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45 ABSTRACT Chronic Obstructive Pulmonary Disease (COPD) is the third leading 

46 cause of morbidity and death globally. The lack of effective treatments results from 

47 an incomplete understanding of the underlying mechanisms driving COPD 

48 pathogenesis. 

49 Interleukin (IL)-22 has been implicated in airway inflammation and is increased in 

50 COPD patients. However, its roles in the pathogenesis of COPD is poorly 

51 understood. Here, we investigated the role of IL-22 in human COPD and in cigarette 

52 smoke (CS)-induced experimental COPD. 

53 IL-22 and IL-22 receptor mRNA expression and protein levels were increased in 

54 COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-

55 22 receptor levels were increased in the lungs of mice with experimental COPD 

56 compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, 

57  T-cells, Natural Killer T-cells and group 3 innate lymphoid cells. CS-induced 

58 pulmonary neutrophils were reduced in IL-22-deficient (Il22-/-) mice. CS-induced 

59 airway remodelling and emphysema-like alveolar enlargement did not occur in Il22-/- 

60 mice. Il22-/- mice also had improved lung function in terms of airway resistance, total 

61 lung capacity, inspiratory capacity, forced vital capacity and compliance. 

62 These data highlight important roles for IL-22 and its receptors in human COPD and 

63 CS-induced experimental COPD. 

64 Max number of words: 200 (current: 195 words) 
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66 Introduction

67 Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of 

68 morbidity and death and imposes a significant socioeconomic burden globally [1]. It 

69 is a complex, heterogeneous disease characterised by chronic pulmonary 

70 inflammation, airway remodelling and emphysema, which are associated with 

71 progressive lung function decline [2]. Cigarette smoke (CS) is a major risk factor for 

72 COPD [2]. The mainstay therapies for COPD are glucocorticoids, β2-adrenergic 

73 receptor agonists and long-acting muscarinic antagonists [3]. However, these agents 

74 only provide symptomatic relief rather than modifying the causal factors or 

75 suppressing disease progression [3]. There is emerging interest in altered lung and 

76 gut microbiomes and the gut-lung axis that could be modified for therapeutic gain [4, 

77 5]. Nevertheless, there is currently a lack of effective treatments for COPD due to the 

78 poor understanding of the underlying mechanisms.

79 Interleukin (IL)-22 is a member of the IL-10 cytokine family that is implicated in 

80 several human diseases, including mucosal-associated infections and inflammatory 

81 disorders of the lung [6]. CD4+ T-helper cells,  T-cells, natural killer T (NKT)-cells 

82 and group 3 innate lymphoid cells (ILC3) are generally the major cellular sources of 

83 IL-22 [6]. Unlike IL-22, expression of the IL-22 receptor (IL-22R) is largely restricted 

84 to structural cells. This ligand-receptor distribution permits immune cells to regulate 

85 responses of stromal cells and particularly at barrier surfaces such as the lung, 

86 where epithelial cells play an active role in initiating, regulating, and resolving 

87 immune responses. IL-22R is a cell surface heterodimer consisting of IL-22RA1 and 

88 IL-10RB [6]. IL-22RA2 is a naturally occurring IL-22 antagonist that negatively 

89 regulates IL-22-induced inflammatory responses [6, 7]. Functional studies in murine 

90 systems indicate that IL-22 has immune-regulatory properties in infection, 
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91 inflammation, autoimmunity, and cancer [6]. In these models, the functional 

92 consequences of IL-22 expression can be either pathologic or protective, depending 

93 on the context in which it is expressed. Indeed, increased IL-22 levels and IL-22+ 

94 cells have been demonstrated in the blood, sputum and lung biopsies of COPD 

95 patients [8]. The role of IL-22 in lung antimicrobial defence and the impact of COPD 

96 on this defence pathway has been reported [9, 10]. In experimental COPD 

97 Haemophilus influenzae infection impaired IL-22 production and wild-type and IL-22-

98 deficient (-/-) mice had impaired clearance [10]. CS exposure suppressed 

99 Streptococcus pneumoniae induced IL-22 production and treatment with 

100 recombinant IL-22 restored bacterial clearance [11]. Despite this, there is limited 

101 knowledge of the role IL-22 plays in COPD pathogenesis independent of respiratory 

102 infection.

103 Here, we investigate its role using gene expression analysis of airway 

104 epithelial brushings and parenchymal cores from human COPD patients, an 

105 established mouse model of CS-induced experimental COPD that recapitulates the 

106 critical features of human disease [4, 12-18], and IL-22 reporter and Il22-/- mice [19]. 

107 IL-22 and IL-22R mRNA and protein were increased in the airways of mild-moderate 

108 COPD patients. IL-22 and IL-22+ T-cells and ILC3s were increased in experimental 

109 COPD. CS-induced pulmonary neutrophilic inflammation, airway remodelling and 

110 emphysema were reduced and lung function was improved in Il22-/- mice compared 

111 to WT controls, thus implicating IL-22 in COPD pathogenesis.

112

113 Methods

114 Ethics statement, animal details, additional methods and statistical analyses are 

115 described in online supplementary material. 
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116

117 Human gene expression. Analysis of IL22, IL22RA1, IL10RB and IL22RA2 in 

118 published human array datasets (Accession numbers: GSE5058 and GSE27597) 

119 [20-22] was performed using Array Studio software (Omicsoft Corporation, Research 

120 Triangle Park, NC, USA).

121

122 Mice. Female, 7-8-week-old, WT C57BL/6 mice, Il17aeGFP/+;Il22td-tomato/+ reporter and 

123 Il22-/- mice on a C57BL/6 background [19]. 

124

125 Experimental COPD. Mice were exposed to normal air or nose-only inhalation of CS 

126 for eight weeks in a protocol representative of a pack-a-day smoker as extensively 

127 described previously [4, 12-18, 23, 24].

128

129 qPCR. Total RNA was extracted from whole lung tissue and blunt-dissected airways 

130 and parenchyma and reversed transcribed [13]. mRNA transcripts were determined 

131 by real-time quantitative PCR (qPCR, ABIPrism7000, Applied Biosystems, Scoresby, 

132 Victoria, Australia) using custom designed primers (Integrated DNA Technologies, 

133 Baulkham Hills, New South Wales, Australia) (supplementary table 1).

134

135 Flow Cytometry. IL-17A+ and IL-22+ CD4+ T-cells,  T-cells, NKT-cells and ILC3s 

136 in lung homogenates were determined based on surface marker expression 

137 (supplementary table 2) [25-27] using a BD FACSAriaIII. Flow cytometry antibodies 

138 were from Biolegend (Karrinyup, Australia) or BD Biosciences (North Ryde, 

139 Australia) (supplementary table 3, supplementary figure 1). 

140
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141 Pulmonary Inflammation. Airway inflammation was assessed by differential 

142 enumeration of inflammatory cells in bronchoalveolar lavage fluid (BALF) [12, 14, 28, 

143 29]. BALF supernatants were stored at -20°C for assessment of IL-22 protein levels. 

144 Tissue inflammation was assessed by enumeration of inflammatory cells [12-14, 29] 

145 and histopathological scoring based on established criteria [30]. 

146

147 ELISA. IL-17A, IL-22, MPO and neutrophil elastase protein levels were quantified 

148 with commercially available ELISA kits (R&D Systems or Biolegend) [19].

149

150 Immunohistochemistry (IHC). Lungs were perfused, inflated, formalin fixed, 

151 paraffin embedded, and sectioned (4μm)[13, 14]. Longitudinal sections of the left 

152 lung were deparaffinized and stained with antibodies against IL-22RAa1 or IL-

153 22RAa2. IHC in human samples is described in online supplement (supplementary 

154 tables 4-65)[31] .  

155

156 Airway Remodelling. Airway epithelial (μm2) and collagen deposition area (μm2) 

157 were assessed in a minimum of four small airways (basement membrane [BM] 

158 perimeter <1,000μm) per section [12-14, 17, 18]. Data were quantified using ImageJ 

159 software (Version 1.50, NIH) and normalised to BM perimeter (μm).

160

161 Alveolar Enlargement. Alveolar diameter was assessed using the mean linear 

162 intercept technique [12-14, 17, 18, 32].

163

164 Lung Function. Mice were anaesthetised with ketamine (100mg/kg) and xylazine 

165 (10mg/kg), tracheas cannulated and attached to Buxco® Forced Manoeuvres 
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166 apparatus (DSI, St. Paul, Minnesota, USA) to assess total lung capacity (TLC) [12, 

167 13]. FlexiVent apparatus (FX1 System; SCIREQ, Montreal, Canada) was used to 

168 assess lung volume, airway resistance, inspiratory capacity (IC), forced vital capacity 

169 (FVC), compliance and elastance (tidal volume: 8mL/kg, respiratory rate: 450 

170 breaths/min) [12, 33, 34].

171

172 Results 

173 IL-22 and IL-22R mRNA expression and protein levels are increased 

174 in human COPD

175 We first determined whether the mRNA expression of IL-22, and its receptors IL-

176 22RA1 and IL-10RB and antagonist IL-22RA2 were altered in humans with mild-to-

177 moderate COPD (GOLD Stage I or II Accession: GSE5058 [20, 21, 35]). Pre-existing 

178 microarray data from airway epithelial brushings of healthy non-smokers, healthy 

179 smokers and COPD patients were interrogated [20]). IL22, IL22RA1, IL10RB and 

180 IL22RA2 mRNA expression were not significantly altered in airway epithelial 

181 brushings from healthy smokers compared to non-smokers (Figure 1a-d). 

182 Importantly, however, IL22 (2.01-fold), IL22RA1 (2.48-fold), IL10RB (3.26-fold) and 

183 IL22RA2 (1.78-fold) mRNA expression were increased in airway epithelial brushings 

184 from patients with mild-to-moderate COPD compared to non-smokers. Similar results 

185 were observed when mild-to-moderate COPD was compared to healthy smokers. 

186 We then assessed the mRNA expression of IL-22 and its receptors in pre-

187 existing microarray data from lung parenchyma cores from severe COPD patients 

188 (GOLD Stage IV [35] Accession: GSE27597 [22]). There was no change in IL22, 

189 IL22RA1, IL10RB or IL22RA2 expression in cores from COPD patients compared to 
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190 non-smokers without COPD (Figure 1e-h). IL-22, IL-22RA1, IL-22RA2 and IL-10RB 

191 were unchanged in peripheral lung tissue from patients with mild emphysema 

192 (supplementary figure 2 from GSE8581). There was no significant correlation 

193 between pack years and IL-22, IL-22RA1 and IL-22RA2 gene expression in lung 

194 tissue (supplementary figure 3 from GSE17770). Using lung cancer as a disease 

195 control, no differential expression of IL-22, IL-22RA1, IL-22RA2 or IL-10RB in either 

196 bronchial brushings (GSE4115) or lung tissue (GSE1650) between healthy smokers 

197 and subjects with lung cancer were observed (supplementary figures 4-5). 

198 Finally, we assessed IL-22 and receptor protein levels in human COPD by 

199 IHC.  The percentage of IL-22+ alveolar macrophages and IL-22RA1+ and IL-10RB+ 

200 airway epithelial cells were increased in COPD compared to age- and smoke history-

201 matched smokers with normal lung function (Figure 2, supplementary figure 6 and 

202 supplementary tables 6-9). No change in IL-22RA2 was detected (supplementary 

203 table 8). 

204 In a separate cohort of COPD patients, IL-22RA1 was also increased in 

205 airway epithelial cells of current smokers with COPD compared to non-smokers 

206 (Supplementary Figure 7 and supplementary table 10). When combined with ex-

207 smokers with COPD, these IL-22RA1 signal in the airway epithelium is lost 

208 (Supplementary Figure 7). 

209

210 IL-22 and receptor protein levels are increased in the lungs in 

211 experimental COPD

212 We next investigated the expression of IL-22 and its receptors in CS-induced 

213 experimental COPD, which models mild-to-moderate COPD. We first confirmed that 

214 IL-22 was increased in experimental COPD. Il22 mRNA was difficult to detect in 
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215 mouse lungs, therefore we assessed protein levels by ELISA in both whole lung 

216 homogenates (includes both airways and parenchyma) and BALF supernatants. CS-

217 exposure of WT mice resulted in increased IL-22 protein levels in lung homogenates, 

218 but not BALF supernatants compared to normal air-exposed controls (figure 3a-b). 

219 IL-22 protein levels were unaltered following 1 week of CS exposure 

220 (supplementary figure 87). Collectively, these data show that IL-22 is increased in 

221 both human and experimental COPD and are consistent with previous reports [8]. 

222 Next, we assessed IL-22 receptor expression in blunt-dissected airways 

223 versus parenchymal tissue [13]. CS-exposure had no statistically significant effect on 

224 Il22ra1 or Il10rb mRNA expression, but did reduce Il22ra2 expression in the airways 

225 compared to normal air-exposed controls (figure 3c-e). CS exposure also did not 

226 affect Il22ra1 or Il22ra2 mRNA expression, but did increase Il10rb expression in the 

227 parenchyma compared to normal air-exposed controls (figure 3f-h). Whilst no 

228 statistically significant differences in Il22ra1 mRNA expression were observed in this 

229 model, it is notable that Il22ra1 mRNA expression was ~10-fold higher in the airways 

230 than the parenchyma. 

231 Finally, we assessed IL-22 receptor protein expression in mouse lung tissue 

232 sections. CS-exposure resulted in notable increases in both IL-22RA1 and IL-22RA2 

233 protein levels, particularly in airway epithelial cells but also alveolar macrophages 

234 (supplementary figure 98). 

235

236 IL-22+ CD4+ T-cells,  T-cells, NKT-cells and ILC3s are increased in 

237 the lungs in experimental COPD

238 Given that IL-22 is increased in both human and experimental COPD, we next 

239 defined the cellular source of increased pulmonary IL-22 using Il17aeGFP/+;Il22td-
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240 tomato/+ reporter mice that enable the detection of IL-17A+ and IL-22+ cells without ex 

241 vivo stimulation. CS-exposure of reporter mice resulted in increased numbers of IL-

242 17A+, IL-22+ and IL-17A+IL-22+ CD4+ T-cells,  T-cells, NKT-cells and ILC3s 

243 compared to normal air-exposed controls (figure 4a-p). We then assessed the 

244 relative proportions of these cells following CS-exposure (figure 4q-s). As previously 

245 shown [36], T-cells were the dominant source of IL-17A following CS exposure 

246 (figure 4q). CD4+ T-cells, NKT-cells, and ILC3s were the major IL-22-producing cells 

247 (figure 4r), whilst NKT-cells were the dominant source of dual IL-17A+IL-22+ cells 

248 (figure 4s).  

249

250 CS-induced pulmonary neutrophils were reduced in Il22-/- mice

251 We next investigated whether IL-22 plays a role in the pathogenesis of experimental 

252 COPD. WT and Il22-/- mice were exposed to normal air or CS for 8 weeks [12-18]. 

253 Pulmonary inflammation in BALF was assessed by staining and differential 

254 enumeration of inflammatory cells. CS exposure of WT mice resulted in significantly 

255 increased total leukocytes, macrophages, neutrophils and lymphocytes compared to 

256 normal air-exposed WT controls (figure 5a-d). CS-exposed Il22-/- mice also had 

257 increased numbers of these cells compared to normal air-exposed Il22-/- controls. 

258 Neutrophils were significantly reduced, but total leukocytes, macrophages and 

259 lymphocytes were unaltered in CS-exposed Il22-/- mice compared to CS-exposed 

260 WT controls. 

261 We then assessed inflammatory cell numbers in lung tissue sections [12-14, 

262 29]. CS exposure of WT mice significantly increased inflammatory cell numbers in 

263 the parenchyma compared to normal air-exposed WT controls (figure 5e-f). CS-

264 exposed Il22-/- mice also had increased parenchymal inflammatory cells compared to 
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265 their normal air-exposed controls. Numbers of parenchymal inflammatory cells were 

266 not different between CS-exposed Il22-/- and WT mice. 

267 Next, histopathology was scored according to a set of custom-designed 

268 criteria as described previously [30]. CS exposure of WT mice increased 

269 histopathology score, which was characterised by increased airway, vascular and 

270 parenchymal inflammation (figure 5g-k). CS-exposed Il22-/- mice also had increased 

271 histopathology, airway, vascular and parenchymal inflammation scores compared to 

272 their normal air-exposed controls. Il22-/- mice had a small but significant reduction in 

273 total histopathology score, compared to CS-exposed WT controls. 

274 We then profiled the mRNA expression of chemokines and cytokines, other 

275 than IL-22, that are involved in neutrophil influx into the lung including chemokine (C-

276 X-C motif) ligand (CXCL)1, CXCL2 and IL-17A [37]. CS-exposure of WT mice 

277 resulted in significantly increased Cxcl1, Cxcl2 and Il17a mRNA expression 

278 compared to normal air-exposed WT controls with Cxcl1 and Cxcl2 having 

279 approximately 200-fold greater expression than Il17a (figure 5l-n). CS-exposed Il22-

280 /- mice also had increased expression of Cxcl1 and Il17a, but not Cxcl2 compared to 

281 normal air-exposed Il22-/- controls. There was a significant reduction in Cxcl2, but not 

282 Cxcl1 or Il17a mRNA expression in CS-exposed Il22-/- mice compared to CS-

283 exposed WT controls. Protein levels of IL-17A, MPO and neutrophil elastase were 

284 increased in CS-exposed WT mice, but were unaltered in Il22-/- mice 

285 (supplementary figure 109). 

286

287 CS-induced increases in airway epithelial area, collagen deposition 

288 and emphysema-like alveolar enlargement do not occur in Il22-/- 

289 mice
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290 We have previously shown that CS-exposed WT mice develop small airway 

291 remodelling (increased epithelial area), fibrosis (collagen deposition) and 

292 emphysema-like alveolar enlargement after 8 weeks of CS exposure [12-14, 17, 18, 

293 32]. Thus, we next determined whether IL-22 contributes to these disease features. 

294 In agreement with our previous studies, CS exposure of WT mice increased small 

295 airway epithelial cell area compared to normal air-exposed WT controls (figure 6a-

296 b). In contrast, CS-exposed Il22-/- mice had no change in airway epithelial cell area 

297 compared to normal air-exposed Il22-/- controls. 

298 CS-exposed WT mice had increased collagen deposition compared to normal 

299 air-exposed WT controls (figure 6c-d). However, CS-exposed Il22-/- mice did not 

300 have increased collagen deposition compared to Il22-/- normal air-exposed controls. 

301 CS-exposed WT mice had significantly increased alveolar diameter compared 

302 to normal air-exposed WT controls (figure 6e-f). CS-exposed Il22-/- mice did not 

303 have increased alveolar diameter compared normal air-exposed Il22-/- controls. 

304 As a result of the relatively small differences in airway epithelial area, collagen 

305 deposition and alveolar diameter the differences were not statistically different 

306 between CS-exposed Il22-/- mice and CS-exposed WT controls. 

307

308 CS-induced lung function impairment is improved in Il22-/- mice

309 We next assessed the role of IL-22 in CS-induced impairment of lung function, 

310 measured in terms of lung volume, airway resistance, TLC, IC, FVC and compliance. 

311 CS-exposed WT mice had increases in all of these parameters compared to normal 

312 air-exposed WT controls (Figure 7a-f). In CS-exposed Il22-/- mice none of these lung 

313 function parameters were significantly different compared to normal air-exposed Il22-

314 /- controls. Again, likely due to small changes in mild-moderate experimental COPD, 
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315 these lung function parameters were not significantly altered in CS-exposed Il22-/- 

316 mice compared to CS-exposed WT controls. However, CS-exposed Il22-/- mice had 

317 similar lung function to air-exposed WT controls.  

318 We also assessed tissue elastance and found a non-significant reduction in 

319 CS-exposed WT mice that was not different in Il22-/- mice (supplementary figure 

320 110).

321 Discussion

322 Here, we demonstrate that IL-22 plays a previously undefined role in the 

323 pathogenesis of CS-induced experimental COPD. IL-22 and its receptors were 

324 increased in both human and experimental COPD. We show for the first-time using 

325 IL-22 reporter mice, that elevated lung IL-22 levels in experimental COPD result from 

326 increased IL-22+ CD4+ T-cells,  T-cells, NKT-cells and ILC3s. We also 

327 demonstrated that CS-induced neutrophilic airway inflammation, was reduced in Il22-

328 /- mice compared to WT controls. Furthermore, Il22-/- mice did not develop CS-

329 induced airway remodelling and emphysema and had improved lung function that 

330 was comparable to normal air-exposed controls. Hence, this study provides new 

331 insights into the roles of IL-22 in the pathogenesis of COPD.

332 The presence or absence of IL-22 may affect resident microbiota. Indeed, we 

333 have reviewed the pathogenic roles for gut and lung microbiota in the development 

334 of COPD [5, 38, 39]. To minimise the influence of altered microbiota WT and Il22-/-

335  mice were derived from the same breeding pairs, maintained in the same facility and 

336 used experimentally at the same time, and so they would be expected to have very 

337 similar microbiomes.

338 Using pre-existing microarray datasets, we show that IL-22 and IL-22R mRNA 

339 expression were increased in airway epithelial cells from patients with mild-to-
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340 moderate COPD [20]. However, IL-22 and IL-22R mRNA were unaltered in lung 

341 parenchymal cores in severe COPD [22]. Our data are supported by studies that 

342 show increased IL-22 protein levels and IL-22+ immune cells in blood, sputum and 

343 lung biopsies of COPD patients (reviewed in [8]). However, there are limited reports 

344 of IL-22 receptor expression in COPD. Neutrophil proteases have been shown alter 

345 IL-22R-dependent antimicrobial defence in COPD but there was no change in 

346 IL22RA1 mRNA expression in lung tissue or primary cultures of proximal airway 

347 epithelial cells from COPD patients compared to healthy controls [9]. IL-10RB and IL-

348 22RA2 have not been assessed in COPD. Consistent with our human data, IL-22 

349 was also increased in lung tissue homogenates in experimental COPD after 8 weeks 

350 but not before the development of disease upon 1 week of CS exposure. IL-22 

351 receptor mRNA expression was different between human and mouse. However, at 

352 the protein level, IL-22RA1 and RA2 were visually increased in the airway epithelium 

353 of CS-exposed mice, which was consistent with changes at the mRNA level in 

354 humans. IL-22 receptors were also increased at protein level in human COPD. 

355 Collectively, our data show that IL-22 and its receptors are increased in both human 

356 and experimental COPD. However, the expression of IL-22 and its receptors is 

357 heterogenous and is influenced by tissue location and disease severity.  

358 Given that IL-22 was increased in the lungs in experimental COPD, we 

359 utilised IL-17A and IL-22 dual reporter mice that facilitate the identification of IL-17A- 

360 and IL-22-expressing immune cells without ex vivo stimulation or cell fixation. This 

361 enables a more accurate determination of the in vivo lung environment. We show for 

362 the first time that CS exposure induced IL-22 production from CD4+ T-cells,  T-

363 cells, NKT-cells and ILC3s, which are the major cellular sources of IL-22 and all 

364 these cell subsets have known roles in COPD pathogenesis [36, 40, 41]. However, 
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365 the individual contribution of each of these cells to IL-22 production and COPD 

366 pathogenesis, especially in humans remains to be fully elucidated. 

367 Previously, the role of IL-22 in the pathogenesis of COPD was largely 

368 unknown. We addressed this gap in knowledge using an established mouse model 

369 of tightly controlled chronic nose-only CS-induced experimental COPD [12-18]. Our 

370 models are representative of a pack-a-day smoker [24]. We have consistently shown 

371 that 8 weeks of CS exposure in our models is sufficient to induce the hallmark 

372 features of human COPD: chronic inflammation, airway remodelling, emphysema 

373 and impaired lung function [12-18]. This 8-week time point was specifically chosen to 

374 investigate the underlying pathogenic mechanism(s) during the early stages (GOLD 

375 I/II) and identify potential therapeutic targets to halt the progression of COPD. 

376 Using this established model, we show for the first time that IL-22 contributes 

377 to COPD pathogenesis independently of infectious exacerbations. Il22-/- mice had 

378 reduced airway neutrophils, which was associated with decreased in Cxcl2 mRNA 

379 expression. CXCL1 and CXCL2 are the mouse orthologues/homologues of human 

380 IL-8 and have critical roles in neutrophil influx into the airways following CS-exposure 

381 [42]. It has been suggested that improper activation of neutrophils lies at the core of 

382 COPD pathology, and mechanisms regulating their function are potential therapeutic 

383 targets [43]. However, Il22-/- mice were protected from the increases in MPO or 

384 neutrophil elastase levels. Il22-/- mice also had decreased lung tissue inflammation 

385 indicated by reduced histopathological score. This is consistent with a previous 

386 report showing that administration of recombinant IL-22 (rIL-22) into the lung 

387 increased tissue inflammation [44].  

388 We also demonstrate, as we have shown previously, that increases in airway 

389 epithelial area, collagen deposition around small airways and emphysema-like 
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390 alveolar enlargement occur following chronic CS-exposure in WT mice [12-18]. 

391 Notably, these features did not develop in Il22-/- mice compared to normal air-

392 exposed Il22-/- controls, although the changes were not significant between CS-

393 exposed Il22-/- mice and CS-exposed WT controls. IL-22 is essential for lung 

394 epithelial cell repair following influenza virus infection and is implicated in renal 

395 fibrosis [45, 46]. Others have shown that mice lacking IL-22 have delayed bacterial 

396 clearance and increased alveolar wall thickening and airway remodelling [10]. 

397 Administration of rIL-22 with or without acute CS-exposure induced airway epithelial 

398 thickening and collagen deposition, although this was not quantified [44].

399 Our study is the first report on the role of IL-22 in regulating multiple lung 

400 function parameters, particularly in models of COPD. We show that Il22-/- mice have 

401 improved lung function in terms of lung volumes, airway resistance, TLC, IC, FVC 

402 and compliance that are comparable to normal air-exposed WT mice. One previous 

403 report in an acute CS-exposure model showed increased airway resistance following 

404 administration of rIL-22 [44], however ours is the first study to assess lung function in 

405 Il22-/- mice.  

406 The absence of IL-22 in CS-exposed Il22-/- mice suppressed both airway 

407 remodelling and concomitantly the impairment of lung function in experimental 

408 COPD. Indeed CS-exposed Il22-/- mice were protected against increases in epithelial 

409 area, collagen deposition and emphysema compared to normal air-exposed controls. 

410 Airway remodelling involving epithelial hyperplasia and fibrosis are important in 

411 driving resistance to airflow [17, 18]. Emphysema leads to apparent increases in total 

412 lung and inspiratory capacity and tissue compliance, which results from the loss of 

413 alveolar and parenchymal tissue. In line with the protection against airway 

414 remodelling and emphysema-like alveolar enlargement, CS-exposed Il22-/- mice 
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415 were also protected from impaired lung function and changes in airway 

416 resistance, total lung and inspiratory capacity and tissue compliance.

417 In summary, our study demonstrates previously unrecognised roles for IL-22 

418 in COPD pathogenesis. It highlights the potential role of IL-22 in chronic lung 

419 diseases, which may be a useful biomarker in the diagnosis and/or prognosis of 

420 COPD patients. Furthermore, using a clinically-relevant and established model of 

421 experimental COPD, our study demonstrates that IL-22 promotes CS-induced 

422 pulmonary neutrophilic inflammation, airway remodelling and lung function 

423 impairment. However, inhibiting IL-22 may increase the risk of exacerbations due to 

424 its central role in pathogen clearance. Therefore, caution in therapeutic approaches 

425 targeting IL-22 signalling are required. The relationships between IL-22 and genetic 

426 factors, infections/colonisation and phenotypes in COPD remain to be defined.

427
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449 Figure 1: IL-22 and IL-22R mRNA expression are increased in airway epithelial 

450 brushings from mild-moderate human COPD patients compared to healthy 

451 smokers and non-smokers. Microarray data from airway epithelial cells from 

452 healthy human non-smokers (NS), healthy smokers without COPD (Smoker) and 

453 COPD patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

454 stage I (Mild) or II (Moderate) disease (Accession: GSE5058 [20]) were interrogated. 

455 (a) IL22 (b) IL22RA1, (c) IL10RB, (d) IL22RA2 mRNA expression. Microarray data 

456 from lung parenchymal cores from human healthy non-smokers (NS) and COPD 

457 patients with GOLD) stage IV (severe) disease (Accession: GSE27597 [22]) were 

458 interrogated. (e) IL22 (f) IL22RA1, (g) IL10RB, (h) IL22RA2 mRNA expression. Data 

459 are expressed as log2 intensity robust multi-array average signals. The Benjamini–

460 Hochberg method for adjusted P value/false discovery rate (FDR) was used to 

461 analyse differences between NS, Smokers and COPD patients. * = p<0.005 

462 compared to COPD. ns = not significant. 

463
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464

465 Figure 2: IL-22, IL-22RA1 and IL-10Rb, but not IL-22RA2 protein is increased in 

466 human COPD. IHC for IL-22 and its receptors in peripheral lung from smokers with 

467 mild-to-moderate stable COPD and compared to age- and smoke history-matched 

468 smokers with normal lung function. (a) IL-22+ alveolar macrophages, (b) IL-22RA1+ 

469 alveolar macrophages, (c) IL-22RA1+ airway epithelial cells, (d) IL-10RB+ alveolar 

470 macrophages, (e) IL-10RB+ airway epithelial cells. Data are presented as mean ± 

471 SEM, n = 12.

472

473 Figure 3: IL-22 protein levels are increased in the lungs of CS-exposed mice 

474 with experimental COPD. Wild-type (WT) C57BL/6 mice were exposed to normal 

475 air or CS for 8 weeks. IL-22 protein levels in (a) lung homogenates and (b) 

476 bronchoalveolar lavage fluid (BALF) supernatants were assessed by ELISA. In 

477 separate experiments, airways and parenchyma were blunt-dissected and IL-22 

478 receptor mRNA expression assessed. Airway (c) Il22ra1, (d) Il10rb, (e) Il22ra2 and 

479 parenchymal (f) Il22ra1, (g) Il10rb and (h) Il22ra2 mRNA expression. Data are 

480 presented as mean ± SEM, n = 6, with another independent experiment showing 

481 similar results. Two-tailed Mann-Whitney t-test was used to analyse differences 

482 between two groups, whereby * = p<0.05 compared to normal air-exposed WT 

483 controls. 

484

485 Figure 4: IL-22+ CD4+ T-cells,  T-cells, NKT-cells and ILC3s are increased in 

486 the lungs of CS-exposed mice with experimental COPD. Il17aeGFP/+;Il22td-tomato/+ 

487 reporter mice were exposed to normal air or CS for 8 weeks and the cellular source 

488 of IL-17A and IL-22 in the lung was assessed by flow cytometry. (a) Representative 
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489 FACS plot of IL-17A+ and IL-22+ CD4+ T-cells. Total numbers of (b) IL-17A+, (c) IL-

490 22+ and (d) IL-17A+IL-22+ CD4+ T-cells in the lung. (e) Representative FACS plot of 

491 IL-17A+ and IL-22+  T-cells. Total numbers of (f) IL-17A+, (g) IL-22+ and (h) IL-

492 17A+IL-22+  T-cells in the lung. (i) Representative FACS plot of IL-17A+ and IL-22+ 

493 NKT-cells. Total numbers of (j) IL-17A+, (k) IL-22+ and (l) IL-17A+IL-22+ NKT-cells in 

494 the lung.  (m) Representative FACS plot of IL-17A+ and IL-22+ ILC3s. Total numbers 

495 of (n) IL-17A+, (o) IL-22+ and (p) IL-17A+IL-22+ ILC3 cells in the lung. Relative 

496 proportion of CD4+ T-cells,  T-cells, NKT-cells and ILC3s expressing (q) IL-17A, (r) 

497 IL-22 and (s) IL-17 and IL-22. Data are presented as mean ± SEM, n = 6, with 

498 another independent experiment showing similar results. Two-tailed Mann-Whitney t-

499 test was used to analyse differences between two groups, whereby * = p<0.05 

500 compared to normal air-exposed controls. 

501

502 Figure 5: CS-induced pulmonary inflammation is reduced in Il22-/- mice. Wild-

503 type (WT) and IL-22-deficient (Il22-/-) C57BL/6 mice were exposed to normal air or 

504 CS for 8 weeks to induce experimental COPD. (a) Total leukocytes, (b) 

505 macrophages, (c) neutrophils and (d) lymphocytes in bronchoalveolar lavage fluid 

506 (BALF). (e) Representative images of parenchymal inflammatory cells. (f) Numbers 

507 of parenchymal inflammatory cells per high powered field. (g) Representative images 

508 of lung histopathology scoring. (h) Total histopathology score in lung sections and 

509 scores specifically in the (i) airway, (j) vascular and (k) parenchymal regions. (l) 

510 Cxcl1, (m) Cxcl2 and (n) Il17a mRNA expression in lung homogenates. Data are 

511 presented as mean ± SEM, n = 6, with another independent experiment showing 

512 similar results.. The one-way analysis of variance with Bonferroni post-test analysed 
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513 differences between 3 or more groups, whereby * = p<0.05 compared to normal air-

514 exposed controls.

515

516 Figure 6: CS-induced increases in airway epithelial area, collagen deposition 

517 and emphysema-like alveolar enlargement do not occur in Il22-/- mice. Wild-type 

518 (WT) and IL-22-deficient (Il22-/-) C57BL/6 mice were exposed to normal air or CS for 

519 8 weeks to induce experimental COPD. (a) Representative images of small airway 

520 epithelium. (b) Small airway epithelial thickness in terms of epithelial cell area (μm2) 

521 per basement membrane (BM) perimeter (μm). (c) Representative images of 

522 collagen deposition around small airways. (d) Area of collagen deposition (μm2) per 

523 BM perimeter (μm). (e) Representative images of alveolar structure. (f) Alveolar 

524 diameter (μm). Data are presented as mean ± SEM, n = 6, with another independent 

525 experiment showing similar results. The one-way analysis of variance with 

526 Bonferroni post-test analysed differences between 3 or more groups, whereby * = 

527 p<0.05 compared to normal air-exposed controls.

528

529 Figure 7: CS-induced lung function impairment is improved in Il22-/- mice. Wild-

530 type (WT) and IL-22-deficient (Il22-/-) C57BL/6 mice were exposed to normal air or 

531 CS for 8 weeks to induce experimental COPD. Lung function was assessed in terms 

532 of (a) lung volume from pressure volume loops, (b) airway resistance, (c) total lung 

533 capacity, (d) inspiratory capacity, (e) forced vital capacity and (f) compliance. Data 

534 are presented as mean ± SEM, n = 6, with another independent experiment showing 

535 similar results. The one-way analysis of variance with Bonferroni post-test analysed 

536 differences between 3 or more groups, whereby * = p<0.05 compared to normal air-

537 exposed controls.
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29

30 Supplementary methods

31 Ethics statement. This study was performed in accordance with the 

32 recommendations issued by the National Health and Medical Research Council of 

33 Australia. All experimental protocols were approved by the animal ethics committee 

34 of The University of Newcastle, Australia.

35

36 Gene Expression in Human COPD Microarray Datasets. Analysis of IL-22, IL-

37 22RA1 IL-10RB and IL-22RA2 in published human array datasets (Affymetrix Human 

38 Genome U133 Plus 2.0 Array, Accession numbers: GSE5058 and GSE27597) [1-3] 

39 was performed using the Array Studio software (Omicsoft Corporation, Research 

40 Triangle Park, NC, USA) by applying a general linear model adjusting for age and 

41 gender and the Benjamini–Hochberg method for p-value adjustment. Data are 

42 expressed as log2 intensity robust multi-array average signals. The Benjamini–

43 Hochberg method for adjusted P value/false discovery rate (FDR) was used to 

44 analyse differences between two groups. Statistical significance was set at FDR < 

45 0.05.

46 In the GSE5058 dataset, gene arrays from small airway epithelial cells 

47 obtained from normal non-smokers (n = 12), healthy chronic smokers (n = 12), 
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3

48 smokers with early COPD (n=9), and smokers with established COPD (n = 6) were 

49 evaluated. The FEV1/FVC ratio of the subjects in these groups were 99 ± 7, 97 ± 7, 

50 78 ± 4 and 66 ± 14, respectively.

51 In the GSE27597 dataset, gene arrays from 8 sample pairs from different lung 

52 slices from 6 subjects requiring lung transplant for COPD and 2 organ donors were 

53 analysed.  The 6 subjects with COPD had a FEV1 <25% predicted (severe disease).  

54 In addition, we examined gene expression from lung tissue specimens 

55 derived from 56 subjects (GSE8581 [4]). These subjects had undergone lobectomy 

56 for removal of a suspected tumour. Tissue was derived from histologically normal 

57 tissue distant from the tumour margin. COPD (cases, n = 15) were defined as 

58 subjects with FEV1<70% and FEV1/FVC<0.7 and controls (n = 18) as subjects with 

59 FEV1>80% and FEV1/FVC>0.7.

60

61 Mice. Female, 7-8-week-old, wild-type (WT) C57BL/6, Il17aeGFP/+;Il22td-tomato/+ 

62 reporter and Il22-/- mice were obtained from the Australian Bioresource Facility, Moss 

63 Vale, NSW, Australia. Il17aeGFP/+Il22td-tomato/+ dual reporter and Il22-/- and mice were 

64 generated as previously described [5]. Mice were housed under a 12-hour light/dark 

65 cycle and had free access to food (standard chow) and water. After a period of 

66 acclimatization (5 days), mice were randomly placed into experimental groups and 

67 exposed to either normal air or nose-only inhalation of CS for eight weeks as 

68 described previously [6-13].

69

70 Isolation of RNA and qPCR. Total RNA was extracted from whole lung tissue and 

71 blunt-dissected airways and parenchyma and reversed transcribed [8]. mRNA 
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4

72 transcripts were determined by real-time quantitative PCR (qPCR, ABIPrism7000, 

73 Applied Biosystems, Scoresby, Victoria, Australia) using custom designed primers 

74 (Integrated DNA Technologies, Baulkham Hills, New South Wales, Australia), 

75 normalized to the reference gene hypoxanthine-guanine phosphoribosyltransferase 

76 (hprt) (supplementary table 1).

77

78 Flow Cytometry Analysis. The numbers of IL-17A+ and IL-22+ CD4+ T-cells,  T-

79 cells, NKT-cells and group 3 innate lymphoid cells in lung homogenates were 

80 determined based on surface marker expression using flow cytometry 

81 (supplementary table 2) [14-16]. Flow cytometric analysis was performed using a 

82 FACSAriaIII with FACSDiva software (BD Biosciences, North Ryde, Australia). Flow 

83 cytometry antibodies were purchased from Biolegend (Karrinyup, Western Australia, 

84 Australia) or BD Biosciences (supplementary table 3). BD compensation beads 

85 (BD Biosciences) were used to compensate for spectral overlap.

86

87 Mouse lung IHC. Lungs were perfused, inflated, formalin fixed, paraffin embedded, 

88 and sectioned (4μm)[8, 9]. Longitudinal sections of the left lung were deparaffinised 

89 by placing on a heating block at 70°C for 15mins then sections were immersed in 

90 fresh xylene for 10mins then 5mins. Rehydration was performed using a series of 

91 ethanol gradients (100% twice, 90%, 80%, 70%) and 0.85% saline for 5mins each. 

92 Heat-induced antigen retrieval was performed in citrate buffer (10mM citric acid, 

93 0.05% Tween 20, pH 6.0) at 100°C for 30mins. Sections were blocked with casein 

94 blocker (Thermo Fisher Scientific, Scoresby, Victoria, Australia) for 1h. Sections 

95 were washed with PBS-T and incubated overnight at 4°C with either rat anti-Il22ra1 
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96 (MAB42941; R&D Systems, Minneapolis, Minnesota, United States) or rabbit anti-

97 Il22ra2 (ab203211; Abcam, Melbourne, Victoria, Australia) antibodies. Following 

98 washing with PBS-T, sections were incubated for 30mins at 37°C with either goat 

99 anti-rat (HAF005; R&D Systems) or goat-anti-rabbit (ab7090; Abcam) secondary 

100 antibodies conjugated to horseradish peroxidase. Each primary and secondary 

101 antibody was diluted 1:100 in PBS-T. Following washing with PBS-T, sections were 

102 incubated for 20 mins with 3,3'-diaminobenzidine chromogen-substrate buffer 

103 (Aligent Technologies, Mulgrave, Victoria, Australia) according to the manufacturer’s 

104 instructions. Sections were washed with ddH2O then counterstained with standard 

105 haematoxylin for 5mins. Sections were washed with tap H2O and were dehydrated 

106 by immersion in a series of saline, ethanol then xylene, inverse to that described 

107 above. Coverslips were mounted with standard non-aqueous medium and slides 

108 imaged using a Zeiss Axio microscope with ZEN-blue edition software V2.5 (Carl 

109 Zeiss Microscopy, Thornwood, New York, United States). Unless otherwise stated, 

110 each incubation was at room temperature protected from light in a humidified 

111 chamber. All wash steps were performed 5 times for 3mins each.

112

113 Airway remodelling. Airway epithelial (μm2) and collagen deposition area (μm2) 

114 were assessed in a minimum of four small airways (basement membrane [BM] 

115 perimeter <1,000μm) per section [7-9, 12, 13]. Lung sections were stained using 

116 Masson’s trichrome stain, and photographs of small intact airways were taken at 40x 

117 magnification. These photographs were then analysed in ImageJ software (Version 

118 1.50, NIH). 

119 Airway epithelial thickness analysis was performed by carefully tracing the BM 

120 and inner epithelial surface perimeters. Airway epithelial area was calculated by 
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6

121 subtracting the inner airway area from the outer airway area. This was then 

122 expressed as area per µm of BM.

123 For collagen analysis, a colour deconvolution method was used to isolate the 

124 collagen, stained blue. This method breaks the original photograph into three 

125 images, containing three separate colour ranges. In this manner, the blue-stained 

126 areas of the images (representing collagen) could be isolated and quantified 

127 separately. The BM was traced and measured as described above. 

128 Collagen deposition immediately surrounding the airway was traced and measured, 

129 but only in images that isolated the blue-stained pixels. We could then reach a 

130 quantitative ‘collagen per airway’ measurement by expressing the area of blue-

131 stained pixels per µm of BM.

132

133 Pulmonary Inflammation. Airway inflammation was assessed by differential 

134 enumeration of inflammatory cells in bronchoalveolar lavage fluid (BALF) [7, 8, 17-

135 19]. BALF supernatants were stored at -20°C for assessment of IL-22 protein levels. 

136 Lung sections were stained with periodic acid-Schiff (PAS) and tissue inflammation 

137 assessed by enumeration of inflammatory cells [7, 8, 17, 18]. Histopathological score 

138 was determined in lung sections stained with hematoxylin and eosin (H&E) based on 

139 established custom-designed criteria [19]. 

140

141 ELISA. Right lung lobes were homogenised on ice in 500uL of PBS supplemented 

142 with Complete mini protease inhibitor cocktail (Roche Diagnostic, Sydney, NSW, 

143 Australia) and PhosphoSTOP tablets (Roche Diagnostic). Lung homogenates were 

144 incubated on ice for 5 mins and subsequently centrifuged (8,000xg, 15 mins). 
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145 Supernatants were collected, stored at -20°C overnight and total protein levels were 

146 determined using Pierce BCA assay kit (Thermo Fisher Scientific) prior to ELISA. IL-

147 17A, IL-22, MPO and neutrophil elastase protein levels were quantified with 

148 commercially available ELISA kits (R&D Systems or Biolegend) [5]. IL-22 protein 

149 levels were normalised to total protein in lung homogenates.

150

151 Lung Function. Mice were anaesthetised with ketamine (100mg/kg) and xylazine 

152 (10mg/kg, Troy Laboratories, Smithfield, Australia) prior to tracheostomy. Tracheas 

153 were then cannulated and attached to Buxco® Forced Manoeuvres systems 

154 apparatus (DSI, St. Paul, Minnesota, USA) to assess total lung capacity [7, 8]. Mice 

155 were then attached to a FlexiVent apparatus (FX1 System; SCIREQ, Montreal, 

156 Canada) to assess lung volume, airway resistance, inspiratory capacity, forced vital 

157 capacity and compliance (tidal volume of 8mL/kg at a respiratory rate of 450 

158 breaths/mins) [7, 20, 21]. All assessments were performed at least three times and 

159 the average was calculated for each mouse.

160

161 Human lung tissue study population. Peripheral lung samples were obtained from 

162 subjects undergoing lung resection for peripheral lung carcinoma from the 

163 Respiratory Unit of the University Hospital of Ferrara, Italy (supplementary table 4). 

164 Smokers with mild-to-moderate stable COPD (n=12) were compared with age- and 

165 smoke history-matched smokers with normal lung function (NLF) (n=12).  Diagnosis 

166 of COPD was defined according to international guidelines as the presence of post-

167 bronchodilator FEV1/FVC ratio <70% or the presence of cough and sputum 

168 production for at least 3 months in each of two consecutive years [22]. All patients 

169 were in stable condition at the time of the surgery and had not suffered acute 
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170 exacerbations or upper respiratory tract infections in the preceding two months.  

171 None had received glucocorticoids or antibiotics within the month preceding surgery, 

172 or inhaled bronchodilators within the previous 48 h.  Patients had no history of 

173 asthma or other allergic diseases.  All former smokers had stopped smoking for 

174 more than one year.  Each patient was subjected to medical history, physical 

175 examination, chest radiography, electrocardiogram, routine blood tests, and 

176 pulmonary function tests during the week prior to surgery.  Pulmonary function tests 

177 (Biomedin Spirometer, Padova, Italy) were performed as previously described [23] 

178 according to published guidelines.

179

180 Lung sample preparation and IHC. Collection, processing, immunohistochemical 

181 analysis of lung tissue samples as well as data analysis were performed as 

182 previously published [24, 25].  The primary antibodies (anti-human) used are 

183 summarised in supplementary table 5.  Negative antibody controls used were 

184 nonspecific isotype matched Ig at their respective primary antibody concentrations.  

185 Image analysis was performed [24] using an integrated microscope (Olympus, 

186 Albertslund, Denmark), video camera (JVC Digital color, Tatstrup, Denmark), 

187 automated microscope stage (Olympus) and PC running Image pro-Plus Software 

188 (Media Cybernetics) to quantify the RBP staining areas. Immunostaining counting 

189 and interpretation were performed blinded without prior knowledge of clinical-

190 pathologic parameters.

191

192 Scoring system for IHC in peripheral lung. Staining analysis was performed as 

193 previously published [24, 25]. A bronchiole was taken to be an airway with no 
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194 cartilage and glands in its wall. According to a validated method [24] the number of 

195 positively stained endoalveolar macrophages was expressed as a percentage of the 

196 total cells with the morphological appearance of alveolar macrophages counted 

197 inside of the alveoli. The number of bronchiolar epithelial cells with positive staining 

198 was expressed as a percentage of the total number of epithelial cells counted in 

199 each bronchiolar section and group data were expressed as mean and standard 

200 error of the mean (SEM). Airway epithelial-specific IL-22RA1 protein intensity was 

201 quantified using the Aperio imaging system and normalized to the length of the 

202 basement membrane.

203

204 Statistical analyses. Unless otherwise stated, data are presented as means ± 

205 standard error of mean (SEM) and are representative of two independent 

206 experiments with 6 mice per group. The two-tailed Mann-Whitney test was used to 

207 compare two groups. The one-way analysis of variance with Bonferroni post-test was 

208 used to compare 3 or more groups. Statistical significance was set at P < 0.05 and 

209 determined using GraphPad Prism Software version 6 (San Diego, CA, USA). 

210
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10

211 Supplementary table 1. Custom-designed primers used in qPCR analysis

Primer Primer sequence (5’ → 3’)

Il22ra1 forward GTTTTACTACGCCAAGGTCACG

Il22ra1 reverse CACTTTGGGGATACAGGTCACA

Il10rb forward ATTCGGAGTGGGTCAATGT

Il10rb reverse CTGAGAAACGCAGGTGTAAAG

Il22ra2 forward CTCTTCTGTGACCTGACCAATGA

Il22ra2 reverse TTATAGTCACGACCGGAGGATCT

Cxcl1 forward GCTGGGATTCACCTCAAGAA

Cxcl1 reverse CTTGGGGACACCTTTTAGCA

Cxcl2 forward TGCTGCTGGCCACCAACCAC

Cxcl2 reverse AGTGTGACGCCCCCAGGACC

Il17a forward GTGTCTCTGATGCTGTTGCT

Il17a reverse GTTGACCTTCACATTCTGGA

Hprt forward AGGCCAGACTTTGTTGGATTTGAA

Hprt reverse CAACTTGCGCTCATCTTAGGATTT

212
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214 Supplementary table 2. Surface antigens used to characterise mouse IL-17A+ IL-22+ lung 

215 cell subsets by flow cytometry

Cell subset Cell surface antigens

CD4+ T cells CD45+CD3+CD4+CD8-

 T cells CD45+CD3+TCR+

NKT cells CD45+CD3+GalCer tetramer+

ILC3 CD45+CD3-Ly6C/G-CD11b-B220-TER119-IL-

7R+CD90.2+

IL-17A and IL-22 Reported by eGFP and td-tomato, respectively

216
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218 Supplementary table 3. Antibodies used in flow cytometry analysis

Cell surface

antigens

Clone Fluorophore Company

CD45 30-F11 PerCP-Cy5.5 Biolegend

CD3 17A2 AF700 Biolegend

CD4 RM4-5 APC-Cy7 Biolegend

CD8 53-6.7 BV510 Biolegend

TCR GL3 BV421 Biolegend

GalCer Tetramer N/A BV605 N/A

Lineage cocktail 

(CD3, Ly6C/G, 

CD11b, B220, 

TER119)

17A2, 

RB6-8C5, 

M1/70, 

RA3-6B2, 

Ter-119

AF700 Biolegend

219

220 Supplementary Table 4. Characteristics of subjects for the immunohistochemical study of 
221 interleukins on peripheral lung

222

Subjects N. Age Sex Smoking history Pack-
years

Chronic 
bronchitis

FEV1

% pred

FEV1/

FVC %

Control 
smokers

12 70.8
±2.3

10M/
2F

8 Ex smokers

4 Current 
smokers

41.9 
±11.4

0 104.3±4.0 76.7±1.3

COPD 12 72.4
±1.5

12M 7 Ex smokers

5 Current 
smokers

40.6 
±3.3

4 with 
chronic 
bronchitis

76.9±6.2 61.6±2.7
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223 Supplementary table 5. Primary antibodies and immunohistochemical conditions used for 
224 identification of interleukins in the peripheral lung 

Antigen Company Catalogue Host Concentration Secondary antibody

IL10Rb MyBio 
Source

MBS2003603 Rabbit 1.8 µg/ml Goat anti-rabbit IgG, 
Vector (BA 1000); 
1:200

IL-22 R&D AF782 Goat 4 µg/ml Rabbit anti-goat IgG, 
Vector (BA 5000); 
1:200

IL22RA1
/ IL22R

EMD 
Millipore/L
SBio

06-1077-
I/LS-B1365

Rabbit 2.2 µg/ml Goat anti-rabbit IgG, 
Vector (BA 1000); 
1:200

IL22RA2 Atlas HPA030582 Rabbit 1 µg/ml Goat anti-rabbit IgG, 
Vector (BA 1000); 
1:200

225

226

227 Supplementary table 6. Immunohistochemical percentage of peripheral lung IL-22-positive 
228 cells

Localization and 
antigen

Control smokers COPD Mann-Whitney test 
p value

Bronchiolar 
epithelium

Nuclear 8.3±2.8 9.0±2.5 0.6427

5.0 (9.6) 5.0 (8.7)

1.0-13.8 2.0-18.0

Cytosolic 48.5±7.0 60.8±6.6 0.2037

54.5 (24.1) 67.5 (22.8)

25.3-70.3 44.5-76.3

Alveolar 
macrophages

Nuclear 16.7±4.1 46.5±7.5 0.0130

11.5 (14.1) 51.0 (26.1)

Cytosolic 9.0-23.0 28.3-63.5 0.0602

62.0 (20.3) 58.0 (13.8)
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14

40.8-76.5 27.0-48.5

229 Data expressed as mean ± SEM (first line), median (SD) (second line) and interquartile 
230 range (third line). Data expressed as mean ± SEM (first line), median (SD) (second line) and 
231 interquartile range (third line). 

232

233 Supplementary table 7. Immunohistochemical percentage of peripheral lung IL22RA1-
234 positive cells

235

Localization and 
antigen

Control smokers COPD Mann-Whitney test 
p value

Bronchiolar 
epithelium

Nuclear 3.8±2.3 24.9±4.6 0.0009

0.8 (7.9) 24.5 (15.9)

0.0-4.0 16.8-27.5

Cytosolic 30.5±7.8 8.2±3.5 0.0123

21.5 (27.1) 2.0 (12.1)

7.0-57.3 0.0-16.8

Alveolar 
macrophages

Nuclear 1.9±0.9 20.7±4.3 0.0005

0.5 (3.2) 21.0 (15.0)

0.0-2.8 5.5-35.3

Cytosolic 0.0-2.8 5.5-35.3 0.0022

72.5±3.9 52.0±3.9

75.0 (13.4) 49.0 (13.5)

236 Data expressed as mean ± SEM (first line), median (SD) (second line) and interquartile 
237 range (third line). Data expressed as mean ± SEM (first line), median (SD) (second line) and 
238 interquartile range (third line). 

239

240 Supplementary table 8. Immunohistochemical percentage of peripheral lung IL22RA2-
241 positive cells

Localization and 
antigen

Control smokers COPD Mann-Whitney test 
p value

Bronchiolar 
epithelium
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15

Nuclear 0 0 -----

0 0

0 0

Cytosolic 25.7±7.0 11.8±3.7 0.1645

19.0 (24.1) 8.0 (12.8)

3.5-49.5 1.3-20.5

Alveolar 
macrophages

Nuclear 0 0 -----

0 0

0 0

Cytosolic 47.5±5.0 48.2±8.5 0.8173

46.5 (17.5) 52.5 (29.3)

34.3-59.8 22.5-73.3

242 Data expressed as mean ± SEM (first line), median (SD) (second line) and interquartile 
243 range (third line). Data expressed as mean ± SEM (first line), median (SD) (second line) and 
244 interquartile range (third line). 

245

246 Supplementary table 9. Immunohistochemical percentage of peripheral lung IL10Rb-
247 positive cells

Localization and 
antigen

Control smokers COPD Mann-Whitney test 
p value

Bronchiolar 
epithelium

Nuclear 1.8±0.8 3.4±1.1 0.1259

0.5 (2.6) 2.0 (3.8)

0.0-2.8 1.0-4.8

Cytosolic 27.0±7.6 26.9±5.3 0.7505

16.0 (26.5) 18.5 (18.4)

2.8-58.3 13.0-41.8

Alveolar 
macrophages

Nuclear 5.5±1.7 19.1±3.7 0.0044

5.0 (5.9) 19.0 (12.8)
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0.0-11.8 7.5-25.0

Cytosolic 59.8±5.9 59.6±4.0 0.9769

62.0 (20.3) 58.0 (13.8)

38.5-76.5 49.3-66.8

248 Data expressed as mean ± SEM (first line), median (SD) (second line) and interquartile 
249 range (third line). 

250

251 Supplementary Table 10. Characteristics of subjects for the IL-22RA1 intensity in airway 
252 epithelial cells

Subjects Non-smokers Healthy smokers GOLD 2 GOLD 3, 4

Sex (M/F) 2/4 2/4 6/3 4/5

Smoking status (current/ex/NA) 0/0/0 4/2/0 4/3/2 1/8/0

Age (mean ± SD) 58.0±18.1 65.8±9.2 63.7±9.0 60.3±6.0

FEV1/FVC % (mean ± SD) 82.9±4.4 76.5±3.5 57.1±5.6 33.5±11.1

253

254

255
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373 Supplementary figure legends

374 Supplementary Figure 1: Gating strategy for lung immune cell subsets. (a) 

375 CD4+ T cells, (b)  T cells and NKT cells and (c) ILC3.

376

377 Supplementary Figure 2: IL-22 and receptor mRNA in human peripheral lung 

378 tissue is unchanged in mild emphysema. Microarray data from peripheral lung 

379 tissue of patients with mild emphysema (Accession: GSE8581). (a) IL-22, (b) IL-

380 22RA1, (c) IL-22RA1 and (d) IL-10RB. Data are represented as log2 intensity robust 

381 multi-array average signals. 

382

383 Supplementary Figure 3: No correlation between smoking pack-years and IL-

384 22 or receptor expression. (a) IL-22, (b) IL-22RA1, (c) IL-22RA2

385

386 Supplementary Figure 4: No change in IL-22 or receptors in bronchial 

387 brushings in lung cancer. Microarray data from bronchial brushings in lung cancer 

388 (Accession: GSE4115). (a) IL-22, (b) IL-22RA1, (c) IL-10RB. Data are represented 

389 as log2 intensity robust multi-array average signals. 

390

391 Supplementary Figure 5: No change in IL-22 or receptors in lung tissue in lung 

392 cancer. Microarray data from lung tissue in lung cancer (Accession: GSE1650). (a) 

393 IL-22, (b) IL-22RA1, (c) IL-10RB. Data are represented as log2 intensity robust multi-

394 array average signals. 
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395 Supplementary figure 6: Representative images of IL-22 and IL-22 receptor 

396 staining in human lung tissue. The four panels are showing the representative 

397 images of IL-22 (upper panel), IL-22RA1 (upper middle panel), IL-22RA2 (lower 

398 middle panel) and IL-10RB (lower panel) immunohistochemical staining in human 

399 peripheral lung tissue.  (a and d) represent age- and smoke history-matched control 

400 smokers with normal lung function and (b and e) represent mild-to-moderate stable 

401 COPD. Upper lane images show the bronchiolar epithelium whereas lower lanes the 

402 alveolar macrophages. Representative images of positive control tissues (tonsils for 

403 IL-22, IL-22RA1 and IL-10RB), normal kidney for IL-22RA2 (kindly provided 

404 respectively by Prof Stefano Pelucchi and Prof Carmelita Di Gregorio) were stained 

405 with primary antibody (c) or with nonspecific immunoglobulin (Ig)G (negative control, 

406 f). Total magnification: 1000x (a, b, d, e; bar = 20 μm) or 200x (c, f; bar = 100 μm). 

407

408 Supplementary figure 7: Increased IL-22RA1 protein intensity in the airway 

409 epithelium of smokers with COPD. (a) IL-22RA1 protein intensity per micrometre 

410 (m) of basement membrane (BM) in non-smokers, healthy smokers without COPD 

411 and COPD with or without current smoking separated into GOLD stage 2 and GOLD 

412 stage 3-4. (b) IL-22RA1 intensity in airway epithelium of non-smokers vs. smokers 

413 with COPD. (c) Representative images of IL-22RA1 positive staining, with red 

414 staining in the airway epithelial cells indicating IL-22RA1 positive staining. 

415

416 Supplementary figure 86: IL-22 protein levels are unaltered in the lungs of mice 

417 exposed to CS for 1 week. Wild-type (WT) C57BL/6 mice were exposed to normal 

418 air or CS for 1 week. IL-22 protein levels in lung homogenates were assessed by 
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419 ELISA. Data are presented as mean ± SEM, n = 6, with another independent 

420 experiment showing similar results. Two-tailed Mann-Whitney t-test was used to 

421 analyse differences between two groups. 

422

423 Supplementary figure 97: Representative images of IL-22RA1 and IL-22RA2 

424 protein in mouse lung tissue sections. Wild-type (WT) C57BL/6 mice were 

425 exposed to normal air or CS for 8 weeks. Representative images of negative control 

426 (top row), IL-22RA1 and IL-22RA2 staining in mouse lung tissue sections from 

427 normal air- (left) and CS-exposed (right) mice.

428

429 Supplementary figure 108: IL-17A, MPO and neutrophil elastase protein levels 

430 are increased in experimental COPD, but not in the absence of IL-22. Wild-type 

431 (WT) and IL-22-deficient (Il22-/-) C57BL/6 mice were exposed to normal air or CS for 

432 8 weeks to induce experimental COPD. (a) IL-17A, (b) MPO and (c) neutrophil 

433 elastase protein levels in lung homogenates. Data are presented as mean ± SEM, n 

434 = 6, with another independent experiment showing similar results. The one-way 

435 analysis of variance with Bonferroni post-test analysed differences between 3 or 

436 more groups, whereby * = p<0.05 compared to normal air-exposed controls. ns = not 

437 significant.

438

439 Supplementary Figure 119: CS induced non-significant reductions in tissue 

440 elastance that was not different in Il22-/- mice. Wild-type (WT) and IL-22-deficient 

441 (Il22-/-) C57BL/6 mice were exposed to normal air or CS for 8 weeks to induce 

442 experimental COPD. Lung function was assessed in terms of tissue elastance. Data 
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443 are presented as mean ± SEM, n = 6, with another independent experiment showing 

444 similar results. The one-way analysis of variance with Bonferroni post-test analysed 

445 differences between 3 or more groups. ns = not significant.
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