Supporting Information

Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate

Eleonora Calì^{†*}, Gwilherm Kerherve[†], Faris Naufal[†], Kalliopi Kousi[‡], Dragos Neagu[¶], Evangelos I. Papaioannou[‡], Melonie P. Thomas[§], Beth S. Guiton[§], Ian S. Metcalfe[‡], John T. S. Irvine^{| |}, David J. Payne^{†*}

† Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

E-mail: e.cali14@imperial.ac.uk; d.payne@imperial.ac.uk

‡ School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, United Kingdom

¶ Chemical & Process Engineering, University of Strathclyde, Glasgow, G1 1XL, United Kingdom

§ Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA

½½School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, United Kingdom

S1. Image Analysis and Calculations

Particle size distribution and particle density were analyzed using ImageJ software. In order to calculate the number of exsolved Ir atoms $(N_{Ir_{exsolved}})$, the particles size and surface distribution (NP μ m⁻²) were integrated in the following calculations, based on similar work described previously: ^{1,2}

$$
N_{Irexsolved} = \frac{4\pi\rho_{Ir}N_A}{3A_{Ir}} \sum_{i} f_i(\frac{d_i}{2})^3
$$

Where ρ_{Ir} is density of Ir, N_A is the Avogadro's number, A_{Ir} is the atomic weight of Ir, f_i the fraction of exsolved nanoparticles (per μ m⁻² of perovskite) with diameter d_i . The average number of Ir atoms in a perovskite grain of length *L*, width *W* and depth *d* was then calculated assuming a parallelepiped grain shape:

$$
N_{Ir_{grain}} = \frac{LWd}{a_p^3} x_{Ir}
$$

where x_{Ir} is the nominal doping concentration $(x=0.5\%)$.

By calculating the average surface area of one grain, it is possible to convert *NIrexsolved* in the number of exsolved Ir atoms per grain, which allowed us to calculate the concentration % of Ir exsolved compared to our nominal doping concentration (exsolved Ir concentration $\% = \sim 0.2$).

The total number of exsolved Ir atoms analysed in the XPS spot probing area (N_{Iryps}) was then calculated, and related to the total number of Ti atoms analysed in the probing volume of XPS spot (N_{TiXPS}) , considering a probing depth of 10 nm:

$$
N_{Ti_{XPS}} = \frac{400 \times 0.01}{a_p^3} x_{Ti}
$$

By relating this number to the Ti nominal concentration and comparing it with $N_{I r_X p_S}$, it was then possible to calculate the expected Ir concentration $(\%)$ in the probing XPS spot volume, which, for the sample reduced at the highest temperature, was calculated as \sim 2%, in good agreement with the 1.6% measured by XPS.

S2. Supplementary Data

Figure S1: XPS analysis showing a) the valence band comparison for the undoped STO, 0.5% Ir-doped STO, and 5% Ir-doped STO; b) Ir 4*f* core level of 5% Ir-doped STO showing both Ir^{4+} and Ir^{3+} components.

Figure S2: STEM-EDX elemental analysis carried out on the as-synthesised 0.5% Irdoped STO. The areas analysed in the two different Ir-STO grains in a) and b) both show the homogeneous composition of the sample before reduction at high temperatures.

Core line	BE (eV)	FWHM (eV)	SOS (eV)	Atomic %
Undoped STO				
$Sr~3d_{5/2}$ STO	132.65	0.9	1.76	39.97
Sr $3d_{5/2}$ SrCO ₃	133.38	1.2	1.7	4.05
Ti $2p_{3/2}$	458.13	0.99	5.75	51.82
$C1sC=0$	289.25	1.51		4.16
$C 1s C-C$	284.8	1.49		
Ir doped STO	20^oC			
Ir $4f_{7/2}$ Ir(III)	61.79	1.2	3.00	0.41
Sr $3d_{5/2}$ STO	132.52	1.09	1.76	37.61
Sr $3d_{5/2}$ SrCO ₃	133.5	1.19	1.75	12.10
Ti $2p_{3/2}$	458.05	1.27	5.71	49.88
$C 1s C=O$	289.25	1.51		14.76
$C 1s C-C$	284.8	1.45		
Ir doped STO	1100^oC			
Ir $4f_{7/2}$ Ir(0)	59.95	1.19	3.10	0.62
Sr $3d_{5/2}$ STO	132.92	1.15	1.76	36.96
Sr $3d_{5/2}$ SrCO ₃	133.82	1.25	1.73	14.11
Ti $2p_{3/2}$	458.4	1.29	5.78	39.96
C 1 s C=O	289.66	1.41		8.34
$C 1s C-C$	284.8	1.41		
Ir doped STO	$1300^o\textrm{C}$			
Ir $4f_{7/2}$ Ir(0)	59.80	1.00	3.07	0.65
Sr $3d_{5/2}$ STO	132.76	0.99	1.75	42.92
Sr $3d_{5/2}$ SrCO ₃	133.74	1.09	$1.7\,$	7.76
Ti $2p_{3/2}$	458.17	1.02	5.73	39.38
$C 1s C=O$	289.64	1.38		9.30
$C1sC-C$	284.8	1.25		

Table S1: XPS fit parameter for the Ir $4f$, Ti $2p$, Sr $3d$ and C 1s of the undoped STO, Ir-doped STO and Ir-doped STO reduced at $1100\,^{\circ}\mathrm{C}$ and $1300\,^{\circ}\mathrm{C}.$

Table S2: Sr_{SrCO_3} : $\rm Sr_{lattice}$ before doping, after doping and after exsolution.

Samples	Sr (surface)	Sr (bulk)
Undoped STO	9.2%	90.8 %
$Ir-STO$	24.3 %	75.7 %
Ir-STO, 900 °C	17.1%	82.9%
Ir-STO, 1100 °C	27.6 %	72.4 %
Ir-STO, 1300 °C	15.3 %	84.7 %

References

[1] C. Tang, K. Kousi, D. Neagu, J. Portolés, E. I. Papaioannou, I. S. Metcalfe, *Nanoscale*, **2019**, 11, 16935.

[2] D. Neagu, T.-S. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R. Gamble, R. J. Gorte, J. M. Vohs, J. T.S. Irvine, *Nature Commun.*, **2015**, 6, 8120.