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Abstract—The global optimum of the optimal power flow
(OPF) problem can be sought in various practical settings by
adopting the conic relaxations, such as the second order cone
programs (SOCPs) and semi-definite programs (SDPs). However,
the ZIP (constant impedance, constant current, constant power)
and exponential load models are not directly amenable with these
conic solvers. Thus, these are mostly treated as constant power
loads in the literature. In this letter, we propose two simple
methods to approximate these static loads with good accuracy.
The proposed methods perform much better than the traditional
constant power approximation.

Index Terms—ZIP load model, Exponential load model, Second
order cone programming, Semi-definite programming, Optimal
power flow.

I. INTRODUCTION

THE load flow model is the main source of non-convexity
for the traditional optimal power flow (OPF) problem,

and thus making the problem NP-hard. Recently, various
relaxations have been proposed to convexify the load flow
model. The DistFlow model can be convexified by either
adopting linear relaxations [1] or the SOCP relaxations [2],
whereas the bus injection model can be convexified through
the SDP relaxations [3]. However, these convexifications are
not able to accurately capture the voltage dependence of the
loads. This leads to the adoption of simple constant power
load models in most of the cases. It is noteworthy that a load
model having both the constant power and constant impedance
terms, referred to as ZP, can be handled by the above relaxed
solvers equally efficiently.

The voltage dependence of the loads plays an important
part in the net nodal injections. The distribution automation
project at the B.C. Hydro reported a response of 1.6% and
3.1% respectively in the active and reactive power demand per
1% voltage change in one of their spring day trials [4]. The
accurate load models are more important for studies pertaining
to voltage regulation, and particularly to conservation voltage
reduction, where the voltages are held near the lower bounds
to decrease the demand on the substation transformers.

In this letter, we propose two methods to approximate the
static voltage dependent loads to high accuracy. Both the
methods seek to find an equivalent ZP model for the original
load. The ZP nature of the equivalent model makes it amenable
with the convex relaxations of the OPF problem. We use the
Binomial approximation and the linear regression analysis for
deriving the equivalent models. Marti et al used an approach
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on the basis of curve fitting for deriving their equivalent
models [5]. However, their focus was to solve the linear power
flow problem and their final model consisted of constant power
and constant impedance terms.

The first attempt to address this issue was reported in [6],
where a rank relaxation was used to allow approximate rep-
resentation of the ZIP loads with the SDP solver. However,
this approach can not be extended to the SOCP and the linear
DistFlow solvers. Whereas, our approach works equally well
for all the mentioned solvers and is able to take into account
both the ZIP and the exponential loads. It is also reported that
the solver times increase by 20% to 30% in the method of [6].
Whereas, the numerical results show that the solver times do
not increase in our method.

In this letter, we give the expressions considering the real
power demand only. However, the proposed equivalent models
are easily extendable to the reactive power loads by using the
same procedure.

II. BINOMIAL APPROXIMATION METHOD

The Binomial series, in terms of generalised Binomial
coefficients, is explicitly written as:

(1 + x)δ =

∞∑
k=0

(
δ

k

)
xk (1)

The infinite series in (1) can be approximated to the first two
terms, with high accuracy, provided |x| << 1 and |δx| << 1.
The proposed Binomial approximation method (BAM) makes
use of this assumption and the fact that under normal operating
conditions the voltage magnitudes of all the buses in a network
stay close to 1 in the per unit system. This allows us to
write the monomial exponent of the node voltage magnitude
as follows:

vη = (1 + ∆v)η ≈ 1 + η∆v (2)

Here, v denotes the node voltage magnitude and η is such that
|η∆v| << 1. We also denote the square of the node voltage
magnitude by the auxiliary variable u, and let u = 1 + ∆u.
Setting η = 2 in (2), we have the following key relation:

∆u ≈ 2∆v (3)

A. ZIP Loads

The ZIP static load model is defined by a second-order
polynomial as given below:

p = αp + αzv2 + αiv (4)

αp, αz and αi are scalar coefficients representing the param-
eters of this model, and p denotes the real power demand.

We propose to approximate the ZIP model in (4) with an
equivalent ZP model, whose parameters can be easily obtained
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from the original ZIP model parameters. The proposed model
is derived below, starting from (4) and using the relation (3).

p = αp + αzu+ αi(1 + ∆v) (5)

p ≈ αp + αzu+ αi(1 +
∆u

2
) (6)

p ≈ αp + αzu+ αi(1 +
u− 1

2
) (7)

p ≈ (αp +
αi

2
)︸ ︷︷ ︸

αp
1

+ (αz +
αi

2
)︸ ︷︷ ︸

αz
1

u (8)

The relation (8) defines the proposed equivalent ZP model
whose parameters are αp1 and αz1. It is evident from this
relation that the constant current parameter of the original
ZIP model gets split equally between the constant power and
constant impedance parameters of the equivalent model.

B. Exponential Loads

This static load model expresses the power demand as an
exponential function of the voltage magnitude, as given below:

p = p0v
β (9)

The equivalent ZP model, with the parameters as αp2 and αz2,
for (9) is derived by employing (2) and the procedure inline
with the ZIP models as given in (5) - (8), and is written as:

p ≈ p0(1− β

2
)︸ ︷︷ ︸

αp
2

+
p0β

2︸︷︷︸
αz

2

u (10)

III. LINEAR REGRESSION METHOD

Linear regression method (LRM) estimates the parame-
ters of the equivalent ZP model based on minimizing the
summation of the squared residuals. Let us suppose that the
parameters of the estimated model are α̂p and α̂z . Also, we
sample the voltage magnitude, in a specified range of interest,
to collect n data points. Let v be the real valued vector which
represents these voltage magnitude data points, and vm be the
vector obtained by m times multiplying the vector v by itself
in an element-wise fashion. This implies that each element in
v2 is the square of the corresponding element in v. Then we
can write the following:

V

(
α̂p

α̂z

)
= p + r (11)

Here V ∈ Rn×2 is defined as the matrix [1 v2], p is the
vector of the real power values corresponding to v, and r
denotes the residual vector. Note that we employ the notation
of a bold face lower case letter representing a vector and a
bold face upper case letter representing a matrix. The LRM
aims to minimize the sum of squares of the residual vector
in order to have the best possible equivalent ZP model. The
solution of the LRM estimator will, thus, be:(

α̂p

α̂z

)
≈ (VTV)−1VTp (12)

A. ZIP Loads

The ZIP load definition given by (4) results in the following
transformation when used with the LRM estimator of (12).(

α̂p

α̂z

)
≈ (VTV)−1VTW︸ ︷︷ ︸

C

αpαz
αi

 (13)

Here, W ∈ Rn×3 is defined as the matrix [1 v2 v]. The
transformation matrix C relates the equivalent model space
with the actual ZIP space, and it takes the following shape.

C =

(
1 0 cp(v)
0 1 cz(v)

)
(14)

Where cp(v) = vv4−v2 v3

v4−(v2)2
and cz(v) = v3−vv2

v4−(v2)2
. The

overline denotes mean value operator for a vector, thus v is the
mean value of the vector v. It is evident that these coefficients,
cp(v) and cz(v), are adjustable and their value depends on the
vector of the collected voltage magnitude samples only. The
detailed derivation of C is given in the appendix.

B. Exponential Loads

The non-linear nature of (9) does not allow a general
expression of the equivalent ZP model for the exponential
loads.Therefore, the following procedure should be followed
to get the equivalent ZP parameters:
• Sample the voltage magnitude in the desired range and

obtain the voltage vector v. This vector is used to
calculate the real valued matrix V = [1 v2].

• For each sampled value in v, obtain a corresponding load
value using (9). The resultant vector is designated as p.

• Finally, leverage (12) to estimate the parameters of the
exponential model.

IV. RESULTS

The two proposed approaches for the modelling of static
loads are tested for their effectiveness on both the nodal and
the network levels. On the nodal level, the accuracy of the node
injections for typical values of the load parameters is recorded.
While on the network level, the effect of the proposed load
models on the voltage profile of the network is observed.

A. Accuracy of the Proposed Load Models

In this set of tests, the real power demand at a node is
studied for a typical voltage range considering the different
load models. Fig. 1 and Fig. 2 show the comparison of
these different approaches. The parameters of the ZIP model
are taken from [5], where αp = 0.466, αz = 0.025, and
αi = 0.51. While the parameters for the exponential model
are taken from [7], in which the most prevalent value of β
throughout the world is estimated to be 0.7. The value of
p0 is 1. For the LRM approach, the vector v is computed
by taking linearly spaced samples with a step length of
0.01 in the range of 0.7 to 1.3. Thus, the values of cp(v)
and cz(v) are respectively 0.4877 and 0.4969. It is obvious
from the Fig. 1 and Fig. 2 that the traditional method of
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Fig. 1. Accuracy of Various Models for the ZIP Loads.

0.7 0.8 0.9 1 1.1 1.2 1.3

v

0.7

0.8

0.9

1

1.1

1.2

1.3

p

Exp

BAM

LRM

Const P

Normal Operating Range

Fig. 2. Accuracy of Various Models for the Exponential Loads.

approximating the static loads with the constant power (Const-
P) type results in appreciable discrepancy in the net injection,
which is efficiently reduced by the proposed BAM and LRM
approaches. However, the BAM approach works very well for
the normal operating range, while as the LRM approach should
be employed when the network is under voltage stress. This is
because the LRM method is more accurate when the voltage
is outside the normal operating range.

B. Impact on the Network Voltage Profile

The load flow study is carried on the UKGDS-95 bus
system, whose data is taken from [8]. However, the active
and reactive power loads are slightly modified such that they
are split equally between the constant power, constant current
and constant impedance parts at the unity voltage. The load
flow studies are carried out through the current injection
algorithm [9] by utilizing the full ZIP models. This study is
carried in MATLAB and its solution acts as the benchmark.
In order to demonstrate the effectiveness of the proposed load
modelling approaches for the OPF based solvers, the load
flow studies are also carried by setting up a second order
conic optimization framework in-line with [2], which is solved
through the CPLEX optimizer [10] interfaced with MATLAB.
We separately test the Const-P, BAM and LRM concepts
through this optimization based load flow study. Fig. 3 shows

Constant P BAM LRM

0

0.5

1

1.5

2

2.5

3

3.5

4

P
e
rc

e
n
t 
E

rr
o
r

Fig. 3. Percentage Normalized Error in the Network Voltage Magnitudes with
Different Load Modelling Approaches for the UKGDS-95 Bus System.

TABLE I
AVERAGE TIME TAKEN FOR THE CONST-P, BAM AND LRM APPROACHES

TO CONVERGE

Approach Const P BAM LRM
Average CPU Time (sec) 0.0878 0.0873 0.0881

the percentage normalized error of these load flow studies as
against the benchmark. It is clear that the BAM and the LRM
approaches can effectively reduce the voltage errors which are
present in the traditional constant power modelling approach.

C. Computational Performance

The computational tests are performed on a 3.5 GHz Intel
Xeon E5 processor with 64 GB of RAM, where the second
order cone programming based load flow routine, along the
lines of [2], is coded in MATLAB, and then subsequently
solved using the CPLEX 12.7 optimization studio. These load
flow studies are carried on the UKGDS-95 bus system, with
the same data as in the previous subsection. Here again the
Const-P, BAM and LRM approaches are tested separately. We
run the load flow ten times for each approach, and then average
the time taken in the ten runs, which is given in the Table I.
It is evident from this table that the convergence time by the
BAM and the LRM approaches is almost same as the Const-
P approach. This means that the proposed approaches do not
increase the solver times.

V. CONCLUSION

This letter presents two different methods for approximating
the voltage dependence of the static loads for the conic OPF
solvers. Under normal operating conditions BAM yields highly
accurate results, however the LRM performs better when the
network in under voltage stress.

APPENDIX A
DERIVATIONS PERTAINING TO THE LRM

Supposing that the voltage range is sampled to collect n
samples in the vector v =

[
v1 v2 . . vn

]T
. Thus, the
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LRM estimator for the ZIP loads satisfies the following:
1 v21
1 v22
. .
. .
1 v2n


︸ ︷︷ ︸

V

(
α̂p

α̂z

)
≈


1 v21 v1
1 v22 v2
. . .
. . .
1 v2n v2n


︸ ︷︷ ︸

W

αpαz
αi

 (15)

This implies:

VTV =

(
1 1 . . 1
v21 v22 . . v2n

)
1 v21
1 v22
. .
. .
1 v2n

 (16)

=

(
n

∑
v2∑

v2
∑
v4

)
(17)

Also evaluate the following matrix product:

VTW =

(
1 1 . . 1
v21 v22 . . v2n

)
1 v21 v1
1 v22 v2
. . .
. . .
1 v2n vn

 (18)

=

(
n

∑
v2

∑
v∑

v2
∑
v4

∑
v3

)
(19)

Thus, the transformation matrix is given as:

C = (VTV)−1VTW (20)

=
1

n
∑
v4 − (

∑
v2)2

( ∑
v4 −

∑
v2

−
∑
v2 n

)
(21)(

n
∑
v2

∑
v∑

v2
∑
v4

∑
v3

)
=

1

n
∑
v4 − (

∑
v2)2

(
n
∑
v4 − (

∑
v2)2...

−n
∑
v2 + n

∑
v2...

(22)

∑
v4
∑
v2 −

∑
v2
∑
v4

∑
v
∑
v4 −

∑
v2
∑
v3

−(
∑
v2)2 + n

∑
v4 −

∑
v
∑
v2 + n

∑
v3

)

=

1 0

∑
v
∑
v4 −

∑
v2
∑
v3

n
∑
v4 − (

∑
v2)2

0 1
−
∑
v
∑
v2 + n

∑
v3

n
∑
v4 − (

∑
v2)2

 (23)

Divide the numerator and the denominator of (23) by n2, we
get:

C =

1 0
vv4 − v2v3

v4 − (v2)2

0 1
v3 − vv2

v4 − (v2)2

 (24)
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