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Abstract

We present a null model to be compared with biological data to test for in-
trinsic persistence in movement between stops during intermittent locomotion in
bounded space with different geometries and boundary conditions. We describe
spatio-temporal properties of the sequence of stopping points r1, r2, r3, ... visited by
a Random Walker within a bounded space. The path between stopping points is
not considered, only the displacement. Since there are no intrinsic correlations in
the displacements between stopping points, there is no intrinsic persistence in the
movement between them. Hence, this represents a null-model against which to com-
pare empirical data for directional persistence in the movement between stopping
points when there is external bias due to the bounded space. This comparison is a
necessary first step in testing hypotheses about the function of the stops that punc-
tuate intermittent locomotion in diverse organisms. We investigate the probability
of forward movement, defined as a deviation of less than 90◦ between two succes-
sive displacement vectors, as a function of the ratio between the largest displacement
between stops that could be performed by the random walker and the system size,
α = ∆ℓ/Lmax. As expected, the probability of forward movement is 1/2 when α → 0.
However, when α is finite, this probability is less than 1/2 with a minimum value
when α = 1. For certain boundary conditions, the minimum value is between 1/3
and 1/4 in 1D while it can be even lower in 2D. The probability of forward movement
in 1D is calculated exactly for all values 0 < α ≤ 1 for several boundary conditions.
Analytical calculations for the probability of forward movement are performed in 2D
for circular and square bounded regions with one boundary condition. Numerical
results for all values 0 < α ≤ 1 are presented for several boundary conditions. The
cases of rectangle and ellipse are also considered and an approximate model of the
dependence of the forward movement probability on the aspect ratio is provided. Fi-
nally, some practical points are presented on how these results can be utilised in the
empirical analysis of animal movement in two-dimensional bounded space.

1 Introduction
The movement of animals contains information about how they operate. The idea of
movement as the communication of intention from the brain to the environment is a
new point of convergence between cognitive neuroscience and the systems approach to
neurophysiology [1]. Tinbergen, one of the fathers of the study of animal behaviour as a
science, famously said that all behaviour is movement [2]. Traditionally, locomotion, the
type of movement that is about displacement in space, has been the focus of ecologists
interested in dispersal, foraging and migration [3, 4, 5, 6]. More recently, the paradigm of
movement ecology has striven to unify the analysis of the sequential positions of animals
with information about their physiological and behavioural state and the influence of
external factors [7]. This approach has benefitted from the inclusion of the intermittency
that characterizes locomotion and behaviour in general [8, 9, 10, 11]. Animals stop and go
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or, as O’Brien et al. [8] put it, animals have a saltatory pattern of movement. The pauses
punctuating locomotion could allow resting, perception [9] or making decisions about the
next move [13, 14]. As such they could also represent opportunities for changing the
direction of movement [11].

The Simple Random Walk (SRW) model paradigm is based on the movement trajectory
and does not include behavioural intermittence [15] while the more recent Multiple Ran-
dom Walk (MRW) model paradigm focuses on the identification of behavioural modes
from the movement trajectory arising in response to external factors [11]. The very re-
cent Intermittent Random Walk (IRW) paradigm specifically focuses on incorporating
behavioural intermittence [12], which is assumed to have predominantly an internal ori-
gin [11, 16, 17]. A fundamental question in empirical studies of intermittent movement
is whether it displays forward persistence [18, 19, 20] after a pause. This can be tested
with established methods such as the mean squared displacement [21], the Marsh-Jones
statistic [22], net displacement against path length [23], or the distribution of the turning
angle, among others [23, 24]. These methods assume the environment is unrestricted and
the movement persistence is intrinsic to the organism. Here, by contrast, our null model
allows tests for persistence in the presence of external bias [25]. The question this null
model addresses is: If the studied individual has no intrinsic persistence, what would be
its probability of moving forward given the external bias resulting from the boundedness
and geometry of the space? Such a null model is crucial for testing whether animals
studied in bounded environments display directional persistence in their movement be-
tween stops that is intrinsic to them and cannot be explained purely by environmental
constraints.

The effect of bounded space on random-walk models has been considered in, for example,
the context of worker sorting inside ant nests [26] and the spatial distribution of cock-
roaches [27]. A recent study explored the efficiency of different trap shapes in catching
ground-dwelling arthropods modelled as random walkers [28]. However, to the best of
our knowledge, the present study is the first to address the effect of bounded space and
its geometry on the expected probability of moving forward.

We focus on the sequence of stopping positions r1, r2, r3, . . . and the associated displace-
ment vectors between the stops. The simplest question one might ask is whether, after a
stop at say r2, an animal moves forward or backward relative to the displacement vector,
r2 − r1, allowing us to test for the presence of persistence in displacement vectors in be-
tween stops. The null model against which we can compare experimental data should be
a model without any bias, that is, a model that produces displacement stopping points
without any correlation between them. Naively, according to our definition of forward
movement above, one might expect the probability of forward movement after a pause
under this null model to equal 1

2
. This is indeed the case in situations where animals move
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within unbounded space. However, many animals move within ranges or home territories
[29, 30] and spatial segregation of movement is a common characteristic of populations
[31]. Furthermore, locomotion characteristics are among the main measurements of ex-
ploratory behaviour across animal species and these are often recorded within bounded
space [32, 33, 34]. If the animal moves in a random direction and with a random dis-
placement after a pause but the movement is in a bounded space and the animal happens
to move towards the boundary in one direction, there will be less of the bounded area in
that direction. Therefore, the probability of moving forward after the next pause would
in fact be less than 1

2
.

2 Paper layout
We begin with an outline of our theoretical methodology, which involves analytical calcu-
lations and Monte Carlo simulations (section 3). Then, before we consider the expected
probability for moving forward under the null model with randomly placed stopping
positions in two dimensions, we introduce the mathematically simpler situation in one
dimension. Indeed, the insight from this simpler study qualitatively transfers to the more
biologically relevant situation in 2D and thereby develops our intuitive understanding of
the main conclusions.

In the following, we focus on a model with impermeable boundary and a “no-go” bound-
ary condition where steps extending beyond the bounded space are rejected, but we also
investigate the effect of other boundary conditions [35] in the appendix. The displace-
ments between stops are sampled from a uniform distribution within circle of radius ∆ℓ.
We will show that the dimensionless ratio, α = ∆ℓ/Lmax, where ∆ℓ = max |rj+1 − rj| is
the magnitude of the maximum displacement and Lmax the maximum linear dimension of
the bounded space, controls the probability of moving forward. In section 4, we demon-
strate that the probability of moving forward in a one-dimensional interval p1D(α) =

1
3

when α = ∆ℓ/Lmax = 1. Likewise, we show analytically that the probability of moving
forward in a one-dimensional interval p1D(α) = 1

2
when α → 0. We present numerical

results for 0 < α ≤ 1 that reveal the probability p1D(α) crosses over from 1
3

to 1
2

when
α decreases from 1 towards 0. The numerical results are consistent with exact analytic
results of the crossover probabilities derived in appendix A.

In section 5, we consider the 2D regions of the unit circle and the unit square for the “no-
go” boundary condition. We derive analytic results for the unit circle and square when
α = 1. For the circle, we derive the analytic result for p#(α) in the whole range 0 < α ≤ 1
and we present numerical results for the square p2(α). The results reveal a crossover
from the analytically determined p#(α) = 0.23990508 . . . and p2(α) = 0.2417354 . . .,
respectively, to p#(α) = p2(α) = 1

2
when α decreases from 1 towards 0. We demonstrate

that these results hold for any circle and square, independently of the associated Lmax,
assuming α is fixed. In this section we also consider the cases of the unit ellipse and the
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unit rectangle in the whole range 0 < α ≤ 1. With an aspect ratio of one, we find the
results mentioned above. In the limit of the aspect ratio going to zero, the probability of
forward movement tends to the one-dimensional result of 1

3
as expected.

In section 6, we present practical advice on how to compare empirical results with the
expected values based on our null model with randomly placed stopping positions in
two dimensions. We provide a step-by-step procedure for such comparisons in Appendix
E. Our aim is to help researchers test whether their study organism is more likely
or less likely than expected to move forwards between successive stop locations within a
rectangular or elliptical bounded region. Such a test reveals whether the studied organism
has directional persistence in its movement between stops.

Finally, we summarise our findings and conclusions and comment on future research.

3 Methodology
In this paper, we will focus on the “no-go” boundary condition, that is, steps that fall
outside the bounded region are rejected. There are other choices of boundary conditions,
e.g. the “stop-go” boundary condition where such steps are terminated on the boundary
or “reflective” boundary conditions where the portion of the step that would fall outside
the boundary is reflected back into the region [35]. The “no-go” boundary condition is
natural for animals that have habituated to their environment but for completeness, we
consider the effect of the two other boundary conditions in the appendix.
3.1 Analytical calculations
Given a bounded region R, the probability of moving forward pR(α) when the stopping
positions are distributed uniformly at random in space, α = 1, is calculated by considering
a triplet of points r1, r2 and r3. Choose the position of the first two points at random
within the bounded region R and consider the displacement vector r12 = r2 − r1. This
displacement vector would uniquely determine the fraction pR(r1, r2) of the region R
where the point r3 can be placed for forward movement, see hatched area in Fig. 1. If we
can find an analytic expression for pR(r1, r2), then, for α = 1, the probability of moving
forward is found by averaging over all possible positions of the first two points within the
region R.

Given α = ∆ℓ/Lmax < 1 and the first stopping point r1, draw a circle centered at r1 with
radius ∆ℓ. For the “no-go” boundary condition, the next stopping point r2 is chosen
randomly in the area confined within this circle and the region R. The stopping point r3
is found in a similar way: draw a circle centered at r2 and then choose a point randomly
within the area given by the intersection of this circle and the region R.
3.2 Monte Carlo simulations
For details of the Monte Carlo simulations, please see Appendix D.
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Figure 1: A bounded region R. The dashed red line indicates the maximum linear
dimension of the region, Lmax. The displacement vector r12 = r2 − r1 from the stopping
positions r1 to r2 defines the fraction of the region pR(r1, r2) (hatched area) where the
move from r2 to r3 would be forward relatively to r12.

2

3
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4 One-dimensional case
In this section, we will give analytical results for the “no-go” boundary condition but we
also comment on other boundary conditions and give analytical results for those in the
appendix.
4.1 Interval with α = 1
Consider a one-dimensional interval 0 ≤ x ≤ 1. We will show that the probability of going
forward in a sequence of randomly chosen stopping positions equals 1

3
for the “no-go”

boundary condition.

Consider choosing three points x1, x2 and x3 at random. Such a movement is forward
going only if x3 > x2 > x1 (i.e., if x2 is to the right of x1, x3 must be to the right of x2)
or x3 < x2 < x1 (i.e., if x2 is to the left of x1, x3 must be to the left of x2), see Fig. 2.
We will use a combinatorial argument: Consider the three randomly chosen points x1, x2

0 1
b

x1

b

x2

b

x3

0 1
b

x1

b

x2

b

x36

Figure 2: An interval in 1D is a straight line. Let x1, x2, and x3 be three consecutive
stopping points. Shown are the two cases where forward movement is taking place:
x3 > x2 > x1 or x3 < x2 < x1.

7

8

9

6



and x3 and place them in ascending order

x1 > x2 > x3 or x3 > x2 > x1, (1a)
x1 > x3 > x2 or x3 > x1 > x2, (1b)
x2 > x3 > x1 or x2 > x1 > x3. (1c)

There are six possible combinations. Only the two first of these combinations shown
in Eq.(1a) are categorized as forward movement, see Fig. 2. Because all combinations
are equally probable, with probability 1

6
, that yields a probability p1D(α) = 1

3
of going

forward for α = 1. This result is independent on the length of the interval as long as
α = 1. One can reach the same conclusion by mathematical analysis, see Appendix A.1.1.
The above calculation assumes that the stopping positions are chosen at random, that is,
that the stopping positions have no restrictions except that they cannot be beyond the
boundaries of the space, that is, the “no-go” boundary condition. This is the limiting
case α = 1.
4.2 Interval with 0 < α ≤ 1
If we assume that the displacement between stopping positions is randomly chosen in
the interval [−∆ℓ,∆ℓ], again under the restriction that one cannot go beyond the space
boundary, we can perform numerical simulations to estimate the probability of moving
forward. Indeed, we can even find analytic results for all values of 0 < α = ∆ℓ/Lmax ≤ 1.
The derivation of these exact probabilities being less intuitive than simple combinatorics,
we will only present the final results here and leave the details for Appendix A.1.3.

Following the algorithm described in Appendix D with M = 5 · 106 and N = 1000 we
perform Monte Carlo simulations with a variable dimensionless ratio α. When α = 1,
then the next stopping point is chosen at random within the bounded region because all
points are accessible as the maximum displacement ∆ℓ = Lmax. The numerical results
are consistent with the analytic result of p1D(α) =

1
3

for α = 1, see Fig. 3. However, when
α < 1, consecutive stopping positions have to be within distance ∆ℓ < Lmax. If α → 0,
then the bounded region plays no role and we can show analytically that p1D(α) = 1

2
,

see Appendix A.1.2. Indeed, the numerical estimates from the Monte Carlo simulations
display a crossover from p1D(α) =

1
3

when α = 1 to p1D(α) =
1
2

when α → 0, see Fig. 3.

The analytical solution for p1D(α) as a function of α = ∆ℓ/Lmax has the form

p1D(α) =


1 + 2α(1− 2 log(2))

2− α
for α ≤ 1/2,

4

2− α

(
1 + α logα− 6α2 + 4α3 + 1

12α

)
for α ≥ 1/2,

(2)

see appendix A.1.3. The limiting cases are easily recovered by substitution, α = 0 and
α = 1, in the first and second equation above, respectively.
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Figure 3: The probability of going forward p1D(α) on an interval of length Lmax versus
the dimensionless ratio α = ∆ℓ/Lmax where ∆ℓ is the maximum displacement between
stopping positions and Lmax is the maximum possible displacement. The lower horizontal
line is p1D(α) = 1

3
, the value for α = 1 while the upper horizontal line is p1D(α) = 1

2
,

the limiting value for α → 0. The symbols display the results from a Monte Carlo
simulation where the no. of stopping positions M = 5 · 105 and the no. of samples
N = 1000. The standard error of the mean s ≲ 2.5·10−5 is less than the symbol size. The
triangles, circles and squares represent the results from Monte Carlo simulations for the
“no-go”, “reflective” and “stop-go” boundary conditions. The solid lines superimposed
over the symbols represent the associated analytic results in Eqs. (2), (18) and (25): the
simulation results are in alignment with the analytical results.
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5 Two-dimensional case
5.1 Definition of moving forward
Given three points r1 = (x1, y1), r2 = (x2, y2) and r3 = (x3, y3), we can define two
vectors, namely the displacement vector r12 = r2 − r1 from point r1 to point r2 and the
displacement vector r23 = r3 − r2 from point r2 to point r3 with coordinates

r12 =

(
x2 − x1

y2 − y1

)
; r23 =

(
x3 − x2

y3 − y2

)
, (3)

respectively, see Fig. 4. When the scalar product r12 · r23 > 0 ⇔ cos θ > 0, where θ
is the acute angle between the two vectors, the movement is forward. When the scalar
product is negative or zero, that is, cos θ ≤ 0, the movement is backwards, see Appendix
B for further details. After the generic definition of moving forward, we will, in this
section, focus on the “no-go” boundary condition but we also consider the “stop-go” and
“reflective” boundary conditions for two dimensions in the appendix.
5.2 Circle and square with α = 1
We can argue qualitatively why the probability to move forward in a confined space is
affected by the boundary when the stopping points are chosen at random such that it is
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b r1 = (x1, y1)

b
r2 = (x2, y2)

b

r3 = (x3, y3)

r12

r23

r12

θ

(a) (b)

b r1 = (x1, y1)

b
r2 = (x2, y2)

b r3 = (x3, y3)

r12

r12
r23

θ

22

Figure 4: Three random points r1, r2, r3 with their two associated displacement vectors
r12 = r2 − r1 and r23 = r3 − r2. The smallest angle θ, 0 ≤ θ ≤ π between the two
vectors r12 and r23 defines the direction of the vector r23 with respect to the vector r12.
The hatched area with a boundary perpendicular to the vector r12 indicates the region
where a stopping position r3 would imply forward movement. (a) Forward movement as
r12 · r23 > 0 ⇔ cos θ > 0. (b) Backward movement as r12 · r23 ≤ 0 ⇔ cos θ ≤ 0.
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not equal to 1/2.

L = 1
br1

br2
R = 1

br1

b
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29

Figure 5: A unit circle with radius R = 1 and a unit square with sides L = 1. The dashed
red lines indicate the diameter Lmax = 2 and the diagonal Lmax =

√
2, respectively. Three

points r1, r2 and r3 are chosen at random and we define the two displacement vectors
r12 = r2 − r1 and r23 = r3 − r2. The movement is forward if r12 · r23 > 0 (see Fig. 4
and Appendix B), that is, if r3 is placed within the hatched area that has a boundary
perpendicular to the vector r12.

30

31

32

33

34

35

Consider the situations when the confined region is either a circle or a square, see Fig. 5.
After choosing two consecutive stopping points r1 and r2 at random, the hatched area
within the confined region is where r3 has to be situated if the movement is forward. In
the realisations displayed in Fig. 5, the fraction of the hatched areas is clearly less than 1

2
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of the total area. For other choices of r1 and r2, the probability of moving forward might
be larger than 1/2 but this occurs less often.

We have derived an analytic expression for the probability of moving forward in a circle
with diameter Lmax when α = 1, see Eq.(49b) in Appendix C.1. The analytical derivation
is done for a circle with diameter Lmax, but the exact expression for the probability of
going forward in a circle is independent of Lmax. By numerically integrating the analytical
result, we find p#(α = 1) = 0.23990508 . . .. For the case of a square with diagonal Lmax,
we can apply the argument presented in Appendix C.2 to obtain the analytic result
p2(α = 1) = 0.2417354 . . ., which again is independent of the diagonal Lmax.
5.3 Circle and square with 0 < α ≤ 1
When α = ∆ℓ/Lmax = 1, the above results for 2D geometries assume that the stopping
positions are chosen at random, that is, that the displacement between stopping positions
has no restrictions except that stopping positions beyond the boundaries of the space are
rejected, that is, we apply the “no-go” boundary condition.
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α = ∆ℓ/Lmax

p #
(α

)
an

d
p 2

(α
)

36

Figure 6: Numerical results for the probability of moving forward p#(α) and p2(α) in
a circle with Lmax = 2 or square with Lmax =

√
2 with “no-go” boundary conditions,

respectively, versus the dimensionless ratio α = ∆ℓ/Lmax where ∆ℓ is the maximum
displacement between stopping positions. Circle (blue circles): When α = 1, the prob-
ability falls on the blue line with p#(α) = 0.23990508. When decreasing α from 1 to
0, there is a crossover from p#(α) = 0.23990508 to p#(α) = 1

2
indicated with the hor-

izontal black line. Square (red squares): When α = 1, the data falls on the red line
with p2(α) = 0.2417354. When decreasing α from 1 to 0, there is a crossover from
p2(α) = 0.2417354 to p2(α) = 1

2
indicated with the horizontal black line. In both cases,

the number of samples for each data point N = 100, each with a sequence of M = 105

stopping points and the standard error of the mean s ≲ 2 · 10−4 is less that the symbol
sizes.
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If we assume that the magnitude of the displacement between stopping positions is ran-
domly chosen in the interval [0, αLmax] for fixed α ∈ [0, 1], again under the restriction
that they cannot be beyond the space boundary, then in numerical simulations for a
unit circle with diameter Lmax = 2, we see a crossover from p#(α) = 0.23990508 and
p2(α) = 0.2417354 for α = 1 to p#(α) = p2(α) = 1

2
for α → 0, see Fig. 6. We note

that for most of the range 0 < α ≲ 0.9, p2(α) < p#(α) with a maximum difference of
about 0.05 when α = 0.55. The numerical data for the limiting value, α = 1, provides
χ2 agreement with the analytical expressions for both circle and square.
5.4 Ellipse and rectangle with 0 < α ≤ 1 and 0 ≤ r ≤ 1
We can generalise the geometry from circle to ellipse and square to rectangle. We define
the aspect ratio 0 ≤ r ≤ 1 as the ratio between the minor and major axes of the ellipse
and the smallest and largest sides in the rectangle, respectively. We denote the associated
probabilities of moving forward by p◦(α, r) and p (α, r), respectively. For r = 1, we
recover the circle and square. Hence, p#(α) = p◦(α, 1) and p2(α) = p (α, 1). We
can also recover the one-dimensional case by setting r = 0, that is, p1D(α) = p◦(α, 0) =
p (α, 0).

We display the measured probability of going forward as a function α and the aspect
ratio r of an ellipse and a rectangle in Fig. 7.
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Figure 7: The probability of moving forward in an ellipse p◦(α, r) (blue circles) and
a rectangle p (α, r) (red squares) with “no-go” boundary conditions versus the as-
pect ratio r for α = 1, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1, respectively. For r = 1,
p◦(α, 1) = 0.23990508 (circle, indicated with the blue line) and p (α, 1) = 0.2417354
(square, indicated with the red line) while p◦(1, r) → 1

3
and p (1, r) → 1

3
(indicated

with the upper black line) for r → 0. The number of samples N = 100 with M = 106

randomly chosen points. The standard error of the mean s ≲ 5 · 10−5 is smaller that the
symbols.
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For r = 0 (data on the y-axes), we recover the result obtained in Fig. 3, i.e., a crossover
from p◦(1, 0) = p (1, 0) = 1

3
to p◦(α, 0) = p (α, 0) = 1

2
when α → 0. We notice that

when α is not too large (α ≲ 0.8 for an ellispe and α ≲ 0.5 for a rectangle), there is a
local minimum as a function of aspect ratio r.

One way of qualitatively understanding the presence of minima in the probability of
moving forward as a function of the aspect ratio is to consider the 2D problem as a
combination of two 1D problems, where movement is only allowed either along the first
(x) or along the second (y) dimension. Starting from r = 0, as we increase the aspect
ratio r, a new dimension becomes available for movement; however, this is initially much
smaller than the maximum length of displacement between stops ∆ℓ < Lmax and the
overall probability is reduced (recall p1D(α) is a monotonically decreasing function of
α). As the length available along the new dimension becomes comparable with ∆ℓ, the
suppression of forward movement vanishes and the probability increases once again. In
an approximation where the relative probability of moving in either direction is given by
the aspect ratio, this qualitative model can be expressed as

p2D(α, r) ≃ r p1D

(
αLmax

r

)
+ (1− r) p1D(αLmax). (4)

This approximation correctly reproduces the presence of minima and their approximate
dependence on α, see Fig. 8. However, it fails to show that for sufficiently large ∆ℓ/Lmax,
the minima should disappear and the dependence on r becomes monotonic.
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Figure 8: Aspect ratio dependence of the forward movement probability for “no-go”
boundary conditions in 2D as expressed by Eq.(4) for α = ∆ℓ/Lmax = 1, 0.7, 0.6, 0.5, 0.4,
0.3, 0.2 and 0.1. The approximation in Eq.(4) succeeds in reproducing the presence and
approximate α dependence on the minima, although it fails to capture their numerical
values or the absence of the minima for large α values.
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5.5 Position probability in 2D
For the simple random walk between stopping positions described in the sections above,
we can find exact expressions for the probability density g(x, y)∆x∆y for the ran-
dom walker to be found within some infinitesimally small square with coordinates
x ∈ [x−∆x/2, x+∆x/2], y ∈ [y−∆y/2, y+∆y/2] after some sufficiently long time from
the beginning of the walk. This is done by calculating the overlap area of the circle of
radius ∆ℓ centred at (x, y) and the bounded space. In other words, the positions prob-
ability distribution (assumed to be time-independent for M ≫ 1) is proportional to the
“number of ways” the positions (x, y) can be accessed via a single displacement between
stops. We can expect that a decrease in probability will be observed as we approach the
boundary, due to a larger fraction of the space available for movement falling outside the
allowed region, see Fig. 9 for an example of this effect. Although sometimes useful for
analytical treatments, this result has an importance of its own in the context of empiri-
cal studies, as it warns us about the magnitude of purely geometrical effects on even the
simplest observables.
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Figure 9: Colour-coded contour map showing a characteristic probability density
g(x, y)∆x∆y of stopping positions for a random walk on a unit square, Lmax =

√
2,

with “no-go” boundary conditions, with a relative range of displacements between stops
α = ∆ℓ/Lmax = 0.5 and ∆x = ∆y = 1/30. The displayed data was produced in a single
Monte Carlo run with N = 107. Note how the emerging positions distribution displays
an approximate circular symmetry. The probability of a random walker to be in a given
position increases with the number of points from which this position can be reached.
Hence, this probability has a maximum in the centre and decays towards the boundary
while its minima are in the four corners.
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The same argument can be extended to bounded spaces of different dimensionality. In
fact, knowledge of the exact form of the 1D probability g(x)∆x was essential in solving the
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1D case for general α, see Appendix A.1.3. A more thorough investigation of how position
probabilities are affected by the geometrical properties of the boundary is presented in a
companion paper [38].

6 Empirical applications
Experimentalists can estimate ∆ℓ as the maximum displacement between the observed
stopping positions and Lmax as the maximum linear dimension of the bounded arena,
territory or segregation area, such as the diameter for a circle or the diagonal for a
square. Then they can use the value of α = ∆ℓ/Lmax to obtain the expected probability
of moving forward, pR(α), from the tables we have provided. To test whether their
study organism is more (or less) likely to move forward after a pause than expected from
the null-model, they need to compare this expected probability with the 95% confidence
interval for the proportion of forward movements between successive stop positions of
their studied individual. If the expected probability value is outside the 95% confidence
interval calculated from the data, there is at most a 5% chance that the organisation of the
pauses in space is unstructured. Given such a small probability for the null hypothesis, it
should be concluded that there is evidence for forward persistence or forward avoidance
in the movement between stops.

In Appendix E, we describe a step-by-step procedure for testing whether there is forward
persistence in the movement of an organism between successive stops. This procedure is
based on the comparison between the observed and expected probability for moving for-
ward. The observed probability is estimated empirically from the data and the expected
probability is calculated from our null model which assumes no relationship between stop-
ping points and hence no intrinsic forward persistence. We have produced six look-up
tables for the expected probability, one for each of the two most common shapes of an
experimental arena or a study area: the rectangle and the ellipse, under each of three
boundary conditions (Tables S1-S6). In Tables S1-S2 (“no-go” boundary condition), the
probability of moving forward can be looked up against (a) values of the aspect ratio
0 ≤ r ≤ 1 of the rectangle or ellipse between 0.01 and 1.00 in steps of ∆r = 0.01 and (b)
values of the ratio α = ∆ℓ/Lmax between 0.01 and 1.00 in steps of ∆α = 0.01. In Tables
S3-S6 (“stop-go” and “reflective” boundary conditions), probability values are available
only for a square and a circle. Hence the aspect ratio, r = 1. Copies of Tables S1-S6
have been uploaded as supplementary material with the present paper.

The three boundary conditions are based on [35] and represent: stopping points chosen
at random within the boundary (“no-go”), stopping at the boundary (“stop-go”) and re-
flecting off the boundary (“reflective”). We describe the procedure and give two examples
for each of the rectangular and elliptical shapes under the “no-go” boundary condition.
One of the examples is for a value of ∆ℓ/Lmax close to 1 (∆ℓ/Lmax = 0.81, aspect ratio
r = 0.75) and the other for a value of ∆ℓ/Lmax close to 0 (∆ℓ/Lmax = 0.13, r = 0.15).
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The procedure is the same under the other two boundary conditions, except that the
aspect ratio, r = 1 is constant. Please note that in Appendix D, Figure 17, we display
the equivalent of Figure 6, but now for all three boundary conditions.

To calculate the empirical probability of moving forward, a rigorous definition of locomo-
tion intermittence is necessary. We propose a definition originating in the study of ant
movement tracked within the confines of the nest where the whole colony resides [13].
This approach is based on individual movement measured at short time intervals. In-
deed, we can define the notion of a “stop-go” signal as a sequence of time intervals with
movement (“go”) interrupted by a sequence of time intervals with no movement, i.e.,
the recorded position remains exactly the same throughout a time interval (“stop”) [13].
With the ever increasing technological possibilities for obtaining fine-grained tracking
data in a variety of environments, this approach is applicable to the movement analysis
of organisms across taxa.

Conclusions based on the step-by-step procedure are more reliable when the number
of successive pairs of stops for an individual’s trajectory is in the hundreds because
the calculation of the 95% confidence interval for a proportion is based on a Gaussian
approximation of the Binomial distribution.

When the geometry of the bounded space is not a circle, a square, an ellipse or a rectangle,
empiricists could estimate the expected probability of moving forward between stops by
using a bespoke methodology based on the principles of the Monte Carlo simulations
described in Appendix D.

7 Discussion
A pause in locomotion might present an organism with the opportunity to make a decision
about its next move. Here we presented a method for testing whether there is directional
persistence between successive stops in individual intermittent locomotion in bounded
space. Such directional persistence may mean that the organism uses stopping to make
decisions about its next move or simply represent a body asymmetry that is conserved
during inactivity. In either case establishing persistence is a necessary step before further
investigation.

We analysed the spatio-temporal aspects of the sequence of stopping positions. The
simplest possible observable here is whether or not the animal is moving forward from
its current to its next stopping position. This is measured relatively to the direction
defined by the movement from the previous to the present stopping position. When
the maximum displacement between stopping points, ∆ℓ, is tiny relative to the linear
dimension of the bounded space, Lmax, to all intents and purposes, the bounded region
appears unbounded and the probability of moving forward is 1

2
. However, organisms are

often kept in laboratory arenas whose linear dimension is easily within their movement
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reach, which means that the ratio α = ∆ℓ/Lmax tends to 1. Therefore, the probability of
moving forward within a bounded space is usually different from 1

2
. For example, for a

circle and a square, we found p#(α) = 0.23990508 and p2(α) = 0.24171354, respectively
when α = 1 for the “no-go” boundary condition.

The beauty of our null model and the parameter α = ∆ℓ/Lmax, in particular, is that
it covers the whole spectrum of ratios between the max distance between the stopping
positions (∆ℓ) and the maximum dimension of the bounded space (Lmax). This includes
the cases where the max distance between the stopping positions (∆ℓ) is just a fraction
of the maximum dimension of the bounded space (Lmax). For example, if we assume that
the animal has an inherent max distance between the stopping positions, say ∆ℓconstant,
independent of the bounded space in which it is placed, then in experiments carried out
in bounded spaces with increasing max dimension from Lmax = ∆ℓconstant and upwards,
one would effectively be decreasing the parameter α from 1 downwards. Our model
handles this case as it effectively amounts to the curve for 0 < α ≤ 1 (Fig. 8). It
is also important to remember that when α is close to 1, namely when the maximum
distance between stopping positions is close to the maximum dimension of the bounded
space, this maximum distance is the displacement between stops not the path. The path
between stops is often convoluted and quite long. Hence, it is crucial that the positions
between displacements represent stops in intermittent locomotion and not simply points
of reorientation during continuous locomotion.

We also explored the effect of different boundary conditions on the probability of the
animal moving forward betweeen stops. Our focus was on the “no-go” boundary condition
[35]. According to this condition, the moving individual chooses an alternative position if
the one already chosen is not within the bounded space. We focus on it because we do not
expect many animals would have an increased probability of stopping at the boundary
(the “stop-go” boundary condition) or would simply be reflected off the boundary (the
“reflective” boundary condition). Even fewer would be able or willing to go through the
boundary (the “absorbing” boundary condition) [35]. Nevertheless, the “stop-go” and
“reflective” boundary conditions are possible particularly when an organism is exploring
a novel space and interacting frequently with its boundary. In addition, it is well known
that boundary conditions influence the behaviour of random walks differently [36, 35].
A more realistic, but also more complicated, is the “β-inelastic” boundary condition,
which interpolates between the perfectly inelastic “stop-go” and the perfectly elastic
“reflective” boundary conditions (for the analytic probability of moving forward in 1D
under the “β-inelastic” boundary condition, please see A.3). Last, but not least, the
boundary influences the distribution of the displacements between stops [38]. We cannot
place an organism in a bounded space under the conditions described in this study and
expect to measure the intrinsic distribution of displacements between stops.
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The effect of environmental geometry on movement is still relatively unexplored. A recent
study demonstrated the impact of shape on a trap’s effectiveness in catching insects in
relation to their movement characteristics [28]. Here we showed that geometry imposes
a substantial external bias on the probability of moving forward within a bounded space
such as an experimental arena. This finding provides an important null model for tests of
directional persistence in the movement of organisms between stops during experiments.
It is possible that our method could be extended, under certain conditions, to all points
along the path of a moving organism. We focused specifically on the stopping points
because they are selected by the studied organism itself and represent points along the
path where some decision-making might be taking place. We hope the methodology
developed in this paper will facilitate future empirical research into the movement of
organisms as a window to understanding their decision-making processes.
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A Analytic calculation in 1D
A.1 “No-go” boundary condition
A.1.1 Interval with α = 1
The probability density for choosing a point at random in an interval is uniform, that is,
if the interval is [0, L], then

P (x)dx =
1

L
dx, (5a)

such that ∫ L

0

P (x)dx = 1. (5b)

In 1D, Lmax = L so α = ∆ℓ/Lmax = 1 is associated with ∆ℓ = L. We can calculate the
associated probability that x1 ∈ [0, L], x2 ∈ ]x1, L] and x3 ∈ ]x2, L]:

P (x3 > x2 > x1) =

∫ L

0

1

L
dx1

∫ L

x1

1

L
dx2

∫ L

x2

1

L
dx3

=
1

L3

∫ L

0

dx1

∫ L

x1

dx2 [x3]
L
x2

=
1

L3

∫ L

0

dx1

∫ L

x1

(L− x2)dx2

=
1

L3

∫ L

0

dx1

[
Lx2 −

1

2
x2
2

]L
x1

=
1

L3

∫ L

0

(
1

2
L2 − Lx1 +

1

2
x2
1

)
dx1

=
1

L3

[
1

2
L2x1 −

1

2
Lx2

1 +
1

6
x3
1

]L
0

=
1

6
, (6a)

and similarly for x1 ∈ [0, L], x2 ∈ [0, x1[ and x3 ∈ [0, x2[:

P (x3 < x2 < x1) =

∫ L

0

1

L
dx1

∫ x1

0

1

L
dx2

∫ x2

0

1

L
dx3 =

1

6
. (6b)

Hence, the probability of going forward in 1D is

p1D(α) = P (x3 > x2 > x1) + P (x3 < x2 < x1) =
1

3
, (7)

when α = 1. This result holds for any finite interval of length L in 1D.
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A.1.2 Interval with α → 0
We will show that in the limit of α → 0, the probability of going forward equals 1

2
. When

α ≪ 1, the stopping position x2 is within an interval of length 2∆ℓ centered around x1.
Likewise, the stopping position x3 is within an interval of length 2∆ℓ centered around
x2. The associated probability density for choosing a point at random within such an
interval is uniform, that is,

P (x)dx =
1

2∆ℓ
dx, (8a)

such that ∫ x1+∆ℓ

x1−∆ℓ

P (x)dx = 1, (8b)

and similarly for an interval of length 2∆ℓ around x2. We can calculate the associated
probability that x1 ∈ [0, L], x2 ∈ ]x1, x1 +∆ℓ] and x3 ∈ ]x2, x2 +∆ℓ]:

P (x3 > x2 > x1) =

∫ L

0

1

L
dx1

∫ x1+∆ℓ

x1

1

2∆ℓ
dx2

∫ x2+∆ℓ

x2

1

2∆ℓ
dx3

=
1

L (2∆ℓ)2

∫ L

0

dx1

∫ x1+∆ℓ

x1

dx2 [x3]
x2+∆ℓ
x2

=
1

4L∆ℓ

∫ L

0

dx1

∫ x1+∆ℓ

x1

dx2

=
1

4L

∫ L

0

dx1

=
1

4
, (9a)

and similarly for x1 ∈ [0, L], x2 ∈ [x1 −∆ℓ, x1[ and x3 ∈ [x2 −∆ℓ, x2[:

P (x3 < x2 < x1) =
1

4
. (9b)

Hence, the probability of going forward in 1D is

p1D(α) = P (x3 > x2 > x1) + P (x3 < x2 < x1) =
1

2
, (10)

when α → 0. This result holds for any interval of length L in 1D.
A.1.3 Interval with 0 < α ≤ 1
We consider the sequence of stopping positions in terms of triplets of time-ordered co-
ordinates xi−1, xi, xi+1. We then calculate the probability density g(x;α) for the central
point of a particular triplet to be located at coordinate x along the 1D segment for a given
α = ∆ℓ/Lmax. One can find these distributions by considering the number of “ways-in”
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for each point along the segment, that is, the number of points in the segment that can
be reached in a single displacement between stops. For α ≤ 1/2 we obtain

g (x;α ≤ 1/2) ∝


x+ α

2α
for x ∈ [0, α],

1 for x ∈ [α, 1− α],

(1− x) + α

2α
for x ∈ [1− α, 1],

(11)

while for α > 1/2 we obtain

g (x;α > 1/2) ∝



x+ α

2α
for x ∈ [0, 1− α],

1

2α
for x ∈ [1− α, α],

(1− x) + α

2α
for x ∈ [α, 1].

(12)

The next step is to calculate the probability p(x;α) for the previous and next stopping
positions to be found on opposite sides of a central point located at x, which is an
equivalent description of forward movement in 1D. This is done by considering the lengths
available for movement on either side of the central point, let’s call these ℓx and rx, with
the probability being given by 2(ℓxrx)/(ℓx + rx)

2. This approach gives for α ≤ 1/2

p(x;α ≤ 1/2) =



2xα

(x+ α)2
for x ∈ [0, α],

1

2
for x ∈ [α, 1− α],

2(1− x)α

(x+ α)2
for x ∈ [1− α, 1],

(13)

and for α > 1/2

p(x;α > 1/2) =



2xα

(x+ α)2
for x ∈ [0, 1− α],

2x(1− x) for x ∈ [1− α, α],

2(1− x)α

(x+ α)2
for x ∈ [α, 1].

(14)

We can now calculate the probability of forward movement p1D(α) for a random walk
on a 1D segment as a function of α by weighting Eq. (13) and Eq.(14) by Eq.(11) and
Eq.(12), respectively. This is done via the integral

p1D(α) =

∫ 1

0

g(x;α)p(x;α) dx, (15)
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which can be evaluated to give the exact expression valid on the full range 0 < α ≤ 1

p1D(α) =


1 + 2α(1− 2 log(2))

2− α
for α ≤ 1/2,

4

2− α

(
1 + α logα− 6α2 + 4α3 + 1

12α

)
for α ≥ 1/2.

(16)

The limiting cases mentioned previously are easily recovered by substitution, α = 0 and
α = 1, in the first and second equation above, respectively.
A.2 “Reflective” boundary condition
In the case of “reflective” boundary conditions in d = 1, the steady-state stopping position
probability distribution is uniform. On the unit segment, we thus have g(x;α) = 1. One
can convince themselves of this result by noting that “reflective” and periodic boundaries
are dynamically equivalent and, consequently, the steady-state should be invariant under
spatial translation within the segment. Following the same procedure as above, we now
calculate the conditional forward movement probability p(xi;α) for a given mid-point xi

of the ordered triplet xi−1, xi, xi+1. For simplicity we only consider the case α ≤ 1. This
conditional probability is given by

p(xi;α) =

{
1/2 if α/2 < xi ≤ 1/2,
2x(α−x)

α2 if xi ≤ α/2,
(17)

with p(xi;α) = p(1 − xi;α) by symmetry. The space-averaged probability of forward
movement is therefore given by

PF (α) =
1

2
(1− α) + 2

∫ α/2

0

dx

(
2x

α
− 2x2

α2

)
=

1

2
(1− α/3). (18)

For α → 0, this converges to the value 1/2, characteristic of movement in an unbounded
space. For α = 1 “reflective” and “no-go” boundary conditions produce identical dy-
namics and we correctly get the probability PF (1) = 1/3 derived earlier for the latter
case.
A.3 “Stop-go” boundary condition
In the case of “stop-go” boundary conditions, the challenge (already in d = 1) is to
obtain the steady-state stopping position distribution. Unlike for “reflective” and “no-
go” boundaries, here we need to define and treat the probabilities g(0;α) and g(1;α) for
the random walker to be found at the boundaries separately. Restricting ourselves to the
case 0 < α ≤ 1, the discrete-time evolution of the stopping position distribution from an
arbitrary initial condition {g(0)(x;α), g(0)(0;α), g(0)(1;α)} with x ∈ (0, 1) is given by the
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system of recurrence relations

g(n+1)(x;α) =
θ(α− x)

2α
g(n)(0;α) +

θ(x− 1 + α)

2α
g(n)(1;α)+∫ 1

0

dx′ θ(x
′ − x+ α)θ(x+ α− x′)

2α
g(n)(x′;α), (19a)

g(n+1)(0;α) =
1

2
g(n)(0;α) +

∫ 1

0

dx′ α− x′

2α
θ(α− x′)g(n)(x′;α), (19b)

g(n+1)(1;α) =
1

2
g(n)(1;α) +

∫ 1

0

dx′ x
′ − 1 + α

2α
θ(x′ − 1 + α)g(n)(x′;α). (19c)

At stationarity, g(n) = g(n+1) = g(∞) and the above system of equations reduces to a single
integral equation, specifically a homogeneous Fredholm equation of the second kind, for
the steady-state stopping position distribution of the form

g(∞)(x;α) =

∫ 1

0

dx′ K(x, x′;α)g(∞)(x′;α), (20)

with integration kernel

K(x, x′;α) =
1

2α

[
θ(x′ − x+ α)θ(x+ α− x′) +

α− x′

α
θ(α− x′)θ(α− x)+

x′ − 1− α

α
θ(x′ − 1 + α)θ(x− 1 + α)

]
. (21)

Equation (20) is invariant under multiplication of g(∞) by a constant and a normalisation
condition thus needs to be provided of the form∫ 1

0

dx

(
1 +

2(x− 1 + α)

α
θ(x− 1 + α)

)
g(∞)(x;α) = 1. (22)

We note in passing that (22) can be used to recast (20) as an inhomogeneous Fredholm
integral equation of the second kind [37] of the form

g(∞)(x;α) = K(x, x0;α) +

∫ 1

0

dx′ K ′(x, x′;α)g(∞)(x′;α), (23)

with x0 ∈ (0, 1) an arbitrary bulk point and the modified integration kernel

K ′(x, x′;α) = K(x, x′;α)−K(x, x0;α)

(
1 +

2(x′ − 1 + α)

α
θ(x′ − 1 + α)

)
. (24)

This transformation is convenient for the purpose of determining the steady-state nu-
merically. However, since we don’t expect that the steady-state stopping distribution
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can be obtained in closed form, we take the simpler route of evolving an initial uniform
distribution to a numerical steady-state by iterating (21). With this information at hand,
it is sufficient to note that the conditional forward movement probability p(xi;α) given
the mid-point xi of an ordered triplet xi−1, xi, xi+1 is equal to 1/2 for all bulk points
xi ∈ (0, 1) and vanishes for xi ∈ {0, 1} (with the convention that xi+1 = xi counts as a
backwards displacement between stops). Thus, the position-averaged forward movement
probability is given by

PF (α) =
1

2

∫ 1

0

dx g(∞)(x;α). (25)

For the limiting case α = 1, exactly half the mass of the jump kernel extends outside
of the domain independently of the starting position of the jump. The probability for
the random walker to be found anywhere in the bulk after a jump is therefore 1/2, thus
PF (1) = 1/4.
A.4 β-inelastic boundary condition
As it turns out, “stop-go” and “reflective” boundary conditions can be understood as
special cases of a more general class of boundary conditions [35], which we here refer to
as β-inelastic. This one-parameter family of boundary conditions interpolates between
perfectly inelastic (“stop-go”) and perfectly elastic (“reflective”) by introducing a “damp-
ing factor” β ∈ (0, 1], multiplying the remaining length of the jump after reflection at
the boundary. For β = 1 one recovers elastic reflection, for β → 0 jumps are terminated
infinitesimally close to the boundary. Taking the limit β → 0 rather than setting β = 0
is required to avoid ambiguities arising when xi = xi+1. Restricting ourselves to the
case 0 < α ≤ 1, the discrete-time evolution of the stopping position distribution from an
arbitrary initial condition g(0)(x;α, β) with x ∈ (0, 1) is given by the recurrence relations
g(n+1)(x;α; β) =

∫ 1

0
dx′ K(x, x′;α, β)g(n)(x′;α, β) with integration kernel

K(x, x′;α, β)=
θ(x−x′+α)θ(x′+α−x)

2α
+
θ(β(α−x′)−x)

2α/β
+
θ(x−1+β(x′+α−1))

2α/β
. (26)

At stationarity, g(n) = g(n+1) = g(∞) and the corresponding homogeneous Fred-
holm equation for the steady-state stopping position distribution reads g(∞)(x;α, β) =∫ 1

0
dx′ K(x, x′;α, β)g(∞)(x′;α, β) with the normalisation condition

∫ 1

0
dx g(∞)(x;α, β) =

1. Again, we can use this normalisation to recast the steady-state equation in an inho-
mogeneous form as

g(∞)(x;α, β)=K(x, x0;α, β)+

∫ 1

0

dx′(K ′(x, x′;α, β)−K(x, x0;α, β))g
(∞)(x′;α, β) (27)

with x0 ∈ (0, 1) an arbitrary bulk point. Having solved for the steady-state stopping po-
sition distribution, one then needs to evaluate the conditional forward movement proba-
bility p(xi;α, β) for a given the mid-point xi of the ordered triple xi−1, xi, xi+1. Due to the
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Figure 10: For β-inelastic boundary conditions, the probability of going forward PF (α, β)
on an interval of length Lmax depends both on the dimensionless ratio α = ∆ℓ/Lmax,
with α ∈ [0, 1], and on the damping factor β, with β ∈ (0, 1]. Left: forward movement
probability as a function of α for a set of representative values of β (β = 1 is equivalent
to reflecting boundary conditions). Right: full dependence of the forward movement
probability on both parameters α and β. For comparison, the curves plotted in the left
panel are traced with matching colors.

dissipative nature of the inelastic interactions with the boundary, time reversal symmetry
is broken in the dynamics (unlike “reflective” and “no-go” boundaries) and p(xi;α, β) de-
pends explicitly on the steady-state stopping distribution. Introducing the time-reversed
jump kernel KR(x, x′;α, β) ∝ K(x′, x;α, β)g(∞)(x;α, β) with

∫
dx KR(x, x′;α, β) = 1,

we can write the conditional forward movement probability as

p(xi;α, β) =

∫ xi

0

dy K(y, xi;α, β)

∫ 1

xi

dy′ KR(y′, xi;α, β)+∫ xi

0

dy KR(y, xi;α, β)

∫ 1

xi

dy′ K(y′, xi;α, β). (28)

The position-average forward movement probability is thus given by PF (α, β) =∫ 1

0
dx p(x;α, β)g(∞)(x;α, β).

B Finding θ with a sign in 2D
The dot product (scalar product) of the two vectors (see Fig.4)

r12 · r23 =
(
x2 − x1

y2 − y1

)
·
(
x3 − x2

y3 − y2

)
= (x2 − x1)(x3 − x2) + (y2 − y1)(y3 − y2), (29)
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allows us to determine the (absolute) value of the angle θ via the equation

cos θ =
r12 · r23
|r12| |r23|

with 0 ≤ θ ≤ π, (30)

where the lengths of the two vectors appear in the denominator

|r12| =
√
(x2 − x1)2 + (y2 − y1)2, (31a)

|r23| =
√
(x3 − x2)2 + (y3 − y2)2. (31b)

From Eq.(30) we can then determine the angle θ where 0 ≤ θ ≤ π, allowing us to
characterize the movement as forward or backward

Forward ⇔ r12 · r23 > 0 ⇔ θ < π/2, (32a)
Backward ⇔ r12 · r23 ≤ 0 ⇔ θ ≥ π/2. (32b)

We can define θ with a sign such that if the vector r23 is to the right of r12 (as in
the examples in Fig.4), −π < θ < 0. Similarly, if the vector r23 is to the left of r12,
0 < θ < π. If the vectors are pointing in the same (opposite) direction, θ = 0(±π). Hence,
forward direction has −π/2 < θ < π/2 and backwards direction has −π ≤ θ ≤ −π/2 or
π/2 ≤ θ ≤ π. The angle θ determined from Eq.(30) does not contain information about
the sign of the angle, that is, if we have a forward direction θ < π/2, we do not know if
the vector r23 is pointing to the left or to the right of the vector r12. However, the sign
of θ is identical to the sign of a quantity derived from the cross-product of associated
vectors in R3, that is, the vectors r12 and r23 with an added zero third coordinate. Let
us call this quantity C where

C = (x2 − x1)(y3 − y2)− (x3 − x2)(y2 − y1). (33)

The angle θ should take the sign of C, that is, if C > 0 then θ > 0, if C < 0 then θ < 0.
If C = 0 then θ = 0 or θ = ±π. Hence, the algorithm to determine the angle θ with a
sign in 2D is:

1. Determine the two vectors r12 and r23 from the three points, see Eq.(3).

2. Calculate their dot-product from Eq.(29) and their lengths Eqs.(31) and use Eq.(30)
to determine the angle θ, 0 ≤ θ ≤ π.

3. Calculate the quantity C from Eq.(33). If C < 0, θ is negative, i.e., set θ = −θ. If
C ≥ 0 do nothing.

Then θ will be measured with a sign according to the definition given in Fig.4.
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C Analytic calculation in 2D
C.1 Exact result for circle with α = 1
We will now derive an analytic result for the case of a circle with radius R0, i.e., Lmax =
2R0. The symmetry of the circle makes it simpler to consider than the square.

Assume the centre of the circle is at the origin of a 2D coordinate system. We now choose
two points r1 and r2 at random. Due to symmetry, we can, without loss of generality,
assume that the point r1 is on the positive x-axis. Similarly, we may assume that the
point r2 has y ≥ 0. A point r2 with a negative y-coordinate behaves identically as can
be seen from a reflection in the y-axis. We will follow a calculation suggested by G.
Pruessner (private communication).

Let us define the radius and angles associated with the random points via

ri = ri(cos(ϕi), sin(ϕi))), for i = 1, 2, . . . (34)

where by definition ϕ1 = 0. Because y ≥ 0, the angle 0 ≤ ϕ2 ≤ π.

We now need to consider the two different cases:

1. Fig.11: 0 ≤ ϕ2 ≤ π/2; r2 > r1 cosϕ2 or r2 < r1 cosϕ2,

2. Fig.12: π/2 ≤ ϕ2 ≤ π.

First, we will find the area A(R,R0) of the hatched segment, where we define R as the
distance of the chord with length 2c from the origin of the circle with radius R0. From
the geometry of the two identical triangles with sides R, c and R0 we have

R2 + c2 = R2
0 ⇔ 2c = 2

√
R2

0 −R2. (35)

This equation is generic, that is, it is true in Fig.11 and Fig.12. In Fig.11(a) and in
Fig.12, the area of the hatched region is

A(R,R0) =

∫ R0

R

2
√
R2

0 − r2 dr

= R2
0

∫ 1

R/R0

2
√
1− u2 du with u = r/R0

= R2
0

[
u
√
1− u2 + sin−1 u

]1
R/R0

= R2
0

(
cos−1(R/R0)−

R

R0

√
1− (R/R0)2

)
, (36)
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Figure 11: A circle with radius R0 centered in the origin of a coordinate system oriented
such that the point r1 is on the positive x-axis and the randomly chosen point r2 has
y ≥ 0, 0 ≤ ϕ2 ≤ π/2. The boundary of the hatched segment is defined by the chord
that is perpendicular to the vector r12 = r2 − r1 and passes through the point r2. If r3
falls within the hatched segment, then r12 · r23 > 0 and the movement is forward. (a)
r2 > r1 cosϕ2, i.e., in the first quadrant but outside the half-circle outlined with dashed
gray line. Geometry reveals that r2 = r12 cos θ + r1 cosϕ2. (b) r2 < r1 cosϕ2, i.e., in the
first quadrant but inside the half-circle outlined with dashed gray line. Geometry reveals
that r2 = r1 cosϕ2 − r12 cos θ.
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where we in the last step identify cos−1(R/R0) =
π
2
− sin−1(R/R0). In the limits we find

A(0, R0) = πR2
0/2 and A(R0, R0) = 0 as expected. However, in Fig.11(b), the area of the

hatched region is

A+(R,R0) = πR2
0 − A(R,R0). (37)

In the limits we find A+(0, R0) = πR2
0/2 and A+(R0, R0) = πR2

0 as expected. Note that
A+(R,R0) = A(−R,R0) because cos−1(x) + cos−1(−x) = π.

Now, we want to express R(r1, r2, ϕ2), where from the geometry

R (r1, r2, ϕ2) = r2 cos θ. (38)

In the three different cases, we have

r2 =


r1 cosϕ2 + r12 cos θ,

r1 cosϕ2 − r12 cos θ,

r1 cosϕ2 + r12 cos θ,

(39)
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Figure 12: Choose a point r2 at random with y ≥ 0 and π/2 ≤ ϕ2 ≤ π, that is, in
the second quadrant. The hatched segment is defined by the chord that passes through
the point r2 that is perpendicular to the vector r12 = r2 − r1. If r3 falls within the
hatched segment, then r12 · r23 > 0 and the movement is forward. Geometry reveals that
r2 = r12 cos θ − r1 cos(π − ϕ2) = r12 cos θ + r1 cosϕ2.
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that is,

cos θ =


r2−r1 cosϕ2

r12
,

−r2+r1 cosϕ2

r12
,

r2−r1 cosϕ2

r12
.

(40)

Finally, we need to find r12. Consider the red triangle with sides r1, r2 and r12. Because
the Law of Cosines is generic, then in all three cases

r212 = r21 + r22 − 2r1r2 cosϕ2. (41)

Now, combining Eq.(38), Eq.(40), and Eq.(41) we find

R (r1, r2, ϕ2) =


r22−r1r2 cosϕ2√

r21+r22−2r1r2 cosϕ2

,

−r22+r1r2 cosϕ2√
r21+r22−2r1r2 cosϕ2

,

r22−r1r2 cosϕ2√
r21+r22−2r1r2 cosϕ2

.

(42)

The probability density for choosing a point with radius r is

P (r)dr =
2r

R2
0

dr, (43a)
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such that ∫ R0

0

P (r)dr =

∫ R0

0

2r

R2
0

dr =

[
r2

R2
0

]R0

0

= 1. (43b)

The probability density for choosing a point with angle ϕ2 is

P (ϕ2)dϕ2 =
1

π
dϕ2, (44a)

such that ∫ π

0

P (ϕ2)dϕ2 =

[
1

π
ϕ2

]π
0

= 1. (44b)

We recall that R = R(r1, r2, ϕ2). The probability that the movement is forward when
α = 1 is

p# (α) =

∫ R0

0
2r1
R2

0
dr1
∫ R0

0
2r2
R2

0
dr2
∫ π

0
1
π
dϕ2A (R,R0)

πR2
0

=
4

π2R6
0

∫ R0

0

dr1

∫ R0

0

dr2

∫ π

0

dϕ2r1r2A (R,R0)

=
4

π2R6
0

(∫ R0

0

dr1

∫ π/2

0

dϕ2

∫ R0

r1 cosϕ2

dr2r1r2A (R,R0)

+

∫ R0

0

dr1

∫ π/2

0

dϕ2

∫ r1 cosϕ2

0

dr2r1r2A
+ (R,R0)

+

∫ R0

0

dr1

∫ π

π/2

dϕ2

∫ R0

0

dr2r1r2A (R,R0)

)
, (45)

where the distance R is given by Eq.(42) as a function of the radii r1 and r2 and the angle
ϕ2. Because of the symmetry A+(R,R0) = A(−R,R0), then combined with Eq.(42), the
exact result can (miraculously) be written

p# (α) =
4

π2R6
0

R0∫
0

R0∫
0

π∫
0

r1r2A (R,R0) dr1dr2dϕ2, (46a)

R (r1, r2, ϕ2) =
r22 − r1r2 cosϕ2√

r21 + r22 − 2r1r2 cosϕ2

. (46b)

We will now show that the probability of going forward is independent of the radius R0

of the circle. We substitute the variables u1 = r1/R0 and u2 = r2/R0, implying that the
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upper limits of the integrals involving r1 and r2 become 1:

p# (α) =
4

π2R6
0

1∫
0

1∫
0

π∫
0

u1u2R
2
0A (R(u1R0, u2R0, ϕ2), R0)R

2
0du1du2dϕ2. (47)

We notice that

A (R(u1R0, u2R0, ϕ2), R0) = A (R0R(u1, u2, ϕ2), R0) = R2
0A(R, 1) (48)

such that (after changing the dummy variables u1, u2 to r1, r2)

p#(α) =
4

π2

∫ 1

0

∫ 1

0

∫ π

0

r1r2A (R, 1) dr1dr2dϕ2, (49a)

R (r1, r2, ϕ2) =
r22 − r1r2 cosϕ2√

r21 + r22 − 2r1r2 cosϕ2

(49b)

which is independent on R0.

Using numerical integration (and ϕ2 = ϕ)

dr = 1/nr
dϕ = π/nϕ
int = 0
do n1 = 1, nr

r1 = (n1−1
2
)dr

do n2 = 1, nr
r2 = (n2−1

2
)dr

do n3 = 1, nϕ
ϕ = (n3−1

2
)dϕ

R =
r22−r1r2 cosϕ√

r21+r22−2r1r2 cosϕ

A(R, 1) = cos−1R−R
√
1−R2

int = int + r1 r2A(R, 1) dr dr dϕ
end do

end do
end do
p#(α) = 4

π2 int

We start numerical integration with nr = 8 ⇔ dr = 0.125 and nϕ = 26 ⇔ dϕ = 0.121
such that the accuracy of dr and dϕ is comparable. For each iteration, we double the
precision. Because it is a 3-fold integral, the computing time the increases by a factor of
about 23 = 8 for each iteration:

33



nr nϕ p#(α = 1)
8 26 0.240442613132

16 52 0.240036492588
32 104 0.239937628777
64 208 0.239913189587

128 416 0.239907109902
256 832 0.239905593384
512 1664 0.239905214650

1024 3328 0.239905120014
2048 6656 0.239905096361
4096 13312 0.239905090452
8192 26624 0.239905088607

16384 53248 0.239905088649

The cpu time (sequential, without any parallel computing) for the highest precision with
nr = 16384 and nϕ = 53248 is about 9 days and we find

p#(α = 1) = 0.23990508 (50)

which is consistent with the Monte Carlo estimate, see Sec. 5.3.
C.2 General analytical method in 2D
We have already seen in Section 3 that for simple geometries writing down an analytic
expression for the probability of forward movement is generally straightforward. Difficul-
ties arise when we attempt to render our numerical evaluations of such expressions more
efficient by reducing the number and range of integration of the associated variables.

In 2D and in the specific case for α = 1, a general method can be applied to reduce the
basic 6-fold integral in Cartesian coordinates to a 3-fold integral in polar coordinates.
The idea, inspired by the full range solution of the 1D problem presented in Appendix
A.1.3, is to only integrate over the coordinates xi, yi of the central point of a triplet
ri−1, ri, ri+1 and an angle variable ϕ determining a particular separation of the bounded
space.

As for the 1D case, forward movement corresponds to ri−1 and ri+1 being on opposite sides
of this separator. Note that ri−1 has to lay on the normal to the separator intersecting
the latter at the central point ri. As a consequence of this, and unlike the 1D case,
the two configurations corresponding to forward movement are not weighted equally. In
particular, we have to introduce a measure of “how many” ri−1 are consistent with a
particular choice of x, y, ϕ. An example is given in Fig. 13 for the case of a unit square.

The weight associated with a particular configuration has to be proportional to the
infinitesimal area δA of bounded space swept by the normal to the separator as ϕ →
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Figure 13: Two specular cases for the unit square. A separator passing though the central
point of a triplet with an angle ϕ defines the forward movement region (hatched area).
Previous stopping positions ri−1 consistent with this picture have to be found along the
normal to the separator. An infinitesimal change in angle δϕ is exaggerated for the sake
of exposition.
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ϕ+ δϕ, which is given in polar coordinates by

δA =
1

2
d2δϕ, (51)

where d = d(b) for case (i) and d = d(a) for case (ii) in Fig. 13. A general expression for
the 3-fold integral when α = 1 could therefore be written as

p2D(α) =

∫ ∫ ∫ π

0

(d2(a) + d2(b)) ab

2(a+ b)3
dϕdydx, (52)

where a = a(x, y, ϕ), b = b(x, y, ϕ) and the inverse factors of (a+b) ensure normalisation.
The form of d(a;x, y, ϕ) is strongly geometric specific but can be found exactly for simple
shapes. We have done this for the case of a unit square and unit circle, with numerical
results reported in the tables below.

We start numerical integration with nx = ny = 8 ⇔ dx = dy = 0.125 and nϕ = 50. For
each iteration, we double the precision. Because it is a 3-fold integral, the computing
time increases by a factor of about 23 = 8 for each iteration:
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nx = ny nϕ p2(α = 1)
8 50 0.242247390361

16 100 0.241852581074
32 200 0.241764067138
64 400 0.241742596821

128 800 0.241737262303
256 1600 0.241735935418
512 3200 0.241735604403

1024 6400 0.241735521838
2048 12800 0.241735501211
4096 25600 0.241735496054
8192 51200 0.241735494739

The cpu time for the highest precision with nx = ny = 8192 and nϕ = 51200 is about 2
days and we find

p2(α = 1) = 0.2417354, (53)

which is consistent with the Monte Carlo estimate, see Sec. 5.3. For the circle, we start
numerical integration with nR = 8 ⇔ dr = 0.125 and nϕ = 50. For each iteration, we
double the precision. Because it is a 2-fold integral, the computing time increases by a
factor of about 22 = 4 for each iteration:

nR nϕ p#(α = 1)
8 50 0.241067149258

16 100 0.240189514753
32 200 0.239975516491
64 400 0.239922616788

128 800 0.239909461163
256 1600 0.239906180506
512 3200 0.239905361344

1024 6400 0.239905156682
2048 12800 0.239905105525
4096 25600 0.239905092746
8192 51200 0.239905089543

16384 102400 0.239905088744

The cpu time for the highest precision with nR = 8192, nϕ = 51200 is about 2 days and
we find

p#(α = 1) = 0.23990508, (54)

which is consistent with the Monte Carlo estimate, see Sec. 5.3.

Symmetries of the geometry can now be exploited to reduce the ranges of integration.
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For example, a C5 rotational symmetry reduces the xy surface of integration by a factor
5. This is why for the unit circle integration over the radius R is sufficient, although we
need to take extra care in weighting contributions correctly.

The general method presented above can be extended to the ∆ℓ < Lmax case, in which it
is the intersection of bounded space and maximum range for one between-stops displace-
ment that is divided into forward and backward regions by the separator. Note, however,
that in this case the contribution for the midpoint of the triplet needs to be weighted by
the steady-state stopping position distributions, which is no longer uniform.

D Monte Carlo simulations
We consider N ≥ 2 samples of a given geometry R, for example a circle, and given
α = ∆ℓ/Lmax. For each sample k = 1, . . . , N we can estimate the probability of going
forward pkR(α) by considering each triplet rj, rj+1, rj+2 in a sequence of M + 2 stopping
points {rj}M+2

j=1 . The probability pkR(α) is the fraction of forward moving points rj+2, j =
1, . . . ,M determined by considering (rj+2 − rj+1) relative to (rj+1 − rj) for each of the
M triplets. Doing this for N samples allows us to calculate the sample average, pR(α),
the sample standard deviation, σ, and hence the standard error of the sample average, s:

pR(α) =
1

N

N∑
k=1

pkR(α), (55a)

σ2 =
1

N − 1

N∑
k=1

(
pkR(α)

)2 − 1

N(N − 1)

(
N∑
k=1

pkR(α)

)2

, (55b)

s =
σ√
N
. (55c)

The specific way of generating the sequence of positions required for the Monte Carlo
method will depend on the chosen boundary conditions. A particularly simple case, in
all dimensions, is that of α = 1 with “no-go” boundary conditions, where each stopping
positions is chosen uniformly at random within the bounded region. Other setups
involving α < 1 and/or different boundary conditions are generally less trivial, especially
in d > 1. To highlight some of these difficulties and given the particular relevance of
d = 2 in the context of movement ecology, we devote Appendices D.1 and D.2 to the
further discussion of how different boundary conditions are implemented numerically for
the case of circular and square geometries.

Leaving aside the details of the implementation, the general procedure followed to gen-
erate a sample sequence of M stopping points can be broken down into the following
steps:
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b β = 1

b
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Figure 14: The bounded region is a circle with centre at (x0, y0) = (0, 0) and radius R
(black line). Let r = (x, y) denote a stopping point. The successive potential stopping
point is chosen uniformly within a circle with centre at (x, y) and radius α2R (red dashed
line indicates α = 0.75). The unit vector n̂ from the centre of the bounded region to
the point at the periphery is used to find a general expression for the situation with
“reflective” boundary condition.

1. Pick a random starting point within the bounded space R and append its coordinates
to a list. With large M , the result would be independent on this initial choice.

2. Starting from the stopping point that was last appended to the list and consistently
with the chosen boundary conditions, generate a new stopping point within the
bounded space.

3. Append the coordinates of the point satisfying the above conditions to the list.

4. Return to Step 2. and repeat M times.

D.1 Circular Geometry in 2D
The bounded region is a circle with centre in (0, 0) and radius R (indicated with black
line in Fig. 14), so Lmax = 2R. Stopping point is r = (x, y). Next, choose a point
uniformly within a circle centred at (x, y) with radius αLmax. In the sketch shown in Fig.
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14, α = 0.75. The new point is r+ dr = (x+ dx, y + dy). If (x+ dx)2 + (y + dy)2 > R2,
this point is outside the bounded region. Then we need to apply the appropriate
boundary condition.

D.1.1 “No-go” boundary condition
For the “no-go” boundary condition, we discard the point and we choose another point
uniformly distributed within the red-dashed circle until this point falls within the
bounded region shown in black. This is then our new stopping position.

D.1.2 “Stop-go” boundary condition
For the “stop-go” boundary condition, the new stopping point is the intersection r′ =
(x′, y′) between the line from (x, y) to (x + dx, y + dy) and the periphery of the circle
x2 + y2 = R2. (

x′

y′

)
=

(
x
y

)
+ λ

(
dx
dy

)
⇒ (x+ λdx)2 + (y + λdy)2 = R2, (56)

that is
(dx2 + dy2)λ2 + (2xdx+ 2ydy)λ+ (x2 + y2 −R2) = 0 (57)

with (positive) solution

λ =
−(2xdx+ 2ydy) +

√
(2xdx+ 2ydy)2 − 4(dx2 + dy2)(x2 + y2 −R2)

2(dx2 + dy2)
. (58)

Using this λ yields our new stopping position on the periphery r′ = r+ λdr.

D.1.3 “Reflective” boundary condition
The vector that is reflected from the boundary is the part of the vector from (x, y) to
(x+ dx, y + dy) that is outside the bounded region, namely

β(1− λ)dr = β(1− λ)

(
dx
dy

)
, (59)

where we have introduced the “damping” parameter β. As discussed in Appendix A.4,
the limit β = 1 is associated with the perfectly elastic reflection while β = 0 is associated
with a perfectly inelastic reflection, that is, the “stop-go” boundary condition.

To find a general expression for the reflection of this vector, let us denote the unit vector
in the direction from the centre of the circle to the point at the periphery as

n̂ =
1√

x′2 + y′2

(
x′

y′

)
=

1

R

(
x′

y′

)
, (60)
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as x′2 + y′2 = R2 since (x′, y′) is a point on the periphery of the circle. We can use n̂ to
find the projection of β(1 − λ)dr along the direction on n̂ as [β(1− λ)dr · n̂] n̂ and the
perpendicular component as β(1− λ)dr− [β(1− λ)dr · n̂] n̂, so the vector from r′ to the
new stopping point within the region is

β(1− λ)dr− 2 [β(1− λ)dr · n̂] n̂, (61)

implying that the new stopping point within the region is

r′ + β(1−λ)dr− 2 [β(1−λ)dr · n̂] n̂ = r+ λdr+ β(1−λ)dr− 2 [β(1−λ)dr · n̂] n̂
= r+ (λ+β−βλ)dr− 2 [β(1−λ)dr · n̂] n̂. (62)

We note that

For β = 1 : r+ dr− 2 [(1−λ)dr · n̂] n̂, (63a)
For β = 0 : r+ λdr, (63b)

which in coordinates read

For β = 1 :

(
x+ dx− 2(1− λ)(x′dx+ y′dy)x′/R2

y + dy − 2(1− λ)(x′dx+ y′dy)y′/R2

)
, (64a)

For β = 0 :

(
x′

y′

)
=

(
x+ λdx
y + λdy

)
. (64b)

Note that multiple reflections might occur. Hence, when implementing the above, one
has to use recursive programming for β = 1 as the reflection itself might be outside the
bounded region.
D.2 Square Geometry in 2D
The bounded region is a square with centre in (0, 0) and sides L (indicated with black
line in Fig. 15), so Lmax =

√
2L. Stopping point is r = (x, y). Next, choose a point

uniformly within a circle centred at (x, y) with radius αLmax. In the sketch shown in
Fig. 15, α = 1.0. The new point is r + dr = (x + dx, y + dy). If |x + dx| > L/2 or
|y + dy| > L/2, this point is outside the bounded region. Then we need to apply the
appropriate boundary condition.
D.2.1 “No-go” boundary condition
For the “no-go” boundary condition, we discard the point (x+ dx, y+ dy) and we choose
another point uniformly distributed within the red-dashed circle until this point falls
within the bounded region shown in black. This is then our new stopping position.

D.2.2 “Stop-go” boundary condition
For the “stop-go” boundary condition, the new stopping point is the intersection r′ =
(x′, y′) between the line from (x, y) to (x+ dx, y + dy) and the boundary of the square:(

x′

y′

)
=

(
x
y

)
+ λ

(
dx
dy

)
. (65)
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Figure 15: The bounded region is a square with centre at (x0, y0) = (0, 0) and sides L
(black line). Let r = (x, y) denote a stopping point. The successive potential stopping
point is chosen uniformly within a circle with centre at (x, y) and radius αLmax (red
dashed line indicates α = 1) where Lmax =

√
2L. The unit vector n̂ to a point at the

boundary is used to find a general expression for the situation with “reflective” boundary
condition.
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We need to consider four different cases separately in order to uniquely determine on
which of the four boundaries (x′, y′) is positioned. Recall that the stopping point within
the region is (x, y). Assume (x+ dx, y + dy) is outside the bounded region. If

• dx < 0, dy < 0:

(a) dy
dx

>
−L

2
−y

−L
2
−x

⇔ y′ = −L
2
⇔ λ =

−L
2
−y

dy

(b) dy
dx

<
−L

2
−y

−L
2
−x

⇔ x′ = −L
2
⇔ λ =

−L
2
−x

dx

• dx < 0, dy > 0:

(a) dy
dx

>
L
2
−y

−L
2
−x

⇔ x′ = −L
2
⇔ λ =

−L
2
−x

dx

(b) dy
dx

<
L
2
−y

−L
2
−x

⇔ y′ = L
2
⇔ λ =

L
2
−y

dy

• dx > 0, dy > 0:

(a) dy
dx

>
L
2
−y

L
2
−x

⇔ y′ = L
2
⇔ λ =

L
2
−y

dy

(b) dy
dx

<
L
2
−y

L
2
−x

⇔ x′ = L
2
⇔ λ =

L
2
−x

dx

• dx > 0, dy < 0:

(a) dy
dx

>
−L

2
−y

L
2
−x

⇔ x′ = L
2
⇔ λ =

L
2
−x

dx

(b) dy
dx

<
−L

2
−y

L
2
−x

⇔ y′ = −L
2
⇔ λ =

−L
2
−y

dy

Using the relevant λ yields our new stopping position on the boundary r′ = r + λdr.
Note that we have disregarded the special cases of dx = 0 or dy = 0.

D.2.3 “Reflective” boundary condition
The vector that is reflected from the boundary is the part of the vector from (x, y) to
(x+ dx, y + dy) that is outside the bounded region, namely

β(1− λ)dr = β(1− λ)

(
dx
dy

)
, (66)

where we have introduced the parameter β. The limit β = 1 is associated with the
perfectly elastic reflection while β = 0 is associated with a perfectly inelastic reflection,
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that is, the “stop-go” boundary condition.

To find a general expression for the reflection of this vector, we note that we have four
potential unit vectors perpendicular to the boundary of the square, namely

n̂ =



(
0

+1

)
associated with y′ = L

2
,(

+1

0

)
associated with x′ = L

2
,(

0

−1

)
associated with y′ = −L

2
,(

−1

0

)
associated with x′ = −L

2
.

(67)

We can use the relevant n̂ to find the projection of β(1− λ)dr along the direction on n̂
as [β(1− λ)dr · n̂] n̂ and the perpendicular component as β(1−λ)dr− [β(1− λ)dr · n̂] n̂,
so the vector from r′ to the new stopping point within the region is

β(1− λ)dr− 2 [β(1− λ)dr · n̂] n̂ (68)

implying that the new stopping point within the region is

r′ + β(1−λ)dr− 2 [β(1−λ)dr · n̂] n̂ = r+ λdr+ β(1−λ)dr− 2 [β(1−λ)dr · n̂] n̂
= r+ (λ+β−βλ)dr− 2 [β(1−λ)dr · n̂] n̂. (69)

We note that

For β = 1 : r+ dr− 2 [(1−λ)dr · n̂] n̂, (70a)
For β = 0 : r+ λdr. (70b)

There is no general expression for λ and n̂ as in the simpler case of the circle. Hence, we
need to consider the eight cases separately in order to convert the above equations into
coordinates.

For β = 0, the new stopping point on the boundary has coordinates(
x′

y′

)
=

(
x+ λdx
y + λdy

)
, (71)

using the appropriate expression for λ associated with each of the eight different cases.

For β = 1, the coordinates of the new stopping point after reflection is
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• dx < 0, dy < 0:

(a) dy
dx

>
−L

2
−y

−L
2
−x

⇔ y′ = −L
2

⇔ λ =
−L

2
−y

dy
; n̂ =

(
0

−1

)
; (dr · n̂)n̂ =

(
0
dy

)
(

x+ dx
y + dy − 2(1− λ)dy

)

(b) dy
dx

<
−L

2
−y

−L
2
−x

⇔ x′ = −L
2

⇔ λ =
−L

2
−x

dx
; n̂ =

(
−1
0

)
; (dr · n̂)n̂ =

(
dx
0

)
(
x+ dx− 2(1− λ)dx

y + dy

)
• dx < 0, dy > 0:

(a) dy
dx

>
L
2
−y

−L
2
−x

⇔ x′ = −L
2

⇔ λ =
−L

2
−x

dx
; n̂ =

(
−1
0

)
; (dr · n̂)n̂ =

(
dx
0

)
(
x+ dx− 2(1− λ)dx

y + dy

)

(b) dy
dx

<
L
2
−y

−L
2
−x

⇔ y′ = L
2

⇔ λ =
L
2
−y

dy
; n̂ =

(
0

+1

)
; (dr · n̂)n̂ =

(
0
dy

)
(

x+ dx
y + dy − 2(1− λ)dy

)
• dx > 0, dy > 0:

(a) dy
dx

>
L
2
−y

L
2
−x

⇔ y′ = L
2

⇔ λ =
L
2
−y

dy
; n̂ =

(
0

+1

)
; (dr · n̂)n̂ =

(
0
dy

)
(

x+ dx
y + dy − 2(1− λ)dy

)

(b) dy
dx

<
L
2
−y

L
2
−x

⇔ x′ = L
2

⇔ λ =
L
2
−x

dx
; n̂ =

(
+1
0

)
; (dr · n̂)n̂ =

(
dx
0

)
(
x+ dx− 2(1− λ)dx

y + dy

)
• dx > 0, dy < 0:

(a) dy
dx

>
−L

2
−y

L
2
−x

⇔ x′ = L
2

⇔ λ =
L
2
−x

dx
; n̂ =

(
+1
0

)
; (dr · n̂)n̂ =

(
dx
0

)
(
x+ dx− 2(1− λ)dx

y + dy

)
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(b) dy
dx

<
−L

2
−y

L
2
−x

⇔ y′ = −L
2

⇔ λ =
−L

2
−y

dy
; n̂ =

(
0

−1

)
; (dr · n̂)n̂ =

(
0
dy

)
(

x+ dx
y + dy − 2(1− λ)dy

)
Note that multiple reflections might occur. Hence, when implementing the above, one
has to use recursive programming for β = 1 as the reflection itself might be outside the
bounded region.
D.3 Numerical results for circular and square geometries in 2D
The analytic result for the circle for “no-go” boundary condition demonstrated explicitly
that the probability of forward movement between stopping points is independent of the
linear dimension (diameter) of the circle, see C.1. This result is true for all boundary con-
ditions and all geometries. Figure 16 shows the probability of moving forward in circular
and square geometries in 2D as a function of the diameter and diagonal, respectively.
Each of the tree boundary conditions “no-go”, “stop-go” and “reflective”, the probability
of forward movement is invariant for a given geometry.
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Figure 16: The probability of moving forward p#(α) and p2(α) versus the diameter of
a circle and the diagonal of a squares Lmax for α = ∆ℓ/Lmax = 1 for various boundary
conditions. The number of samples for each data point N = 10000, each with a sequence
of M = 105 stopping points. The error bars (two standard deviations) are less than the
symbol sizes. The geometry is indicated with the symbol (circle or square, respectively)
while the color-coding yields the associated boundary condition of “no-go” (blue), “stop-
go” (red) and “reflective” (magenta), respectively. The two blue lines are the analytical
results p#(α) = 0.2399050 and p2(α) = 0.2417354 for the “no-go” boundary condition.
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Figure 17 shows the probability of moving forward in circular and square geometries in
2D as a function of the dimensionless ratio α = ∆ℓ/Lmax for the tree boundary conditions
“no-go”, “stop-go” and “reflective”. For all boundary conditions, there is a crossover from
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a forward probability < 0.25 when α = 1 to 1/2 (indicated with the horizontal black line)
when decreasing α from 1 to 0.

10
-3

10
-2

10
-1

10
0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

α = ∆ℓ/Lmax

p #
(α

)
an

d
p 2

(α
)

105

Figure 17: Numerical results for the probability of moving forward p#(α) and p2(α) in
a circle or square versus the dimensionless ratio α = ∆ℓ/Lmax where ∆ℓ is the maximum
displacement between stopping positions for various boundary conditions. The number
of samples for each data point N = 10000, each with a sequence of M = 105 stopping
points. The error bars (two standard deviations) are less than the symbol sizes. The
geometry is indicated with the symbol (circle or square, respectively) while the color-
coding yields the associated boundary condition of “no-go” (blue), “stop-go” (red) and
“reflective” (magenta), respectively.
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E Step-by-step procedure for hypothesis testing
1. Classify each position along the trajectory of the studied individual as a “stop” or

a “go”. For two different definitions of a “stop” see [13, 14]. The total number of
stopping positions is M + 2 where M is the number of successive pairs of stops.

2. Determine whether the absolute value of the smallest angle between the displacement
vectors for successive stops, θ, is less than 90◦ or greater than or equal to 90◦ using
the dot-product method (Appendix B).

3. Classify each movement between successive stops as forward or backward using the
definition of forward movement as θ < 90◦ (Fig. 4, Subsection 5.1).

4. Calculate the empirical probability, p̂, of the studied individual to move forward
between stopping positions by dividing the number of forward moves by the total
number of moves between stops, M .

5. Calculate the 95% Confidence Interval for the empirical probability of moving for-
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ward as p̂± 1.96
√

p̂(1−p̂)
M

.

6. Calculate the aspect ratio 0 ≤ r ≤ 1 between the smallest and largest side for a
rectangle or between the minor and major axis for an ellipse. An aspect ratio r = 1
would represent a square or a circle, respectively. Round the value of r to the second
decimal place. For example, if r = 0.754, round it to 0.75.

7. Calculate Lmax for the experimental arena or study area. If it has a rectangular
shape, Lmax is measured by the diagonal and if it has an elliptical shape, Lmax is the
length the major axis.

8. Calculate ∆ℓ from the data. For example, this could be the larger of the following
two values: (a) the maximum distance between successive stops or (b) the maximum
distance between a stop and the most distant point along the path of the subsequent
move.

9. Calculate the ratio α = ∆ℓ/Lmax. Round the value of α to the second decimal place.
For example, if α = 0.807, round it to 0.81.

10. Open the file “TableS1.pdf” or “TableS2.pdf” for the tabulated expected probabili-
ties of moving forward for a rectangle or an ellipse, respectively, under the “no-go”
boundary condition. The values of α are given with precision to the second decimal
place, beginning at 1.00 and ending at 0.01. For each value of α, there are 100 values
of the aspect ratio r with precision to the second decimal place beginning with 1.00
and ending with 0.01.

11. Search for the value corresponding to the calculated α rounded to the second decimal
place, 0.81, for example. To do this write “alpha = 0.81” in the box for the menu
‘Edit ’→ ‘Find ’.

12. Once the required value of α has been found, look down the column for p forward
against the line for the appropriate aspect ratio, 0.75, for example.

13. Read the value for the appropriate probability of moving forward under the column
p forward. For example, for α = 0.81 and an aspect ratio r = 0.75, the probability
of moving forward is p = 0.2479 for a rectangle (Table S1) and p = 0.2470 for an
ellipse (Table S2).

14. Similarly, for α = 0.13 and an aspect ratio r = 0.15, the probability of moving
forward is p = 0.3977 for a rectangle (Table S1) and p = 0.3951 for an ellipse (Table
S2).
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15. Compare the 95% confidence interval for the empirical probability of moving forward
with the expected probability read from Table S1 or S2. If the expected probability
is outside the 95% confidence interval for the empirical probability, there is only
5% chance that the movement between stops lacks directional persistence. This
means the probability that the null hypothesis is true is small. Therefore, it could
be concluded that there is some evidence for the alternative hypothesis, namely that
directional persistence is involved in the movement between stops.
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