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Abstract. Let F be a non archimedean local field of residual characteristic p and ¢ a prime number differ-
ent from p. Let V denote Vignéras’ £-modular local Langlands correspondence [7], between irreducible ¢-
modular representations of GL,(F) and n-dimensional /-modular Deligne representations of the Weil
group Wr. In [4], enlarging the space of Galois parameters to Deligne representations with non necessar-
ily nilpotent operators allowed us to propose a modification of the correspondence of Vignéras into a corre-
spondence C, compatible with the formation of local constants in the generic case. In this note, following a
remark of Alberto Minguez, we characterize the modification Co vl by a short list of natural properties.

Résumé. Soit F un corps local non archimédien de caractéristique résiduelle p et £ un nombre premier dif-
férent de p. Soit V la correspondance de Langlands /-modulaire définie par Vignéras en [7], entre représen-
tations irréductibles /-modulaires de GLj, (F) et représentations de Deligne /-modulaires de dimension n du
groupe de Weil Wr. Dans [4], I'élargissement de I'espace des parametres galoisiens aux représentations de
Deligne a opérateur non nécessairement nilpotent, nous a permis de proposer une modification de la corres-
pondance de Vignéras en une correpsondance notée C, compatible aux constantes locales des représenta-
tions génériques et de leur parametre. Dans cette note rédigée a la suite d’'une remarque d’Alberto Minguez,
nous caractérisons la modification Co V™1 par une courte liste de propriétés naturelles.
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1. Introduction

Let F be a non-archimedean local field with finite residue field of cardinality g, a power of a
prime p, and W the Weil group of F. Let £ be a prime number different from p. The ¢-modular
local Langlands correspondence established by Vignéras in [7] is a bijection from isomorphism
classes of smooth irreducible representations of GL,(F) and n-dimensional Deligne represen-
tations (Section 2.1) of the Weil group Wr with nilpotent monodromy operator. It is uniquely
characterized by a non-naive compatibility with the Z-adic local Langlands correspondence (
[1,2, 5, 6]) under reduction modulo ¢, involving twists by Zelevinsky involutions. In [4], at the
cost of having a less direct compatibility with reduction modulo ¢, we proposed a modification
of the correspondence V of Vignéras, by in particular enlarging its target to the space of Deligne
representations with non necessarily nilpotent monodromy operator (it is a particularity of the
Z-modular setting that such operators can live outside the nilpotent world). The modified corre-
spondence C is built to be compatible with local constants on both sides of the corrspondence
( [3,4]) and we proved that it is indeed the case for generic representations in [4]. Here, we show
in Section 3 that if we expect a correspondence to have such a property, and some other natural
properties, then it will be uniquely determined by V. Namely we characterize the map CoV~! by
a list of five properties in Theorem 8. The map CoV~! endows the image of C with a semiring
structure because the image of V is naturally equipped with semiring laws. We end this note by
studying this structure from a different point of view in Section 4.

2. Preliminaries

Letv:Wp — [F_/< be the unique character trivial on the inertia subgroup of Wr and sending a
&(x)metric Frobenius element to q‘l, it corresponds to the normalized absolute value v : F* —
F, vialocal class field theory.

We consider only smooth representations of locally compact groups, which unless otherwise
stated will be considered on F,-vector spaces. For ¢ a locally compact topological group, we
let Irr(¢9) denote the set of isomorphism classes of irreducible representations of ¢.

2.1. Deligne representations

We follow [4, Section 4], but slightly simplify some notation. A Deligne-representation of Wg
is a pair (®,U) where @ is a finite dimensional semisimple representation of Wg, and U €
Homy, (v®, ®); we call (®, U) nilpotent if U is a nilpotent endomorphism over Fy.

The set of morphisms between Deligne representations (®,U),(®',U’) (of Wg) is given
by Homp (®,®') = {f € Homy,,(®,®’) : foU = U’ o f}. This leads to notions of irreducible and
indecomposable Deligne representations. We refer to [4, Section 4], for the (standard) definitions
of dual and direct sums of Deligne representations.

We let Repp ¢(WF) denote the set of isomorphism classes of Deligne-representations; and
Indecp ss(WF) (resp. Irrp ss(WE), NilpD,SS (WF)) denote the set of isomorphism classes of indecom-
posable (resp. irreducible, nilpotent) Deligne representations. Thus

Irrp,ss(Wr) < Indecp ss(Wr) = Repp o (Wr), Nilpp s (WF) = Repp s (WF).

Let Repy(Wr) denote the set of isomorphism classes of semisimple representations of Wr, we
have a canonical map SuppWF :Repp s (WF) — Repg (Wr), (@,U) — @; we call ® the Wg-support
of (®,U).

For ¥ € Irr(W) we denote by o(¥) the cardinality of the irreducible line Zy = {v¥¥, k € Z}; it
divides the order of g in [F; hence is prime to ¢. We let (W) = {Zy : ¥ € Irr(WFg)}.
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The fundamental examples of non-nilpotent Deligne representation are the cycle representa-
tions: let I be an isomorphism from v*™)¥ to ¥ and define € (¥, I) = (®(¥), C) € Repg (D, F,) by

o(¥)-1
W)= @ VY, Cilxo,..., Xorw)-1) = U(Xo(w)=1), X0, ..., Xo(w)-2), Xk € VEP.
k=0
Then € (¥,I) € Irrss(D,E) and its isomorphism class only depends on (Zy, I), by [4, Proposi-
tion 4.18].
To remove dependence on I, in [4, Definition 4.6 and Remark 4.9] we define an equivalence
relation ~ on Repp, ¢ (WF). We say that

(@1, U1) ~ (@2,U)
for (®;, U;) € Repp ¢ (Wr) if they both admit a decomposition (it is unique up to re-ordering)
(@, Up) =&, (®ix, Uip)
asa dirgct sum of elements in Indecp ss(WF), such that r; = r, =: r and for k = 1,..., r there exists
Ar €Fy such that
(@2, Us i) = (@1 1, Ak Un ).

The equivalence class of € (¥, I) is independent of I, and we set
€ (Zy):=[€(¥Y,D] € [Irrp ss(WE)].

The sets Repp, ¢ (WF), Irrp ss(WE), Indecp ss(WE), and Nilpp, (WF) are unions of ~-classes, and
if X denotes any of them we set [X] := X/ ~. Similarly, for (®,U) € Repp s (WF) we write [®, U] for
its equivalence class in [Repp, ¢s(Wp)]. On Nilpp, (W) the equivalence relation ~ coincides with
equality.

The operations & and (®, U) — (®,U)" on Repp ¢s(WF) descend to [Repp s (WF)]. Tensor prod-
ucts are more subtle; for example, tensor products of semisimple representations of Wr are not
necessarily semisimple. We define a semisimple tensor product operation ®gs on [Repp ¢(WF)]
in [4, Section 4.4], turning ([Repp, ¢s(WF)], ®, ®ss) into an abelian semiring.

The basic non-irreducible examples of elements of Nilpp, i (Wr) are called segments: Forr = 1,
set [0,7 — 1] := (D(r), N(r)), where

r—1
o) =@vE, N (xo,..., Xr-1) = (0, Xp, ..., Xr—2), Xx € VE.
k=0

We now recall the classification of equivalence classes of Deligne representations of Wr of [4].

Theorem 1 ( [4, Section 4]).

(1) Let® € Irrp ss(WF), then there is either a unique V¥ € Irr(Wp) such that ® =V, or a unique
irreducible line Zy such that [®) = € (Zvy).

(2) Let[®,U] € [Indecp ss(WFE)], then there exist a unique r = 1 and a unique © € [Irrp ss(Wp)]
such that [®,U] = [0, — 1] ®¢ O.

(3) Ler [®@,U] € [Repp s (WF)], there exist [®;,U;] € [Indecp,ss(Wr)] for 1 < i < r such that
(@, U] =@]_,[®;,U;].

We recall the following classical result about tensor products of segments.
Lemma2. Forn=mz=1, onehas

0,n—1]®¢ [0, m—-1]=[0,n+m-2]®[l,n+m-3]&---®[(m—-1,n—-1].

C. R. Mathématique, 2020, 358, n° 2, 201-209
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Proof. Denote by Vo, the normalized absolute value of W with values in @X ,and by [0,i — l]@

the ¢-adic Deligne representation with Wr-support ea;;%v% and nilpotent operator N (i)@
- 4

sending (xo,...,X;—1) to (0, Xp, ..., X;—2). The relation

[O,n—l]@®[0,m—l]@: [0,n+m—2]@€e[l,n+ m—B]@ea---EB[m—l,n—l]@ (1)

can be translated into a statement on tensor product of irreducible representations of SL,(C),
which is well-known and easily checked by the highest weight theory. Because all powers of Va,

i-1
k=0

N (i)@, and this defines a Z_[-Deligne representation [0,7 — I]Z' Taking the canonical lattices on
both sides of Equation (1) we get

take values in Z_[X, the canonical Z,-lattice in ® v‘% is stable under both the actions of Wr and
4

[O,n—I]ZQ@[O,m—HZ: [0,n+ m—Z]Ze[1,n+m—3]ZeB---GB[m—l,n—l]z. 2)
Now tensoring Equation (2) by F, we obtain the relation
0,n-1]®[0,m-1]1=[0,n+m-2]®[l,n+m-3]&---&[m—-1,n-1].

Finally by definition (see [4, Defintion 4.37]) one has [0,7—1] ®¢ [0,m—1] =[0,n—-1]® [0,m — 1],
hence the sought equality. O

2.2. L-factors

We set Irreysp (GL(F)) := ;50 Irteusp (GL, (F)) where Irreysp (GL, (F)) is the set of isomorphism
classes of irreducible cuspidal representations of GL;, (F).

Let w and 7’ be a pair of cuspidal representations of GL,(F) and GL,,(F) respectively. We
denote by L(X, 7, ') the Euler factor attached to this pair in [3] via the Rankin-Selberg method, it
is a rational function of the form ﬁ where Q € F,[X] satisfies Q(0) = 1. We recall that a cuspidal
representation of GL, (F) is called banal if v ® i # m. The following is a part of [3, Theorem 4.9].

Proposition 3. Let 7,7’ € Irtcusp (GL(F)). Ifw or ' is non-banal, then L(X,m, ") = 1.
Let [®@, U] € [Repp ¢ (WF)], for brevity from now on we often denote such a class just by ®, we
denote by L(X, ®) the L-factor attached to it in [4, Section 5], their most basic property is that
L(X,® 8 ®') = L(X,D)L(X, D"
for ® and @’ in [Repp, (Wr)]. We need the following property of such factors.

Lemma 4. LetW € Irr(Wg) and a < b be integers, put ® = [a,b] ®s ¥ and ®' = [-b,—a] ®s V"V,
then L(X,® ®¢s @) has a pole at X = 0.

Proof. According to [4, Lemma 5.7], it is sufficient to prove that L(X, ¥ ®¥") has a pole at X =0

for ¥ € Irr(Wp), but this property follows from the definition of the L-factor in question, and the
fact that ¥ ® WV contains a nonzero vector fixed by Wg. O

2.3. The map CV

For ¥ € Irr(Wpg) we set Sty (Zy) = G}Z(f(;)_l vy, By Theorem 1, an element ® € Nilpp, (((WF) has a
unique decomposition
DP=DQupc® P [0,k—1]®gnz, i Sto(Zw),
k=1,Zy¢€l(Wg)
where for all k = 1 and Zy € [(WFp), ®,cyc has no summand isomorphic to [0, k — 1] ®ss Sto(Zy); i.e.
we have separated @ into an acyclic and a cyclic part. Then following [4, Section 6.3], we set:

CV(®) =Daeye® P [0,k— 1185 17y k€ (Zy).
k?l,Z\yE[(WF)

C. R. Mathématique, 2020, 358, n° 2, 201-209
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We denote by Cp ss(WF) the image of CV : Nilpp, ((WF) — [Repp ¢(WF)], and call Cp ss(Wp) the
set of C-parameters.

2.4. ¢-modular local Langlands

We let Irr(GL(F)) = [1,,50 Irr(GL;, (F)) where Irr(GL,, (F)) denotes the set of isomorphism classes of
irreducible representations of GL,, (F).
In [7], Vignéras introduces the /-modular local Langlands correspondence: a bijection

V:Irr(GL(F)) — Nilpp g,

characterized in a non-naive way by reduction modulo ¢. For this note, we recall Suppyy,, oV, the
semisimple ¢ -modular local Langlands correspondence of Vignéras, induces a bijection between
supercuspidal supports elements of Irr(GL,, (F)) and Rep(WF) compatible with reduction mod-
ulo 4.

In [4], we introduced the bijection

C=CVoV:Irr(GL(F)) — Cp,ss(WF);

which satisfies Suppyy,, oV = Suppyy, oC. Moreover, the correspondence C is compatible with the
formation of L-factors for generic representations, a property V does not share; in the cuspidal
case:

Proposition 5 ( [4, Proposition 6.13]). For n and n' in Irreysp (GL(F)) one has L(X,7,n") =
L(X,C(m),C(")).

We note another characterization of non-banal cuspidal representations:

Proposition 6 ( [4, Sections 3.2 and 6.2]). A representation 7 € Irtcysp (GL(F)) is non-banal if and
only if V() = 0¥ Sty(Zy), or equivalently C(n) = %€ (Zy), for some k =0 and ¥ € Irr(Wp).

Amongst non-banal cuspidal representations, those for which k = 0 in the above statement,
shall play a special role in our characterization. We denote by Irrg,s,(GL(F)) the subset of

Irreusp (GL(F)) consisting of those 7 € Irreusp (GL(F)) such that C(x) = 6(Zy), for some ¥ € Irr(WF)

3. The characterization

In this section, we provide a list of natural properties which characterize CV : Nilpp s;(Wg) —
[Repp s (WE)I.
Proposition 7. Let CV': Nilpp (WF) — [Repp ¢ (WF)] be any map, and C' := CV' o V. Suppose
(i) Suppyy, oC' is the semisimple £-modular local Langlands correspondence of Vignéras; in
other words, CV' preserves the W -support;

(ii) C' (orequivalently CV') commutes with taking duals;

(i) L(X,7,7")=L(X,C'(m),C'(m)") for all non-banal representations m € Irrg,,, (GL(F)).
Then for all ¥ € Irr(Wg), one has CV' (Sty(Zy)) = € (Zy).
Proof. Thanks to (i), CV'(Sty(Zy)) has Wg-support EBZS;)_l vkWw. Hence, by Theorem 1, its image
under CV' is either ¥ (Zy) or a sum of Deligne representations of the form [a, b] ®s ¥ for
0<a<b<o(¥)-1.If we are in the second situation, writing CV'(Sty(Zy)) = ([a, b] ®ss ¥) & W,
we have CV'(Stg(Zy))Y = ([-b,—a] ®ss V) @ WV, thanks to (ii). However, writing 7 for the non-
banal cuspidal representation vl (Stg(Zy)), we have L(X,7,7") = 1 according to Theorem 3 and
Proposition 6, whereas

L(X,C(1),Cr")) =L(X, (((a, D] ®ss V) & W) &5 ([-D, —al ®ss ") @ WY))
=L(X, ([a, b] ®ss W) ®s ([-b, —a] ®s ¥V)L' (X)

C. R. Mathématique, 2020, 358, n° 2, 201-209
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for L' (X) an Euler factor. Now, observe that L(X, ([a, b] ®ss V) ® ([—b, —a] ®ss PV)) has a pole at
X = 0 according to Lemma 4, hence cannot be equal to 1. The conclusion of this discussion,
according to (iii) is CV'(Sty(Zy)) = € (Zy). O

It follows that (i)-(iii) characterize Cllrrﬁusp(GL(F)) without reference to Vignéras’ correspon-
dence V.

On the other hand any map CV’ satisfying (i)—(iii) must send each v¥ ¥ to itself if o(¥) > 1 by (i).
So there is no chance that CV’ will preserve direct sums because @Zg}_l CV (k) # € (Zy). In
particular any compatibility property of CV' with direct sums will have to be non-naive. Here is
our characterization of the map CV:

Theorem 8. Suppose CV' : Nilpp, (W) — [Repp (Wp)] satisfies (i)-(iii) of Proposition 7, and
suppose moreover
(@) If®' € Im(CV) and @' = ) @ @), in [Repp (WF)] then @}, ), € Im(CV'). Moreover, if @' =
CV' (@), D} = CV'(®;) for ®,®; € Nilpp, (Wr), and @' = @' & ), then ® = &) & 0.
(b) CV'([0, j — 1] ®ss D) = [0, j — 1] ®s CV'(®) for j ENs1 and ® € Nilpp ¢s(WF).
Then CV' = CV.

Proof. For ¥ € Irr(Wp), it follows at once from Proposition 7 and (b) that
CV’([O,j -1]10s¥V)=1[0,j-110sx ¥, ifo(¥)>1and
CV’([O»j — 1] ®ss Stp(Zy)) = [O,j —1] ®gs %p(Z\y).

Next we prove that Im(CV') c Cp ¢ (WFp). By (a), an element of Im(CV’) can be decomposed
as a direct sum of elements in Im(CV’) N [Indecp gs], and (a) reduces the proof of the inclusion
Im(CV') € Cp ¢s(Wp) to showing that [0, j — 1] ®s Sto(¥) ¢ Im(CV') for ¥ € Irr(Wpg), j = 1.

We first assume that o(¥) = 1, so Styo(¥) = ¥. The only possible pre-image of ¥ by CV' is ¥
by (i), however CV' (¥) = € (Zy) by Proposition 7 so St (W) ¢ Im(CV’). Now suppose [0, j—1]®s ¥ €
Im(CV') for j = 2, then by (b) this would imply that [0, j — 1] ®¢ [0, j — 1] ®ss ¥ € Im(CV’), hence
that

[0,j-1]184[0,j -1 ®ss ¥V =1[0,2] 2] @ss V@ - [j—1,j—1] ®gs ¥
also belongs to Im(CV’) thanks to Lemma 2. However as o(¥) = 1, the Deligne representation
[j—1,j — 1] ®¢ ¥ is nothing else than ¥, which does not belong to Im(CV’), contradicting (a).

If o(¥W) > 1, then CV'(vkW) = vEW, If Sty(¥) belonged to Im(CV’) then (a) would imply
that Sto(W) = CV’(GBZ(:‘I:))_IVI“P), which is not the case thanks to Proposition 7. To see that
[0, j — 1] ®s5 Sto (W) ¢ Im(CV') for all j = 2 we use the same trick as in the o(¥) =1 case.

Now take ® € NilpD,SS, as we just noticed CV'(®) is a C-parameter and we write it

CV (@) =CV @acyc® P [0,k—1]®gnz, ;€ (Zy)
k=1,Zyel(W)
as in Section 2.3, where for each irreducible line Zy we have fixed an irreducible ¥ € Zy. Then (a)
and the beginning of the proof imply that
O=CV@acye P  [0,k—1]1®nz,iSto(Zy),
k=1,Zyel(Wp)
hence that CV'(®) = CV(®D). O

4. The semiring structure on the space of C-parameters

As (Nilpp, 4(WF), ®, ®s) is a semiring, the map CV endows Cp ss(Wr) with a semiring structure by
transport of structure. We show that this semiring structure on Cp 4s(Wr) can be obtained without
referring to CV directly, thus shedding a slightly different light on the map CV.

C. R. Mathématique, 2020, 358, n° 2, 201-209
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We denote by %4 (Repp ¢s(WF)) the Grothendieck group of the monoid ([Repp ss(Wr)], ®). We
set

%o(Repp,ss(WF)) = ([0, k — 1] ®55 Sto(Zw) — [0, k — 1] ®ss € (Zw)) 2 e 1(Wp), keNsy»

the additive subgroup of ¢ (Repp,ss(WE)) generated by the differences [0, k— 1] ®45Sto(Zy) — [0, k—
1] ®¢s cg(Zq/) for Iy € [(WF) and ke N>j.

Proposition 9. The canonical map hc : Cp,ss(Wp) — 4 (Repp ss(WF)) /% (Repp ¢s(WF)), obtained
by composing the canonical projection h : 4 (Repp (W) — 9 (Repp s(WF))/ %0 (Repp s (WF))
with the natural injection of Cpss(WFr) — %4 (Repp ¢(WF)), is injective. Moreover, its image is
stable under the operation &. In particular, this endows the set Cp ss(Wp) with a natural monoid
structure.

Proof. Note that hg is the restriction of the canonical surjection & to Cp s(Wp). Let ®,®’ be C-
parameters, as in Section 2.3 and the last proof, we write

0(Zy)-1
(I): @ [O)k_l] ®SS (( @ mZ\]/,k,iVl\I’) e;anJ,k(g(Z‘P)J
k=1,Zyel(Wg) i=0
0(Zy)-1 )
o= P [0k-1 ( &b m'Zw,k'l.v’\P) ® n’Z%k%(z\p)J
k=1,Zyel(Wg) i=0

where for each (Zy, k), there are i, i’ such that Mzy ki = 0and m’ZV e =0 Suppose that both @
and @' have same the image under h¢, then ® — ® € Ker(h) = % (Repp,¢s(WE)). We thus get an
equality of the form

-0 = ) azy k[0, k—1] ®s Sty (Zy) — [0, k — 1] ®5s € (Zw)),
k=1,7y€l(WE)
where all sums are finite. Set J* to be the set of pairs (Zy, k) such that azy.x =0and J~ to be the
set of pairs (Zy, k) such that bz, i := —az,, > 0. We obtain

de P bz kl0k-18sSt0Zw)e @ az,kl0k-1]8xEC(Zy)
(2y,k)e]~ (2w, k)eJ*

=0'e @ bz il0k-1esCZv)e @ az,rl0k-1]8sxSt(Zy)
(Zw,k)e]™ (Zy,k)e]*
in [Repp ¢ (Wr)]. Now take (Zy, k) € J *, there is i such that mgz,, ,; = 0. Comparing the occurence
of [0, k — 1] ®¢s v!'¥ on the left and right hand sides of the equality we obtain

!
0= Mz, kit zy,k = Azq4,k = 0.

Hence we just proved thet az,, i = 0 for all (Zy, k) € J*. The symmetric argument shows that for
(Zy, k) € J7, there is i’ such that

Mz, k,i' + Uzy,k = 0= bz, k=0,

which is impossible by assumption. Hence J = J* and agz,, ; = 0 for all Zy € J, which implies
® = @, s0 h¢ is indeed injective.

For the next assertion, suppose that hc(®ee(indecpwp)o®) € Im(hc). Take @ €
[Indecp,ss(Wr)] and consider hc(®oe(indecp s (Wr) Ho®) ® Ac(@g). If @y “completes a cycle” of
S delndecp s (Wr) o D, 1.€. if @y = [0, k] ®ss ¥ with ¥ an irreducible representation ¥ of W, and if all
other elements of [0, k] ®ss Zy appear in ®geindecp, . (Wr) o P as representations [0, k] ®gs vI W with
corresponding multiplicities Mo, kjoevi® = 1, then setting I = {[0, k] ®g; vj‘P,j =1,...,0(¥) -1},
one gets

hc(®eeindec i (Wp) 0 P) ® he (o) = he(®p¢ Mo P @ Soer (e — 1P & € (Zy)).

C. R. Mathématique, 2020, 358, n° 2, 201-209
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If @y does not complete a cycle, one has

hc(®oe(indecy s (Wr)) 1o P) ® hc(Po) = hc(@peindecp o (Wr) oD & @o).

The assertion follows by induction. g
In fact the tensor product operation descends on Im(hg).

Proposition 10. The additive subgroup % (Repp, s(Wr)) of the ring 4 (Repp, (W) is in fact an
ideal. Moreover Im(hc) is stable under ®ss. In particular this endows Cp ss(Wpg) with a natural
semiring structure, and hc becomes a semiring isomorphism from Cp ss(WF) toIm(hc).

Proof. For the first part, taking ¥ € Irr(Wp), it is enough to prove that for any @; € Irrp ¢ (Wp)
and k, I = 0, the tensor product [0, k] ®ss (Sto(Zy,) — €(Zy,)) ®ss [0,1] ®s P belongs to
%o (Repp s (WF)). By associativity and commutativity of tensor product, and because [0, i] ® [0, j]
is always a sum of segments by Lemma 2, it is enough to check that (Stg(Zy,) — € (Zy,)) ®ss P1
belongs to %y (Repp ¢s(WF)). Suppose first that @, is nilpotent, i.e. ®; = ¥, € Irr(WF). Because
Sto(Zw,) ®ss V1 is fixed by v under twisting and because its Deligne operator is zero, we get that
Sto(Zw,) ®@ss V1= P az, Sto(Zw).

Zyel(Wp)
On the other hand because €(Zy,) ®ss V1 is fixed by v and because its Deligne operator is
bijective we obtain

€Zv)®s V1= P bz, € Zvw).

Zyel(WF)
Now observing that both Sty(Zy,) ®s W1 and €(Zy,) ®s V1 have the same Wg-support, it
implies that az, = bz, for all lines Zy, form which we deduce that (Sty(Zy,) — € (Zy,)) ®ss D1 €
G%(RepD,SS(WF)). With the same arguments we obtain that (Sty(Zy,) — € (Zy,)) ®ss P1 = 0 €
%o(Repp s (WF)) when @ is of the form € (Zy,) (because in this case both Sto(Zy,) ®ss ®1 and
€ (Zy,) ®ss P1 have bijective Deligne operators). U

The following proposition is proved in a similar, but simpler manner than the propositions
above.

Proposition 11. Ler hyjyp, be the restriction of
h: % (Repp ¢ (WF)) — 9 (Repp ¢ (WF)) /%o (Repp ss(WF))
to Nilpp, o(WF), then hyip is a semiring isomorphism and Im(hyip) = Im(hc).
The above propositions have the following immediate corollary.

Corollary 12. One has CV = hal o hNi]p, in particular it is a semiring isomorphism from
NﬂpD,ss (WF) to Cp ss(WE).
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