
72 pt
1 in

25.4 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for first page
Paper size this page US Letter

A Semi-Automatic Method To Segment The Left Atrium in MR
Volumes With Varying Slice Numbers

Fatmatülzehra Uslu 1, Marta Varela 2 and Anil A. Bharath 3

Abstract— Atrial fibrillation (AF) is the most common sus-
tained arrhythmia and is associated with dramatic increases in
mortality and morbidity. Atrial cine MR images are increas-
ingly used in the management of this condition, but there are
few specific tools to aid in the segmentation of such data. Some
characteristics of atrial cine MR (thick slices, variable number
of slices in a volume) preclude the direct use of traditional
segmentation tools. When combined with scarcity of labelled
data and similarity of the intensity and texture of the left
atrium (LA) to other cardiac structures, the segmentation of the
LA in CINE MRI becomes a difficult task. To deal with these
challenges, we propose a semi-automatic method to segment
the left atrium (LA) in MR images, which requires an initial
user click per volume. The manually given location information
is used to generate a chamber location map to roughly locate
the LA, which is then used as an input to a deep network
with slightly over 0.5 million parameters. A tracking method is
introduced to pass the location information across a volume
and to remove unwanted structures in segmentation maps.
According to the results of our experiments conducted in an
in-house MRI dataset, the proposed method outperforms the
U-Net [1] with a margin of 20 mm on Hausdorff distance and
0.17 on Dice score, with limited manual interaction.

I. INTRODUCTION

Atrial fibrillation (AF) affected 32.5 million people world-
wide in 2010 and by 2030 its incidence in Western Eu-
rope is expected to rise to 3% [2]. AF is independently
associated with a two-fold increase in all-cause mortality
and increased morbidity, particularly stroke, heart failure and
cognitive impairment [2]. Outcomes of AF have been linked
to remodelling of the left atrium, altering its shape and size
[3].

CINE bSSFP MRI is an imaging modality used to ef-
ficiently analyse the function of the heart, enabling the
calculation of maximal volumes, stroke volume and ejection
fractions of the left atrium (LA) [4]. However, the estimation
of these biomarkers requires the segmentation of the LA from
CINE MRI. In clinics, the segmentation of the LA can be
performed manually by human experts or via commercial
software based on semi-automatic methods [5], the latter
requiring some user input to delineate the wall of the
organ [6]. In both cases, manual input may add bias to the
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outputs and the inter-variation of the manual segmentations
performed by human experts may not negligible [7].

Until recently, model based and atlas based methods were
found to outperform their counterparts [8]. Recently some
deep learning based methods have been proposed for the
segmentation of the cardiac structures [8], [9]. However, very
few of them have been developed for the segmentation of the
LA [10], [11], [12], [13].

MRI scans in typical clinical settings may have lower
spatial resolution and thicker slices than required for optimal
measurement. Also, the number of slices in the z axis may
dramatically vary from patient to patient, as demonstrated
in Figure 4 for our in-house dataset. Given the varying
number of slices, the generation of a shape priori per slice,
as proposed in [14] for the ventricles, may not be possible.
Furthermore, in CINE-MRI, slices are typically acquired in
different breath-holds, which may lead to inconsistencies in
the location of the atrium in adjacent slices, preventing the
use of 3D consistency as a guide for segmentation.

In order to deal with the challenges in the segmentation
of the LA, we propose a semi-automatic method using an
encoder-decoder deep network. The network is provided by
a chamber location map, which softly constrains the location
of the LA. The generation of the map requires only a mouse
click per image stack by a medical expert to locate the
LA. In contrast to semi-automatic single-click region grow-
ing methods, working on pixel-wise similarity to perform
segmentation, and usually requiring strong edge information
to stop growing, we use the mouse-click provided location
for abstract level-object detection [15]. A simple tracking
method is incorporated into the proposed method to sequen-
tially pass the location information provided by the expert to
the next slice. The results of our experiments conducted on
an in-house dataset show that the proposed chamber location
map significantly improves the segmentation performance of
a deep network when compared with that of fully automatic
segmentation by the same network.

II. METHOD

The proposed method consists of a deep network, perform-
ing the segmentation of the LA given its rough location by a
human operator or a simple tracking method in an MR slice.
The tracking algorithm also automatically removes unwanted
structures in a segmentation map.

A. The Proposed Architecture

In medical image analysis, encoder-decoder networks,
such as U-Net [1], have been widely used for image seg-
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mentation [9], [8]. In this work, we use a shallow encoder-
decoder network with 12 convolutional, two max pooling
and two upsampling layers containing 3 skip connections, as
illustrated in Figure 1.In contrast to common architectures,
we incorporate features in the first layer for the second time
to decoding path in order to refine edges in segmentation
maps. The total parameter count of the proposed network is
around 600, 000. We use batch normalisation right after the
convolutional layers, followed by a ReLU activation func-
tion. The final layer uses the sigmoid function to generate
the output masks.

The network takes three types of images as input (see
Figure 2): (a) the current slice to be segmented, (b) an
edge emphasised version of the current slice and (c) a
corresponding chamber location map, explained below. We
emphasise edge information (see Figure 2 (b)) by subtracting
the median of intensities from images , and then taking the
square of the result.

B. A Chamber Location Map

As shown in Figure 2(a) and Figure 5, the blood pool
inside the LA has very similar intensity and texture to
that of other cardiac structures. Also, because the LA has
very thin walls and partial volume effect is severe due to
thick slices, edge information in the figures is not strong
enough (even after emphasising edges as in Figure 2(b)) for
a segmentation method to delineate them. When there is not
a sufficient amount of training data, a deep network may
not well localise the LA given its challenging appearance. In
order to guide the network to segment the right structure, we
introduce a way to generate chamber location maps. Figure
2(c) demonstrates some examples of our chamber location
maps for corresponding images.

A chamber location map Pl(x, y) can be generated by
using a Gaussian-like radial weighting function, given by
(1):

Pl(x, y) = e−
(x−µx)2+(y−µy)2

σ2 , (1)

where µx, µy are the centroid location of an estimate of the
LA, which can be manually input by a medical expert with a
mouse click on the current slice or can be estimated from a
previously segmented adjacent slice. Also, a region detector
may be used to estimate µx, µy [12], [13] when there is
adequate amount of training data available. σx = σy = σ
are the spread of the function along x and y axis, which
are manually set. Because the size and orientation of the
LA may abruptly change in subsequent slices, we fix σ for
the complete dataset and encourage the network to learn the
actual location of the LA by using our denoising method as
follows.

a) A Denoising Method For Training With Prior In-
formation: When a deep network is fed with a chamber
location map, it may simply associate a probability level of
the map with segmentation masks regardless of any structural
information in the other input images. In order to avoid this
situation, we purposefully add two types of noise during

training: (i) noisy centroid locations µ̃x, µ̃y and (ii) noisy
spread parameters σ̃.

The first one imitates a weighted centroid location of
the imperfectly segmented structure in an adjacent slice.
This is realised by moving centroid locations calculated in
the previous slice up to 5 pixels (5 mm) in any direction
with a probability of 0.5. The second noise type changes
the size of the LA relative to the predetermined σ of the
location map. This is performed by rescaling input images
and segmentation masks during data augmentation while
maintaining the size of the location map, as shown in Figure
3.

C. A Tracking Method

After segmentation of the LA in an MR slice, some
unwanted structures may also be labelled as LA. We propose
a simple tracking method (see Algorithm 1 in Appendix)
to (i) automatically remove the unwanted structures and (ii)
to optionally pass prior location information across slices
through an MR volume. When the tracking method performs
both tasks, we call this operation “Mode 1”. In contrast, if
it only performs task (i), it is called “Mode 2”.

We use Otsu’s threshold to automatically binarize the
output maps generated by our network, then take 3D con-
sistency of the LA in a volume into account to keep a single
segmented region. Our markers for 3D consistency are (i)
the maximum overlapping region between a candidate region
in the current slice and the region kept in a previous slice
when tracking is in “Mode 1” and (ii) the minimum distance
between the centroid of a candidate region in the current slice
and an estimate of a centroid location of the LA in the same
slice, provided by the user, when tracking is in “Mode 2”. We
assess the agreement of overlapping regions with the Dice
score. When tracking is in “Mode 1”, the centroid location
of the segmentation mask is also calculated to generate a
chamber location map for the next slice.

Algorithm 1: The Proposed Tracking Algorithm
1 Set tracking “Mode”, 1 or 2 ;
2 Get output maps generated by the proposed method ;
3 Binarize the output maps with Otsu’s threshold ;
4 Find independent regions in the binarized output maps with connected component analysis ;
5 for each region do
6 if “Mode 1” then
7 Calculate Dice score between the region and ground truth segmentation mask of

the previous slice ;
8 else
9 Get the centroid location of the left atrium ;

10 Calculate the distance between the centroid of the region and that of the ground truth
segmentation mask of the current slice ;

11 end
12 end
13 if “Mode 1” then
14 Return the region with the maximum Dice score ;
15 Calculate the centroid location of the region ;
16 Generate a chamber location map for the next slice ;
17 else
18 Return the region with the minimum distance ;
19 end

III. MATERIAL

47 image stacks from AF patients (31-72 years old, 75%
male, all in sinus rhythm during scanning) were acquired
at St Thomas’ Hospital, London, UK, in a 1.5T Philips
Ingenia scanner, under ethical approval and following written
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Fig. 1. The proposed network for the segmentation of the LA: upsampling modules use bilinear interpolation to upsample input features. S and M̂
respectively denote the set of input images and the output of the network.

(a) (b) (c) (d)

Fig. 2. Input images fed to the proposed network during training and target
segmentation masks, which are cropped at the image center: (a) raw MR
slices, (b) edge emphasised version of slices in (a), (c) proposed chamber
location maps for σ = 30 and (d) target segmentation masks.

Fig. 3. Image scaling as a regularization to improve segmentation
performance: Red bells show a 3D representation of a chamber location
map whose standard deviations and mean locations are the same. Green
ellipses show a target segmentation mask; (a) in its original size, (b) after
scaling by a factor of 0.5 and (c) by a factor of 2 (Best viewed in color.).

informed consent. CINE MR images were acquired in a
short-axis view, planned with the help of traditional 2- and 4-
chamber scans. A 2D bSSFP protocol (flip angle: 60◦ TE/TR:
1.5/2.9 ms, SENSE factor 2). Images were acquired with
ECG-based retrospective gating in a typical field of view of
385 x 310 x 150 mm, an acquisition matrix of 172 x 140
and a slice thickness of 10 mm. Images were reconstructed
to a resolution of 1 x 1 x 10 mm and 50 cardiac phases
with 70% view sharing. Depending on the size of the heart,
the number of slices along the z axis varies between 2 to 7
across the dataset as demonstrated in Figure 4.

The images of the LA at atrial systole (AS), the end of
ventricle systole (ES) and the end of ventricle diastole (ED)
of a cardiac phase were manually labelled by a medical
expert and then reviewed by one of the authors. Generally,
the dataset suffers from partial volume effect due to thick
slices and relatively low contrast (see Figure 5). Because
the size of the dataset is very small – 47 image stacks – we
divided it into 9 sub-sets, where we trained our network with
8 sub-sets and evaluated its performance on the remaining
one.
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Fig. 4. The normalised histograms of slice numbers of MRIs for (a) ED
phase (b) ES phase and (c) AS phase.

IV. EXPERIMENTAL SETTINGS

Before normalising intensities of MR slices in the range of
[0, 1], we removed intensities at the 1st and 100th percentiles
of the intensity histogram. Finally, a contrast limited adaptive
histogram equalisation (CLAHE) operation [16] was used to
improve the contrast of MRI images, with a tile grid size set
to 8× 8 pixels and a clip limit of 3.

During training, on-the-fly data augmentation was applied
to input images, which included translating images up to 20
pixels (20 mm) in any direction, rotating by an angle between
−450 and 450 and scaling, each with a probability of 0.2.
Input images were cropped around their centers to be 96×96
pixels.

We optimised the parameters of our network with the
Adam algorithm, until there was no change in performance
metrics observed. Training usually lasted between 60 and
150 epochs. We set the initial learning rate to 0.00008 and
exponentially decayed it by a factor of 0.92, with a mini
batch size of 32 images. In order to prevent the network
from over-fitting, a weight decay of 0.25 was used.

Parameters in the tracking algorithm and the chamber lo-
cation map were tuned to increase Dice score on a validation
dataset. We set the maximum size of the LA to 100 pixels
(100 mm2), the maximum distance between centroids as 8
pixels (8 mm) and the σ, required to calculate Pl , to 60
pixels (60 mm)(see Section II-B and II-C for details.).

V. PERFORMANCE CRITERIA

We used Python libraries to calculate Hausdorff distance
and Dice score1 and the sensitivity and precision2. The Dice
score, sensitivity and precision metrics were calculated for
the complete test set. Hausdorff distances were computed on
a slice-by-slice basis and the average Hausdorff distance is
reported.

1https://pypi.org/project/MedPy/
2https://scikit-learn.org/stable/
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VI. RESULTS

We conducted three experiments to assess the performance
of the proposed network on left atrium segmentation, with
or without chamber location maps, and how frequently the
use of these maps affected the segmentation performance of
the proposed method. Table I tabulates our findings where
average performance metrics over the three cardiac phases
are presented.

a) Experiment 1: To compare the performance of the
proposed network with a standard network, we trained a U-
Net [1], with a similar parameter count to our network. In the
experiment, the U-Net took only an MR slice as an input, in
contrast to our network, also fed with the proposed edge
enhanced MR slice. Both networks were trained without
chamber location maps and then their segmentation maps
were refined with our tracking method in “Mode 2”. Ac-
cording to Table I, our network outperforms the U-Net on
Dice score, Hausdorff distance and precision, with a large
margin.

b) Experiment 2: In the experiment, the user was asked
to click a location only at the top slice of an image stack at
a cardiac phase (e.g. ED). Chamber location maps for other
slices were obtained with the use of our tracking method
working in “Mode 1”. During training and evaluation, we
simulated user inputs by calculating centroid location of
ground truth segmentation masks. According to Table I,
there is a large improvement over all performance metrics
when compared with those obtained for the first experiment
such that Dice score increases from 0.82 to 0.92, Hausdorff
Distance reduces from 16.26 mm to 8.64mm, precision rises
from 0.92 to 0.94 and sensitivity increases from 0.75 to 0.90.

c) Experiment 3: In contrast to the second experiment,
user input was required for each slice of an image stack.
The tracking method was used in “Mode 2” to only refine
the segmentation maps. Despite using more user inputs in
the experiment, it appears that there is a slight improvement
observed in Dice score, precision and sensitivity metrics,
and a considerable decrease on Hausdorff distance when
compared with the performance of the second experiment
(see Table I).

In the same experiment, we also assess the effect of
variation in user-selected centroid locations on segmentation
performance. To set this scenario, we independently added
±3 pixels to x and y positions of the entire set of the
manually selected centroid locations. For each of the test
sub-sets, we ran the experiment 5 times and averaged their
results. As a result of the perturbations on centroid locations,
we observe a slight increase of 1.1 mm in Hausdorff distance
and a slight decrease of 0.01 in sensitivity (see Table I).

d) The Effect Of Varying Slice Numbers In Segmenta-
tion Performance: Figure 5 exemplifies the impact of varying
slice number for our MR image dataset at segmentation
performance. As observed in the figure, in contrast to case
A, segmentation methods are more prone to failure in the
delineation of the LA in case B and C. As understood from
the figure, the use of chamber location maps improves the
segmentation performance of the proposed method for the all

image stacks, case A, B and C. We can also see that there
is no disadvantage of using the proposed method in “Mode
2”, when the size and shape of the LA changes smoothly, as
in the case of A and C. However, in case B, the shape and
size of the LA changes abruptly and also the wall of the LA
is not distinguishable at the third row. This leads to a leak
in the segmentation, when tracking in “Mode 2”. A similar
situation happens in case C when tracking in “Mode 1” as
a result of vague contrast of the LA wall.

VII. CONCLUSION

In this study, we introduced a semi-automatic method to
segment the LA in MR image volumes sampled with thick
slices in small datasets. For such datasets, the number of
slices in MRIs may also significantly vary. As a consequence,
there may be a large variation observed in the appearance
of the LA regarding its shape and size. To deal with these
challenges, we proposed a chamber location map which
is given as an input image to a deep network, to locate
the LA. Our approach also includes a tracking method to
refine segmentation maps. We showed a large and consistent
improvement on segmentation performance on a small in-
house dataset when a single slice per volume was provided
with manually detected centroid locations. When there are
sufficient quantitites of labelled training data available, user
inputs could be replaced with an automatic region detector,
such as provided by region proposal networks [17], [18].
In this work, we manually tuned parameters used in the
generation of chamber location maps and tracking methods.
Future work will investigate how the parameters can be
automatically tuned according to image resolution and the
actual size of the LA.
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