eggs) 78 95 14 66 (28)

Table 5.1: Phase 1 Summary. Overview of the Phase 1 study. For the Yishun release site the values in brackets
correspond to the number of residential blocks and traps in the area where Wolbachia-infected males were released.
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Figure 5.3: Residential Blocks Location of Gravitraps in residential blocks at the Tampines (A) and Yishun (B) study
sites. Here, black represents Gravitraps in residential blocks at the control site and red represents Gravitraps in
residential blocks at the release site, into which Wolbachia-infected males were released. The blue dots at the Yishun
release site correspond to Gravitraps in residential blocks in areas which were monitored but where Wolbachia releases
did not occur.
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5.2.2 Data Collected

Detailed entomological data was collected across all sites, with the full entomological dataset we

received comprising of:

• Egg Data - weekly counts of the number of hatching (viable) and non-hatching (nonviable)

Aedes aegypti eggs per trap, per residential block

• Adult Mosquito Data - weekly counts of the number of wild-type and Wolbachia-infected

Aedes aegypti males, and wild-type Aedes aegypti females per trap, per residential block

• Release Sizes - number of Wolbachia-infected male Aedes aegypti released per residential

block per week for each release site

In both Tampines and Yishun, Gravitraps (which trap adult mosquitoes) were placed in each

residential block at the control and release sites, while ovitraps were placed in a subset of

residential blocks at each site. The location of traps varied between blocks, depending on the

size of the block. However, in all residential blocks, traps were placed on lower, middle and

upper floors of the block (typically on floors 2, 6 and 11). Trapping data was collected weekly

and recorded at the individual trap level. Egg trapping data was collected over a shorter period

compared with adult mosquito trapping data and, in addition, data collection began at different

time points for each site.

Nonviable eggs were collected at both control and release sites as eggs laid may fail hatch for

reasons other than CI . Other environmental and physiological reasons such as an insufficient

level of submergence, changes in temperature or the presence of other micro-organisms in

the water [48] may also lead to eggs not hatching. However, as expected, very low number of

nonviable eggs were collected at control sites. Plots of the Gravitrap and ovitrap data aggregated

across residential blocks for each site are presented in Figure 5.4 below. For ease of comparison,

we present the data for weeks where we have data for corresponding control and release sites in

this figure.
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Figure 5.4: Aggregated Trapping Data. A-D: Gravitrap and ovitrap data aggregated across residential blocks for the Tampines control (A,C) and release (B,D) sites. E-H:

Gravitrap and ovitrap data aggregated across residential blocks for the Yishun control (E,G) and release (F,H) sites. For each location, the dashed red lines show the period when
Wolbachia-infected males were released. The data for the Yishun release site corresponds to the area where Wolbachia-infected males were released only.
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Considerable differences were observed between the number of wild-type Aedes aegypti males

and females trapped, with very few wild-type males trapped in both Tampines and Yishun (Figure

5.4, 5.9, 5.10). This pattern was consistent across all control and release sites (Figure 5.4,

5.9, 5.10). However, a very low trapping rate for adult males was not unexpected as Gravitraps

have been designed to primarily attract female Aedes aegypti (using hay-infused water) [244].

Nonetheless, wild-type male mosquitoes were trapped at all sites, and Wolbachia-infected males

were successfully trapped at both release sites. In Tampines 0.26% (1480/579,735) of the

Wolbachia-infected males released were subsequently trapped, while 0.12% (260/216,900) were

subsequently trapped in Yishun. Of those trapped in Yishun, 81% (211/260) were trapped within

the area where releases occurred.

During the release periods, the majority of wild-type and Wolbachia-infected males were trapped

on lower floors in both Tampines and Yishun (Figure 5.5). The distribution of trapped females was

more evenly spread across lower, middle and upper floors, however, the majority of females were

also trapped on lower floors during the release period at both release sites (Figures 5.5A,D).

The distribution of trapped females across floors was similar at control and release sites, in

both Tampines and Yishun (Figures 5.5A,D). There was a greater variability between control

and releases sites in the distribution of trapped wild-type males across floors (Figures 5.5B,E).

However, as very few wild-type males were trapped (Figure 5.4), the sample size is very small.

Figure 5.5: Distribution of Adult Mosquitoes Trapped across Floors Proportion of wild-type adult females (A,D),
wild-type males (B,E) and Wolbachia-infected males (C,F) trapped on lower, middle and upper floors of residential
blocks during the release period at both study sites.
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At both Tampines and Yishun, the mean number of adult females trapped per residential block

varied temporally, and between control and release sites (Figures 5.6, 5.7, 5.8). Figures 5.7 and

5.8 compare the number of adult mosquitoes trapped per block and the proportion of viable eggs

among eggs trapped per block at control and releases sites in Tampines 5.7 and Yishun 5.8,

before, during and after the release period.

Figure 5.6: Mean Number of Adult Females Trapped per Block Temporal variation in the mean number of adult
females trapped per block at the Tampines (A) and Yishun (B) study sites. The solid lines show the mean number
trapped, and the shaded areas shows the 95% confidence interval.

For both study areas, the mean number of adult females trapped per residential block and the

mean proportion of viable eggs per block was lower during the release period at the release site

compared with the control site (Figures 5.7 A2,D2, 5.8 A2,D2), with larger differences in Yishun

compared with Tampines. In Tampines, the mean number of adult females trapped per block was

typically slightly higher at the control site compared with the release site both before and after the

release period (Figures 5.7 A1,A3), while in Yishun this was broadly similar between control and

release sites during these periods (Figures 5.8 A1,A3). However, for both study areas, there was

substantial temporal variation in patterns observed in the adult and egg trapping data (Figures

5.7, 5.8). For example, the mean proportion of viable eggs among eggs trapped per block ranged

from 0 to 1 during the release period at Yishun (Figure 5.8 D2).
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Figure 5.7: Trapping Data-Tampines Box-whisker plots summarising the temporal variability in the trapping data
collected at the Tampines control and release sites before (column 1), during (column 2) and after (column 3) the
release period. The solid line in each box represents the median value and the coloured region represents the
interquartile range.

95



Figure 5.8: Trapping Data-Yishun Box-whisker plots summarising the temporal variability in the trapping data
collected at the Yishun control and release sites before (column 1), during (column 2) and after (column 3) the
release period. The solid line in each box represents the median value and the coloured region represents the
interquartile range. The data presented for the Yishun release site corresponds to the residential blocks into which
Wolbachia-infected males were released.
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In addition to temporal variability, substantial inter-block variation in the number of eggs and

adult mosquitoes trapped was also evident in the data collected at all sites. Summaries of the

inter-block variation in the data collected in both Tampines and Yishun are presented Figures 5.9

and 5.10 below.

In both Tampines and Yishun, the median number of wild-type females trapped per residential

block per week was typically below 10. As noted above, very few (if any) wild-type males were

trapped during the study period. Larger numbers of Wolbachia-infected males were trapped

compared with wild-type males, with the median number of Wolbachia-infected males trapped

highest following the largest releases.

Across both control and release sites, the median number of viable eggs trapped per block per

week typically remained below 200. As expected, few nonviable eggs were trapped at both

control sites, with the median number trapped per block per week typically below 5. Some larger

observations were observed at both control sites . Generally, a higher median number of nonviable

eggs was observed at the release sites compared with the corresponding control sites .
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Figure 5.9: Inter-block variability-Tampines Box-whisker plots summarising the inter-block variability in the weekly trapping data collected at the Tampines control (left column) and
release site (right column). The solid line in each box represents the median value and the coloured region represents the interquartile range. The dashed red lines show the period
when Wolbachia-infected males were released.
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Figure 5.9 (Continued): Inter-block variability-Tampines Box-whisker plots summarising the inter-block variability in the weekly trapping data collected at the Tampines control
(left column) and release site (right column). The solid line in each box represents the median value and the coloured region represents the interquartile range. The dashed red lines
show the period when Wolbachia-infected males were released.
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Figure 5.10: Inter-block variability-Yishun Box-whisker plots summarising the inter-block variability in the weekly trapping data collected at the Yishun control (left column) and
release site (right column). The solid line in each box represents the median value and the coloured region represents the interquartile range. The data presented for the release site
corresponds to the blocks into which Wolbachia-infected males were released. The dashed red lines show the period when Wolbachia-infected males were released.
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Figure 5.10 (Continued): Inter-block variability-Yishun Box-whisker plots summarising the inter-block variability in the weekly trapping data collected at the Yishun control (left
column) and release site (right column). The solid line in each box represents the median value and the coloured region represents the interquartile range. The data presented for
the release site corresponds to the blocks into which Wolbachia-infected males were released. The dashed red lines show the period when Wolbachia-infected males were released.

1
0

1



5.3 Model Structure

To model the impact of the release of Wolbachia-infected male Aedes aegypti on local wild-type

Aedes aegypti population dynamics, we extended the stochastic model of Aedes aegypti

population dynamics presented in Chapter 2. A simple schematic of the model is provided below

(Figure 5.11), and the dynamics of the model are as follows.

Following mating with a wild-type male (MWT ), a wild-type female (FWT ) lay eggs at a rate b.

A proportion η of these eggs may be nonviable (for reasons other than CI), and thus only viable

eggs mature to become larvae, at a daily rate γE . Larvae subsequently develop into (wild-type)

adult males and females at a daily rate γL. We assume that, on average, an equal proportion of

larvae hatch as wild-type male and female adult mosquitoes.

Figure 5.11: Schematic of Model of IIT

We do not assume that Wolbachia-infected males are necessarily equally as competitive at

finding mates as wild-type males. Thus we allow the relative mating competitiveness of

Wolbachia-infected males to vary via the parameter τ ∈ [0, 1], where τ = 1 describes the

scenario where wild-type and Wolbachia-infected males are equally competitive. The likelihood of

a wild-type female mating with a Wolbachia-infected male is therefore determined by the relative

frequency of Wolbachia-infected males in the population of competitive males which is given by:

τMWb

MWT + τMWb
(5.1)
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When a wild-type female mates with a Wolbachia-infected male, she also lays eggs at a rate b.

The proportion of these eggs which are viable is now determined by the relative reduction in the

egg hatch rate owing to incompatible matings between Wolbachia-infected males and wild-type

females, represented by the parameter ρ ∈ [0, 1]. When ρ = 1 all eggs produced following mating

between a wild-type female and Wolbachia-infected male are nonviable. Based on laboratory

and field observations (personal communication with NEA Singapore), we assume that wild-type

males and Wolbachia-infected males have the same daily mortality rate.

The deterministic dynamics of a local Aedes aegypti population in patch (i, j) at time t are hence

described by the following set of equations:

dEVij (t)

dt
= bgOij(t)

[

(1− η)MWT
ij (t) + (1− ρ)τMWb

ij (t)

MWT
ij (t) + τMWb

ij (t)

]

− γEE
V
ij (t)− µEE

V
ij (t) (5.2)

dENVij (t)

dt
= bgOij(t)

[

ηMWT
ij (t) + ρτMWb

ij (t)

MWT
ij (t) + τMWb

ij (t)

]

− µEE
NV
ij (t) (5.3)

dLij(t)

dt
= γEE

V
ij (t)− γLLij(t)− µL

(

1 +
(Lij(t)

Kij(t)

)Ω
)

Lij(t) (5.4)

dMWT
ij (t)

dt
=
γL
2
Lij(t)− µMM

WT
ij (t) (5.5)

dFWT
ij (t)

dt
=
γL
2
Lij(t)− µFF

WT
ij (t) (5.6)

dMWb
ij (t)

dt
= RWb

ij (t)− µMM
Wb
ij (t) (5.7)

Oij(t) = g−1FWT
ij (t) (5.8)

where EVij (t), E
NV
ij (t), Lij(t), F

WT
ij (t), MWT

ij (t), and MWb
ij (t) denote the number of viable eggs,

nonviable eggs, larvae, wild-type adult females, wild-type adult males, and Wolbachia-infected

adult males in the patch at time t respectively. RWb
ij (t) denotes the number of Wolbachia-infected

males released into patch (i, j) at time t, Kij(t) denotes the larval carrying capacity of the patch

at time t, and Ω describes the strength of density dependence. Oij(t) denotes the number of

wild-type females laying eggs in the patch at time t, b denotes the oviposition rate, g denotes

the length of the gonotrophic cycle of wild-type adult female mosquitoes. γE and γL denote the

development rate of viable eggs and larvae respectively. µE , µL, µF and µM denote the egg,

larval, adult female, and adult male mosquito mortality rate respectively.
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The basic mosquito reproduction number, RM , for this model is given by

RM = b
γE

γE + µE

γL
γL + µL

1

2µF
(5.9)

This differs from our equation for RM in Chapter 2 (Equation 2.5) owing to the inclusion of male

mosquitoes in our model. Here b
2µF

describes the average number of eggs laid by a female

over the course of her lifetime, while the terms γE
γE+µE

and γL
γL+µL

account for mortality during

the egg and larval stage respectively when determining the average number of females produced.

While in Chapters 2-4 we used our equation for RM to obtain the value of b, here we instead fix

the value of b and use our equation for RM to obtain the value of µL. We chose to implement

the model is this way as an estimate of the oviposition rate (b) of adult female Aedes aegypti in

Singapore was provided to us by NEA Singapore. The density-independent larval mortality rate

(µL) however was unknown.

The model is fitted at the release site level (i.e. modelling four patches), with trapping data

aggregated across all residential blocks at a given site. Given the typically short dispersal length

of Aedes aegypti [75–77] and the distance between study sites (Figure 5.3), we assume dispersal

between patches does not occur. In addition, we assume adult mosquitoes do not disperse

outside of the modelled population, and hence do not account for immigration of wild-type adult

mosquitoes from surrounding areas.

To approximate the continuous time dynamics described by equations 5.2-5.8 above, we

implemented a discrete time stochastic version of this model as detailed below. We chose a

timestep of one day (δt = 1) as this allowed us to complete model runs in a computationally

feasible timeframe, and similar results were observed for a timestep of one half of a day (δt = 0.5).

The model was implemented as follows:
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Egg Population

At time t, the number of wild-type females mating with wild-type males (CWT (t)) and the number

mating with Wolbachia-infected males (CWb(t)) is given by

CWT (t) = FWT (t)

(

MWT (t)

MWT (t) + τMWb(t)

)

(5.10)

CWb(t) = FWT (t)

(

τMWb(t)

MWT (t) + τMWb(t)

)

(5.11)

For a timestep δt = 1, we then draw the number of these females laying eggs at time t following a

cross of each type (OWT (t),OWb(t)) from a Binomial distribution

OWT (t) ∼ Bin(CWT (t), g−1) (5.12)

OWb(t) ∼ Bin(CWb(t), g−1) (5.13)

and the total number of new eggs laid at time t (QWT (t),QWb(t)) from a Poisson distribution

QWT (t) ∼ Poisson(bgOWT (t)δt) (5.14)

QWb(t) ∼ Poisson(bgOWb(t)δt) (5.15)

Of those eggs laid, we determine the number which are viable according to the cross type as

follows:

HWT (t) ∼ Bin(QWT (t), 1− η) (5.16)

HWb(t) ∼ Bin(QWb(t), 1− ρ) (5.17)

where HWT (t) and HWb(t) denote the number of viable eggs laid from wild-type and Wolbachia

crosses respectively. Thus the total number of new viable (NE
V ) and new nonviable eggs (NE

NV )

at time t is given by

NE
V (t) = HWT (t) +HWb(t) (5.18)

NE
NV (t) = (QWT (t)−HWT (t)) + (QWb(t)−HWb(t)) (5.19)

105



Similarly to that described in Chapter 2 (Equations (2.8)-(2.11)) we use a competing hazards

approach to determine the number of new larvae (NL) and deaths of viable eggs (DE
V ) at time t

as follows:

hEV (t) = γE + µE (5.20)

pEV (t) = 1− e(−h
E
V (t)δt) (5.21)

TEV (t) ∼ Bin(EV (t), pEV (t)) (5.22)

NL(t) ∼ Bin

(

TEV (t),
γE

hEV (t)

)

(5.23)

DE
V (t) = TEV (t)−NL(t) (5.24)

where hEV (t) describes the total hazard of leaving the viable egg population at time t, pEV (t)

describes the probability of leaving the viable egg population at time t, and TEV (t) denotes the

total number of viable eggs leaving the patch at time t. The number of deaths of nonviable eggs

at time t (DE
NV (t)) is given by

DE
NV (t) ∼ Bin(ENV (t), µEδt) (5.25)

The number of viable and nonviable eggs at time (t+ 1) is therefore given by

EV (t+ 1) = EV (t) +NE
V (t)−NL(t)−DE

V (t) (5.26)

ENV (t+ 1) = ENV (t) +NE
NV (t)−DE

NV (t) (5.27)

Larval Population

We determine the total number of new wild-type adult mosquitoes (NA(t)) and the number of

larval deaths (DL(t)) at time t using a similar competing hazards approach. We have

hL(t) = γL + µL

(

1 +
( L(t)

K(t)

)Ω
)

(5.28)

pL(t) = 1− e(−h
L(t)δt) (5.29)

TL(t) ∼ Bin(L(t), pL(t)) (5.30)

NA(t) ∼ Bin

(

TL(t),
γL
hL(t)

)

(5.31)

DL(t) = TL(t)−NA(t) (5.32)
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where hL(t) denotes the total hazard of leaving the larval population at time t, pL(t) denotes

the probability of leaving the larval population at time t, TL(t) denotes the total number of larvae

leaving the patch at time t, and NA(t) denotes the total number of new wild-type adult mosquitoes

at time t. We assume larvae are equally likely to develop as adult males and females, and thus

the number of new wild-type adult females (NA
F (t)) and males (NA

M (t)) is given by

NA
F (t) ∼ Bin(NA(t), .5) (5.33)

NA
M (t) = NA(t)−NA

F (t) (5.34)

The larval population in patch (i, j) at time (t+ 1) is therefore given by

L(t+ 1) = L(t) +NL(t)−NA(t)−DL(t) (5.35)

Adult Mosquito Population

As we assume that there is no dispersal between patches, and that mosquitoes do not disperse

beyond the modelled population, the hazard of an adult mosquito leaving the population in a

given patch is given by their mortality rate. Thus, we determine the number of deaths of wild-type

females (DA
F ), wild-type males (DA

M ) and Wolbachia-infected males (DA
Wb) at time t as follows:

DA
F (t) ∼ Bin(FWT (t), 1− e(µF δt)) (5.36)

DA
M (t) ∼ Bin(MWT (t), 1− e(µM δt)) (5.37)

DA
Wb(t) ∼ Bin(MWb(t), 1− e(µM δt)) (5.38)

Here, for example, 1 − e(µF δt) describes the probability of leaving the adult female population

in a given timestep. Therefore the number of wild-type males, wild-type females and

Wolbachia-infected males at time t+ 1 is given by

FWT (t+ 1) = FWT (t) +NA
F (t)−DA

F (t) (5.39)

MWT (t+ 1) =MWT (t) +NA
M (t)−DA

M (t) (5.40)

MWb(t+ 1) = RWb(t)−DA
Wb(t) (5.41)

where RWb(t) denotes the number of Wolbachia-infected males released at time t.
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5.3.1 Landscape Model

We assume that all patches have the same seasonal profile in carrying capacity, and estimate

temporal heterogeneity in carrying capacity using a cubic spline function, with the knots or

cutpoints of the spline occurring at evenly space intervals across the time series. At the beginning

of the time series, the value of the spline function is set to 1, and thus values of the spline

function at subsequent time points describe the change in the seasonal profile relative to this

initial starting point (Figure 5.12).

Figure 5.12: Example of Spline Function

Although the seasonal profile remains fixed across patches, we allow overall carrying capacity to

vary between patches by fitting a local scaling factor κij (unique to each patch) to the time series

data. The deterministic equilibrium larval population of patch (i, j) at time t is given by

L∗

ij(t) = κijS(t) (5.42)

where S(t) denotes the value of the spline function at time t. Therefore, we set Kij(t), the carrying

capacity of patch (i, j) at time t, as

Kij(t) =
L∗

ij

γL
µL

(

b(1−η)γE
2µF (γE+µE) − 1

)

− 1

(5.43)

=
κijS(t)

γL
µL

(

b(1−η)γE
2µF (γE+µE) − 1

)

− 1

(5.44)
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5.4 Model Fitting

To fit the model to the trial data, we use a particle Markov Chain Monte Carlo (MCMC) approach.

The primary advantage of adopting this approach, compared with other MCMC methods for

Bayesian inference, is that it allows us to directly fit a stochastic model to the trapping data

[245, 246]. Here, we model both the underlying mosquito population dynamics and the trapping

process itself, with the aim of providing more robust estimates of model parameters and the

impact of the Wolbachia releases on wild-type female population size..

Before presenting details of the particle MCMC algorithm used, we briefly discuss the motivation

for the development of particle MCMC methods. Our aim is not to provide a full, technical

background to the development of these techniques, as this is beyond the scope of this thesis,

but rather to provide some intuition of why these methods have been developed and how the

algorithm we employ works.

5.4.1 Particle MCMC

Motivation

First consider a model with parameters θ. Given a corresponding dataset y, we wish to make

inferences about θ and therefore our goal is to determine the posterior distribution p(θ|y), which

describes the probability of θ given y. From Bayes’ Theorem, we have

p(θ|y) ∝ p(y|θ)p(θ) (5.45)

where p(y|θ) describes the likelihood of observing the data y given parameters θ, and p(θ)

denotes the prior distribution on θ [247].

While the posterior distribution p(θ|y) can be computed analytically for some simple models, for

more complex models, p(θ|y) is usually not analytically tractable. MCMC methods however allow

us to explore the posterior distribution, by constructing a Markov chain which converges to the

posterior distribution, through sampling from the distribution p(y|θ)p(θ) (∝ p(θ|y)). One such

MCMC method is the Metropolis-Hastings algorithm [248] which proceeds as follows:
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Box 5.1: Metropolis-Hastings Algorithm [248]

1. At iteration k, propose a new parameter value θ∗ according to the proposal distribution

q(θ∗|θk), where θk denotes the current parameter value

2. Calculate the acceptance ratio α

α = min

(

1,
p(y|θ∗)p(θ∗)q(θk|θ

∗)

p(y|θk)p(θk)q(θ∗|θk)

)

(5.46)

3. Draw a random number u ∈ [0, 1] and

• if u ≤ α, accept θ∗ and set θk+1 = θ∗

• if u > α, reject θ∗ and set θk+1 = θk

4. Repeat steps 1-3 above.

Suppose now that our dataset y is comprised of a set of discrete time observations, generated

by an underlying Markov process x, which cannot be directly observed - namely, we have a

hidden Markov model or partially observed Markov process. The system we model in this work

is an example of this kind of process as our trapping data (y = {yt}
T
t=1) consists of a sequence

of observations at discrete time points, which have been generated by the underlying dynamics

of the whole mosquito population (x = {xt}
T
t=1) - a process we cannot directly observe but can

simulate using our model (Figure 5.13).

Figure 5.13: Illustration of Hidden Markov Model
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Given y, we now wish to make inferences about both model parameters θ and the underlying

process generating the data, x. Therefore we seek to describe the full joint posterior distribution

p(θ, x|y), where

p(θ, x|y) ∝ p(x|y, θ)p(y|θ)p(θ) (5.47)

The marginal likelihood p(y|θ) is now given by

p(y|θ) =

∫

X
p(y|x, θ)p(x|θ)dx (5.48)

where X denotes the set of all possible model trajectories or outcomes for a given θ. Ideally we

would like to construct a Markov chain which converges to the joint posterior distribution p(θ, x|y)

by sampling from the distribution p(x|y, θ)p(y|θ)p(θ). However, our ability to sample from this

distribution now depends on the structure of the underlying model.

If the underlying model is deterministic, then for any fixed set of parameter values θ, each model

run will result in the same trajectory. Thus, for θ fixed, we have |X| = 1 and p(x|θ) = 1. If however

the underlying model is stochastic, then even if parameter values θ remain fixed, each model run

will produced a different set of model outcomes. The total number of possible model trajectories

is unknown and possibly very large (|X| >> 1), thereby making consideration of all possible

model trajectories computationally infeasible. Thus p(x|θ) is unknown, and exact calculation of

the marginal likelihood p(y|θ) is not possible.

Particle MCMC algorithms provide a computationally feasible way of approximating the marginal

likelihood of a given set of observations for hidden Markov models (p(y|θ)), thereby allowing us

to directly fit stochastic models to time series data [245]. In particular, the particle marginal

Metropolis-Hastings (PMMH) particle MCMC algorithm [245] targets the full joint posterior

distribution p(θ, x|y), which in turn enables us to make inferences about both θ and x.

The PMMH particle MCMC Algorithm

The PMMH particle MCMC algorithm [245] extends the traditional Metropolis-Hastings algorithm

[248] (Box 5.1 above) by embedding a bootstrap particle filter after step 1 of the algorithm. Having

proposed a new parameter value θ∗, this additional step creates a corresponding proposed
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model trajectory x∗, and the pair (θ∗, x∗) are then subsequently jointly accepted (or rejected),

thus allowing us to explore the full joint posterior distribution p(θ, x|y).

A comprehensive proof and discussion of why this approach works is provided by Andrieu et.

al [245]. Briefly, however, the ability of the algorithm to target the full joint posterior distribution

p(θ, x|y) (rather than just the marginal posterior distribution p(θ|y)) relies on how values of θ and

x are proposed.

The acceptance ratio in the Metropolis-Hastings algorithm for sampling from the joint posterior

distribution p(θ, x|y) is given by

p(θ∗, x∗|y)q((θ, x)|(θ∗, x∗))

p(θ, x|y)q((θ∗, x∗)|(θ, x))
(5.49)

If the trajectory x∗ is proposed by considering both θ∗ and the data y, this allows us to decompose

the proposal distribution q((θ∗, x∗)|(θ, x)) as follows

q((θ∗, x∗)|(θ, x)) = q(θ∗|θ)p(x∗|y, θ∗) (5.50)

Therefore, the acceptance ratio now becomes

p(θ∗, x∗|y)q((θ, x)|(θ∗, x∗))

p(θ, x|y)q((θ∗, x∗)|(θ, x))
=
p(θ∗, x∗|y)q(θ|θ∗)p(x|y, θ)

p(θ, x|y)q(θ∗|θ)p(x∗|y, θ∗)
(5.51)

=
p(θ∗, x∗|y)q(θ|θ∗)p(θ, x|y)p(θ∗|y)

p(θ, x|y)q(θ∗|θ)p(θ∗, x∗|y)p(θ|y)
(5.52)

=
p(θ∗|y)q(θ|θ∗)

p(θ|y)q(θ∗|θ)
(5.53)

as p(θ, x|y) = p(x|y, θ)p(θ|y). Thus, if x∗ is generated in this way, sampling from the full joint

posterior distribution p(θ, x|y) is reduced to sampling from the marginal distribution p(θ|y)

(∝ p(y|θ)p(θ)). The particle filtering approach enables us to generate a sample trajectory from

p(x∗|y, θ) and to approximate the marginal likelihood p(y|θ∗), enabling us to sample from p(θ|y)

and consequently p(θ, x|y) [245].

This trajectory x∗ is created by comparing different trajectories simulated by the model (with fixed

parameters θ∗) to the data y at each observation point t ∈ [1, T ]. Each ‘particle’ in the algorithm

corresponds to a single model trajectory, and thus the number of particles used in the algorithm

112



corresponds to the number of trajectories compared. A simple schematic illustrating this process,

for a model with four particles, is provided in Figure 5.14 below.

At time t− 1, we run the model forward to time t. For each particle, the likelihood of observing the

data yt, given the value of the trajectory at time t, xt, is calculated and the particles are weighted

according to their likelihood values. Particles values xt are then resampled (with replacement)

using the normalised weights, and particles with lower likelihood values are thus filtered out as

the algorithm progresses. In addition, as we resample particle values with replacement, the total

number of particles used remains fixed at all times. The algorithm proceeds in this way until the

final observation, at which point a sample model trajectory x∗ is selected based on the normalised

weights of the final set of particles. This trajectory is then used to give an estimate of the marginal

likelihood p(y|θ) across the whole time series.

Figure 5.14: Schematic of Particle Filtering Illustration of particle filtering with four particles (each represented by
a different colour). At time t − 1 we run the model forward to time t. Particle values are weighted according to the
likelihood of observing yt (the data at time t) given the particle value, and resample (with replacement) using the
normalised weights. Here, the green particle is furthest away from the data yt and hence has a lower likelihood value
than other particles. Thus it is filtered out, and we now have two of the red particles. We run the model forward to time
t + 1 and repeat this process. If time t + 1 is the final time step, we pick a sample trajectory based on the normalised
weights at time t + 1 (here the first blue particle), and then use this trajectory to obtain an estimate of the marginal
likelihood across the whole time series.

The full details of the algorithm are provided in Box 5.2 below. I coded the algorithm in C++,

with parallelisation of code enabled at the particle filtering step to aid computational efficiency.

Samples of the code I wrote to implement the particle filtering step are provided in Appendix B.

We next discuss how we implemented this algorithm to fit our model of IIT against the trapping

data collected.
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Box 5.2: Particle Marginal Metropolis-Hastings (PMMH) Algorithm [245]

Suppose we have a partially observed Markov process with a set of observations yt=1...T , a

corresponding state space model xt=0...T with parameters θ, and N particles. The algorithm

proceeds as follows:

1. At iteration k, propose a new parameter value θ∗ according to the proposal distribution

q(θ∗|θk), where θk denotes the current parameter value

2. Use a bootstrap particle filter to create a corresponding model trajectory x∗ and estimate

of the marginal likelihood p(y|θ∗), letting p̂(y|θ∗) denote this estimate, as follows:

(a) At t = 0, initialise each particle, letting xn0 denote the initial value of particle n,

n = 1...N . Assume all particles have equal weight, and thus set wn0 = 1
N , where

wn0 denotes the weight of particle n at time 0.

(b) For each particle, run the model forward to the next time step. Calculate

p(yt|x
n
t , θ

∗), the likelihood of observing the data yt given the value of particle n

at time t, xnt , and θ∗.

(c) Calculate the normalised weight of each particle at time t, wnt :

wnt =
p(yt|x

n
t , θ

∗)
∑N

n=1 p(yt|x
n
t , θ

∗)
(5.54)

(d) For each particle n, resample the particle index according to the distribution of

weights i ∼ F(·|wt) and set xnt = xit.

(e) Propagate each particle forward to the next time step and repeat steps (b)-(d).

(f) At time T , draw an index j from the final set of particle weights, j ∼ F(·|wT ) and

use this sample trajectory to obtain p̂(y|θ∗) as follows:

p̂(y|θ∗) =
T
∏

t=1

p(yt|x
βj(t)
t , θ∗) (5.55)

where βj(t) denotes the ancestor of index j at time t.
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3. Calculate the acceptance ratio α

α = min

(

1,
p̂(y|θ∗)p(θ∗)q(θk|θ

∗)

p̂(y|θk)p(θk)q(θ∗|θk)

)

(5.56)

4. Draw a random number u ∈ [0, 1] and

• if u ≤ α, accept θ∗ (and x∗) and set θk+1 = θ∗

• If u > α, reject θ∗ (and x∗) and set θk+1 = θk

5. Repeat steps 1-4 above.

5.4.2 Proposing Parameter Values

Given that we’re estimating both the underlying mosquito population dynamics and the trapping

process, many parameters in our model are strongly correlated. Thus, to account for this

correlation, we use a multivariate Normal distribution to propose new parameter values.

Parameter values are therefore updated as a single block. At iteration k, we draw our proposed

parameter values θ
∗ as follows

θ
∗ ∼ N (θk, σ

2Ck) (5.57)

where θk denotes the current vector of parameter values, and the matrix σ2Ck denotes the

covariance matrix of the proposal distribution, which is composed of a scaling factor σ2 and a

positive definite matrix Ck. The parameter σ2 can be thought of as determining the size of the

covariance matrix, while the matrix Ck determines the shape of the distribution.

Ideally, we would like Ck to be the true covariance matrix (Σ) of θ. However, the true underlying

covariance structure is unknown, and hence we approximate Σ by learning the covariance

structure as the algorithm progresses, letting Σ̂k denote our approximation of Σ at iteration k. We

assume parameters are not correlated for the first 5000 iterations of the algorithm, and account

for the covariance structure from this point onwards. Computing the covariance matrix at each

iteration is very computationally intensive and so, to aid computational efficiency, we subsequently

calculate the covariance matrix every 1000 iterations, using a maximum of the previous 500,000

115



iterations. We therefore set

Σ̂k =































I, k < 5000

1
k−k0−1

∑k
i=k0

(θi − θ̄)(θi − θ̄)⊺, k ≥ 5000 & k mod 1000 = 0

Σ̂k−1 otherwise

(5.58)

where k0 = max(0, k − 500000) and I denotes the identity matrix. In addition, to ensure Ck is

always positive definite, we set

Ck = Σ̂k +
0.0012

k
I (5.59)

The scaling factor σ2 is tuned to give a desired acceptance rate r using a Robbins-Monro algorithm

developed by Garthwaite et. al [249]. This algorithm searches for the optimal scaling factor

needed to give an acceptance rate r by adjusting the scaling factor at each iteration in accordance

with how parameter values are updated. Namely, at iteration k + 1, σ is marginally increased

if proposed parameter values θ
∗ are accepted, or else is marginally decreased if proposed

parameter values are rejected. We implement this algorithm by setting

σk+1 =















σk + s(1− r)/k if θ∗ is accepted

σk − sr/k if θ∗ is rejected

(5.60)

where

s = σk

[(

1−
1

d

)

(2π)1/2eα
2/2

2α
+

1

dr(1− r)

]

(5.61)

and d denotes the dimension of our proposal distribution, α = −Φ−1(r/2), and Φ(·) denotes the

cumulative distribution function of the Normal distribution [249].

5.4.3 Likelihood Function

In any environment, the likelihood of successfully trapping mosquitoes is highly variable and

trapping data is therefore often over-dispersed. To allow for over-dispersion in the entomological

data collected during the Phase 1 study, we assume observations yt are distributed according to

a BetaBinomial distribution

yt ∼ BetaBin(xt, p, α, β) (5.62)
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where xt denotes total population size at t as predicted by the model, p denotes the average

proportion trapped, and α and β determine the level of over-dispersion in p. This distribution can

be decomposed as

yt ∼ Bin(xt, p) (5.63)

p ∼ Beta(α, β) (5.64)

and, hence this distribution in the logical extenstion of the Binomial distribution to allow for

over-dispersion. The likelihood of observing yt given xt is given by

L =

(

xt
yt

)

B(xt + α, xt − yt + β)

B(α, β)
(5.65)

where B denotes the Beta function with standard arguments α and β.

To gain a more intuitive understanding of the variability in the trapping process, we

re-parameterise the Beta function describing the distribution of p in terms of its mean (m) and

variance (v). We have that

m = E[p] =
α

α+ β
(5.66)

v = Var[p] =
αβ

(α+ β)2(α+ β + 1)
(5.67)

= m(1−m)

(

1

α+ β + 1

)

(5.68)

where ψ = 1
α+β+1 is the over-dispersion parameter, with larger values of ψ giving increased

variability in p. This gives

α = m

(

1

ψ
− 1

)

(5.69)

β = (1−m)

(

1

ψ
− 1

)

(5.70)

Setting m = p, the likelihood L of observing the data yt given our model prediction xt is therefore

given by

L =

(

xt
yt

)

B
(

xt + p
(

1
ψ − 1

)

, xt − yt + (1− p)
(

1
ψ − 1

))

B
(

p
(

1
ψ − 1

)

, (1− p)
(

1
ψ − 1

)) (5.71)
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We fit our model using both the adult mosquito and egg trapping data collected. At time t,

we calculate L for each part of the population s for which trapping data is available. The total

likelihood at time t is then calculated by taking the product of the likelihood for each of these

parts, and is therefore given by

L =
∏

s∈S

L(s) (5.72)

=
∏

s∈S

(

xt(s)

yt(s)

)B
(

xt(s) + p(s)
(

1
ψ(s) − 1

)

, xt(s)− yt(s) + (1− p(s))
(

1
ψ(s) − 1

))

B
(

p(s)
(

1
ψ(s) − 1

)

, (1− p(s))
(

1
ψ(s) − 1

)) (5.73)

If only adult mosquito data is available at time t then S = {FWT ,MWT ,MWb}, while if both

adult and egg data is available, S = {FWT ,MWT ,MWb, EV , ENV }. Taking wild-type females for

example, xt(F
WT ) and yt(F

WT ) denote the total number of wild-type females predicted by the

model and trapped at time t respectively. p(FWT ) and ψ(FWT ) denote the mean proportion of

wild-type females trapped and the over-dispersion in this trapping rate respectively.

The total log-likelihood at time t is given by

logL =
∑

s∈S

log(L(s)) (5.74)

118



5.5 Testing with Simulated Data

To explore how well parameter values of our model can be estimated using our model fitting

approach, we calibrate the model against a dataset of simulated values and compare estimates

obtained against the true parameter values.

5.5.1 Generating the Simulated Data

As far as possible, we simulated data to mimic the trapping data collected during the Phase 1

field study. Thus, using our model of IIT, we simulated data for a landscape comprised of four

patches, where we have two control and two release sites. The number of Wolbachia-infected

males released increases over time in one release site, and remains constant in the other. We

generate trapping data for both adult mosquitoes and eggs as follows:

For a fixed set of parameter values, we run the model once to generate a sample trajectory x of

the whole mosquito population. From this trajectory, we then generate weekly trapping data by

sampling from a Binomial distribution with parameters determined by x and the relevant trapping

distribution. For example, to generate the number of wild-type females trapped at time t (yt(F
WT ))

for a single patch, we draw yt(F
WT ) from a Binomial distribution

yt(F
WT ) ∼ Bin(xt(F

WT ), p̃(FWT )) (5.75)

where xt(F
WT ) denotes the total number of wild-type females predicted by the model at time t

and p̃(FWT ) denotes the mean proportion trapped at time t. This is drawn from a Beta distribution

with mean p(FWT ) and an over-dispersion parameter ψ(FWT ). We adopt a similar approach with

respect to generating trapping data for wild-type and Wolbachia-infected males, and viable and

nonviable eggs.

We simulate data over a period of 95 weeks, and allow the model to run-in for 5 weeks, giving a

total time period of 100 weeks. Seasonal variation in mosquito abundance is determined using

a spline function as described in section 5.2.1 above, and cutpoints of the spline are placed 10

weeks apart. Therefore we have 11 cutpoints in total c1..11, with c1 = 1. All sites have the same

seasonal profile in carrying capacity and thus cutpoint values remain fixed across sites. Each

site however has a unique multiplier κ which scales the spline function to give an overall measure
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of carrying capacity. Mean trapping proportions vary between (but not within) control-release

pairs, and we allow different mean trapping proportions for wild-type females, wild-type males and

Wolbachia-infected males. Viable and nonviable eggs are trapped at the same mean rate. The

over-dispersion parameter with respect to the mean proportions trapped varies between eggs and

adult mosquitoes, but remains the same for all adult mosquitoes and across sites.

5.5.2 Reducing Correlation

To help reduce correlation between parameter values when fitting the model, we choose one

control-release pair as a reference pair (with parameter values corresponding to this pair denoted

with superscript 1). The mean trapping proportions and multipliers for the spline function for the

remaining pair (denoted with superscript 2) are then determined by scaling the corresponding

values for the reference pair. Thus, we have

p2(FWT ) = sfp
1(FWT ), p2(MWT ) = smp

1(MWT ), p2(MWb) = swbp
1(MWb), (5.76)

p2(E) = sep
1(E), κ2c = scκ

1
c , κ2r = srκ

1
r (5.77)

where κ1c and κ1r denote the multipliers of the spline function for the control and release site of the

reference pair respectively, and parameters s denote the different relevant scaling factors.

Within the reference pair of sites we estimate the mean proportions of wild-type and

Wolbachia-infected males trapped relative to the mean proportion of wild-type females trapped,

and the multiplier of the spline function for the release site relative to that of the control site.

Namely, for the reference pair we have

p1(FWT ) = pf , p1(MWT ) = λmpf , p1(MWb) = λwbpf , (5.78)

p1(E) = pe, κ1c = κc, κ1r = λrκc (5.79)

where parameters λ denote the relevant scaling factors for within the reference pair of sites.

Using this approach allows us to fit all four sites together with a mixture of local and global

parameter values, reducing the correlation between parameter values as much as possible.

Here we estimated model parameters using N = 50 particles, running the chains for 4,000,000
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iterations. We chose to use 50 particles as this provided similar estimates of model parameter

values and the likelihood function to runs with more particles (N = 100, N = 150), while allowing

us to complete model runs within a computationally feasible timeframe. Uniform prior distributions

were used for all parameters, and all parameters were fitted on a log10 scale. Parameter samples

from the posterior distribution were obtained using the last 500,000 iterations of each chain,

thinned by a factor of 100, giving a total sample size of 5000 values for each parameter. Fits

of the model to the simulated trapping data were generated using 1000 parameter sets sampled

from the posterior distributions. For each of these parameter sets, one model run was performed.

5.5.3 Results

Results of this calibration exercise are presented in Figures 5.15-5.20 below. Figure 5.15 shows

the posterior distribution for each parameter, and Figure 5.16 shows the underlying correlation

structure. Figures 5.17-5.20 show the fits of the model to the simulated data using parameter

values sampled from the posterior distribution.

Good estimates of parameter values were obtained, with the majority of true parameter values

lying within the 95% credible interval of samples from the posterior distributions (Figure 5.15).

We were unable to recover a very precise estimate of the basic mosquito reproduction number

RM , with estimates of this parameter spanning a large range of values. Strong correlation

between the cutpoints and multipliers of the spline function and the mean proportion of adult

mosquitoes trapped was observed (Figure 5.16), however good estimates of the true values for

these parameters were obtained.

Importantly, the algorithm provided good estimates of the over-dispersion parameters (ψ,ψe),

indicating that we were able to capture variability in the simulated trapping data for both adult

mosquitoes and eggs well.

A good fit of the model to the simulated data was thus obtained, with the data within the 95%

posterior predicted intervals at almost all time points (Figures 5.17-5.20). The egg hatch rate

(defined as the proportion of viable eggs among the total number of eggs trapped at a given time

point) was not used in the model fitting process, and was estimated based on our samples from

the posterior distribution. We observe that this was also captured well by the model (Figures
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5.17-5.20).

Figure 5.15: Posterior Parameter Distributions Histograms of the posterior distributions for all estimated parameters.
For each parameter, 5000 values from the posterior distribution were sampled. The solid blue line shows the posterior
median, the dashed black lines show the 95% credible interval, and the solid red line show the true parameter value.
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Figure 5.15 (Continued): Posterior Parameter Distributions Histograms of the posterior distributions for all
estimated parameters. For each parameter, 5000 values from the posterior distribution were sampled. The solid
blue line shows the posterior median, the dashed black lines show the 95% credible interval, and the solid red line
show the true parameter value.
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Figure 5.16: Correlation Structure Underlying correlation structure of estimate parameter values. Dark blue squares
indicate pairs of parameter values which are strongly positively correlated with one another, while dark red squares
indicate pairs of parameter values which are strongly negatively correlated with one another.
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Figure 5.17: Control Site 1 Fits of the model to the simulated trapping data for the first control site. Observed data are shown in black, and the solid line and shaded area show
the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released. Figure F shows the
estimated egg hatch rate.
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Figure 5.18: Release Site 1 Fits of the model to the simulated trapping data for the first release site. Observed data are shown in black, and the solid line and shaded area show
the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released. Figure F shows the
estimated egg hatch rate.
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Figure 5.19: Control Site 2 Fits of the model to the simulated trapping data for the second control site. Observed data are shown in black, and the solid line and shaded area show
the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released. Figure F shows the
estimated egg hatch rate.
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Figure 5.20: Release Site 2 Fits of the model to the simulated trapping data for the second release site. Observed data are shown in black, and the solid line and shaded area show
the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released. Figure F shows the
estimated egg hatch rate.
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5.6 Discussion

In this chapter, we described the first field study testing Wolbachia as a tool for Aedes aegypti

population suppression undertaken in Singapore, and the data collected over the course of this

study. We described the model of IIT developed to explore the results of this study, and the

inferential approach developed to calibrate the model against the entomological data collected.

We concluded by presenting results for testing the model with simulated data.

While we obtained good estimates of the majority of model parameters, it was difficult to achieve

a precise estimate of the mosquito reproduction number RM , with the 95% posterior credible

interval spanning a large range of values. We hypothesise that, even with simulated egg and

adult mosquito trapping data, it is difficult to robustly estimate RM (in addition to many other

model parameters) owing to density-dependent mortality during the larval stage of mosquito

development. Nonetheless, the true value for RM was contained within the 95% credible interval

for estimates of this parameter. Furthermore, good fits of the model to the data were obtained,

with the model able to capture well the variability in the simulated trapping data.

We now proceed to exploring the results obtained from calibrating the model against the data

collected during the Phase 1 study.
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Chapter 6

Project Wolbachia Singapore: Phase 1

Results

In Chapter 5, I described the Phase 1 field study of IIT conducted in Singapore, the model of IIT

developed and the approach we use to calibrate the model against mosquito trapping data. Here,

I present the results of fitting the model to the trapping data collected during the field study and

discuss the insight gained from these results.

6.1 Methods

We calibrated our model of IIT against the adult mosquito and egg data collected during the

Phase 1 study using a particle MCMC approach as described in Chapter 5. All four sites were

fitted together and, when examining the dynamics at the Yishun release site, we restricted our

analysis to the area where Wolbachia-infected males were released. We aimed to describe

both the underlying dynamics of the full Aedes aegypti population at each site, and the level of

variability in the trapping process. We considered the dynamics across a period of 100 weeks

from January 2016 to October 2017. Cutpoints of the spline function were placed 10 weeks

apart, giving a total of 11 cutpoints. When fitting the model to the data, Tampines was chosen as

the reference control-release pair.

We sought to estimate

• the cutpoints and multipliers of the spline function

• the mean sampling proportions and corresponding over-dispersion parameters
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• the mean proportion of eggs which are nonviable (not from CI)

• the egg mortality rate

• the basic mosquito reproduction number

• the mating competitiveness of Wolbachia-infected males

Thus, taking the different scaling factors into account, we estimated values for 28 parameters in

total: c2...11, κc, pf , pe, ψ, ψe, η, µE , RM , τ , λ m,r,wb, s c,r,f,m,wb,e. Uniform prior distributions were

used for all parameters.

Values of the remaining model parameters were fixed, as described in Table 6.1 below.

These values were chosen where possible to reflect the dynamics of wild-type Aedes aegypti

populations in Singapore, and were determined in consultation with NEA Singapore. The adult

mortality rate differs between males and females as adult females are typically observed to have

a longer lifespan than wild-type adult males in Singapore. A similar pattern has been observed in

several MRR studies of Aedes aegypti , conducted across a variety of settings [76, 77, 223, 250].

Parameter Description Value Reference

b Mean number of eggs laid by a

female Aedes aegypti

25/day

(based on estimate of

100 eggs per

gonotrophic cycle)

[99]

g Length of gonotrophic cycle 4 days [251]

1
γE

Mean egg development time 3 days [48]

1
γL

Mean larval development time 7 days [48, 64, 68, 99]

µM Adult male mortality rate 0.25/day [223]

µF Adult female mortality rate 0.15/day [77, 223, 250]

ρ Degree of CI 0.99 [97]

Ω Strength of density dependence 1 -

Table 6.1: Fixed Model Parameter Values.

The particle MCMC algorithm was implemented using 50 particles, and the MCMC chains were

run for 5 million iterations. Parameter values were sampled from the posterior distribution using
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the final 500,000 iterations of each chain, thinned by a factor of 100. This gave an overall sample

size of 5000 for each parameter value. Posterior predictive intervals were generated using 1000

parameter sets sampled from the posterior distribution of each parameter. For each of these

parameter sets, one model run was performed.

6.2 Results

We adopted a number of different approaches when calibrating the model against the trapping

data. We first included the basic mosquito reproduction number RM in the set of estimated

parameter values, and then tested sensitivity of estimated parameter values to different values

of RM by calibrating the model against the data for different fixed values of RM . We also explored

whether mating competitiveness of Wolbachia-infected males varied between the Tampines and

Yishun.

6.2.1 Estimating the Basic Mosquito Reproduction Number

Results corresponding to the model where RM is included in the set of estimated parameter

values are presented in Figures 6.1-6.7 below. The posterior distributions of estimated parameter

values are shown in Figure 6.1. Estimates of the wild-type adult female population size at both

control sites and the variability in the underlying trapping process are presented in Figures 6.2

and 6.3. Fits of the model to the trapping data for both Tampines and Yishun are presented in

Figures 6.4-6.7.

We obtained a very low estimate of RM (posterior median 1.26, 95% CrI 1.21-1.33) (Figure 6.1)

and, consequently, estimated a low wild-type adult female mosquito population size for both

Tampines and Yishun. We estimated a maximum adult female population size of approximately

1,000 mosquitoes across the study period for both control sites (Figures 6.2,6.3). In order to fit

the model to the data given these low estimates of population size, we therefore also estimated

that, on average, a relatively large proportion of wild-type females were trapped at both sites with

a high degree of variability in the trapping process.

In Tampines, we estimated that approximately 9% of wild-type females were trapped per week on

average, with the proportion of females trapped ranging from 2%-20% approximately (Figure 6.2).

As expected given the pattern observed in the trapping data, we estimated that a considerably
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smaller proportion of wild-type males were trapped compared with wild-type females, with

approximately 0.5% of wild-type males trapped per week on average (approximate range

0%-4%). A larger trapping rate was estimated for Wolbachia-infected males, with approximately

1% trapped per week on average (approximate range 0%-5%). A high degree of variability was

also estimated for the egg trapping process, with approximately 2% of eggs laid trapped per week

on average and the proportion of eggs trapped ranging from 0%-10%.

We estimated that, on average, a larger proportion of wild-type females were trapped in Yishun

compared with Tampines, with approximately 16% of wild-type females trapped per week on

average (approximate range 6%-30%) (Figure 6.3). Similarly to Tampines, we estimated a smaller

proportion of wild-type males and Wolbachia-infected males were trapped in Yishun compared

with wild-type females (Figure 6.3). However, we estimated a slightly smaller proportion of

Wolbachia-infected males were trapped on average in Yishun compared with Tampines (.5%)

(Figure 6.3). This is in agreement with the pattern observed in the trapping data. In addition,

we estimated a smaller proportion of eggs were trapped on average in Yishun compared with

Tampines.

We estimated a small proportion of eggs were non-viable for reasons other than CI (posterior

median .67%, 95% CrI 0.5%-0.7%), and estimated a daily egg mortality rate of approximately

.06 (95% CrI .055-.068) (Figure 6.1). We also estimated that there was substantial seasonal

variation in mosquito abundance. This is shown by changes in the values of the cutpoints of

the spline function used to determine seasonal variation in mosquito abundance (Figures 6.1-6.3).

Interestingly, we estimated that the mating competitiveness of the Wolbachia-infected males

released was very low, with an estimated median proportion 0.22% of Wolbachia-infected males

mating with wild-type female (95% CrI .18%-.24%). Here, we assumed mating competitiveness

did not differ between Tampines and Yishun.

Under this parameter regime, we obtained a good fit of the model to the data across all sites, with

the majority of data points lying within the 95% posterior predictive interval (Figures 6.4-6.7). The

observed egg hatch rate was not used in the model fitting process, and thus was estimated using

the trapping data simulated by the model when generating posterior predictive intervals. Here,
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we obtained a good fit to the hatch rate observed at both control sites (Figures 6.4, 6.6). However

we obtained a poorer fit to the hatch rate observed during the release period was obtained for

both release sites (Figures 6.5, 6.7).

Although a good fit of the model to the data was obtained, the estimates of the weekly trapping

rates for wild-type females obtained are unrealistically large. Furthermore, when fitting the

model to the data, we did not model trapping mosquitoes as removing mosquitoes from the

population. Had the trapping process been modelled in this way, such high trapping rates would

have substantially affected the population dynamics. Thus, we explored sensitivity of parameter

estimates to the value of RM to gain a better understanding of the wild-type mosquito population

size, the variability in the trapping process and the likely impact of the Wolbachia releases on the

wild-type population.
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Figure 6.1: Posterior Parameter Distributions Histograms of the posterior distributions for all estimated parameters
(when fitting RM ). For each parameter, 5000 values from the posterior distribution were sampled. The solid blue line
shows the posterior median, and the dashed black lines show the 95% credible interval.
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Figure 6.1 (Continued): Posterior Parameter Distributions Histograms of the posterior distributions for all estimated
parameters (when fitting RM ). The solid blue line shows the posterior median, and the dashed black lines show the
95% credible interval.
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Figure 6.2: Population Size & Trapping - Tampines (A) Estimated total wild-type female population size for the Tampines control site. The solid line and shaded area show the
posterior median and 95% posterior predictive interval respectively (based on 1000 simulations using samples from the posterior distribution). (B) Estimated spline function. (C-F)
Histograms of the estimated distribution of the proportion of wild-type females (C), wild-type males (D), Wolbachia-infected males (E) and eggs (F) trapped in Tampines.
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Figure 6.3: Population Size & Trapping -Yishun(A) Estimated total wild-type female population size for the Yishun control site. The solid line and shaded area show the posterior
median and 95% posterior predictive interval respectively (based on 1000 simulations using samples from the posterior distribution).(B) Estimated spline function. (C-F) Histograms
of the estimated distribution of the proportion of wild-type females (C), wild-type males (D), Wolbachia-infected males (E) and eggs (F) trapped in Yishun.
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Figure 6.4: Tampines-Control Site (fitting RM ) Fits of the model to the trapping data collected at the Tampines control site. Observed data are shown in black, and the solid line
and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.5: Tampines-Release Site (fitting RM ) Fits of the model to the trapping data collected at the Tampines release site. Observed data are shown in black, and the solid line
and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.6: Yishun-Control Site (fitting RM ) Fits of the model to the trapping data collected at the Yishun control site. Observed data are shown in black, and the solid line and
shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.7: Yishun-Release Site (fitting RM ) Fits of the model to the trapping data collected at the Yishun release site. Observed data are shown in black, and the solid line and
shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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6.2.2 Sensitivity to the Basic Mosquito Reproduction Number

Given the very low estimate of the basic mosquito reproduction number and high estimates of

the trapping rates obtained in the previous section, we tested sensitivity of posterior parameter

estimates to the value of the basic mosquito reproduction number by fixing the value of RM at

a range of different values (RM = 1.5, 5, 12), and subsequently calibrating the model against the

trapping data. A summary of the parameter estimates obtained for different values of RM are

presented in Table 6.2. Corresponding estimates of total wild-type adult female population size

and the proportion of adults and eggs trapped in Tampines and Yishun are shown in Figures 6.10

and 6.11 below. Fits of the model to the data for RM = 12 are presented in Figures 6.12-15.

In agreement with the results obtained in the previous section, we observed that the log-likelihood

was largest when RM = 1.5 (Figure 6.8). Considerably lower values of log-likelihood were

obtained for RM = 5, 12 compared with RM = 1.5, however we observed little difference in the

log-likelihood values obtained for RM = 5 and RM = 12 (Figure 6.8).

Figure 6.8: Comparison of Log-likelihood Log-likelihood values observed when fitting the model to the data for (A)
RM=1.5, (B) RM=5 and (C) RM=12.

The largest differences in estimates of parameter values were also observed when moving from

RM = 1.5 to RM = 5. We observed a large increase in total wild-type adult female population

size and a substantial reduction in both the mean trapping rates and the variability in the

trapping process when moving between these parameter regimes. For example, for RM = 1.5

we estimated a maximum wild-type adult female mosquito population size for the Tampines

control site of approximately 1,000 mosquitoes, and estimated approximately 10% of wild-type

females were trapped per week on average in Tampines, with the proportion trapped ranging from

3%-20% approximately (Figure 6.10). In contrast, for RM = 5, we estimated a maximum wild-type
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adult female mosquito population size for the Tampines control site of approximately 12,000

mosquitoes, and estimated approximately 1.5% of wild-type females were trapped per week on

average in Tampines, with the proportion trapped ranging from 0.5%-3% approximately (Figure

6.10). For RM = 5, we also estimated a lower proportion of wild-type males, Wolbachia-infected

males and eggs were trapped on average in Tampines, compared with Rm = 1.5 (Figure 6.10).

A similar pattern was observed for Yishun when moving from RM = 1.5 to larger values (Figure

6.11).

For the majority of model parameters, similar estimates of parameter values were obtained for

RM = 5 and RM = 12 (Table 6.2). Although differences in the estimates of the multipliers of

the spline function were observed when moving between larger values of RM , estimates of

the wild-type adult female mosquito population size and the variability in the trapping process

remained broadly similar for RM = 5 and RM = 12 (Figure 6.9). For larger values of RM , we also

estimated less seasonal variability in mosquito abundance as smaller differences were observed

between the estimated values of the cutpoints of the spline function, compared with for very low

values of RM (Table 6.2). In addition, for larger values of RM , we estimated that, on average, a

smaller proportion of adult mosquitoes and eggs were trapped in Yishun compared with Tampines.

Figure 6.9: Spline Function (fixed RM ) Estimated spline function for different fixed values of RM .

For all values of RM , we estimated approximately 1% of eggs were non-viable for reasons other

than CI, and a daily egg mortality rate of approximately 0.10 (Table 6.2). Although slightly higher

estimates of mating competitiveness were obtained for larger values of RM , estimates of the

mating competitiveness of Wolbachia-infected males, overall, remained very low. For RM = 1.5

144



we estimated approximately 0.4% of Wolbachia-infected males mated successfully with wild-type

females, while for RM = 5 and RM = 12 this value increased to approximately 3% (Table 6.2).

Despite having lower log-likelihood values, a good fit of the model to the data was still obtained

for larger values of RM (Figures 6.12-15). Posterior predictive intervals were wider compared with

model fits for very low values of RM , however we obtained a better fit to the observed egg hatch

rate during the release periods for both Tampines and Yishun for larger values of RM (Figures

6.13, 6.15).
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Parameter Description Prior RM = 1.5 RM = 5 RM = 12

c2 Cutpoint of Spline Function U [0.001,20] 1.01 (0.81, 1.11) 0.42 (0.26, 0.69) 0.41 (0.23, 0.80)

c3 Cutpoint of Spline Function U [0.001,20] 1.29 (1.09, 1.46) 0.53 (0.37,0.79) 0.50 (0.33, 0.82)

c4 Cutpoint of Spline Function U [0.001,20] 2.72 (2.34, 2.91) 1.01 (0.68, 1.62) 0.97 (0.58, 1.79)

c5 Cutpoint of Spline Function U [0.001,20] 1.08 (0.90, 1.20) 0.63 (0.43, 0.99) 0.63 (0.39, 1.10)

c6 Cutpoint of Spline Function U [0.001,20] 3.05 (2.68, 3.37) 1.08 (0.74, 1.65) 1.02 (0.62, 1.80)

c7 Cutpoint of Spline Function U [0.001,20] 2.57 (2.27, 2.88) 1.09 (0.75, 1.68) 1.09 (0.66, 1.87)

c8 Cutpoint of Spline Function U [0.001,20] 5.84 (4.54, 6.33) 1.56 (1.05, 2.43) 1.44 (0.87, 2.59)

c9 Cutpoint of Spline Function U [0.001,20] 3.40 (2.76, 3.75) 1.60 (1.11, 2.49) 1.59 (0.97, 2.78)

c10 Cutpoint of Spline Function U [0.001,20] 1.63 (1.30, 1.79) 0.76 (0.51, 1.17) 0.75 (0.46, 1.29)

c11 Cutpoint of Spline Function U [0.001,20] 3.50 (2.88, 3.81) 1.55 (0.92,2.69) 1.49 (0.81, 2.71)

κc Multiplier of Spline Function

(Tampines control site)

U [0.001,1000000] 3,018 (2,698,3,245) 56,722 (29,700,101,391) 65,960 (30,659,146,786)

λr Scaling Factor (Tampines release

site)

U [0.001,1000] 0.89 (0.83,1.01) 0.73 (0.65,0.82) 0.71 (0.63,0.79)

pf Mean proportion of wild-type

females sampled (Tampines)

U [0,1] 0.097 (0.088,0.119) 0.014 (0.008,0.026) 0.013 (0.007,0.025)

pe Mean proportion of eggs sampled

(Tampines)

U [0,1] 0.026 (0.024,0.031) 0.004 (0.002,0.007) 0.003 (0.002,0.007)
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ψ Over-dispersion parameter (adult

mosquitoes)

U [0.00001,1] 0.010 (0.009,0.012) 0.002 (0.001,0.003) 0.002 (0.001,0.003)

ψe Over-dispersion parameter (eggs) U [0.00001,1] 0.014 (0.013,0.016) 0.002 (0.001,0.004) 0.002 (0.001,0.004)

µe Egg mortality rate U [0.001,.25] 0.098 (0.081,0.114) 0.103 (0.069,0.217) 0.096 (0.064,0.161)

η Degree of non-viability among eggs

laid (not from CI)

U [0,1] 0.010 (0.008,0.010) 0.010 (0.007,0.017) 0.009 (0.006,0.015)

τ Mating competitiveness of

Wolbachia-infected males

U [0,1] 0.0040 (0.0036,0.0043) 0.031 (0.015,0.115) 0.032 (0.013,0.075)

λm Scaling Factor (Tampines) U [0,10] 0.055 (0.042,0.061) 0.054 (0.042,0.068) 0.054 (0.042,0.067)

λwb Scaling Factor (Tampines) U [0,10] 0.101 (0.085,0.109) 0.536 (0.311,0.932) 0.591 (0.313,1.071)

sc Scaling Factor (Yishun control site) U [0,1000] 0.95 (0.87,1.21) 1.13 (0.82,1.52) 1.20 (0.90,1.61)

sr Scaling Factor (Yishun release site) U [0,1000] 0.35 (0.31,0.38) 0.46 (0.33,0.62) 0.49 (0.37,0.67)

sf Scaling Factor (Yishun) U [0,10] 1.09 (0.89,1.19) 0.86 (0.65,1.18) 0.81 (0.62,1.07)

sm Scaling Factor (Yishun) U [0,10] 0.66 (0.53,0.71) 0.59 (0.40,0.87) 0.56 (0.38,0.82)

swb Scaling Factor (Yishun) U [0,10] 0.60 (0.48,0.67) 0.53 (0.37,0.75) 0.52 (0.37,0.75)

se Scaling Factor (Yishun) U [0,10] 0.43 (0.40,0.48) 0.41 (0.32,0.53) 0.39 (0.31,0.49)

Table 6.2: Sensitivity to RM . Summary of posterior estimates of parameter values for the model with different fixed values of RM . The median posterior estimate is reported with
the 95% credible interval in brackets.
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Figure 6.10: Population Size & Trapping (fixed RM )-Tampines Comparison of estimated total wild-type female population size and trapping rates for the Tampines control site.
Figures in columns 1,2 and 3 correspond to RM = 1.5, RM = 5, and RM = 12 respectively. The solid line and shaded area in (A1-A3) show the posterior median and 95%
posterior predictive interval respectively (based on 1000 simulations using samples from the posterior distribution). (B1-E3) Histograms of the estimated distribution of the proportion
of wild-type females (B1-B3), wild-type males (C1-C3), Wolbachia-infected males (D1-D3) and eggs (E1-E3) trapped in Tampines.
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Figure 6.11: Population Size & Trapping (fixed RM )-Yishun Comparison of estimated total wild-type female population size and trapping rates for the Yishun control site. Figures
in columns 1,2 and 3 correspond to RM = 1.5, RM = 5, and RM = 12 respectively. The solid line and shaded area in (A1-A3) show the posterior median and 95% posterior predictive
interval respectively (based on 1000 simulations using samples from the posterior distribution). (B1-E3) Histograms of the estimated distribution of the proportion of wild-type females
(B1-B3), wild-type males (C1-C3), Wolbachia-infected males (D1-D3) and eggs (E1-E3) trapped in Yishun.
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Figure 6.12: Tampines-Control Site (RM = 12) Fits of the model to the trapping data collected at the Tampines control site. Observed data are shown in black, and the solid line
and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.13: Tampines-Release Site (RM = 12) Fits of the model to the trapping data collected at the Tampines release site. Observed data are shown in black, and the solid line
and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.14: Yishun-Control Site (RM = 12) Fits of the model to the trapping data collected at the Yishun control site. Observed data are shown in black, and the solid line and
shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.15: Yishun-Release Site (RM = 12) Fits of the model to the trapping data collected at the Yishun Release site. Observed data are shown in black, and the solid line and
shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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6.2.3 Mating Competitiveness

We tested whether the mating competitiveness of Wolbachia-infected males varied between

release sites by allowing the parameter τ to vary between sites when fitting the model to the

data. We let τ1 and τ2 denote the mating competitiveness of Wolbachia-infected males released

in Tampines and Yishun respectively. As in the previous section, results for RM = 5 and RM = 12

were similar, and here we discuss the results for the model where RM = 12 remains fixed.

We observed considerable differences in estimates of the mating competitiveness of

Wolbachia-infected males released in Tampines and Yishun, with substantially greater mating

competitiveness estimated for Yishun (posterior median 18.5%, 95% CrI 5.1%-44%) compared

with Tampines (3.1%, 95% CrI 1.4%-8.1%) (Figure 6.16). Furthermore, allowing mating

competitiveness to vary between sites also resulted in slightly higher mean log-likelihood values

(Figure 6.16).

Figure 6.16: Mating Competitiveness (A-B) Posterior estimates of mating competitiveness for Tampines (A) and
Yishun (B) for the model where RM=12 is fixed. The solid blue line shows the posterior median, and the dashed
black lines show the 95% credible interval. (C-D) Log-likelihood values of model where RM=12 is fixed when mating
competitiveness is estimated locally (C) or globally (D).
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The majority of posterior estimates for other parameter values remained largely unchanged

when fitting τ locally (Table 6.3). We estimated a higher daily egg mortality rate when mating

competitiveness was fitted locally (posterior median .133, 95% CrI .083-.231) compared with

globally (posterior median .096, 95% CrI .064-.161). Slight differences in the multipliers of

the spline function were also observed, however estimates of total wild-type adult female size

remained broadly similar. Estimates of the mean trapping rates and level of variability in the

trapping process for both adult mosquitoes and eggs also remained similar under both scenarios

(Table 6.3).

Given our estimate of mating competitiveness for Tampines was similar to that obtained when

mating competitiveness was estimated globally (Table 6.3), fits of the model to the trapping

data collected at Tampines remained largely unchanged when τ was estimated locally (Figures

6.17, 6.18). However, for Yishun, a higher estimate of mating competitiveness resulted in wider

posterior predictive intervals for the number of nonviable eggs at the Yishun release site (Figure

6.20). This in turn resulted in a better fit to the hatch rate observed during the release period at

the Yishun release site (Figure 6.20).
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Parameter Description Prior τ - global τ - local

c2 Cutpoint of Spline Function U [0.001,20] 0.41 (0.23,0.80) 0.41 (0.24,0.84)

c3 Cutpoint of Spline Function U [0.001,20] 0.50 (0.33,0.82) 0.49 (0.34,0.87)

c4 Cutpoint of Spline Function U [0.001,20] 0.97 (0.58,1.79) 0.97 (0.61,1.84)

c5 Cutpoint of Spline Function U [0.001,20] 0.63 (0.39,1.10) 0.62 (0.40,1.13)

c6 Cutpoint of Spline Function U [0.001,20] 1.02 (0.62,1.80) 1.00 (0.65,1.86)

c7 Cutpoint of Spline Function U [0.001,20] 1.09 (0.66,1.87) 1.07 (0.68,2.00)

c8 Cutpoint of Spline Function U [0.001,20] 1.44 (0.87,2.59) 1.50 (0.96,2.75)

c9 Cutpoint of Spline Function U [0.001,20] 1.59 (0.97,2.78) 1.57 (1.02,2.86)

c10 Cutpoint of Spline Function U [0.001,20] 0.75 (0.46,1.29) 0.75 (0.49,1.39)

c11 Cutpoint of Spline Function U [0.001,20] 1.49 (0.81,2.71) 1.45 (0.86,2.74)

κc Multiplier of Spline Function (Tampines control

site)

U [0.001,1000000] 65,960 (30,659,146,786) 53,135 (22,002,120,609)

λr Scaling Factor (Tampines release site) U [0.001,1000] 0.71 (0.63,0.79) 0.72 (0.64,0.80)

pf Mean proportion of wild-type females sampled

(Tampines)

U [0,1] 0.013 (0.007,0.025) 0.014 (0.008,0.030)

pe Mean proportion of eggs sampled (Tampines) U [0,1] 0.003 (0.002,0.007) 0.004 (0.002,0.010)

ψ Over-dispersion parameter (adult mosquitoes) U [0.00001,1] 0.002 (0.001,0.003) 0.002 (0.001,0.004)

ψe Over-dispersion parameter (eggs) U [0.00001,1] 0.002 (0.001,0.004) 0.002 (0.001,0.006)

µe Egg mortality rate U [0.001,.25] 0.096 (0.064,0.161) 0.133 (0.083,0.231)
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η Degree of non-viability among eggs laid (not

from CI)

U [0,1] 0.009 (0.006,0.015) 0.012 (0.008,0.018)

τ1 Mating competitiveness of Wolbachia-infected

males (Tampines)

U [0,1] 0.032 (0.013,0.075) 0.031 (0.014,0.081)

τ2 Mating competitiveness of Wolbachia-infected

males (Yishun)

U [0,1] 0.032 (0.013,0.075) 0.185 (0.051,0.440)

λm Scaling Factor (Tampines release site) U [0,10] 0.054 (0.042,0.067) 0.054 (0.042,0.068)

λwb Scaling Factor (Tampines release site) U [0,10] 0.591 (0.313, 1.071) 0.528 (0.256, 0.949)

sc Scaling Factor (Yishun release site) U [0,1000] 1.20 (0.90,1.61) 1.19 (0.90,1.57)

sr Scaling Factor (Yishun release site) U [0,1000] 0.49 (0.37,0.67) 0.50 (0.38,0.67)

sf Scaling Factor (Yishun release site) U [0,10] 0.81 (0.62,1.07) 0.83 (0.63,1.08)

sm Scaling Factor (Yishun release site) U [0,10] 0.56 (0.38,0.82) 0.57 (0.39,0.84)

swb Scaling Factor (Yishun release site) U [0,10] 0.52 (0.37,0.75) 0.54 (0.37,0.77)

se Scaling Factor (Yishun release site) U [0,10] 0.39 (0.31,0.49) 0.37 (0.29,0.47)

Table 6.3: Estimating Mating Competitiveness. Summary of posterior estimates of parameter values for the model where RM = 12 is fixed and mating competitiveness is
estimated globally or locally. The median posterior estimate is reported with the 95% credible interval in brackets.
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Figure 6.17: Tampines-Control Site (RM = 12, τ local) Fits of the model to the trapping data collected at the Tampines control site. Observed data are shown in black, and the
solid line and shaded area show the posterior mean and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were
released. Figure F shows the estimated egg hatch rate.
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Figure 6.18: Tampines-Release Site (RM = 12, τ local) Fits of the model to the trapping data collected at the Tampines release site. Observed data are shown in black, and the
solid line and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were
released. Figure F shows the estimated egg hatch rate.
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Figure 6.19: Yishun-Control Site (RM = 12, τ local) Fits of the model to the trapping data collected at the Yishun control site. Observed data are shown in black, and the solid line
and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were released.
Figure F shows the estimated egg hatch rate.
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Figure 6.20: Yishun-Release Site (RM = 12, τ local) Fits of the model to the trapping data collected at the Yishun release site. Observed data are shown in black, and the
solid line and shaded area show the posterior median and 95% posterior predictive interval respectively. The dashed red lines show the period when Wolbachia-infected males were
released. Figure F shows the estimated egg hatch rate.
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6.2.4 Simulating Counterfactual Release Scenarios

To gain further insight into the likely impact of the Wolbachia releases on the wild-type Aedes

aegypti population at the release sites, we simulated the dynamics of the full wild-type adult

female Aedes aegypti population at both the Tampines and Yishun release sites using posterior

estimates of parameter values, for a range of different scenarios. We first simulated the dynamics

for the scenario where no Wolbachia-infected males were released. Then, to assess the likely

impact of different release strategies, we simulated the dynamics for the scenarios where (i)

releases occurred over a longer period, (ii) larger numbers of Wolbachia-infected males were

released and (iii) Wolbachia-infected males released showed greater mating competitiveness.

For each scenario, we simulated the dynamics for different fixed values of RM (RM = 1.5, 5, 12)

using posterior median estimates of parameter values obtained when the calibrating the model

against the data, allowing mating competitiveness of Wolbachia-infected males to vary between

sites.

Generally, we observed that the estimated impact of the Wolbachia releases on wild-type adult

female population size under each scenario was dependent on the value of RM and the mating

competitiveness of Wolbachia-infected males, with greater impact observed for lower values of

RM and higher values of mating competitiveness.

For Tampines, we estimated that, owing to very low levels of mating competitiveness, the

Wolbachia releases which took place had a small impact on total wild-type adult female

population size for RM = 1.5 and very little impact for RM = 5 and RM = 12 (Figure 6.21). As

we obtained larger posterior estimates of mating competitiveness for Yishun for RM = 5 and

RM = 12, we estimated the Wolbachia releases had a larger impact on wild-type adult female

population size at Yishun compared with Tampines. However, overall, the estimated impact on

wild-type adult female population size remained low (Figure 6.21).

Owing to higher posterior estimates of mating competitiveness, we found that increasing the

number of Wolbachia-infected males released had the largest impact for Yishun (Figure 6.22).

We estimated that, for all values of RM , scaling the number of Wolbachia-infected males released

three-fold or more may have led to suppression of the wild-type adult female population in
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Yishun. However, for Tampines, scaling the releases sizes by the same factor only had a large

effect when RM = 1.5, owing to the much lower level of mating competitiveness (Figure 6.21).

For RM = 12, we estimated that increasing the number of Wolbachia-infected males released

only had a marginal effect on the wild-type adult female population in Tampines. A larger effect

was estimated for RM = 5 compared with RM = 12, however the size of the estimated impact

remained small (Figure 6.21).

The impact of increasing the length of the release period also differed between release sites

according to differences in estimates of mating competitiveness. For Tampines, we estimated

that extending the release period by 20 weeks was likely only to have a considerable impact on

wild-type adult female population size when Rm = 1.5 (Figure 6.21). However, for Yishun, we

estimated this would have a large impact on population size for both Rm = 1.5 and Rm = 5, and

a small impact for Rm = 12 (Figure 6.22).

For both Tampines and Yishun we estimated that, had the Wolbachia-infected males released

shown greater mating competitiveness, the number of Wolbachia-infected males released and

the length of the release periods were likely to have been sufficient to suppress the wild-type

adult female population at both sites (Figure 6.23). The estimated level of mating competitiveness

required to achieve this was dependent on the value of RM , with a higher level of mating

competitiveness needed for larger values of RM .
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Figure 6.21: Simulating Counterfactual Release Scenarios - Tampines Simulated mean wild-type adult female population size for the Tampines release site under different
release scenarios, for different values of RM . Columns 1,2, and 3 show the results corresponding to RM = 1.5, RM = 5, and RM = 12 respectively. In each figure, the dashed
black line shows the simulated mean population size if no releases had occurred and the red line shows the simulated mean population size given the Wolbachia releases actually
performed. Thus, the difference between these two lines shows the estimated actual impact on wild-type adult female population size for each value of RM . Figures (A1-A3) show
the results of extending the release period (keeping the size of releases fixed at the number released in the final week of the actual release period (46,061)). Figures (B1-B3) show
the results of scaling the release sizes across the whole release period by a constant factor (here the simulated release period is the same as the actual release period). For each
scenario, the mean is calculated across 1000 realisations of the stochastic model (using posterior median estimates of parameter values).
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Figure 6.22: Simulating Counterfactual Release Scenarios - Yishun Simulated mean wild-type adult female population size for the Yishun release site under different release
scenarios, for different values of RM . Columns 1,2, and 3 show the results corresponding to RM = 1.5, RM = 5, and RM = 12 respectively. In each figure, the dashed black line
shows the simulated mean population size if no releases had occurred and the red line shows the simulated mean population size given the Wolbachia releases actually performed.
Thus, the difference between these two lines shows the estimated actual impact on wild-type adult female population size for each value of RM . Figures (A1-A3) show the results of
extending the release period (keeping the size of releases fixed at the number released in the final week of the actual release period (10,500)). Figures (B1-B3) show the results of
scaling the release sizes across the whole release period by a constant factor (here the simulated release period is the same as the actual release period). For each scenario, the
mean is calculated across 1000 realisations of the stochastic model (using posterior median estimates of parameter values).
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Figure 6.23: Simulating Counterfactual Release Scenarios - Mating Competitiveness Simulated wild-type adult female population size for the Tampines (top row) and Yishun
(bottom row) release sites for different values of RM , given different levels of mating competitiveness of Wolbachia-infected males. Columns 1,2, and 3 show the results corresponding
to RM = 1.5, RM = 5, and RM = 12 respectively. In each figure, the dashed black line shows the simulated population size if no releases had occurred. For all other scenarios,
no changes to the size of releases or length of the release period were made. For each scenario, the mean is calculated across 1000 realisations of the stochastic model (using
posterior median estimates of parameter values for all parameters other than τ ).
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6.3 Discussion

Through a series of small-scale field studies, Project Wolbachia Singapore aims to establish

if Wolbachia can be used as a tool for Aedes aegypti population suppression in the urban

environment of Singapore. Here we analysed the results of the first study testing this approach

in Singapore by calibrating a stochastic model of IIT against the detailed entomological trapping

data collected across all study sites. Using advanced model fitting techniques, we estimated the

overall Aedes aegypti population size and the level of variability in the trapping process, with the

goal of gaining a deeper understanding of the impact of the release of Wolbachia-infected male

Aedes aegypti on local wild-type Aedes aegypti population dynamics.

Our estimates of total mosquito population size and the proportion of the population captured

during the trapping process were dependent on the value of the basic mosquito reproduction

number, RM . When estimating RM during the model fitting process, we observed that the

log-likelihood was highest for very low values of RM (just above 1) resulting in a very low estimate

of total wild-type female population size (maximum population size < 1000 approximately) and

relatively large estimates of the mean proportion of wild-type females captured during the trapping

process (10%-15% per week). However, we question whether these estimated values are in fact

biologically plausible for a number of reasons.

First, the Tampines and Yishun control sites were comprised of 21 and 29 residential blocks

respectively. Residential blocks in these areas typically contain 100 households, giving a total of

2,000-3,000 households at each control site approximately. An estimated total wild-type female

population size of 1000 mosquitoes say would therefore imply an estimate of 0.33-0.5 wild-type

female Aedes aegypti per household. Based on data collected through household inspections

and other vector surveillance systems, NEA Singapore currently estimate an average Aedes

aegypti population size of 1 adult female mosquito per house. Thus, even our largest estimates

of wild-type adult female population size RM fall considerable below this value. Second, when

modelling the trapping process, we do not consider trapped mosquitoes as being removed from

the population. Therefore, trapping a high proportion of wild-type females does not reduce overall

wild-type adult female population size. However, in reality, if the wild-type adult female population

size is very low, then trapping and therefore removing 10%-15% of the population each week

on average over a many months would likely have a substantial impact on overall population
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size. While removal trapping has led to successes in the control of some vector species (e.g. the

tseste fly [252]), results of field studies examining the use of mass trapping for Aedes aegypti

population control have largely been inconsistent [253–256]. For example, field studies testing

the use of lethal ovitraps for Aedes aegypti control conducted in Brazil [256] and Australia [254]

both reported a significant reduction in adult female mosquito abundance in areas where this

intervention was employed. However, the results of both of these studies were inconsistent, as

some areas showed no decline in abundance following application of this intervention [254, 256].

Our results suggest that, in the absence of greater power to estimate the basic mosquito

reproduction number RM , the model favours a low overall total population size and a high level of

over-dispersion in the trapping process, as this allows us to obtain a very precise fit of the model

to trapping data with narrow posterior predictive intervals.

For larger fixed values of RM , similar estimates of both adult mosquito population size and the

variability in the trapping process were obtained. We estimated a mean wild-type adult female

population size of approximately 2,000-5,000 mosquitoes for the Tampines and Yishun control

sites, with approximately 1% of wild-type females and 0.5% of eggs trapped per week on average.

As the true underlying mosquito population size is unknown, it is difficult to assess the accuracy

of our estimates of population size. However, our estimates of wild-type adult female population

size for larger values of RM are broadly consistent with those obtained by NEA Singapore.

The estimated impact of the Wolbachia releases on the wild-type adult female population at

both release sites was also dependent on the value of RM . For larger values of RM , our results

suggest that the Wolbachia releases performed had only a marginal, temporary impact on the

wild-type adult female Aedes aegypti population in both Tampines and Yishun. Our results

indicate that there was a small decline in the wild-type adult female population at the Yishun

release site during the release period, but that the impact on the wild-type adult female population

at the Tampines release site was negligible. A slightly larger impact was estimated for very low

values of RM . However, we nonetheless conclude that the release of Wolbachia-infected males

did not result in suppression of the wild-type adult female Aedes aegypti population at either

release site.
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Our results suggest that the primary reason why greater suppression of the wild-type adult female

population was not achieved was poor mating competitiveness of the Wolbachia-infected Aedes

aegypti males released. The value of mating competitiveness estimated by the model indicates

how well the Wolbachia-infected males integrated into local wild-type Aedes aegypti populations.

Thus, consistently low estimates of mating competitiveness, suggest that the Wolbachia-infected

males released did not integrate well among the local wild-type populations.

It is difficult to know exactly why better integration was not achieved as several factors may

have contributed to this. Singapore is highly urbanised environment, and residential blocks

in both Tampines and Yishun typically contain 11 or 12 floors. However, in both areas, all

Wolbachia-infected males were released at the ground floor level. Thus successful integration of

the Wolbachia-infected males into the wild-type population in upper floors was dependent upon

the vertical dispersal behaviour of the released males. Although Aedes aegypti are known to

possess a typically short horizontal dispersal range [53, 75, 77], little is known about the vertical

dispersal range of the species. The trapping data for both release sites shows that the majority

of Wolbachia-infected males trapped were captured on lower floors. However, a very small

proportion of the Wolbachia-males released were subsequently trapped, and one could argue

that the majority of wild-type males and females were also trapped on lower floors. Furthermore,

the traps used to capture adult mosquitoes were designed to primarily attract adult females.

Therefore it is difficult to fully understand to what extent environmental challenges played a role

in hindering better integration.

Another possible reason is that the majority of Wolbachia-infected males died quickly following

release and, crucially, before having the opportunity to mate with wild-type females. Longevity

of Wolbachia-infected male Aedes aegypti in the field has been investigated by NEA Singapore,

and they estimated a daily probability of survival of 78% for Wolbachia-infected males (personal

communication with NEA). These survival estimates therefore suggest that a high level of

mortality of Wolbachia-infected males is unlikely to have been the primary cause of poor

integration.

Adult mosquito dispersal may also have played a role, in a number of different ways. Upon

release, Wolbachia-infected males may have dispersed beyond the release site into neighbouring
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areas. On the other hand, the impact of the Wolbachia releases on wild-type adult female

population size may have been lessened by the migration of previously mated wild-type females

from neighbouring areas. However, trapping data was not collected from areas neighbouring the

study sites, and thus we do not know how large a role dispersal between the release sites and

neighbouring areas played in determining the level of suppression achieved. Our results also

suggest that releases in both Tampines and Yishun occurred during a period when the wild-type

Aedes aegypti population was increasing. Thus increases in wild-type population size may have

counteracted decreases owing to the release of Wolbachia-infected males, thereby lessening the

impact of the Wolbachia releases.

The frequency of releases may also have been a contributing factor. We estimated a higher

level of mating competitiveness in Yishun where Wolbachia-infected males were largely released

bi-weekly, compared with Tampines where releases were performed weekly. This may have

allowed for better integration of Wolbachia-infected males into the local wild-type population.

Some theoretical modelling studies of population suppression measures have suggested that

smaller, more frequent releases may be more effective that less frequent, larger releases [174,

193]. However, this has not yet been demonstrated in the field, and thus caution is required

when drawing inferences between the increased mating competitiveness estimated for Yishun

and the increased frequency of releases. Furthermore, it is important to consider that releases at

Yishun were performed across a smaller number of residential blocks compared with Tampines,

as this may also have affected the level of integration among wild-type Aedes aegypti populations.

Several other field studies have been undertaken to explore the potential impact of mosquito

population suppression technologies. However, given differences between the species targeted,

the environments where trials have been conducted, and the release strategies employed, it is

difficult to directly compare the results obtained here with those of other studies. Furthermore,

the work presented here is the first to model the trapping process when estimating the impact of

a vector population suppression strategy.

Successful suppression of Culex pipiens populations was achieved during the first field study

of IIT in Myanmar in the 1967, however this study was conducted in a small rural area [109].

Small scale field studies targeting Aedes albopictus populations conducted in suburban areas
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of northern Italy (using SIT) [121] and Kentucky (using IIT) [113], reported a reduction in hatch

rate of 18%-68% [121] and approximately 40% [113] respectively. A recent field study of IIT

in French Polynesia, targeting Aedes polynesiensis populations, reported an estimated mating

competitiveness of 68% for Wolbachia-infected males. However, in this study, the Wolbachia

releases were performed on three small isolated islands with no human inhabitants [111], thus

constituting a very different field setting to the highly urbanised, densely populated environment

of Singapore. Low mating competitiveness has been estimated for transgenic Aedes aegypti

males released during field trials conducted in the Cayman Islands (6%) [123] and Brazil (3%)

[124] to assess the potential impact of the RIDL technology. Nonetheless, these trials reported

suppression of the wild-type population by 82% [123] and 78% [124] respectively based on

changes in the proportion of ovitraps containing eggs.

Given the high level of urbanisation and existing high levels of vector control, Singapore is

a unique environment, and thus extrapolation of the results presented here to other settings

may not be valid. However, some more general insights applicable to assessing the impact of

novel vector control measures can be drawn from the work presented here. First, our results

illustrate the importance of accounting for underlying variability in the trapping process when

estimating the likely impact of a particular control measure as, given mosquito trapping data is

often highly over-dispersed, estimates of impact based on trapping data alone may not be fully

indicative of the estimated impact at the population level. Understanding the size of the existing

wild-type population (and in particular the mosquito reproduction number), in addition to the level

of variability in the trapping process, is likely to be of critical importance to gaining a deeper

understanding of the likely impact of these measures and to disentangling stochastic noise

from real impacts on the population. This is likely to be particularly important in settings where

intermediate levels of vector control are achieved as, in the absence of a clear, large proportional

decline in mosquito abundance, measuring the impact on the intervention on the size of the vector

population may be very challenging given the highly stochastic nature of mosquito trapping data,

and natural, climate-driven temporal fluctuations in mosquito abundance. In addition, our results

highlight that successful integration of modified populations into local wild-type populations is

fundamental for the success of these measures, in particular as increasing the size of releases or

length of the release period is unlikely to compensate for poor mating competitiveness. However,

achieving high levels of mating competitiveness of modified mosquitoes is also likely to be one of
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the main challenges in successfully implementing these measures.

The work presented here also has several limitations. When calibrating the model against

the trapping data, we aggregated the data to the release site level. A fully spatially explicit

stochastic model which accounts for adult mosquito dispersal and the dynamics of local

populations at the individual residential block level would offer greater insight into the impact

of the Wolbachia-releases on local wild-type populations. It would also allow us to better

statistically characterise spatial heterogeneity in Aedes aegypti populations, and to assess how

very fine-scale spatial heterogeneity in Aedes aegypti populations may have affected the level

of suppression achieved. In addition, we modelled the population at each site as a closed

population. In reality, dispersal of adult mosquitoes to and from surrounding areas may have

affected the level of population suppression observed. As mentioned earlier, we also did not

consider trapping as a removal process and this may have hindered our ability to estimate the

basic reproduction number. We also assumed density-dependence during the larval stage of

population growth was linear (i.e. Ω = 1). However, the strength of density-dependence among

larval populations is unknown, and assuming different values of Ω may have led to different

estimates of parameter values when calibrating the model against the trapping data. When trying

to estimate RM , we found that the model favours a low overall total population size and a high

level of over-dispersion in the trapping process. Therefore, we hypothesise that, changing the

strength of density-dependence (while keeping RM fixed) may, for example, allow the model to

behave in a similar way. Consequently, this may result in lower estimates of wild-type population

size and higher estimates of the trapping proportions. However, a full understanding of the effect

of varying Ω requires further investigation. We also assumed that development and mortality rates

are not temperature dependent, and that each site had the same seasonal profile in carrying

capacity. Individual sites however may experience different levels of seasonal fluctuation in

carrying capacity, and development and mortality rates of Aedes aegypti may vary with changes

in temperature [64, 231, 232].

In conclusion, using advanced Bayesian inference techniques, we have calibrated a stochastic

model of Aedes aegypti population dynamics against the entomological data collected during the

Phase 1 field study, while allowing for variability in the trapping data. This has allowed us to

estimate both the size of the wild-type Aedes aegypti population and the level of variability in the
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trapping process, thereby providing us with a deeper understanding of the impact of the release

of Wolbachia-infected male Aedes aegypti on local Aedes aegypti populations.

6.4 Acknowledgements

We would like to thank NEA Singapore, and in particular Prof. Lee Ching Ng and her team, for

generously sharing their data from the Phase 1 study with us and for many insightful discussions.

173



Chapter 7

Discussion

Recent years have seen much progress in the development of novel vector control measures

for Aedes aegypti populations. As more and more field studies testing these technologies

across a wide range of different environments are undertaken, one of the major challenges

going forward, from a mathematical modelling perspective, is how to rigorously estimate the likely

impact of these interventions on local Aedes aegypti populations. While mathematical models of

novel vector control measures developed to date provide valuable theoretical insights into some

of the likely challenges associated with successfully implementing these measures, improved

models of fine-scale Aedes aegypti population dynamics are needed to realistically model the

likely impact of these measures on real Aedes aegypti populations. Spatially explicit stochastic

models of fine-scale Aedes aegypti population dynamics which have been rigorously fitted to, and

validated against, high quality entomological data are the ultimate goal. However, development

of these models is challenging, not least because it requires careful consideration of what is an

appropriate level of spatial granularity for models to adopt when representing fine-scale Aedes

aegypti population dynamics, and an inferential framework which allows for the highly variable

nature of mosquito trapping data. In this thesis, we began to address this challenge by examining

the role of spatial structure in shaping the dynamics of Aedes aegypti populations at fine spatial

scales, and by using advanced Bayesian inference techniques to calibrate a stochastic model of

Aedes aegypti population dynamics against detailed entomological data.

7.1 Summary of Key Findings

In Chapters 2-4 of this thesis we developed a stochastic metapopulation model of fine-scale

Aedes aegypti population dynamics, and explored how the dispersal behaviour of the mosquito,
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features of the underlying landscape, and the level of spatial granularity in our model affected the

dynamics observed. We considered the dynamics for landscapes where an established mosquito

population exists and for landscapes where mosquitoes are seeded into an otherwise unoccupied

landscape. We found that, for low mosquito population densities, larval habitat fragmentation

can have a large impact on the dynamics observed, leading to reductions in population size and

the level of habitat occupancy across a landscape. Furthermore, both the dispersal behaviour

of adult mosquitoes and features of the underlying landscape played key roles in driving the

dynamics observed at fine spatial scales.

Importantly, we found that using non-spatial models to represent the fine-scale dynamics of

Aedes aegypti populations may substantially underestimate the stochastic volatility of these

populations and the frequency at which local populations go extinct. Through examining the

dynamics observed at different levels of spatial granularity, we concluded that, to capture the

fine-scale dynamics of Aedes aegypti populations in a meaningful way, the individual household

level may be an appropriate level of spatial granularity for models to adopt when modelling

the dynamics of Aedes aegypti populations at fine spatial scales. Adopting a lower level of

granularity may fail to capture the adverse effects of larval habitat fragmentation on Aedes

aegypti populations, and consequently underestimate the vulnerability of local populations to

extinction when populations are small.

In Chapter 5, we extended the model developed in Chapters 2-4 to a model of IIT and, using

particle MCMC methods, developed a framework to enable us to calibrate a stochastic model of

Aedes aegypti population dynamics against detailed entomological data, while allowing for the

highly variable nature of mosquito trapping data. In Chapter 6 we then used this approach to

examine the results of a small-scale field study testing Wolbachia as a tool for Aedes aegypti

population suppression conducted in Singapore, by calibrating our model of IIT against the

entomological data collected during the study. Modelling the trapping process, in addition to the

underlying mosquito population dynamics, allowed us to account for variability in the trapping data

when estimating parameter values and the likely impact of the Wolbachia releases on local Aedes

aegypti populations. While our estimates of the size of the impact were dependent on the value of

the basic mosquito reproduction number, we concluded that, overall, the Wolbachia releases had

little impact on the size of the wild-type Aedes aegypti female population, and that suppression
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of local Aedes aegypti populations at the release sites was not achieved. Our results indicated

that this was primarily owing to poor integration of the Wolbachia-infected Aedes aegypti males

released among local wild-type Aedes aegypti populations.

7.2 Implications of Research

The research presented here has several important implications for modelling the fine-scale

dynamics of Aedes aegypti populations and the likely impact of novel vector control measures.

As Aedes aegypti primarily breed in domestic urban habitats and typically have a short dispersal

length [75–77], local populations of Aedes aegypti across any given landscape are often both

highly fragmented and highly spatially heterogeneous [47, 59, 61, 220, 221, 225, 226]. However,

while several very detailed models of fine-scale Aedes aegypti population dynamics have been

developed [165, 168, 171], the impact of breeding site fragmentation on Aedes aegypti population

dynamics at fine spatial scales is poorly understood. By exploring the dynamics of Aedes aegypti

populations at different levels of spatial granularity, the analysis presented in Chapters 2-4 of

this thesis contributes to our understanding of the importance of spatial structure and fine-scale

spatial heterogeneity in mosquito population density in shaping the dynamics of Aedes aegypti

populations at fine spatial scales. Furthermore, the model developed is flexible and could be

used to explore the dynamics of different mosquito species, across a variety of settings.

While life cycles, types of habitat and dispersal behaviour varies between different species,

the results presented in Chapters 2-4 are broadly consistent with those of other modelling

and empirical studies exploring the effects of habitat fragmentation on species persistence

and distribution across a landscape [143, 146–152, 154, 208]. In line with these studies, our

results highlight the vulnerability of small local populations to extinction, and illustrate how local

population persistence is not only a function of individual patch size, but also of the level of

connectivity between local populations and the composition of the fragmented landscape [143,

146–154, 156, 208].

Moreover, our results indicate that for species, like Aedes aegypti, with a typically small dispersal

range and/or a low propensity to disperse [75–77], the adverse effects of habitat fragmentation

on species persistence and distribution across a landscape are likely to be more pronounced
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(e.g. Figures 2.4, 2.7) as dispersal provides a mechanism through which metapopulations can

persist in a balance between extinction and colonization. While the model presented in Chapters

2-4 was not calibrated against entomological data, the importance of limitations in dispersal to

local and metapopulation persistence has been demonstrated elsewhere for a variety of different

species [146, 148, 149, 152, 154–157, 257]. For example, empirical studies of metapopulations

of the butterfly species Plebejus argus in northern Wales have shown that, within its typical

dispersal range (< 1km), small local populations experience a high rate of population turnover as

unoccupied, suitable habitat is typically quickly recolonized by the species [149, 257]. However,

colonization of unoccupied, potential habitat at greater distances is hindered by limitations in its

dispersal range, thereby limiting distribution of the species across the landscape [149, 257]. In

addition, infrequent dispersal has been suggested as a possible contributing factor to the decline

of an American pika metapopulation in Bodie, California [154, 155]. As discussed in Chapter

1, the northern half of this metapopulation has remained stable for several decades, while the

population in the southern half declined and failed to recover during the study period, despite

potentially suitable habitat being available [154, 155]. Smith et. al suggest that the low rate of

recolonization of suitable habitat in the southern half of the metapopulation is potentially owing to

the low propensity of this species to disperse [155].

Our results also showed that fine-scale Aedes aegypti dynamics were heavily influenced by

spatial heterogeneity in carrying capacity across a landscape (which can be thought of as

spatial variation in habitat quality), with local persistence more difficult to achieve in areas of low

quality. Habitat quality has been shown to be an important factor in metapopulation persistence,

particularly in the context of butterfly metapopulations [209, 210, 258]. Perhaps one of the most

interesting examples of the interaction between habitat quality and metapopulation persistence

is the expansion and re-establishment of metapopulations of the Hesperia comma butterfly

species in Britain. Following a long period of population decline, metapopulations of the species

have recovered, owing to improved habitat quality and availability [210]. Another example is

metapopulations of the Glanville fritillary butterfly in Finland [209]. Recent modelling of the

long-term dynamics of these metapopulations has suggested that both habitat quality and the

spatial configuration of habitats of different quality are key drivers of local population persistence

for this species, and species distribution across the landscape [209].
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Our results also indicate that spatial correlation in habitat quality is most likely to have the largest

impact on population persistence and patch occupancy when the typical dispersal length of a

species is small. While other theoretical modelling studies have largely focused on exploring

the effects of spatial correlation in habitat loss on species persistence rather than the effects of

spatial correlation in habitat quality on metapopulation dynamics more generally [259, 260], these

studies have also concluded that the effects of spatial correlation in habitat quality will depend

on the dispersal range of the species, with species having a small dispersal range likely to most

affected [259, 260].

The analysis presented in Chapters 2-4 differs from existing metapopulation models of Aedes

aegypti population dynamics, and those of other species, as we explicitly model and compare the

dynamics of the same metapopulation at different levels of spatial granularity. This allows us to

gain a deeper understanding of the importance of model choice in how to represent and account

for metapopulation structure. This analysis is of particular importance for the development of

spatially explicit models of novel vector control measures, as we have identified the individual

household is likely to be an appropriate level of spatial granularity for models to adopt to capture

the fine-scale dynamics of Aedes aegypti populations. In addition, beyond exploring the impact of

novel vector control measures, our work may also have important implications for mathematical

models of dengue transmission, which consider larval population dynamics. Typically these

models use a non-spatial approach to model the dynamics of larval populations [204–206].

However, our results suggest that using a non-spatial approach may underestimate the volatility

of Aedes aegypti populations when population densities are low. This in turn may have important

implications for estimates of transmission intensity and disease dynamics.

The work presented in Chapter 6 is the first to estimate the likely impact of a vector population

suppression strategy on Aedes aegypti populations by calibrating a stochastic model of Aedes

aegypti population dynamics against the detailed entomological data collected during a field

study. Thus, it represents an important step forward in the development of methods to rigorously

estimate the likely impact of novel vector control measures. Our work shows that the highly

variable nature of mosquito trapping data can be accounted for when estimating the likely impact

of these measures, and moreover that, by doing so, additional insights into key factors such as

size of existing wild-type Aedes aegypti populations and the mating competitiveness of modified
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mosquito populations can be gained. In addition, while local Aedes aegypti population dynamics

will vary across different settings, the model fitting approach developed here is flexible and can

be applied to estimate the likely impact of different vector control measures across a range of

different settings. Furthermore, the model developed here could easily to extend to include

Wolbachia-infected females, and hence be used to explore the impact of population replacement

strategies.

While we found it difficult to obtain a biologically plausible estimate of the basic mosquito

reproduction number RM for Aedes aegypti populations in Singapore, our results nonetheless

highlight the critical importance of RM in estimating the likely impact of vector suppression

technologies. In settings where RM is high, larger reductions in the egg hatching rate will be

required to suppress vector populations compared with settings where RM is low. Thus similar

levels of reduction in the egg hatch rate may not translate to similar levels of vector population

suppression in different settings. Consequently, understanding what level of reduction in the

egg hatching rate is required to have a substantial impact on vector population size, requires

an understanding of RM .

7.3 Limitations and Future Work

The work presented in this thesis has several key limitations. The analysis presented in Chapters

2-4 is based on simulations from a theoretical model of fine-scale Aedes aegypti population

dynamics which has not been calibrated against entomological data. Thus, while we believe

this work provides important insights into role of spatial structure in shaping the dynamics of

Aedes aegypti populations at fine spatial scales, it is important to recognise that the dynamics of

real-world fragmented Aedes aegypti populations and of density-dependent competition are likely

to be highly complex. Thus, theoretical modelling studies are likely to be unable to fully capture

these dynamics. Calibrating the model against fine-scale entomological data may offer additional

insights into the effects of larval habitat fragmentation and metapopulation structure on fine-scale

Aedes aegypti population dynamics. In addition, our model does not consider some important

aspects of Aedes aegypti ecology, such as aestivation and overwintering mechanisms [54].

The extent to which the results presented in Chapters 2-4 may affect models of dengue

transmission, which use a non-spatial approach to represent the dynamics of larval Aedes
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aegypti populations, is also unknown. A model which incorporates both vector and disease

dynamics, ideally calibrated against fine-scale entomological and epidemiological data, is

required to understand the potential impact on larval habitat fragmentation on the fine-scale

transmission dynamics of dengue.

When calibrating our model of IIT against the entomological data collected during the small-scale

field study of IIT undertaken in Singapore, we were unable to obtain a robust estimate of the basic

mosquito reproduction number, RM . However, we also struggled to obtain a precise estimate of

RM (in addition to good estimates of other model parameter values), when testing the inferential

framework using simulated entomological data in Chapter 5. This suggests that it is particularly

difficult to robustly estimate RM , in addition to a large number of other model parameters.

We hypothesise that this is most likely owing to density-dependence during the larval stage of

population growth.

The importance of RM to assessing the impact of novel vector control measures has also been

highlighted in the context of exploring the potential impact of utilising homing endonuclease genes

(HEGs) for malaria control [261, 262]. Mathematical modelling has shown that the potential

impact of this technology will also depend on RM , with more HEGs needed to eliminate vector

populations for higher values of RM [261, 262]. Given the difficulties in obtaining robust estimates

of RM , we adopted a similar approach to that used elsewhere [261] by testing sensitivity of our

results in Chapter 6 to different values of the reproduction number. However, ideally we would like

to have a better understanding of the basic mosquito reproduction number in Singapore, as this

in turn would allow us to provide more robust estimates of the impact of the Wolbachia releases

on local Aedes aegypti populations.

When fitting the model to the data, we aggregated the trapping data across residential blocks for

each study site. We chose to aggregate the data when fitting the model in the first instance as this

reduced the substantial computational challenges associated with calibrating the model against

the data using a pMCMC inferential framework. This, in turn, allowed us to test the ability of the

framework estimate parameter values within a computationally feasible timeframe. In addition,

aggregating the data did not hinder our ability, in an overall sense, to estimate the impact of the

Wolbachia releases on local Aedes aegypti population dynamics. However, we recognize that
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aggregating the data placed limitations on the depth of our analysis, and the insight that could

be drawn therefrom. Fitting the model to the data at the individual residential block level would

allow us to statistically characterise fine-scale spatial heterogeneity in Aedes aegypti population

density, and to explore how this heterogeneity affected the level of suppression achieved in the

release areas. Furthermore, it would allow us to explore the role of adult mosquito dispersal (both

horizontal and vertical) in driving the results observed, thereby perhaps providing deeper insight

into why greater levels of suppression and better integration of Wolbachia-infected males among

wild-type populations were not achieved.

Indeed, our analysis in Chapters 2-4 indicates that the fragmented spatial structure of Aedes

aegypti populations is likely to play an important role in determining the impact of novel vector

control measures. We observed how the fine-scale dynamics of Aedes aegypti populations are

shaped by the dispersal behaviour of the mosquito and spatial variation in carrying capacity

across a landscape. Thus the impact of the Phase 1 Wolbachia releases is likely to have varied

between residential blocks at both release sites, owing to the underlying spatial heterogeneity in

wild-type Aedes aegypti population density between residential blocks (Figures 5.9, 5.10). For

example, a greater degree of population suppression may have been achieved in blocks with

lower densities of wild-type Aedes aegypti. However, this would also have depended on the

dispersal behaviour of the mosquito, and level of integration of Wolbachia-infected males among

wild-type populations in individual blocks. The results presented in Chapters 2-4 highlighted the

importance of limitations in the dispersal range of Aedes aegypti to the spread and distribution

of the species across a landscape. Furthermore, our analysis in Chapters 3 and 4 suggests

that the spatial configuration of residential blocks may also have played a role in determining

the impact of the Wolbachia releases on wild-type population density in individual blocks, as

the population dynamics in individual blocks are likely to be influenced by those in neighbouring

blocks. Consequently, higher levels of suppression may have been achieved in residential blocks

at the centre of the release sites, as the dynamics within these blocks may have been affected

less by migration of wild-type adult females to and from neighbouring areas beyond the boundary

of the release site, owing to the typically short dispersal length of Aedes aegypti [75–77].

Future work will build on the work presented in this thesis by addressing these limitations. We

aim to calibrate a fully spatially explicit model of IIT against the entomological data collected in
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Singapore, by fitting the model of IIT developed here at the individual residential block level. This

however represents a considerable computational challenge, owing to the number of residential

blocks at each site and the computationally intensive nature of particle MCMC methods. Fitting

the model at a higher level of spatial resolution will require estimation of more parameters and

consequently may be necessary to increased the number of particles used in the fitting algorithm.

The addition of fine-scale spatial structure, more parameters and potentially more particles

will come at the expense of computational speed, and thus dealing with these computational

challenges is likely to be one of the most demanding aspects of this work.

In addition to providing further insights into the impact of the Wolbachia releases on local Aedes

aegypti populations, we hope that fitting the model at a higher level of spatial granularity will

allow us gain a deeper understanding of the role breeding site fragmentation and the underlying

landscape in shaping the dynamics of real-world Aedes aegypti populations at fine spatial scales,

thereby building on the theoretical results presented in Chapters 2-4 of this thesis.

Last, further avenues of model development could be explored. One possible avenue would be

to incorporate rainfall and temperature data into the model. This my offer additional insights into

the role of climatic conditions in driving temporal heterogeneity in Aedes aegypti abundance

in Singapore. The model could also be extended to include dengue disease dynamics.

However, whether the inclusion of disease dynamics may help capture the spatial behaviour of

Aedes aegypti is likely to depend on the epidemiological data available that could be used to

parameterize the model.

Transmission of dengue has been shown to be both highly spatially and temporally focal [16, 220,

263, 264]. For example, using phylogeographic methods, Salje et. al estimated that, in Bangkok,

Thailand, 60% of dengue cases occurring less than 200 metres apart come from the same

transmission chain, compared with 3% occurring 1km-5km apart [263]. These focal patterns of

dengue transmission are primarily driven by patterns in human movement, patterns in population

immunity and the short dispersal range of Aedes aegypti [16, 263]. Thus, knowledge of the

fine-scale distribution on dengue cases may provide insight into the spatial behaviour of the Aedes

aegypti. However, the majority of dengue infections are asymptomatic [9, 10, 12], with recent

estimates suggesting 65% of dengue infections are subclinical [12]. Therefore, while clinical
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incidence data would provide some information on the spatial distribution of cases, the information

it may provide on the spatial behaviour of the vector and spatial variation in transmission intensity

is likely to be limited. Serological data, combined with matching entomological data, is likely to

be more informative than incidence data of the spatial behaviour of the vector as it provides a

fuller picture of infection history, serotype diversity and levels of immunity within a population,

thereby perhaps helping to capture fine-scale spatial heterogeneity in transmission intensity, and

consequently helping to characterise fine-scale spatial heterogeneity in vector density.

7.4 Conclusions

Novel vector control measures for Aedes aegypti populations represent an exciting new form

of dengue control. Progress in the development and testing of these measures presents new

challenges for modelling the dynamics of Aedes aegypti populations, as estimating the likely

impact of these measures on real-world vector populations will require spatially explicit models of

fine-scale Aedes aegypti population dynamics, calibrated against high quality entomological data.

The work presented in this thesis begins to address the challenge of developing such models, and

thus is an important first step in this endeavour.
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Figure 1.1 : Reprinted with permission from Elsevier (6��%��+DOVWHDG��³'HQJXH�´�7KH�/DQFHW��

vol. 370, no. 9599, pp. 1644±1652, 2007) 
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Figure 1.2 : Reprinted with permission from eLife under the Creative Commons Atribution 
license (M. U. Kraemer, M. E. Sinka, K. A. Duda, A. Q. Mylne, F. M. Shearer, C. M. Barker, 
C. G. 0RRUH��5��*��&DUYDOKR��*��(��&RHOKR��:��9DQ�%RUWHO��HW�DO���³7KH�JOREDO�GLVWULEXWLRQ�RI�
the DUERYLUXV�YHFWRUV�$HGHV�DHJ\SWL�DQG�$H��DOERSLFWXV�´�H/LIH��YRO�����H������������� 
 
https://creativecommons.org/licenses/by/2.0/uk/ 

 

Figure 1.3 : Reprinted with permission from PLoS Negleted Tropical Diseases under the 
Creative Commons Atribution license (N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner, A. 
&��0RUULVRQ��6��$��5LWFKLH��'��-��*XEOHU��5��7H\VVRX��DQG�7��:��6FRWW��³$�&ULWLFDO�$VVHVVPHQW�
RI�9HFWRU�&RQWURO�IRU�'HQJXH�3UHYHQWLRQ�´�3/R6�1HJOHFWHG�7URSLFDO�'LVHDVHV��YRO�����QR�����
e0003655, 2015) 
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Figures 1.4 and 1.5: No permission required as author of article (I. Dorigatti, C. McCormack, 
G. Nedjati-*LODQL��DQG�1��0��)HUJXVRQ��³8VLQJ�:ROEDFKLD�IRU�'HQJXH�&RQWURO��,QVLJKWV�IURP�
0RGHOOLQJ�´�7UHQGV�LQ�Parasitology, vol. 34, no. 2, pp. 102±113, 2018.) 
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Table 1.1 : Reproduced with permission from Oxford University Press (A. C. Morrison, K. 
Gray, A. Getis, H. Astete, M. Sihuincha, D. Focks, D. Watts, J. D. Stancil, J. G. Olson, P. 
Blair, et al.��³7HPSRUDO�DQG�*HRJUDSKLF�3DWWHUQV�RI�Aedes aegypti (Diptera: Culicidae) 
3URGXFWLRQ�LQ�,TXLWRV��3HUX�´�Journal of Medical Entomology, vol. 41, no. 6, pp. 1123±1142, 
2004) 
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Example 1: Particle Filtering (condensed version) 

Condensed version of function I wrote implementing the PMMH algorithm for a give study site 

void Particle_Filter_Parallel(long k, double* result,«��) { 

int t1, start, thread_no; 

double log_lik, mean_w, sum; 

int thread_count = omp_get_max_threads(); 

omp_set_num_threads(thread_count); 

/*Step 1 - read in proposed parameter values*/ 

/*Step 2 - obtain value for mu_l from equation for RM (Equation XXX)*/ 

/*Step 3 - generate carrying capacities and initial values for state variables based on proposed 
parameter value*/  

/*Step 4 - populate release matrix*/ 

/*Step 5 - calculate log-likehood across time series*/ 

int t_end = Site.Adult_Data[0][0].no_weeks;  

int days = int(7 * (t_end + RUN_IN)*(1 / DT)); 

/*run model forward to get new particle values, calculate likelihood at these values and normalise 
weights*/ 

for (int t = 0; t < t_end; t++) { 

sum=0; 

if (t == 0) { 

start = 0; 

t1 = int(7 * RUN_IN*(1 / DT));/*run-in model for RUN_IN weeks*/} 

else { 

start = t1; 

t1 = int(start + 7 * (1 / DT));/*time step of one week*/}; 

/*run particles in parallel*/ 

 #pragma omp parallel for private(thread_no) schedule(static,1) 

for (int thread_no = 0; thread_no < thread_count; thread_no++) { 

for (int m = thread_no; m < M; m += thread_count) { 

/*run model forward to time t1*/ 

Stochastic_Model(thread_no, m, start, t1, 1, Site, params, model_type);  

/*calculate log-likelihood*/ 

double l = 0; 

l += Log_Likelihood(Site.Adult_Data.F_WT, Site.Patches[m].F_WT[t1], 
Site.Loc_Params.p_f, Site.Loc_Params.psi, t); (see Example 2 below) 

l += Log_Likelihood(Site.Adult_Data.M_WT, Site.Patches[m].M_WT[t1], 
Site.Loc_Params.p_m*Site.Loc_Params.p_f, Site.Loc_Params.psi, t); 

l += Log_Likelihood(Site.Adult_Data.M_WB, Site.Patches[m].M_WB[t1], 
Site.Loc_Params.p_wb*Site.Loc_Params.p_f, Site.Loc_Params.psi, t);} 
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  /*check if there is egg data*/ 

int week = Site.Adult_Data.Week[t]; 

int year = Site.Adult_Data.Yr[t]; 

int no_weeks = Site.Egg_Data.no_weeks; 

for (int s = 0; s < no_weeks; s++) { 

if (Site.Egg_Data.Week[s] == week && Site.Egg_Data.Yr[s] == year) { 

l += Log_Likelihood(Site.Egg_Data.E_v, Site.Patches[m].E_v[t1], 
Site.Loc_Params.p_e, Site.Loc_Params.psi_e, s); 

l += Log_Likelihood(Site.Egg_Data.E_nv, Site.Patches[m].E_nv[t1], 
Site.Loc_Params.p_e, Site.Loc_Params.psi_e, s); 

break; 

} 

} 

/*store log-likelihood value for each particle*/ 

Site.P[m][t + 1] = l; 

} 

        

/* weight each particle values based on likelihood value*/ 

for (int m = 0; m < M; m++) { W[m][t + 1] = Site.P[m][i][j][t + 1]; } 

for (int m = 0; m < M; m++) { W[m][t + 1] = exp(W[m][t + 1]); sum += W[m][t + 1]; } 

 

/*normalise weights*/ 

for (int m = 0; m < M; m++) { W[m][t + 1] = W[m][t + 1] / sum; } 

 

/* resample particle values based on weights*/ 

Resample_Values(Site, W, Z, M, t + 1, t1); (see Example 3 below) 

} 

 

/*Step 6± calculate log-likelihood across whole time series using sample trajectory*/ 

log_lik = 0; 

log_lik += Sample_Trajectory(Site, W, Z, M, t_end); 

 

result[0] = log_lik; 

}} 
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Example 2: Log-Likelihood Function 

Function I wrote to calculate the log-likelihood of observing data Y[t] at week t given total predicted  
SRSXODWLRQ�VL]H�1��PHDQ�WUDSSLQJ�SURSRUWLRQ�S�DQG�RYHUGLVSHUVLRQ�SDUDPHWHU�%��(TXDWLRQ 5.71) 

double Log_Likelihood(int*Y, double N, double p, double psi, int t) { 

double log_lik; 

�
FKHFN�LI�%�LV�QRQ-zero, else set log-likelihood to a very low value*/ 

if (psi > 0) { 

double z = 1 / psi; 

/*if observed data point Y[t] is larger than total predicted population size N, set log-likelihood 
to a very low value*/ 

if (Y[t] > N) {log_lik = -20000; }  

else { 

log_lik = l_Binomial_Coeff(N, Y[t]) +  

lBeta_Function(Y[t] + p*(z - 1), N - Y[t] + (1 - p)*(z - 1)) ±  

lBeta_Function(p*(z - 1), (1 - p)*(z - 1));} 

 } 

else log_lik = -20000; 

return log_lik; 

} 
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Example 3: Resampling Particle Values 

Function I wrote to resample particle values at a given timestep for a given study site with weights W 

void Resample_Values(site Site, double**W, double*Z, int M, int t, int t1) { 

int k; patch*S; S = new patch[M]; 

/*store weights at time t in array Z*/ 

for (int m = 0; m < M; m++) { Z[m] = W[m][t];  

/*store current population values for each particle in structure S*/ 

for (int m = 0; m < M; m++) { 

S[m].V[t] = Site.Patches[m].V[t1]; 

  S[m].M_WT[t] = Site.Patches[m].M_WT[t1]; 

  S[m].F_WT[t] = Site.Patches[m].F_WT[t1]; 

  S[m].M_WB[t] = Site.Patches[m].M_WB[t1]; 

  S[m].E_v[t] = Site.Patches[m].E_v[t1]; 

  S[m].E_nv[t] = Site.Patches[m].E_nv[t1]; 

  S[m].L[t] = Site.Patches[m].L[t1]; 

 } 

/* using the GNU Scientific Library (GSL) for C++, get discrete distribution F with weights of 
particles*/ 

 F = gsl_ran_discrete_preproc(M, Z);  

/*resample particle values with replacement*/ 

 for (int m = 0; m < M; m++) { 

k = int(gsl_ran_discrete(g1, F)); /*randomly pick index from distribution F*/ 

Site.Path[m][t] = k; /*keep track of resampled indices*/   

Site.P[m][t] = Site.P[k][t]; /*store resampled log-likelihood value*/ 

  /*store resampled values*/ 

  Site.Patches[m].V[t1] = S[k].V[t]; 

  Site.Patches[m].M_WT[t1] = S[k].M_WT[t]; 

  Site.Patches[m].F_WT[t1] = S[k].F_WT[t]; 

  Site.Patches[m].M_WB[t1] = S[k].M_WB[t]; 

  Site.Patches[m].E_v[t1] = S[k].E_v[t]; 

  Site.Patches[m].E_nv[t1] = S[k].E_nv[t]; 

  Site.Patches[m].L[t1] = S[k].L[t]; 

 } 

/*delete memory stored*/ 

 delete[] S; 

 gsl_ran_discrete_free(F); 

} 
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