

# Comptes Rendus Mathématique

Robert Kurinczuk and Nadir Matringe

A characterization of the relation between two  $\ell$ -modular correspondences

Volume 358, issue 2 (2020), p. 201-209.

<a href="https://doi.org/10.5802/crmath.33">https://doi.org/10.5802/crmath.33></a>

© Académie des sciences, Paris and the authors, 2020. *Some rights reserved.* 

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/



Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

### Comptes Rendus Mathématique

**2020**, 358, nº 2, p. 201-209 https://doi.org/10.5802/crmath.33



Number Theory, Reductive Group Theory / Théorie des nombres, Théorie des groupes réductifs

# A characterization of the relation between two $\ell$ -modular correspondences

## Une caractérisation de la relation entre deux correspondances $\ell$ -modulaires

### Robert Kurinczuk<sup>a</sup> and Nadir Matringe<sup>b</sup>

E-mails: robkurinczuk@gmail.com, nadir.matringe@math.univ-poitiers.fr.

**Abstract.** Let F be a non archimedean local field of residual characteristic p and  $\ell$  a prime number different from p. Let V denote Vignéras'  $\ell$ -modular local Langlands correspondence [7], between irreducible  $\ell$ -modular representations of  $GL_n(F)$  and n-dimensional  $\ell$ -modular Deligne representations of the Weil group  $W_F$ . In [4], enlarging the space of Galois parameters to Deligne representations with non necessarily nilpotent operators allowed us to propose a modification of the correspondence of Vignéras into a correspondence C, compatible with the formation of local constants in the generic case. In this note, following a remark of Alberto Mínguez, we characterize the modification  $C \circ V^{-1}$  by a short list of natural properties.

**Résumé.** Soit F un corps local non archimédien de caractéristique résiduelle p et  $\ell$  un nombre premier différent de p. Soit V la correspondance de Langlands  $\ell$ -modulaire définie par Vignéras en [7], entre représentations irréductibles  $\ell$ -modulaires de  $\operatorname{GL}_n(F)$  et représentations de Deligne  $\ell$ -modulaires de dimension n du groupe de Weil  $W_F$ . Dans [4], l'élargissement de l'espace des paramètres galoisiens aux représentations de Deligne à opérateur non nécessairement nilpotent, nous a permis de proposer une modification de la correspondance de Vignéras en une correspondance notée C, compatible aux constantes locales des représentations génériques et de leur paramètre. Dans cette note rédigée à la suite d'une remarque d'Alberto Mínguez, nous caractérisons la modification  $C \circ V^{-1}$  par une courte liste de propriétés naturelles.

**Funding.** The authors were supported by the Anglo-Franco-German Network in Representation Theory and its Applications: EPSRC Grant EP/R009279/1, the GDRI "Representation Theory" 2016-2020, and the LMS (Research in Pairs).

 $Manuscript\ received\ 6th\ December\ 2019,\ revised\ and\ accepted\ 4th\ March\ 2020.$ 

<sup>&</sup>lt;sup>a</sup> Department of Mathematics, Imperial College London, SW7 2AZ. U.K.

 $<sup>^</sup>b$  Université de Poitiers, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex. France

#### 1. Introduction

Let F be a non-archimedean local field with finite residue field of cardinality q, a power of a prime p, and  $W_F$  the Weil group of F. Let  $\ell$  be a prime number different from p. The  $\ell$ -modular local Langlands correspondence established by Vignéras in [7] is a bijection from isomorphism classes of smooth irreducible representations of  $GL_n(F)$  and n-dimensional Deligne representations (Section 2.1) of the Weil group  $W_F$  with nilpotent monodromy operator. It is uniquely characterized by a non-naive compatibility with the  $\ell$ -adic local Langlands correspondence ( [1, 2, 5, 6]) under reduction modulo  $\ell$ , involving twists by Zelevinsky involutions. In [4], at the cost of having a less direct compatibility with reduction modulo  $\ell$ , we proposed a modification of the correspondence V of Vignéras, by in particular enlarging its target to the space of Deligne representations with non necessarily nilpotent monodromy operator (it is a particularity of the  $\ell$ -modular setting that such operators can live outside the nilpotent world). The modified correspondence C is built to be compatible with local constants on both sides of the corrspondence ([3,4]) and we proved that it is indeed the case for generic representations in [4]. Here, we show in Section 3 that if we expect a correspondence to have such a property, and some other natural properties, then it will be uniquely determined by V. Namely we characterize the map  $C \circ V^{-1}$  by a list of five properties in Theorem 8. The map  $C \circ V^{-1}$  endows the image of C with a semiring structure because the image of V is naturally equipped with semiring laws. We end this note by studying this structure from a different point of view in Section 4.

#### 2. Preliminaries

Let  $v: W_F \to \overline{\mathbb{F}_\ell}^\times$  be the unique character trivial on the inertia subgroup of  $W_F$  and sending a geometric Frobenius element to  $q^{-1}$ , it corresponds to the normalized absolute value  $v: F^\times \to \overline{\mathbb{F}_\ell}^\times$  via local class field theory.

We consider only smooth representations of locally compact groups, which unless otherwise stated will be considered on  $\overline{\mathbb{F}_{\ell}}$ -vector spaces. For  $\mathscr{G}$  a locally compact topological group, we let  $\operatorname{Irr}(\mathscr{G})$  denote the set of isomorphism classes of irreducible representations of  $\mathscr{G}$ .

#### 2.1. Deligne representations

We follow [4, Section 4], but slightly simplify some notation. A *Deligne-representation* of  $W_F$  is a pair  $(\Phi, U)$  where  $\Phi$  is a finite dimensional semisimple representation of  $W_F$ , and  $U \in \operatorname{Hom}_{W_F}(v\Phi, \Phi)$ ; we call  $(\Phi, U)$  *nilpotent* if U is a nilpotent endomorphism over  $\overline{\mathbb{F}_\ell}$ .

The set of morphisms between Deligne representations  $(\Phi, U)$ ,  $(\Phi', U')$  (of  $W_F$ ) is given by  $\operatorname{Hom}_D(\Phi, \Phi') = \{f \in \operatorname{Hom}_{W_F}(\Phi, \Phi') : f \circ U = U' \circ f\}$ . This leads to notions of irreducible and indecomposable Deligne representations. We refer to [4, Section 4], for the (standard) definitions of dual and direct sums of Deligne representations.

We let  $\operatorname{Rep}_{D,ss}(W_F)$  denote the set of isomorphism classes of Deligne-representations; and  $\operatorname{Indec}_{D,ss}(W_F)$  (resp.  $\operatorname{Irr}_{D,ss}(W_F)$ ),  $\operatorname{Nilp}_{D,ss}(W_F)$ ) denote the set of isomorphism classes of indecomposable (resp. irreducible, nilpotent) Deligne representations. Thus

$$\operatorname{Irr}_{\operatorname{D,ss}}(\operatorname{W}_F) \subset \operatorname{Indec}_{\operatorname{D,ss}}(\operatorname{W}_F) \subset \operatorname{Rep}_{\operatorname{D,ss}}(\operatorname{W}_F), \qquad \operatorname{Nilp}_{\operatorname{D,ss}}(\operatorname{W}_F) \subset \operatorname{Rep}_{\operatorname{D,ss}}(\operatorname{W}_F).$$

Let  $\operatorname{Rep}_{ss}(W_F)$  denote the set of isomorphism classes of semisimple representations of  $W_F$ , we have a canonical map  $\operatorname{Supp}_{W_F}: \operatorname{Rep}_{D,ss}(W_F) \to \operatorname{Rep}_{ss}(W_F)$ ,  $(\Phi, U) \mapsto \Phi$ ; we call  $\Phi$  the  $W_F$ -support of  $(\Phi, U)$ .

For  $\Psi \in \operatorname{Irr}(W_F)$  we denote by  $o(\Psi)$  the cardinality of the *irreducible line*  $\mathbb{Z}_{\Psi} = \{v^k \Psi, k \in \mathbb{Z}\}$ ; it divides the order of q in  $\mathbb{F}_{\ell}^{\times}$  hence is prime to  $\ell$ . We let  $\mathfrak{l}(W_F) = \{\mathbb{Z}_{\Psi} : \Psi \in \operatorname{Irr}(W_F)\}$ .

The fundamental examples of non-nilpotent Deligne representation are the *cycle representa*tions: let I be an isomorphism from  $v^{o(\Psi)}\Psi$  to  $\Psi$  and define  $\mathscr{C}(\Psi, I) = (\Phi(\Psi), C_I) \in \operatorname{Rep}_{ss}(D, \overline{\mathbb{F}_\ell})$  by

$$\Phi(\Psi) = \bigoplus_{k=0}^{o(\Psi)-1} v^k \Psi, \quad C_I(x_0, \dots, x_{o(\Psi)-1}) = (I(x_{o(\Psi)-1}), x_0, \dots, x_{o(\Psi)-2}), \ x_k \in v^k \Psi.$$

Then  $\mathscr{C}(\Psi, I) \in \operatorname{Irr}_{ss}(D, \overline{\mathbb{F}_{\ell}})$  and its isomorphism class only depends on  $(\mathbb{Z}_{\Psi}, I)$ , by [4, Proposition 4.18].

To remove dependence on I, in [4, Definition 4.6 and Remark 4.9] we define an equivalence relation  $\sim$  on  $\text{Rep}_{\text{D.ss}}(W_F)$ . We say that

$$(\Phi_1, U_1) \sim (\Phi_2, U_2)$$

for  $(\Phi_i, U_i) \in \text{Rep}_{D.SS}(W_F)$  if they both admit a decomposition (it is unique up to re-ordering)

$$(\Phi_i, U_i) = \bigoplus_{k=1}^{r_i} (\Phi_{i,k}, U_{i,k})$$

as a direct sum of elements in Indec<sub>D,ss</sub>(W<sub>F</sub>), such that  $r_1 = r_2 =: r$  and for k = 1,...,r there exists  $\lambda_k \in \overline{\mathbb{F}_\ell}^\times$  such that

$$(\Phi_{2,k}, U_{2,k}) \simeq (\Phi_{1,k}, \lambda_k U_{1,k}).$$

The equivalence class of  $\mathscr{C}(\Psi, I)$  is independent of I, and we set

$$\mathscr{C}(\mathbb{Z}_{\Psi}) := [\mathscr{C}(\Psi, I)] \in [\operatorname{Irr}_{D,ss}(W_F)].$$

The sets  $\operatorname{Rep}_{\operatorname{D,ss}}(W_F)$ ,  $\operatorname{Irr}_{\operatorname{D,ss}}(W_F)$ ,  $\operatorname{Indec}_{\operatorname{D,ss}}(W_F)$ , and  $\operatorname{Nilp}_{\operatorname{D,ss}}(W_F)$  are unions of  $\sim$ -classes, and if X denotes any of them we set  $[X] := X/\sim$ . Similarly, for  $(\Phi,U) \in \operatorname{Rep}_{\operatorname{D,ss}}(W_F)$  we write  $[\Phi,U]$  for its equivalence class in  $[\operatorname{Rep}_{\operatorname{D,ss}}(W_F)]$ . On  $\operatorname{Nilp}_{\operatorname{D,ss}}(W_F)$  the equivalence relation  $\sim$  coincides with equality.

The operations  $\oplus$  and  $(\Phi, U) \mapsto (\Phi, U)^{\vee}$  on  $\operatorname{Rep}_{D,ss}(W_F)$  descend to  $[\operatorname{Rep}_{D,ss}(W_F)]$ . Tensor products are more subtle; for example, tensor products of semisimple representations of  $W_F$  are not necessarily semisimple. We define a semisimple tensor product operation  $\otimes_{ss}$  on  $[\operatorname{Rep}_{D,ss}(W_F)]$  in  $[4, \operatorname{Section} 4.4]$ , turning  $([\operatorname{Rep}_{D,ss}(W_F)], \oplus, \otimes_{ss})$  into an abelian semiring.

The basic non-irreducible examples of elements of Nilp<sub>D,ss</sub>(W<sub>F</sub>) are called *segments*: For  $r \ge 1$ , set  $[0, r-1] := (\Phi(r), N(r))$ , where

$$\Phi(r) = \bigoplus_{k=0}^{r-1} v^k, \quad N(r)(x_0, \dots, x_{r-1}) = (0, x_0, \dots, x_{r-2}), \ x_k \in v^k.$$

We now recall the classification of equivalence classes of Deligne representations of  $W_F$  of [4].

#### Theorem 1 ([4, Section 4]).

- (1) Let  $\Phi \in \operatorname{Irr}_{D,ss}(W_F)$ , then there is either a unique  $\Psi \in \operatorname{Irr}(W_F)$  such that  $\Phi = \Psi$ , or a unique irreducible line  $\mathbb{Z}_{\Psi}$  such that  $[\Phi] = \mathscr{C}(\mathbb{Z}_{\Psi})$ .
- (2) Let  $[\Phi, U] \in [\operatorname{Indec}_{D,ss}(W_F)]$ , then there exist a unique  $r \ge 1$  and a unique  $\Theta \in [\operatorname{Irr}_{D,ss}(W_F)]$  such that  $[\Phi, U] = [0, r 1] \otimes_{ss} \Theta$ .
- (3) Let  $[\Phi, U] \in [\text{Rep}_{D,ss}(W_F)]$ , there exist  $[\Phi_i, U_i] \in [\text{Indec}_{D,ss}(W_F)]$  for  $1 \le i \le r$  such that  $[\Phi, U] = \bigoplus_{i=1}^r [\Phi_i, U_i]$ .

We recall the following classical result about tensor products of segments.

#### **Lemma 2.** For $n \ge m \ge 1$ , one has

$$[0, n-1] \otimes_{ss} [0, m-1] = [0, n+m-2] \oplus [1, n+m-3] \oplus \cdots \oplus [m-1, n-1].$$

**Proof.** Denote by  $v_{\overline{\mathbb{Q}_\ell}}$  the normalized absolute value of  $W_F$  with values in  $\overline{\mathbb{Q}_\ell}^{\times}$ , and by  $[0,i-1]_{\overline{\mathbb{Q}_\ell}}$  the  $\ell$ -adic Deligne representation with  $W_F$ -support  $\bigoplus_{k=0}^{i-1} v_{\overline{\mathbb{Q}_\ell}}^i$  and nilpotent operator  $N(i)_{\overline{\mathbb{Q}_\ell}}$  sending  $(x_0,\ldots,x_{i-1})$  to  $(0,x_0,\ldots,x_{i-2})$ . The relation

$$[0, n-1]_{\overline{\mathbb{Q}_{\ell}}} \otimes [0, m-1]_{\overline{\mathbb{Q}_{\ell}}} = [0, n+m-2]_{\overline{\mathbb{Q}_{\ell}}} \oplus [1, n+m-3]_{\overline{\mathbb{Q}_{\ell}}} \oplus \cdots \oplus [m-1, n-1]_{\overline{\mathbb{Q}_{\ell}}}$$
(1)

can be translated into a statement on tensor product of irreducible representations of  $\mathrm{SL}_2(\mathbb{C})$ , which is well-known and easily checked by the highest weight theory. Because all powers of  $v_{\overline{\mathbb{Q}_\ell}}$  take values in  $\overline{\mathbb{Z}_\ell}^\times$ , the canonical  $\overline{\mathbb{Z}_\ell}$ -lattice in  $\bigoplus_{k=0}^{i-1} v_{\overline{\mathbb{Q}_\ell}}^i$  is stable under both the actions of  $W_F$  and  $N(i)_{\overline{\mathbb{Q}_\ell}}$ , and this defines a  $\overline{\mathbb{Z}_\ell}$ -Deligne representation  $[0,i-1]_{\overline{\mathbb{Z}_\ell}}$ . Taking the canonical lattices on both sides of Equation (1) we get

$$[0, n-1]_{\overline{\mathbb{Z}_{\ell}}} \otimes [0, m-1]_{\overline{\mathbb{Z}_{\ell}}} = [0, n+m-2]_{\overline{\mathbb{Z}_{\ell}}} \oplus [1, n+m-3]_{\overline{\mathbb{Z}_{\ell}}} \oplus \cdots \oplus [m-1, n-1]_{\overline{\mathbb{Z}_{\ell}}}. \tag{2}$$

Now tensoring Equation (2) by  $\overline{\mathbb{F}_{\ell}}$  we obtain the relation

$$[0, n-1] \otimes [0, m-1] = [0, n+m-2] \oplus [1, n+m-3] \oplus \cdots \oplus [m-1, n-1].$$

Finally by definition (see [4, Defintion 4.37]) one has  $[0, n-1] \otimes_{ss} [0, m-1] = [0, n-1] \otimes [0, m-1]$ , hence the sought equality.

#### 2.2. L-factors

We set  $Irr_{cusp}(GL(F)) := \coprod_{n \ge 0} Irr_{cusp}(GL_n(F))$  where  $Irr_{cusp}(GL_n(F))$  is the set of isomorphism classes of irreducible cuspidal representations of  $GL_n(F)$ .

Let  $\pi$  and  $\pi'$  be a pair of cuspidal representations of  $\mathrm{GL}_n(F)$  and  $\mathrm{GL}_m(F)$  respectively. We denote by  $\mathrm{L}(X,\pi,\pi')$  the Euler factor attached to this pair in [3] via the Rankin–Selberg method, it is a rational function of the form  $\frac{1}{Q(X)}$  where  $Q \in \overline{\mathbb{F}_\ell}[X]$  satisfies Q(0) = 1. We recall that a cuspidal representation of  $\mathrm{GL}_n(F)$  is called *banal* if  $v \otimes \pi \neq \pi$ . The following is a part of [3, Theorem 4.9].

**Proposition 3.** Let  $\pi, \pi' \in Irr_{CUSD}(GL(F))$ . If  $\pi$  or  $\pi'$  is non-banal, then  $L(X, \pi, \pi') = 1$ .

Let  $[\Phi, U] \in [\text{Rep}_{D,ss}(W_F)]$ , for brevity from now on we often denote such a class just by  $\Phi$ , we denote by  $L(X,\Phi)$  the L-factor attached to it in [4, Section 5], their most basic property is that

$$L(X, \Phi \oplus \Phi') = L(X, \Phi)L(X, \Phi')$$

for  $\Phi$  and  $\Phi'$  in  $[\text{Rep}_{D.ss}(W_F)]$ . We need the following property of such factors.

**Lemma 4.** Let  $\Psi \in Irr(W_F)$  and  $a \le b$  be integers, put  $\Phi = [a, b] \otimes_{ss} \Psi$  and  $\Phi' = [-b, -a] \otimes_{ss} \Psi^{\vee}$ , then  $L(X, \Phi \otimes_{ss} \Phi')$  has a pole at X = 0.

**Proof.** According to [4, Lemma 5.7], it is sufficient to prove that  $L(X, \Psi \otimes_{ss} \Psi^{\vee})$  has a pole at X = 0 for  $\Psi \in Irr(W_F)$ , but this property follows from the definition of the L-factor in question, and the fact that  $\Psi \otimes_{ss} \Psi^{\vee}$  contains a nonzero vector fixed by  $W_F$ .

#### 2.3. The map CV

For  $\Psi \in Irr(W_F)$  we set  $St_0(\mathbb{Z}_{\Psi}) = \bigoplus_{k=0}^{o(\Psi)-1} v^k \Psi$ . By Theorem 1, an element  $\Phi \in Nilp_{D,ss}(W_F)$  has a unique decomposition

$$\Phi = \Phi_{\operatorname{acyc}} \oplus \bigoplus_{k \geq 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(\mathbb{W}_F)} [0, k-1] \otimes_{\operatorname{ss}} n_{\mathbb{Z}_{\Psi}, k} \operatorname{St}_0(\mathbb{Z}_{\Psi}),$$

where for all  $k \ge 1$  and  $\mathbb{Z}_{\Psi} \in \mathfrak{l}(W_F)$ ,  $\Phi_{\text{acyc}}$  has no summand isomorphic to  $[0, k-1] \otimes_{ss} \operatorname{St}_0(\mathbb{Z}_{\Psi})$ ; i.e. we have separated  $\Phi$  into an acyclic and a cyclic part. Then following [4, Section 6.3], we set:

$$\mathrm{CV}(\Phi) = \Phi_{\mathrm{acyc}} \oplus \bigoplus_{k \geq 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(W_F)} [0, k-1] \otimes_{\mathrm{ss}} n_{\mathbb{Z}_{\Psi}, k} \mathcal{C}(\mathbb{Z}_{\Psi}).$$

We denote by  $C_{D,ss}(W_F)$  the image of  $CV: Nilp_{D,ss}(W_F) \rightarrow [Rep_{D,ss}(W_F)]$ , and call  $C_{D,ss}(W_F)$  the set of C-parameters.

#### 2.4. ℓ-modular local Langlands

We let  $Irr(GL(F)) = \coprod_{n \ge 0} Irr(GL_n(F))$  where  $Irr(GL_n(F))$  denotes the set of isomorphism classes of irreducible representations of  $GL_n(F)$ .

In [7], Vignéras introduces the  $\ell$ -modular local Langlands correspondence: a bijection

$$V: Irr(GL(F)) \rightarrow Nilp_{D.ss}$$

characterized in a non-naive way by reduction modulo  $\ell$ . For this note, we recall  $\operatorname{Supp}_{W_F} \circ V$ , the semisimple  $\ell$ -modular local Langlands correspondence of Vignéras, induces a bijection between supercuspidal supports elements of  $\operatorname{Irr}(\operatorname{GL}_n(F))$  and  $\operatorname{Rep}_{\operatorname{ss}}(W_F)$  compatible with reduction modulo  $\ell$ .

In [4], we introduced the bijection

$$C = CV \circ V : Irr(GL(F)) \rightarrow C_{D,ss}(W_F);$$

which satisfies  $\operatorname{Supp}_{W_F} \circ V = \operatorname{Supp}_{W_F} \circ C$ . Moreover, the correspondence C is compatible with the formation of L-factors for generic representations, a property V does not share; in the cuspidal case:

**Proposition 5 ( [4, Proposition 6.13]).** For  $\pi$  and  $\pi'$  in  $Irr_{cusp}(GL(F))$  one has  $L(X, \pi, \pi') = L(X, C(\pi), C(\pi'))$ .

We note another characterization of non-banal cuspidal representations:

**Proposition 6 ( [4, Sections 3.2 and 6.2]).** A representation  $\pi \in \operatorname{Irr}_{\operatorname{cusp}}(\operatorname{GL}(F))$  is non-banal if and only if  $V(\pi) = \ell^k \operatorname{St}_0(\mathbb{Z}_{\Psi})$ , or equivalently  $C(\pi) = \ell^k \mathscr{C}(\mathbb{Z}_{\Psi})$ , for some  $k \ge 0$  and  $\Psi \in \operatorname{Irr}(W_F)$ .

Amongst non-banal cuspidal representations, those for which k=0 in the above statement, shall play a special role in our characterization. We denote by  $\operatorname{Irr}_{\operatorname{cusp}}^{\star}(\operatorname{GL}(F))$  the subset of  $\operatorname{Irr}_{\operatorname{cusp}}(\operatorname{GL}(F))$  consisting of those  $\pi \in \operatorname{Irr}_{\operatorname{cusp}}(\operatorname{GL}(F))$  such that  $\operatorname{C}(\pi) = \mathscr{C}(\mathbb{Z}_{\Psi})$ , for some  $\Psi \in \operatorname{Irr}(\operatorname{W}_F)$ 

#### 3. The characterization

In this section, we provide a list of natural properties which characterize  $CV : Nilp_{D,ss}(W_F) \rightarrow [Rep_{D,ss}(W_F)].$ 

**Proposition 7.** Let CV':  $Nilp_{D,ss}(W_F) \rightarrow [Rep_{D,ss}(W_F)]$  be any map, and  $C' := CV' \circ V$ . Suppose

- (i) Supp<sub>W<sub>F</sub></sub>  $\circ$ C' is the semisimple  $\ell$ -modular local Langlands correspondence of Vignéras; in other words, CV' preserves the W<sub>F</sub>-support;
- (ii) C' (or equivalently CV') commutes with taking duals;
- (iii)  $L(X,\pi,\pi^{\vee}) = L(X,C'(\pi),C'(\pi)^{\vee})$  for all non-banal representations  $\pi \in \operatorname{Irr}_{\operatorname{cusp}}^{\star}(\operatorname{GL}(F))$ .

Then for all  $\Psi \in Irr(W_F)$ , one has  $CV'(St_0(\mathbb{Z}_{\Psi})) = \mathscr{C}(\mathbb{Z}_{\Psi})$ .

**Proof.** Thanks to (i),  $\operatorname{CV}'(\operatorname{St}_0(\mathbb{Z}_\Psi))$  has  $W_F$ -support  $\bigoplus_{k=0}^{o(\Psi)-1} v^k \Psi$ . Hence, by Theorem 1, its image under  $\operatorname{CV}'$  is either  $\mathscr{C}(\mathbb{Z}_\Psi)$  or a sum of Deligne representations of the form  $[a,b]\otimes_{\operatorname{ss}}\Psi$  for  $0\leq a\leq b\leq o(\Psi)-1$ . If we are in the second situation, writing  $\operatorname{CV}'(\operatorname{St}_0(\mathbb{Z}_\Psi))=([a,b]\otimes_{\operatorname{ss}}\Psi)\oplus W$ , we have  $\operatorname{CV}'(\operatorname{St}_0(\mathbb{Z}_\Psi))^\vee=([-b,-a]\otimes_{\operatorname{ss}}\Psi^\vee)\oplus W^\vee$ , thanks to (ii). However, writing  $\tau$  for the nonbanal cuspidal representation  $\operatorname{V}^{-1}(\operatorname{St}_0(\mathbb{Z}_\Psi))$ , we have  $\operatorname{L}(X,\tau,\tau^\vee)=1$  according to Theorem 3 and Proposition 6, whereas

$$L(X, C(\tau), C(\tau^{\vee})) = L(X, (([a, b] \otimes_{ss} \Psi) \oplus W) \otimes_{ss} (([-b, -a] \otimes_{ss} \Psi^{\vee}) \oplus W^{\vee}))$$
  
=  $L(X, ([a, b] \otimes_{ss} \Psi) \otimes_{ss} ([-b, -a] \otimes_{ss} \Psi^{\vee}))L'(X)$ 

for L'(X) an Euler factor. Now, observe that  $L(X,([a,b]\otimes_{ss}\Psi)\otimes_{ss}([-b,-a]\otimes_{ss}\Psi^{\vee}))$  has a pole at X=0 according to Lemma 4, hence cannot be equal to 1. The conclusion of this discussion, according to (iii) is  $CV'(St_0(\mathbb{Z}_{\Psi}))=\mathscr{C}(\mathbb{Z}_{\Psi})$ .

It follows that (i)–(iii) characterize  $C|_{Irr_{cusp}^{\star}(GL(F))}$  without reference to Vignéras' correspondence V.

On the other hand any map CV' satisfying (i)–(iii) must send each  $v^k\Psi$  to itself if  $o(\Psi) > 1$  by (i). So there is no chance that CV' will preserve direct sums because  $\bigoplus_{k=0}^{o(\Psi)-1} \text{CV'}(v^k\Psi) \neq \mathscr{C}(\mathbb{Z}_{\Psi})$ . In particular any compatibility property of CV' with direct sums will have to be non-naive. Here is our characterization of the map CV:

**Theorem 8.** Suppose CV':  $Nilp_{D,ss}(W_F) \rightarrow [Rep_{D,ss}(W_F)]$  satisfies (i)–(iii) of Proposition 7, and suppose moreover

- (a) If  $\Phi' \in \text{Im}(CV')$  and  $\Phi' = \Phi'_1 \oplus \Phi'_2$  in  $[\text{Rep}_{D,ss}(W_F)]$  then  $\Phi'_1, \Phi'_2 \in \text{Im}(CV')$ . Moreover, if  $\Phi' = CV'(\Phi), \Phi'_i = CV'(\Phi_i)$  for  $\Phi, \Phi_i \in \text{Nilp}_{D,ss}(W_F)$ , and  $\Phi' = \Phi'_1 \oplus \Phi'_2$ , then  $\Phi = \Phi_1 \oplus \Phi_2$ .
- (b)  $CV'([0, j-1] \otimes_{ss} \Phi) = [0, j-1] \otimes_{ss} CV'(\Phi) \text{ for } j \in \mathbb{N}_{\geq 1} \text{ and } \Phi \in Nilp_{D.ss}(W_F).$

Then CV' = CV.

**Proof.** For  $\Psi \in Irr(W_F)$ , it follows at once from Proposition 7 and (b) that

$$\begin{aligned} \mathrm{CV}'([0,j-1]\otimes_{\mathrm{SS}}\Psi) &= [0,j-1]\otimes_{\mathrm{SS}}\Psi, \quad \text{if } o(\Psi) > 1 \text{ and} \\ \mathrm{CV}'([0,j-1]\otimes_{\mathrm{SS}}\mathrm{St}_0(\mathbb{Z}_\Psi)) &= [0,j-1]\otimes_{\mathrm{SS}}\mathscr{C}(\mathbb{Z}_\Psi). \end{aligned}$$

Next we prove that  $\operatorname{Im}(\operatorname{CV}') \subset \operatorname{C}_{D,\operatorname{ss}}(\operatorname{W}_F)$ . By (a), an element of  $\operatorname{Im}(\operatorname{CV}')$  can be decomposed as a direct sum of elements in  $\operatorname{Im}(\operatorname{CV}') \cap [\operatorname{Indec}_{D,\operatorname{ss}}]$ , and (a) reduces the proof of the inclusion  $\operatorname{Im}(\operatorname{CV}') \subset \operatorname{C}_{D,\operatorname{ss}}(\operatorname{W}_F)$  to showing that  $[0,j-1] \otimes_{\operatorname{ss}} \operatorname{St}_0(\Psi) \notin \operatorname{Im}(\operatorname{CV}')$  for  $\Psi \in \operatorname{Irr}(\operatorname{W}_F)$ ,  $j \geq 1$ .

We first assume that  $o(\Psi)=1$ , so  $\operatorname{St}_0(\Psi)=\Psi$ . The only possible pre-image of  $\Psi$  by  $\operatorname{CV}'$  is  $\Psi$  by (i), however  $\operatorname{CV}'(\Psi)=\mathscr{C}(\mathbb{Z}_{\Psi})$  by Proposition 7 so  $\operatorname{St}_0(\Psi)\notin\operatorname{Im}(\operatorname{CV}')$ . Now suppose  $[0,j-1]\otimes_{\operatorname{ss}}\Psi\in\operatorname{Im}(\operatorname{CV}')$  for  $j\geqslant 2$ , then by (b) this would imply that  $[0,j-1]\otimes_{\operatorname{ss}}[0,j-1]\otimes_{\operatorname{ss}}\Psi\in\operatorname{Im}(\operatorname{CV}')$ , hence that

$$[0, j-1] \otimes_{ss} [0, j-1] \otimes_{ss} \Psi = [0, 2j-2] \otimes_{ss} \Psi \oplus \cdots \oplus [j-1, j-1] \otimes_{ss} \Psi$$

also belongs to Im(CV') thanks to Lemma 2. However as  $o(\Psi) = 1$ , the Deligne representation  $[j-1,j-1] \otimes_{\text{SS}} \Psi$  is nothing else than  $\Psi$ , which does not belong to Im(CV'), contradicting (a).

If  $o(\Psi) > 1$ , then  $CV'(v^k \Psi) = v^k \Psi$ . If  $St_0(\Psi)$  belonged to Im(CV') then (a) would imply that  $St_0(\Psi) = CV'(\bigoplus_{k=0}^{o(\Psi)-1} v^k \Psi)$ , which is not the case thanks to Proposition 7. To see that  $[0, j-1] \otimes_{ss} St_0(\Psi) \notin Im(CV')$  for all  $j \ge 2$  we use the same trick as in the  $o(\Psi) = 1$  case.

Now take  $\Phi \in \text{Nilp}_{D,ss}$ , as we just noticed  $CV'(\Phi)$  is a C-parameter and we write it

$$\mathrm{CV}'(\Phi) = \mathrm{CV}'(\Phi)_{\mathrm{acyc}} \oplus \bigoplus_{k \geq 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(W_F)} [0, k-1] \otimes_{\mathrm{ss}} n_{\mathbb{Z}_{\Psi}, k} \mathcal{C}(\mathbb{Z}_{\Psi})$$

as in Section 2.3, where for each irreducible line  $\mathbb{Z}_{\Psi}$  we have fixed an irreducible  $\Psi \in \mathbb{Z}_{\Psi}$ . Then (a) and the beginning of the proof imply that

$$\Phi = \mathrm{CV}'(\Phi)_{\mathrm{acyc}} \bigoplus_{k \geq 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(\mathbb{W}_F)} [0, k-1] \otimes_{\mathrm{ss}} n_{\mathbb{Z}_{\Psi}, k} \operatorname{St}_0(\mathbb{Z}_{\Psi}),$$

hence that  $CV'(\Phi) = CV(\Phi)$ .

#### 4. The semiring structure on the space of C-parameters

As  $(Nilp_{D,ss}(W_F), \oplus, \otimes_{ss})$  is a semiring, the map CV endows  $C_{D,ss}(W_F)$  with a semiring structure by transport of structure. We show that this semiring structure on  $C_{D,ss}(W_F)$  can be obtained without referring to CV directly, thus shedding a slightly different light on the map CV.

We denote by  $\mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))$  the Grothendieck group of the monoid ( $[\operatorname{Rep}_{D,ss}(W_F)], \oplus$ ). We set

$$\mathcal{G}_0(\operatorname{Rep}_{\mathrm{D},\mathrm{ss}}(\mathsf{W}_F)) = \langle [0,k-1] \otimes_{\mathrm{ss}} \operatorname{St}_0(\mathbb{Z}_\Psi) - [0,k-1] \otimes_{\mathrm{ss}} \mathcal{C}(\mathbb{Z}_\Psi) \rangle_{\mathbb{Z}_\Psi \in \mathfrak{l}(\mathsf{W}_F),\ k \in \mathbb{N}_{\geq 1}},$$

the additive subgroup of  $\mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))$  generated by the differences  $[0,k-1] \otimes_{ss} \operatorname{St}_0(\mathbb{Z}_\Psi) - [0,k-1] \otimes_{ss} \mathcal{C}(\mathbb{Z}_\Psi)$  for  $\mathbb{Z}_\Psi \in \mathfrak{l}(W_F)$  and  $k \in \mathbb{N}_{\geq 1}$ .

**Proposition 9.** The canonical map  $h_C: C_{D,ss}(W_F) \to \mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))/\mathcal{G}_0(\operatorname{Rep}_{D,ss}(W_F))$ , obtained by composing the canonical projection  $h: \mathcal{G}(\operatorname{Rep}_{D,ss}(W_F)) \to \mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))/\mathcal{G}_0(\operatorname{Rep}_{D,ss}(W_F))$  with the natural injection of  $C_{D,ss}(W_F) \hookrightarrow \mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))$ , is injective. Moreover, its image is stable under the operation  $\oplus$ . In particular, this endows the set  $C_{D,ss}(W_F)$  with a natural monoid structure.

**Proof.** Note that  $h_C$  is the restriction of the canonical surjection h to  $C_{D,ss}(W_F)$ . Let  $\Phi,\Phi'$  be C-parameters, as in Section 2.3 and the last proof, we write

$$\begin{split} \Phi &= \bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(\mathbb{W}_{F})} [0, k-1] \otimes_{\mathrm{SS}} \left( \left( \bigoplus_{i=0}^{o(\mathbb{Z}_{\Psi})-1} m_{\mathbb{Z}_{\Psi}, k, i} v^{i} \Psi \right) \oplus n_{\mathbb{Z}_{\Psi}, k} \mathscr{C}(\mathbb{Z}_{\Psi}) \right) \\ \Phi' &= \bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(\mathbb{W}_{F})} [0, k-1] \otimes_{\mathrm{SS}} \left( \left( \bigoplus_{i=0}^{o(\mathbb{Z}_{\Psi})-1} m'_{\mathbb{Z}_{\Psi}, k, i} v^{i} \Psi \right) \oplus n'_{\mathbb{Z}_{\Psi}, k} \mathscr{C}(\mathbb{Z}_{\Psi}) \right) \end{split}$$

where for each  $(\mathbb{Z}_{\Psi}, k)$ , there are i, i' such that  $m_{\mathbb{Z}_{\Psi}, k, i} = 0$  and  $m'_{\mathbb{Z}_{\Psi}, k, i'} = 0$ . Suppose that both  $\Phi$  and  $\Phi'$  have same the image under  $h_{\mathbb{C}}$ , then  $\Phi' - \Phi \in \operatorname{Ker}(h) = \mathcal{G}_0(\operatorname{Rep}_{\mathbb{D}, ss}(\mathbb{W}_F))$ . We thus get an equality of the form

$$\Phi - \Phi' = \bigoplus_{k \geq 1, \mathbb{Z}_{\Psi} \in \mathfrak{l}(W_F)} a_{\mathbb{Z}_{\Psi}, k}([0, k-1] \otimes_{ss} \operatorname{St}_0(\mathbb{Z}_{\Psi}) - [0, k-1] \otimes_{ss} \mathscr{C}(\mathbb{Z}_{\Psi})),$$

where all sums are finite. Set  $J^+$  to be the set of pairs  $(\mathbb{Z}_{\Psi}, k)$  such that  $a_{\mathbb{Z}_{\Psi}, k} \ge 0$  and  $J^-$  to be the set of pairs  $(\mathbb{Z}_{\Psi}, k)$  such that  $b_{\mathbb{Z}_{\Psi}, k} := -a_{\mathbb{Z}_{\Psi}, k} > 0$ . We obtain

$$\begin{split} \Phi \oplus \bigoplus_{(\mathbb{Z}_{\Psi},k) \in J^{-}} b_{\mathbb{Z}_{\Psi},k}[0,k-1] \otimes_{\operatorname{ss}} \operatorname{St}_{0}(\mathbb{Z}_{\Psi}) \oplus \bigoplus_{(\mathbb{Z}_{\Psi},k) \in J^{+}} a_{\mathbb{Z}_{\Psi},k}[0,k-1] \otimes_{\operatorname{ss}} \mathscr{C}(\mathbb{Z}_{\Psi}) \\ = \Phi' \oplus \bigoplus_{(\mathbb{Z}_{\Psi},k) \in J^{-}} b_{\mathbb{Z}_{\Psi},k}[0,k-1] \otimes_{\operatorname{ss}} \mathscr{C}(\mathbb{Z}_{\Psi}) \oplus \bigoplus_{(\mathbb{Z}_{\Psi},k) \in J^{+}} a_{\mathbb{Z}_{\Psi},k}[0,k-1] \otimes_{\operatorname{ss}} \operatorname{St}_{0}(\mathbb{Z}_{\Psi}) \end{split}$$

in  $[\operatorname{Rep}_{D,ss}(W_F)]$ . Now take  $(\mathbb{Z}_{\Psi},k) \in J^+$ , there is i such that  $m_{\mathbb{Z}_{\Psi},k,i}=0$ . Comparing the occurence of  $[0,k-1]\otimes_{ss} v^i\Psi$  on the left and right hand sides of the equality we obtain

$$0 = m'_{\mathbb{Z}_{\Psi}, k, i} + a_{\mathbb{Z}_{\Psi}, k} \Rightarrow a_{\mathbb{Z}_{\Psi}, k} = 0.$$

Hence we just proved that  $a_{\mathbb{Z}_{\Psi},k} = 0$  for all  $(\mathbb{Z}_{\Psi},k) \in J^+$ . The symmetric argument shows that for  $(\mathbb{Z}_{\Psi},k) \in J^-$ , there is i' such that

$$m_{\mathbb{Z}_{\Psi},k,i'} + b_{\mathbb{Z}_{\Psi},k} = 0 \Rightarrow b_{\mathbb{Z}_{\Psi},k} = 0,$$

which is impossible by assumption. Hence  $J = J^+$  and  $a_{\mathbb{Z}_{\Psi},k} = 0$  for all  $\mathbb{Z}_{\Psi} \in J$ , which implies  $\Phi = \Phi'$ , so  $h_{\mathbb{C}}$  is indeed injective.

For the next assertion, suppose that  $h_C(\oplus_{\Phi \in [\operatorname{Indec}_{D,ss}(W_F)]} n_\Phi \Phi) \in \operatorname{Im}(h_C)$ . Take  $\Phi_0 \in [\operatorname{Indec}_{D,ss}(W_F)]$  and consider  $h_C(\oplus_{\Phi \in [\operatorname{Indec}_{D,ss}(W_F)]} n_\Phi \Phi) \oplus h_C(\Phi_0)$ . If  $\Phi_0$  "completes a cycle" of  $\bigoplus_{\Phi \in \operatorname{Indec}_{D,ss}(W_F)} n_\Phi \Phi$ , i.e. if  $\Phi_0 = [0,k] \otimes_{ss} \Psi$  with  $\Psi$  an irreducible representation  $\Psi$  of  $W_F$ , and if all other elements of  $[0,k] \otimes_{ss} \mathbb{Z}_{\Psi}$  appear in  $\bigoplus_{\Phi \in \operatorname{Indec}_{D,ss}(W_F)} n_\Phi \Phi$  as representations  $[0,k] \otimes_{ss} v^j \Psi$  with corresponding multiplicities  $n_{[0,k] \otimes_{ss} v^j \Psi} \geqslant 1$ , then setting  $I = \{[0,k] \otimes_{ss} v^j \Psi, j=1,\ldots,o(\Psi)-1\}$ , one gets

$$h_{\mathbb{C}}(\oplus_{\Phi \in [\operatorname{Indec}_{\mathbb{D}} \operatorname{ss}(W_{E})]} n_{\Phi} \Phi) \oplus h_{\mathbb{C}}(\Phi_{0}) = h_{\mathbb{C}}(\oplus_{\Phi \notin I} n_{\Phi} \Phi \oplus \oplus_{\Phi \in I} (n_{\Phi} - 1) \Phi \oplus \mathscr{C}(\mathbb{Z}_{\Psi})).$$

If  $\Phi_0$  does not complete a cycle, one has

$$h_{\mathbb{C}}(\oplus_{\Phi \in [\operatorname{Indec}_{\mathbb{D},\operatorname{ss}}(W_E)]} n_{\Phi}\Phi) \oplus h_{\mathbb{C}}(\Phi_0) = h_{\mathbb{C}}(\oplus_{\Phi \in \operatorname{Indec}_{\mathbb{D},\operatorname{ss}}(W_E)} n_{\Phi}\Phi \oplus \Phi_0).$$

The assertion follows by induction.

In fact the tensor product operation descends on  $Im(h_C)$ .

**Proposition 10.** The additive subgroup  $\mathcal{G}_0(\operatorname{Rep}_{D,ss}(W_F))$  of the ring  $\mathcal{G}(\operatorname{Rep}_{D,ss}(W_F))$  is in fact an ideal. Moreover  $\operatorname{Im}(h_C)$  is stable under  $\otimes_{ss}$ . In particular this endows  $C_{D,ss}(W_F)$  with a natural semiring structure, and  $h_C$  becomes a semiring isomorphism from  $C_{D,ss}(W_F)$  to  $\operatorname{Im}(h_C)$ .

**Proof.** For the first part, taking  $\Psi_0 \in \operatorname{Irr}(W_F)$ , it is enough to prove that for any  $\Phi_1 \in \operatorname{Irr}_{D,ss}(W_F)$  and  $k, l \geq 0$ , the tensor product  $[0,k] \otimes_{ss} (\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) - \mathscr{C}(\mathbb{Z}_{\Psi_0})) \otimes_{ss} [0,l] \otimes_{ss} \Phi_1$  belongs to  $\mathscr{G}_0(\operatorname{Rep}_{D,ss}(W_F))$ . By associativity and commutativity of tensor product, and because  $[0,i] \otimes_{ss} [0,j]$  is always a sum of segments by Lemma 2, it is enough to check that  $(\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) - \mathscr{C}(\mathbb{Z}_{\Psi_0})) \otimes_{ss} \Phi_1$  belongs to  $\mathscr{G}_0(\operatorname{Rep}_{D,ss}(W_F))$ . Suppose first that  $\Phi_1$  is nilpotent, i.e.  $\Phi_1 = \Psi_1 \in \operatorname{Irr}(W_F)$ . Because  $\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) \otimes_{ss} \Psi_1$  is fixed by  $\nu$  under twisting and because its Deligne operator is zero, we get that

$$\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) \otimes_{\operatorname{ss}} \Psi_1 = \bigoplus_{\mathbb{Z}_{\Psi} \in \operatorname{I}(W_F)} a_{\mathbb{Z}_{\Psi}} \operatorname{St}_0(\mathbb{Z}_{\Psi}).$$

On the other hand because  $\mathscr{C}(\mathbb{Z}_{\Psi_0}) \otimes_{ss} \Psi_1$  is fixed by  $\nu$  and because its Deligne operator is bijective we obtain

$$\mathcal{C}(\mathbb{Z}_{\Psi_0}) \otimes_{ss} \Psi_1 = \bigoplus_{\mathbb{Z}_{\Psi} \in \mathfrak{l}(W_F)} b_{\mathbb{Z}_{\Psi}} \mathcal{C}(\mathbb{Z}_{\Psi}).$$

Now observing that both  $\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) \otimes_{\operatorname{ss}} \Psi_1$  and  $\mathscr{C}(\mathbb{Z}_{\Psi_0}) \otimes_{\operatorname{ss}} \Psi_1$  have the same  $W_F$ -support, it implies that  $a_{\mathbb{Z}_\Psi} = b_{\mathbb{Z}_\Psi}$  for all lines  $\mathbb{Z}_\Psi$ , form which we deduce that  $(\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) - \mathscr{C}(\mathbb{Z}_{\Psi_0})) \otimes_{\operatorname{ss}} \Phi_1 \in \mathscr{G}_0(\operatorname{Rep}_{D,\operatorname{ss}}(W_F))$ . With the same arguments we obtain that  $(\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) - \mathscr{C}(\mathbb{Z}_{\Psi_0})) \otimes_{\operatorname{ss}} \Phi_1 = 0 \in \mathscr{G}_0(\operatorname{Rep}_{D,\operatorname{ss}}(W_F))$  when  $\Phi_1$  is of the form  $\mathscr{C}(\mathbb{Z}_{\Psi_1})$  (because in this case both  $\operatorname{St}_0(\mathbb{Z}_{\Psi_0}) \otimes_{\operatorname{ss}} \Phi_1$  and  $\mathscr{C}(\mathbb{Z}_{\Psi_0}) \otimes_{\operatorname{ss}} \Phi_1$  have bijective Deligne operators).

The following proposition is proved in a similar, but simpler manner than the propositions above.

**Proposition 11.** Let  $h_{\text{Nilp}}$  be the restriction of

$$h: \mathcal{G}(\operatorname{Rep}_{D.ss}(W_F)) \to \mathcal{G}(\operatorname{Rep}_{D.ss}(W_F))/\mathcal{G}_0(\operatorname{Rep}_{D.ss}(W_F))$$

to  $Nilp_{D.ss}(W_F)$ , then  $h_{Nilp}$  is a semiring isomorphism and  $Im(h_{Nilp}) = Im(h_C)$ .

The above propositions have the following immediate corollary.

**Corollary 12.** One has  $CV = h_C^{-1} \circ h_{Nilp}$ , in particular it is a semiring isomorphism from  $Nilp_{D.ss}(W_F)$  to  $C_{D,ss}(W_F)$ .

Acknowledgements

We thank the referee for useful comments and corrections.

#### References

- [1] M. Harris, R. Taylor, *The geometry and cohomology of some simple Shimura varieties*, Annals of Mathematics Studies, vol. 151, Princeton University Press, 2001, with an appendix by Vladimir G. Berkovich, viii+276 pages.
- [2] G. Henniart, "Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique", *Invent. Math.* **139** (2000), no. 2, p. 439-455.
- [3] R. Kurinczuk, N. Matringe, "Rankin-Selberg local factors modulo  $\ell$ ", Sel. Math., New Ser. 23 (2017), no. 1, p. 767-811.
- [4] ——, "The  $\ell$ -modular local Langlands correspondence and local constants", to appear in *J. Inst. Math. Jussieu*, 2018.

- [5] G. Laumon, M. Rapoport, U. Stuhler, "D-elliptic sheaves and the Langlands correspondence", *Invent. Math.* 113 (1993), no. 2, p. 217-338.
- [6] P. Scholze, "The local Langlands correspondence for  $GL_n$  over p-adic fields", Invent. Math. 192 (2013), no. 3, p. 663-715.
- [7] M.-F. Vignéras, "Correspondance de Langlands semi-simple pour GL(n, F) modulo  $l \neq p$ ", Invent. Math. 144 (2001), no. 1, p. 177-223.