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Abstract

In this paper, we present a methodology for simulating nanoparticle forma-

tion in a turbulent flow by coupling Direct Numerical Simulation (DNS) and

population balance modelling. The population balance equation (PBE) is

solved via a discretisation method employing a composite grid that provides

sufficient detail over the wide range of particle sizes reached during the pre-

cipitation process. The coupled DNS/PBE approach captures accurately the

strong interaction between the dynamics of turbulent mixing and particle

formation processes. It also allows the calculation of the particle size dis-

tribution (PSD) of the product and enables an investigation on how it is

controlled by turbulent mixing. Finally, it provides the statistics of kinetic

processes and their timescales so that further analysis can be performed. The

methodology is applied to the simulation of experiments of hydrodynamics

and nanoparticle precipitation in a T-mixer (Schwertfirm et al., 2007, Int.

∗Corresponding author
Email addresses: hin.tang16@imperial.ac.uk (Hin Yan Tang),

s.rigopoulos@imperial.ac.uk (Stelios Rigopoulos), g.papadakis@imperial.ac.uk
(George Papadakis)

Preprint submitted to International Journal of Heat and Fluid Flow November 15, 2020



J. of Heat and Fluid Flow 28, pp. 1429-1442; Schwarzer et al., 2006, Chem.

Eng. Sci. 61, pp. 167-181), and the agreement with the experimental results

is very good.
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1. Introduction

A number of processes involve the formation and growth of particles

within a fluid via physical or chemical mechanisms. Examples include crys-

tallisation, atmospheric aerosols and soot formation. In these processes, the

mechanisms of particle formation depend on factors such as temperature or

concentration of chemical species, whose values can vary significantly within

a flow field. The interaction of fluid dynamics, mixing and particle forma-

tion plays a crucial role on the process outcome and controls the properties

of the particulate product. A study of these complex interactions is, how-

ever, a challenging problem, particularly in the case of turbulent flow, which

induces strong temporal and spatial fluctuations in the transported species

and therefore further non-linear effects on the particle dynamics.

Precipitation is a fast crystallisation process that is often driven by a

chemical reaction. Reviews of precipitation can be found in Söhnel and Gar-

side (1992), Mersmann (2001) and Myerson et al. (2019). The crystals that

are formed exhibit a range of particle sizes, and the properties and quality of

the product is strongly related to the particle size distribution (PSD). In most

processes, precipitation occurs under turbulent flow conditions and mixing

determines the local environment for chemical reaction and precipitation.
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Stirred tanks and jet impingement mixers are common types of reactors em-

ployed in such processes; the latter, in particular, have often been employed

for nanoparticle precipitation due to their mixing efficiency. Achieving the

right mixing conditions is thereby crucial for controlling the PSD.

Since precipitation is a fast process, it is very difficult to obtain experi-

mentally detailed information about the local distribution of supersaturation,

nucleation and growth. A numerical model coupling turbulence and precipi-

tation dynamics could thus shed light on the underlying mechanisms at play

during turbulent precipitation. The problem of modelling a particulate pro-

cess involves two elements: fluid dynamics and population balance equation

(PBE). The latter is a dynamic equation that describes the change in the

PSD due to the particle formation processes.

Two approaches have been employed for accounting for the effects of

flow and mixing on particle formation: lumped models and coupled fluid

dynamics-PBE models. In the first approach, the flow effects are approx-

imated via fully mixed or plug flow compartments, while the mixing ef-

fects are modelled via parameters. These parameters are usually averaged

quantities, such as the turbulent kinetic energy and its dissipation rate, ob-

tained either from experiments or CFD. Examples of such models can be

found in Schwarzer and Peukert (2004b,a), which employs a modified ver-

sion of the Engulfment-Deformation-Diffusion (EDD) model (Baldyga and

Bourne, 1984a,b; Ba ldyga and Bourne, 1999), and in Zauner and Jones

(2000), which is based on the Segregated Feed Model (SFM) proposed by

Villermaux (1989). Rigopoulos and Jones (2001, 2003a,b) proposed a method-

ology for coupling compartmental models with CFD and applied it on gas-
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liquid precipitation. This type of approach, however, cannot account for the

strong coupling between mixing and precipitation in the case of fast reactions,

in which case the space and time scales of the particle formation processes

can be very small and vary considerably within each compartment.

A comprehensive account of the interplay of fluid dynamics and particle

formation processes requires the direct coupling of the PBE with the equa-

tions of fluid dynamics. So far, most studies of this type are based on the

Reynolds-Averaged Navier Stokes (RANS) approach (Ba ldyga and Orciuch,

2001; Gavi et al., 2007a; Di Veroli and Rigopoulos, 2010; Wu et al., 2017).

When averaging is applied to the PBE, however, several unclosed terms ap-

pear in the nucleation and growth terms; these terms were systematically

studied by Rigopoulos (2007), where a PDF approach was also proposed

for modelling them. Subsequently, Di Veroli and Rigopoulos (2009, 2010)

applied the RANS-PBE-PDF approach to turbulent precipitation. In the

latter of these works, it was demonstrated that the unknown fluctuations

may have competing effects that can lead to erroneous conclusions when ne-

glected. Other works have employed RANS closures based on presumed PDF

methods (Ba ldyga and Orciuch, 1997, 2001), where the shape of the PDF is

presumed rather than calculated.

In recent years, the application of Large Eddy Simulation (LES) to chem-

ical reactions in the liquid phase and to precipitation has started to be ex-

plored. In the case of very fast and localised reactions, such as combustion

and precipitation, subgrid models for turbulence-chemistry and turbulence-

particle formation interaction are required, as the reactions can occur at the

subgrid scales. Makowski and Ba ldyga (2011) conducted an LES of pre-
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cipitation with a presumed PDF subgrid closure akin to the model used in

Ba ldyga and Orciuch (1997) in the context of RANS. The extension of the

transported PDF method to LES was first proposed by Gao and O’Brien

(1992) and was subsequently explored in combustion. In liquid flows, van

Vliet et al. (2005) investigated a parallel-competitive reaction system, while

van Vliet et al. (2007) investigated a polymerisation reaction; in both studies,

a subgrid probability density function (PDF) was employed in conjunction

with the Interaction with the Mean (IEM) mixing model. For turbulent

reacting flows with particle formation, interactions between turbulence and

particle formation processes such as nucleation and growth at the subgrid

scales are possible. To account for these interactions, the PBE-PDF method

was extended to LES by Sewerin and Rigopoulos (2017b), where it was ap-

plied to aerosol condensation. Subsequent works applied the LES-PBE-PDF

to soot formation (Sewerin and Rigopoulos, 2018, 2019).

The modelling of turbulent precipitation via DNS and PBE was first

carried out by Schwarzer et al. (2006), Gradl et al. (2006) and Gradl and

Peukert (2009). In these studies, it was shown that the coupling of DNS and

PBE allows considerable insights into the interaction of fluid dynamics and

particle formation processes. However, the PBE was solved in the form of

a post-processing step along trajectories of fluid elements. The information

provided from the DNS to the PBE post-processor included the local energy

dissipation and the evolution of a passive scalar, and was used for the com-

putation of the parameters of a mixing model (a modified version of the EDD

model) that was applied along the trajectories. Apart from the question of

statistical convergence (700 trajectories were computed), an issue with this
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approach is the lack of direct calculation of the coupling between the particle

and liquid phase via species consumption.

The solution of the PBE also poses considerable challenges. Various meth-

ods have been proposed, a recent review of which can be found in Rigopoulos

(2019), but the methods that have been coupled with CFD in turbulent flows

are mainly the moment methods and the discretisation methods. The former,

initially introduced by Hulburt and Katz (1964), involves solving equations

for the evolution of the moments of the distribution. The moments are in-

tegral properties of the PSD and some of them have a physical meaning -

for example, when a distribution with respect to volume is considered, the

zeroth and first moment represent the total number and total volume of par-

ticles, respectively. The use of moment methods is motivated by the reduced

memory and CPU requirements that they incur, as the number of variables is

reduced. However, the PSD is not predicted and assumptions must be made

for reconstructing it from the moments. Furthermore, the moment equations

are unclosed unless the functions representing the particle dynamics (such

as growth and aggregation) assume specific forms. Several approaches have

been proposed to obtain closure for the moment equations, such as series

expansions, presumed distributions, moment interpolation and quadrature

methods. Among these, methods in the last category have found consider-

able application to precipitation. These methods originate in the Quadrature

Method of Moments (QMOM) (McGraw, 1997), where the distribution is re-

garded as the weight function and the remaining part of the integrand as the

function to be integrated. In a further development, in the Direct Quadra-

ture method of moments (DQMOM) (Marchisio and Fox, 2005), ODEs are
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derived for obtaining the quadrature parameters directly. This approach

was employed in the modelling of precipitation by Gavi et al. (2007b) and

Metzger and Kind (2017).

Discretisation methods, on the other hand, discretise the PBE into inter-

vals, or sections (hence they are also called ’sectional methods’). They do

not have the closure issues of moment methods and predict directly the dis-

tribution, rather than its moments. While the CPU requirements are higher,

the PBE equations are not stiff and their solution can take only a small frac-

tion of the CPU time Liu and Rigopoulos (2019). Methods have also been

developed for addressing the two main challenges in discretisation methods.

The first one is the numerical diffusion in the growth term, which can be

mitigated with a high-resolution scheme (Qamar et al., 2006) or virtually

eliminated with the recently developed explicit adaptive grid method (Sew-

erin and Rigopoulos, 2017a). A hybrid Monte Carlo - discretisation method

Bouaniche et al. (2019) has also been proposed that overcomes this issue.

The second challenge is the conservation of moments in the integral aggre-

gation terms, for which several approaches have been developed; a review of

these can be found in Rigopoulos (2019).

In the present work, we present a methodology for coupling DNS of the

flow field with a discretised population balance approach for solving the PBE.

This approach has the following advantages: a) the flow field is fully re-

solved, thus accounting for all the temporal and spatial scales of turbulence,

b) the population balance is solved without closure assumptions, c) the de-

tailed PSD is predicted, and d) the DNS and PBE are directly coupled via

the source terms in the transport equations. The numerical aspects of the
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method, namely flow field simulation, convergence of PBE numerical solution

and source term coupling, are validated on their own before the presentation

of the results of the coupled approach. By preventing the compensation of

numerical and modelling errors, this approach will allow the investigation of

the effects of turbulent mixing on the PSD and the evaluation of the sources

of uncertainties. In addition, it should serve as a future model development

and validation platform.

2. The DNS-PBE methodology

2.1. Fluid dynamics and DNS

We assume incompressible flow and solve the continuity and Navier-

Stokes equations, which are shown below in Cartesian tensor notation:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂(ujui)

∂xj
= −1

ρ

∂p

∂xi
+
µ

ρ

∂2ui
∂xj∂xj

(2)

where ui is the velocity in i-th direction, p is the static pressure, ρ is the fluid

density and µ is the dynamic viscosity. The last two quantities are assumed

to be constant, as the mass fraction of ions in water is small.

The DNS is performed with our in-house code PANTARHEI, which has

been used extensively to simulate transitional and turbulent flows in bound-

ary layers, around airfoils, behind fractal grids and inside stirred vessels (Xiao

and Papadakis, 2017, 2019; Thomareis and Papadakis, 2017, 2018; Paul et al.,

2018; Başbuğ et al., 2018). The Navier-Stokes equations are discretised in

physical space using the finite volume method in a collocated, unstructured

grid. The fractional step method is used to extract pressure and correct
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velocities to satisfy the continuity equation. The Rhie and Chow (1983) in-

terpolation scheme is employed to compute the velocities at the faces of the

control volumes. Second order central approximation is used for both con-

vection and diffusion terms. For the transient terms, a third-order backward

difference scheme (BDF3) is employed:(
∂φ

∂t

)n+1

=
1

6∆t

(
11φn+1 − 18φn + 9φn−1 − 2φn−2

)
(3)

The orthogonal diffusion terms are treated implicitly, while the convection

and non-orthogonal diffusion terms are treated explicitly, using third-order

extrapolation (EXT3):

φn+1 = 3φn − 3φn−1 + φn−2 (4)

The numerical scheme is inviscidly stable up to a CFL number of 0.634,

Fishpool and Leschziner (2009). The matrix coefficients remain constant

and are reused in every time step. The resultant discretised equations are

solved using the Krylov subspace method GMRES implemented within the

PETSc library (Abhyankar et al., 2018; Balay et al., 2019). BoomerAMG

from the Hypre package (Falgout and Yang, 2002) is employed as an algebraic

multigrid preconditioner for the matrices of velocity and pressure correction.

2.2. PBE formulation

The PBE is formulated in terms of the number density of particles per

unit volume of particle and unit volume of solution, i.e. n(v; ~x, t)dv is the

concentration of particles with volume between v and v + dv at point ~x and

time t. For brevity, the dependence of variables on v, ~x and t will be omitted.

The PBE is:
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∂n

∂t
+
∂(uin)

∂xi
+
∂(G(C, v)n)

∂v
=

µ

Sc

∂2n

∂xi∂xi
+B(C)δ(v − v0) (5)

where B(C) and G(C, v) are the nucleation and growth rates respectively.

Both are functions of the composition, and the growth rate is also a function

of particle volume, as we will see in Sec. 3. Nucleation takes place at the

size of the nuclei, v0, and is thus represented by a delta function. The PBE

may include further terms for processes such as aggregation and breakage,

but these are not present in the experiment simulated (Schwarzer et al.,

2006) here. It must be noted that, when aggregation is not present, it is

customary to express the PBE in terms of a linear size dimension, such as

particle diameter. Our PBE solver has been developed to deal also with

aggregation (Liu and Rigopoulos, 2019), which is better captured in the

volume domain because aggregation events conserve particle volume. While

there is no aggregation in the experiments simulated here, the formulation in

terms of particle volume is retained; this does not make any difference, as the

two formulations are equivalent. The volume- and diameter-based number

density are related as follows:

n = nL
dL

dv
= nL

1

3
k
− 1

3
v v−

2
3 (6)

The dependence of nucleation and growth rates on the concentrations of

chemical species means that the PBE must be coupled with the species trans-

port equation:
∂Cα
∂t

+
∂(uiCα)

∂xi
=

µ

Sc

∂2Cα
∂xi∂xi

+Rα (7)
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2.3. PBE discretisation

The numerical solution of the PBE is carried out with our in-house solver

CPMOD. The PBE is discretised in the particle volume space to yield a set

of coupled partial differential equations for the discretised number densities,

nk:

∂nk
∂t

+
∂(uink)

∂xi
+
∂(G(C, v)nk)

∂v
=

µ

Sc

∂2nk
∂xi∂xi

+B(C)δ(v − v0) (8)

The transient and transport terms in the discretised PBE are treated nu-

merically with the same BDF3-EXT3 scheme employed for the momentum

equations, except that all terms are treated explicitly. The Gamma differenc-

ing scheme by Jasak et al. (1999) is employed to preserve boundedness of the

solution. This scheme blends the upwind and central differencing schemes

based on the ratio of two consecutive differences, φ̃ (Eq. 9). The evaluation

of this ratio usually requires upstream quantities, which imposes challenges

in the context of unstructured grids. In the method of (Jasak et al., 1999)

the ratio can be easily computed with knowledge of the quantities in the local

(φ) and downstream cell (φD), the gradient at the local cell (∇φ = dφ
dxi

), as

well as the vector between two cell centroids (~d):

φ̃ =
φ− φU
φD − φU

= 1− φD − φ

2(
dφ

dxi
)di

(9)

The blending factor γ serves as a controlling parameter on the scheme weight-

ing:

γ =
φ̃

βm
(10)

We use the value 0.1 for the blending coefficient βm in order to maintain

a sharp profile (Jasak et al., 1999). This makes the scheme suitable for

unstructured grids.
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The nucleation and growth terms in the transported PBE are treated as

additional source terms. They are discretised with a finite volume method in

the particle volume domain. The nucleation rate, BN , is a source of particle

number (rather than number density) taking place at the interval of the

nuclei:

BN(C) = B(C)dv0 (11)

The growth term, however, is a first-order derivative, akin to a convection

term in the particle volume domain, and represents a propagation mecha-

nism. Therefore, care must be taken in its numerical treatment to avoid spu-

rious oscillations. In this work, the growth term is discretised as in Eq. 12

that includes the growth flux G(C)n from the adjacent intervals.

(
∂G(C, v)n

∂V

)
k

=
1

∆Vk
[(G(C)n)k+ − (G(C)n)k− ] (12)

A Total Variation Diminishing (TVD) scheme (Qamar et al., 2006) is im-

plemented to prevent oscillations in the PSD. The scheme employs piecewise

polynomial interpolation to obtain a weighted blend of upwind and central

scheme (Eq. 13).

(G(C)n)k+ = Gk+

[
nk +

1 + κ

4
(nk+1 − nk) +

1− κ
4

(nk − nk−1)
]

(13)

The blending is governed by a parameter κ ∈ [−1, 1] and the monotonicity

is preserved by introducing a limiter function. In this work, we employ the

limited κ = 1/3 scheme (Eq. 14) with the flux limiting function φ
(
r+k
)

by

Koren (1993) (Eq. 15 and Eq. 16), yielding second order accuracy. The

growth flux can therefore be evaluated by:

(G(C)n)k+ = Gk+

[
nk +

1

2
φ
(
r+k
)

(nk − nk−1)
]
, (14)
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where the flux limiting function and its limiter rk are:

φ
(
r+k
)

= max

[
0,min

[
2r+k ,min

(
1

3

∆vk
∆vk−

+
2r+k
3

∆vk
∆vk+

, 2

)]]
(15)

r+k =
nk+1 − nk + ε

nk − nk−1 + ε
(16)

The growth rate in Eq. 14 is evaluated at the right nodal point of the kth

interval whereas the number densities are taken from the mid-point of the

corresponding interval. The chosen scheme can account for size-dependent

growth kinetics, and the flux limiter is suitable for a non-equidistant PBE

grid, such as the one employed here. For more details on the scheme, one

may refer to Qamar et al. (2009) and Gunawan et al. (2004).

In addition to the mass conservation in the particle size domain, the mass

consumption of ions during reaction must be consistent with the generation

of particle mass. To ensure this, we compute the reaction source term in

Eq. 7 from the rate of increase of particle volume in the PBE. The total

particle volume is given by the first moment of the PSD:

M1 =

∫ ∞
0

vn(v)dv (17)

The total rate of increase of the first moment due to particle formation can

be obtained by summing the volume of nuclei formed and the increase of

volume in every interval in the discretised PBE (Eq. 8) due to growth, as

shown in below:

dM1

dt

∣∣∣∣
source

=

[
B(C)v0 +

m∑
k=1

vm,k

(
∂G(C, vk)nk

∂v

)
dvk

]
(18)

where the subscript ’source’ is used to distinguish this rate from the rate of

change due to transport. The first moment can be converted to concentration
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of the chemical species that the crystal is composed of as follows:

Cc =
ρcM1

MWc

(19)

The reaction rate in the species transport equations (Eqs. 7) can thus be

calculated from the rate of change of the crystal species and the corresponding

stoichiometric factor:

Rα =
ναρc
MWc

dM1

dt

∣∣∣∣
source

(20)

Both the reaction and the PBE source term are discretised with the EXT3

extrapolation scheme in order to match the time-marching strategy of the

transport equations. The consistence of source terms in the PBE and scalar

transport equations will be validated in Sec. 4.3.2.

The grid employed for the discretisation of the PBE in the particle volume

domain is crucial for the accuracy of the numerical approach in a nucleation-

growth problem. The grid has to cover a large domain, while avoiding numer-

ical diffusion. In addition, the small nuclei size and size-dependent growth

rate require a fine resolution at the low end of the particle volume spec-

trum. Finally, the number of discretised number densities must be kept to

a minimum in order to keep the CPU requirements manageable. Uniform

and geometric grids are the simplest types of grid employed for the PBE. A

uniform fine grid offers very good resolution but is too computationally ex-

pensive, while a geometric grid is well suited to fast-growing particles but can

result in numerical diffusion at large intervals. More advanced methods, such

as an adaptive grid approach (Sewerin and Rigopoulos, 2017b, 2018), have

been employed to maintain good grid resolution with very few grid intervals

in LES simulations.
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Considering the computational demands of DNS, in this study we pro-

pose a fixed grid approach that features minimal numerical diffusion. This

approach combines the advantages of the uniform and geometric grid into

a composite grid, as illustrated in Fig. 1. The grid is made for particles

ranging from 0.6 nm and 500 nm with a total of 45 intervals. The smallest

scale is chosen to accommodate the very small nuclei that form in regions

of high supersaturation. The particle range is divided into 3 sections. A

high-resolution geometric grid is used to discretise a narrow range of scales

over the fast-growing zone (0.6 nm to 20 nm), intended to capture the fast-

growing nuclei. Subsequently, a uniform grid is used for an intermediate size

range (20 nm to 150nm) to provide reasonable resolution for this range that

accounts for the major part of the final distribution. Finally, the last section

is discretised with a coarse geometric grid over a very wide range. The role

of this section is to accommodate the largest particles and avoid a spurious

mass loss.

Figure 1: Illustration of the composite grid, compared with the uniform and geometric

grids.

15



2.4. Coupling of DNS and PBE

In the proposed method, each cell in the DNS simulation has its own local

compositions and PSD. The transport of species and particles in each cell

depends on the local velocity and is fully resolved by DNS. The inertia of

nanoparticles is negligible and they can be assumed to follow the streamlines

of the flow. The PBE is coupled to the species transport equations via the

reactant consumption. The coupling scheme is illustrated in Fig. 2.

Figure 2: Graphical representation of the proposed coupling of PBE, flow field and species

transport.

Two issues pose a challenge to simulations of turbulent precipitation, as

they cannot be resolved via DNS using current computing hardware. The

first issue is the mixing at the sub-Kolmogorov, or Batchelor, scales, while the

second one is the Schmidt number, Sc, which can be as high as 1000. These

two issues are related but distinct, and are more likely to be of importance in
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the species transport equation, due to the sensitivity of nucleation and growth

rates on mixing, rather than in the PBE. This is a major unresolved problem

in reacting flows in the liquid phase that has been discussed extensively by

Ba ldyga and Bourne (1999). The few studies so far investigating effects of

high Sc have been primarily on inert scalars. For example, these effects on

scalar transport were investigated numerically by Derksen (2012) through

grid refinement. To our knowledge, however, such studies have not been

carried out in reacting flows and precipitation.

The simulation with the grid of 21 million cells employed in this study has

maximum grid-to-Kolmogorov scale ratio (∆x/ηK) of about 2 (see Sec 4.2).

The ratio of Kolmogorov (ηK) to Batchelor (ηB) scales varies as
√
Sc, so for

Sc = 1000, ηB would then be
√

1000 ≈ 31 times smaller than ηK . In order to

maintain a ratio (∆x/ηB) of about 2, the grid spacing ∆x should be around

30 times finer in each direction, which corresponds to 303=27,000 times more

cells than the current grid, i.e. 570 billion cells, which is not possible with the

current or even foreseeable computational resources. Therefore, a modelling

choice has to be made in this respect. The use of high Sc in the simu-

lation poses a computational challenge on its own right, because a second

order central scheme would require a TVD approach to suppress numerical

oscillations, which would amount to artificial diffusion. On the other hand,

the employment of a high-order scheme in a grid that does not resolve the

Batchelor scales is also problematic and would result in neglecting the extra

diffusion induced by the latter. In the current simulation we have employed

Sc = 1, which compensates to some extent for the diffusion in the Batchelor

scales. An alternative choice would be to employ a micromixing model, in a
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manner similar to LES studies (van Vliet et al., 2005; van Vliet et al., 2007;

Makowski and Ba ldyga, 2011). However, this choice in the context of a DNS

study is questionable, because in LES these models account for mixing in the

inertial and Kolmogorov scales as well, which are already accounted for in the

DNS simulation. In the DNS approach of Schwarzer et al. (2006), Gradl et al.

(2006) and Gradl and Peukert (2009), a micromixing model was employed

because the PBE was applied as a post-processing step along Lagrangian

trajectories, unlike the present study where the coupling between the PBE,

fluid flow and species transport is direct. The use of Sc = 1 is therefore a

reasonable modelling choice, subject to validation of the simulation outcome

with experimental results.

The time step used in the coupled simulation is different from the stan-

dalone DNS, as a smaller step size is required due to the fast precipitation

timescales. Therefore, apart from the CFL condition, an additional condi-

tion should be met for a stable solution. As has been discussed previously,

the growth term appearing in the PBE acts like a convection in the particle

size domain, hence a criterion similar to CFL can be written as in Eq. 21

(Gunawan et al., 2004). We refer to this criterion as CFLPBE in the following

in contrast to the CFLFLOW for the flow solution. This additional criterion

imposes a stricter condition on the time step,

max

∣∣∣∣(Gk) ∆t

∆Lk

∣∣∣∣ ≤ 1, (21)

where ∆Lk is the distance between two neighbouring grid points in the PBE

grid. To show the necessity and importance of meeting the CFLPBE criterion,

several coupled simulations were conducted with different time step sizes. All
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cases meet the CFLFLOW criterion but had different CFLPBE. An integral

quantity from each case is compared to evaluate convergence. Here we use

the total number of particles in the domain, which is obtained by summing

the zeroth moment in all cells, and monitor how it evolves with time. The

comparison is shown in Fig. 3, where solid lines and dashed lines are used

for cases with CFLPBE smaller than and larger than unity respectively. The

plot clearly shows that as long as CFLPBE is less than 1, the evolution of

the number of particles gradually increases with similar trend. In contrast,

the number of particles in large CFLPBE cases suddenly diverge after the

start of the precipitation process and the diverging point begins earlier for

larger CFLPBE. This is caused by the overconsumption in the ions due to

large time step. Thus, it is crucial that the time increment meets the CFL

condition in both convection and growth. In the precipitation simulations,

the time step is chosen in such a way as to yield a CFLPBE of 0.35, which

corresponds to 1.5 · 10−7 s.

3. Precipitation Kinetics

The system that will be studied in this work is the precipitation of BaSO4,

according to the following reaction:

BaCl2 + H2SO4 → BaSO4 + 2HCl (22)

The kinetics have been studied extensively and several kinetic models can be

found in the literature. However, most of them are applicable over a limited

range of conditions. Therefore, the kinetics in this study are based on classical

theories of nucleation and growth, along the lines of Schwarzer et al. (2006).
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Figure 3: Convergence study on the effect of time step under different CFLPBE values.

The evolution of the total zeroth moment in the whole domain is plotted against time.

The kinetic expressions are suggested by Mersmann (2001) and have also been

used by several more authors including Gavi et al. (2007b), Marchisio et al.

(2006) and Metzger and Kind (2017) under high supersaturation conditions,

as these encountered here.

Supersaturation is the driving force for nucleation and growth, and it is

expressed as follows:

S = γ±

√
CBa2+free

CSO2−
free

KSP

(23)

where KSP is the solubility product. The free ion concentration is used when

calculating the supersaturation, due to the incomplete dissociation of H2SO4

and ion complex formation of BaSO4. The equilibrium constants for HSO4
–

ion dissociation and for BaSO4 complex formation are chosen according to

Schwarzer and Peukert (2004a).
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The growth kinetics are calculated according to Gradl and Peukert (2009).

For the conditions in this study, the growth is transport-controlled, and the

expression employed is:

GL =
dL

dt
=

ka
3kv

ShDAB

√
KSPMWc(S − 1)

ρCL
(24)

where Sh is the Sherwood number, taken to be 2 as in Schwarzer and Peukert

(2004a). Note that this expression yields a linear growth rate, which can be

converted into a volumetric growth rate for use in the volume-based PBE

(Eq. 25). The conversion is based on the change of variable from L to v,

dv = 3kvL
2dL, and requires a shape factor, kv. From the morphology shown

in the experiments (Schwarzer and Peukert, 2002), the particles have an oval-

like shape that is close to spherical. Therefore we employ the surface and

volume shape factors for spherical particles ka = π and kv = π
6
, with the

particle surface area and volume defined as kaL
2 and kvL

3 respectively.

G =
dv

dt
= 3k

1
3
v GLv

2
3 (25)

In terms of particle volume, Eq. 25 can be written as:

G =
dv

dt
=
ka

k
2
3
v

ShDAB

√
KSPMWc(S − 1)

ρC
v

2
3 (26)

According to Schubert (1998), primary homogeneous nucleation is the

dominant nucleation mechanism at high supersaturation. The homogeneous

nucleation rate is given by expression Eq. 27, according to the classical nu-

cleation theory (Mersmann, 2001):

BN = 1.5DAB

(√
KSPSNA

) 7
3

√
γCL
kT

Vm exp

(
−16

3

(γCL
kT

)3 V 2
m

(ν lnS)2

)
(27)
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4. Results and discussion

The methodology will now be applied to the simulation of BaSO4 precipi-

tation in a T-mixer. The flow field simulation, convergence of PBE numerical

solution and source term coupling will all be validated individually before the

presentation of the results of the coupled approach for the prediction of the

particle size distribution.

4.1. Geometry and DNS parameters

Two experiments are simulated in this paper. The first one investigates

only the hydrodynamics of the T-mixer and will be used for flow validation.

This experiment was conducted at Reynolds number 500 (without precipita-

tion) was documented in Schwertfirm et al. (2007). The T-mixer in this case

contains a square channel of 80 mm width with two φ 40 mm inlets. This is

an exact scale-up (80 times) of the one used in the precipitation experiments;

this scale was chosen to enable PIV measurements.

The second experiment involves the precipitation of BaSO4 nanoparticles

in a T-mixer and was conducted by Schwarzer and Peukert (2002), Schwarzer

and Peukert (2004b), Schwarzer and Peukert (2004a), Schwarzer et al. (2006)

and Gradl et al. (2006). This experiment is simulated with the coupled

DNS-PBE method. The case simulated is mixer #5 in Schwarzer et al.

(2006), with Reynolds number 1135. This T-mixer consists of two φ 0.5 mm

inlet pipes with a 10 mm long and 1 mm width square cross-section mixing

channel. The setup of the precipitation experiment is illustrated in Fig. 4

and the operating conditions of this mixer are listed in Tab. 1, yielding a

nominal supersaturation (i.e. a supersaturation that would result from a
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perfect mixing of the two streams) of approximately 1000. In the conditions

of this experiment, no particle aggregation was present. This is due to the

Ba2+ excess, which prevents aggregation due to repulsive electrostatic forces

(Eble, 2000; Kucher et al., 2006; Schwarzer and Peukert, 2005).

In both the flow-only and the precipitation case, the flow rate at the one

inlet is equal to the one at the other inlet. The Reynolds number is defined

at the mixing channel as follows:

Re =
ρuMH

µ
(28)

where uM and H are the mean velocity and width in the mixing channel

respectively as indicated in Fig. 4. The flow can be considered turbulent at

Reynolds number larger than 400 (Telib et al., 2004). The mixing channel is

aligned with the z-axis, while the feed pipes are along the x-axis, as shown

in Fig. 4. The grid is Cartesian and contains 19 and 21 million cells in

the flow-only and precipitation cases respectively, the vast majority of which

(18.6 and 19.5 million cells respectively) are in the mixing channel. The

grid spacing is uniform (∆x = 0.00875H and ∆x = 0.008H respectively)

throughout the channel. This spacing is comparable to the finest one in the

simulations of Schwertfirm et al. (2007) and Schwarzer et al. (2006) (∆x =

0.011H,∆y = 0.005H,∆z = 0.005H). Poiseuille flow is assumed at both

inlets, and a convective boundary condition is used at the exit plane:

∂ui
∂t

+ u3
∂ui
∂z

= 0. (29)

The cell sizes are selected to be of the order of Kolmogorov length scale, as

will be demonstrated in Sec. 4.2
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Table 1: Inlet Ion Concentrations

Ion species
Cinlet

(kmol/m3)
Inlet

Ba2+ 0.5 1

Cl2
– 1 1

H+ 0.33 2

HSO4
– 0.33 2

In the flow-only simulation, the flow statistics were collected after reach-

ing a statistically steady state. In the precipitation simulation, a flow-only

DNS simulation was performed for ten flow-through times before injecting the

reactants. This was to ensure that the flow field had reached a statistically

steady state before the onset of the precipitation process. The time steps

used for the flow field in the flow-only simulation and the initial flow-only

part of the precipitation simulation were 3 · 10−3 s and 3 · 10−7 s respectively,

which correspond to CFLFLOW = 0.3. In the precipitation simulation, the

time step was afterwards reduced to 1.5 · 10−7 s as mentioned in Sec. 2.4, in

order to satisfy the CFLPBE condition.

4.2. Flow field

In this section, we present the results from the simulation of the flow field

for the larger T-mixer experiment (Schwertfirm et al., 2007); this simulation

was performed in order to validate the hydrodynamics. Fig. 5 shows the

grid-size-to-Kolmogorov-scale ratio in the whole domain. It can be seen that

this ratio is less than 1.5 in most of the domain and the maximum ratio is 2.3,
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Figure 4: Illustration of the T-mixer.

so it can be concluded that the flow field is well resolved (Moin and Mahesh,

1998). The maximum values are located in the region of highest dissipation,

which is on the bottom wall of the impingement region.

Fig. 6 shows the mean flow streamlines. The two impinging streams

merge and produce a large helical vortex in the mixing channel, that provides

a global mixing environment. The helical vortex is clearly presented in the

mean velocity vector plot in Fig. 7. This global feature is in visual agreement

with that reported in Schwertfirm et al. (2007).
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Figure 5: Grid spacing to Kolmogorov scale ratio in the flow-only sim-

ulation (top) and precipitation simulation (bottom).

Figure 6: Streamlines of the mean flow.
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Figs. 8 and 9 show quantitative comparisons of the mean and root mean

square (RMS) velocity predictions with the experimental measurements and

DNS results reported in Schwertfirm et al. (2007). Good agreement is found

between our simulation and the DNS results in that study in terms of both

mean and RMS velocities. However, both simulations show the same discrep-

ancy with respect to the PIV measurements. The major differences are in

the mean x-component of the velocity over the mixing channel and the RMS

z-component of the velocity over the feed. In Schwertfirm et al. (2007), these

deviations were attributed mainly to uncertainties in the inflow conditions.

In addition to that, the flow field may exhibit additional low frequency pat-

terns (for example due to a precessing of the helical vortex) that may have

not been reflected in the experimental measurements of mean and RMS ve-

locity components. Further analysis of this motion, however, is beyond the

scope of this paper.

Two key characteristics are worth pointing out: along the feed axis (di-

rection indicated by the line in Fig. 7) in the impingement zone, we no-

tice symmetric profiles in the RMS velocity components and the mean z-

component of the velocity, while an asymmetric profile is observed in the

mean x-component of the velocity. This implies the presence of the helical

vortex as observed in Fig. 6 and 7. In addition, the mean and RMS velocity

components decay along the downstream direction, suggesting that the tur-

bulent intensity fades out shortly after the impingement of the two streams.

Therefore, only the upstream of the mixing channel is dominated by convec-

tive mixing. Owing to this characteristic, the impingement area is expected

to be the most dominant zone in the precipitation process.
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Figure 7: Mean velocity vector plot on the X-Y plane at Z = 0.

Figure 8: Normalised profiles of the mean x- (dashed line) and z- (solid line) components

of the velocity along the axis of the feed pipes (top) and in the main duct (bottom)

obtained by the DNS in the current work (coloured) and in Schwertfirm et al. (2007)

(grey), compared with the experiments (triangle) in the latter. The results are normalised

by the inlet peak velocity.
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Figure 9: Normalised RMS profiles of the mean x- (dashed line) and z- (solid line) compo-

nents of the velocity along the axis of the feed pipes (top) and in the main duct (bottom)

obtained by the DNS from the current work (coloured) and from Schwertfirm et al. (2007)

(grey), compared with the experiments (triangles) by the same authors. The results are

normalised by the inlet peak velocity.

4.3. Coupled DNS-PBE simulation

In this section, we present the results of the precipitation simulation with

the coupled DNS-PBE approach. The grid-size-to-Kolmogorov-scale ratio for

this simulation is also shown in Fig. 5 and the comments in Sec. 4.2 about the
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grid resolution apply here too. Apart from the DNS resolution, two further

issues had to be investigated to ensure that the numerics are accurate in this

case. The first one is the convergence of the PBE grid, in order to ensure

that the PSD is well resolved. The second one is the coupling of the source

term between the species transport equations and the PBE. These issues will

be discussed before presenting the DNS-PBE results.

4.3.1. Convergence of PBE grid

A convergence study of the composite PBE grid was carried out via a

simulation in a perfectly mixed reactor. The inlet concentrations and resi-

dence time were identical with the T-mixer case. The result computed with

a high-resolution geometric grid comprising m = 500 intervals serves as a

benchmark. The composite grid is also compared with a geometric grid with

the same number of intervals, m = 45. The comparison is shown in Fig. 10.

Overall, the composite grid is capable of providing a distribution close to

the benchmark result over a wide range of scales though the peak number

density is slightly underpredicted. A certain amount of numerical diffusion

is observed after 130 nm, but the mean size is still predicted correctly, even

at around 150 nm. The accuracy in the fast growth zone is particularly

good and almost matches with the benchmark case. In contrast, the m = 45

geometric grid has poor resolution after 60 nm and the solution becomes

diffusive before 100 nm. The resulting ’spike-like’ distribution fails to recre-

ate the shape of the benchmark, and even the mean size begins to deviate

when the PSD propagates to larger scales. In addition, the PSD given by the

m = 45 geometric grid exhibits a noticeable discrepancy in the nucleation

zone (below 50 nm). This occurs in spite of the fact that the geometric grid
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has a finer resolution than the composite grid in this size range, and is due

to incorrect consumption of species induced by the coarse grid, which results

in incorrect nucleation and growth rates. This can be evidenced from the

supersaturation history (Fig. 11): the supersaturation level in the simula-

tion with this grid is lower than in the other two, implying overestimated

consumption of the reactant.

Figure 10: Convergence test on the composite grid. The PSD in a perfectly stirred reactor

is computed and compared with a simulation featuring a geometric grid with the same

number of nodes and one with a highly refined geometric grid. The results are presented

at different time instances, at which the PSD has reached different size ranges.
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Figure 11: Evolution of supersaturation under different PBE grid in an ideal reactor.

4.3.2. Validation of the source term coupling

The coupling between the species transport equations and PBE must en-

sure conservation of mass during the exchange of mass between the particles

formed and the species consumed. As explained in Sec. 2.3, in our simulation

the volume of newly formed particles is obtained from the PSD via the rate

of change of the first moment, which is then be converted to concentration

of BaSO4. For the purpose of validation, the BaSO4 concentration was also

computed from a transport equation using the reaction source term in Eq. 20.

The resultant BaSO4 concentration is compared with the one obtained from

the first moment. It was found that the average difference of BaSO4 concen-

tration in the whole domain is less than 1% and the maximum local difference

is below 6%. Large discrepancies are found only at a few spots where steep

gradients of the number densities are present, such as the boundaries be-

tween the impinging jets at the inlet. These differences are attributed to the

discretisation in both physical and particle volume domains. Nevertheless,
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the difference found in the majority of the impingement zone and in the rest

of the mixing channel remains small, implying a good coupling between the

PBE and the generation of product concentration.

4.3.3. Particle size distribution

In the coupled DNS-PBE approach, it is possible to obtain the PSD at

every point in the domain. In the experiment of Schwarzer et al. (2006), a

measurement of the PSD was obtained at the outlet plane. A comparison of

the time- and cross-sectional averaged PSD in the simulation with the one

measured in the experiment, normalised by the zeroth moment of the distri-

bution, is shown in Fig.12. The agreement is very good, apart from a slight

overprediction of the peak. The particle size lies within the nanoparticle

range, below 100 nm. Most of the PSD lies within the uniform grid section,

and therefore the composite grid provides good resolution.

The quality of the prediction allows us to evaluate the impact of various

factors on modelling of turbulent precipitation. The flow field was fully re-

solved in this simulation. The discretisation approach allowed for solution

of the PBE without the assumptions inherent in moment methods, and the

composite grid allowed for good resolution of the PSD and minimal numer-

ical diffusion. Finally, the direct coupling of an Eulerian PBE with fluid

dynamics allowed for correct implementation of the source term, as opposed

to the approach in Schwarzer et al. (2006), Gradl et al. (2006) and Gradl and

Peukert (2009), where the PBE was applied as a post-processing step along

Lagrangian fluid element trajectories in conjunction with the EDD mixing

model. The kinetics are usually the main source of uncertainty in precip-

itation but, in this configuration, nucleation was limited to homogeneous
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nucleation, while there was no agglomeration due to the electrical charge of

the ions. In different configurations, such as stirred tanks, heterogeneous nu-

cleation may dominate, agglomeration and sometimes fragmentation may be

present, and overall the kinetics are subject to more uncertainties. Finally,

it must be noted that the DNS cannot resolve the Batchelor scales and the

further mixing that occurs there. This effect was countered to some extent

by the assumption of Sc=1, which induces further mixing than the actual

high Sc, although it is not possible with present (or foreseeable) resources to

assess these effects with a DNS down to the Batchelor scales. However, the

accuracy of this prediction indicates that the resolution of the flow field down

to Kolmogorov scale, detailed solution of the PBE and direct coupling of PBE

and DNS are the dominant factors in predicting turbulent precipitation, as

long as the kinetics are reliable.

5. Conclusions

Turbulent precipitation is a very challenging problem to model, because it

involves interactions between a turbulent flow field and non-linear processes

such as nucleation and growth that feature timescales of an order of magni-

tude similar to turbulent mixing. A methodology for simulating turbulent

precipitation and predicting the product PSD via coupling DNS and PBE

has been presented. The DNS resolves the flow down to the Kolmogorov

scale, while the PBE is solved via a discretisation method. A composite

grid was proposed to provide sufficient resolution at the different size ranges

covered by the distribution and to minimize numerical diffusion due to the

particle growth term. In contrast to previous studies where the PBE was
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Figure 12: Time-and-plane-averaged PSD at outlet. Result is also compared with the

measurement by Schwarzer et al. (2006)

applied as a post-processing step along a sample of Lagrangian trajectories,

the coupling of the DNS and PBE is fully Eulerian in this study and the

transport equations are directly coupled with the PBE via the source term.

A CFL number for growth, analogous to the one for convection in physical

space, was defined and it was ensured that the appropriate condition was

satisfied.

The methodology was applied to the simulation of the experiments of

Schwarzer et al. (2006) on BaSO4 nanoparticle precipitation. The numerical

aspects of the method were first validated on their own: the flow field was

validated with the PIV measurements on a scaled up geometry by Schw-

ertfirm et al. (2007), the convergence of the composite grid for solution of
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the PBE was tested and the source term coupling was shown to satisfy the

conservation of mass. In the DNS-PBE simulation, very good agreement

with experimental results was obtained in terms of the outlet PSD. Classical

theories were employed for the kinetics, and the level of agreement is partly

owning to the homogeneous nucleation and lack of agglomeration in this

case. While some assumptions are still involved, such as the Schmidt num-

ber effects, the results indicated that the resolution of the flow field and its

direct coupling with the discretised PBE are of primary importance in sim-

ulating turbulent precipitation and prevent compensation of numerical and

modelling errors. Future work will explore the potential of the methodology

for drawing insight into the interaction of turbulence and particle formation

in turbulent precipitation.
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Nomenclature

Roman Letters

B nucleation rate (as source of particle number density) m−6 s−1

BN nucleation rate (as source of particle number) m−3 s−1

C concentration kmol m−3

D diffusion coefficient m2 s−1

di components of vector indicating distance between cell centroids m

DAB apparent diffusion coefficient m2 s−1

G volumetric growth rate m3 s−1

GL linear growth rate m s−1

H mixer channel width / height m

k Boltzmann constant J K−1

ka surface shape factor m

kd mass transfer coefficient m s−1

kv volume shape factor m

KSP solubility product constant kmol2 m−6

L particle size m
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Lc nuclei size m

m total number of intervals m

M1 first moment (total particle volume) per unit volume of solution m

MWc molecular weight of species in the crystal kg kmol−1

N number of particles m

n face normal vector m

n number density (in particle volume) m−6

NA Avogadro constant kmol−1

nL number density (in particle length) m−4

R reaction source kmol m−3 s−1

r limiter variable m

Re Reynolds number m

S supersaturation ratio m

Sc Schmidt number m

Sh Sherwood number m

T temperature K

t time s

u velocity m s−1
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v particle volume m3

V0 inlet peak velocity m s−1

Vm molecular volume m3

vm,k particle volume at the midpoint of interval k m3

x spatial coordinate m

z charge number m

Greek Letters

βm blending coefficient m

∆Lk distance between two neighbouring grid points in the PBE grid m

∆x Grid spacing m

γ blending factor m

γ± activity coefficient m

γCL interfacial energy J m−2

µ dynamic viscosity Pa s

ν dissociation number m

να stoichiometric coefficient of the αth species m

φ scalar quantity m

φ(r) limiter m
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ρ fluid density kg m−3

ρc crystal density kg m−3

φ̃ ratio of two consecutive differences (Eq. 9) m

Subscript

α species index m

D downstream cell m

i direction index m

k interval index m

n face normal m

U upstream cell m

Superscript

+ right nodal point m

− left nodal point m
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