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2 A. Pouquet, D. Rosenberg and J.E. Stawarz

1 Introduction

Magnetohydrodynamic (MHD) turbulence di↵ers from ordinary fluid turbu-
lence for several reasons. One of them is the presence of Alfvén waves due to
the e↵ect of a uniform, or large-scale, magnetic field, whereas of course a uni-
form velocity field can be eliminated through a Galilean transformation. This
leads to a higher degree of nonlocal interactions, that is interactions between
widely separated scales in MHD, and in Hall-MHD in the presence of a Hall
current in a generalized Ohm’s law [1,2] (see e.g. [3] for nonlocal interactions
in the fluid case). The dynamics of conducting flows becomes more complex
as one examines smaller scales when plasma e↵ects become prevalent [4]; nev-
ertheless, a description of large-scale events in the cosmos based on MHD has
been found to be useful, as reviewed for example in the context of the helio-
sphere [5–8]. Indeed, most of the energy resides in the largest scales which are
controlled and adequately represented by the MHD description in the context
of wave-turbulence interactions, as observed in the solar wind [9–11]. However,
a large series of observations of the solar wind, magnetotail and magnetosheath
using an array of recently-launched satellites (e.g. MMS and Solar Probe) have
led to a refined understanding of the role of kinetic scales on the dynamics of
this medium [12,13], and in particular of reconnection processes [11,14,15].

Among the many topics tackled by PierLuigi Veltri and his collaborators,
the e↵ect of the slowing-down of turbulence transfer to small scales due to
Alfvén waves in MHD turbulence [16,17] was developed in a seminal paper
in the context of the growth of the cross-correlation between the velocity and
magnetic field v and b [18], thus explaining the lack of symmetry between the
two Elsässer variables z± = v±b, as observed in the solar wind (see also [19,
20] for more recent data analyses).

A further property of these turbulent flows is the intermittency of small-
scale fields such as the current and vorticity, as characterized for example by
non-Gaussian wings in their probability distribution functions, for Eulerian
and for Lagrangian statistics, as seen in observations [5,21–27] and in numer-
ical simulations [28–32]. These can be studied as well using low-dimensional
dynamical systems such as sand-pile models [33,34] that include the properties
of self-criticality in solar flares [35,36], or using approaches in the context of
reduced-MHD [37]. These small-scale structures lead to anomalous dissipation
and reconnection events in two dimensions (2D) [38,39] and in 3D [40–45].

Fluid and MHD turbulence share a lot of properties, determined by the
interactions of nonlinear eddies and waves which, for the atmosphere and the
oceans, are due to the Coriolis force and gravity (see, e.g. the reviews in [46,
47]). In this context, after giving the governing equations in the next Section,
we report in §3 on three aspects of turbulent flows that have been unraveled
recently for both rotating stratified turbulence and for MHD and Hall-MHD.
We then move on to describe in a little bit more details the dynamics of
magnetic helicity in §4, and a short conclusion is finally given in §5.
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Turbulence and waves: Inverse transfer and direct mixing in fluids and Hall-MHD 3

2 Equations and definitions

We now write for completeness the fundamental equations for the questions
we wish to discuss. The Hall-MHD equations in the incompressible case and
in the presence of forcing for both the velocity v and the magnetic field b (in
terms of an Alfvén velocity, with b = B/

p

µ0⇢0 ) are:

@v

@t
= �v ·rv �rP + j⇥ b+ ⌫r2v + fv, (1)

@b

@t
= r⇥ (v ⇥ b)� ✏Hr⇥ (j⇥ b) + ⌘r2b+ fb, (2)

r ·v = 0 , r · b = 0 . (3)

with P the pressure, B, ⇢0, µ0 the magnetic induction, the constant density
and the vacuum permeability; j = r ⇥ b is the current density and a is the
magnetic potential, with b = r⇥a. Finally, ⌫ and ⌘ are the kinematic viscosity
and magnetic di↵usivity, and fv,b are forcing terms, taken here to have random
phases. The Hall current is controlled by the dimensionless parameter ✏H = di
which is the ion inertial length scale (in terms of the numerical dimension of
the box LM = 2⇡). The MHD equations are recovered for ✏H = 0. In all the
results given in this paper, the GHOST code (Geophysical High-Order Suite
for Turbulence) was used; it is a solver with spectral accuracy for a variety of
fluid and plasma equations. It parallelizes e�ciently, including using [48]; it
includes the possibility of non-unity aspect ratio, and it now allows for non-
periodic boundary conditions in one direction through a Fourier continuation
method [49].

Furthermore, the Boussinesq equations (in the absence of magnetic field),
with ✓ the temperature fluctuations around a mean profile, and normalized so
as to have the physical dimensions of a velocity, are:

@u

@t
+ ! ⇥ u+ 2⌦ ⇥ u = �N✓êz �rP + ⌫r2u, (4)

@✓

@t
+ u ·r✓ = Nw + r2✓ . (5)

Rotation and stratification are imposed in the vertical (z) direction,  is the
di↵usivity, and ! = r ⇥ u the vorticity; ⌦ is the rotation frequency (with
f = 2⌦), and N is the Brunt-Väisälä frequency.

In Hall MHD, the global ideal invariants (for ⌫ = ⌘ = 0) are the total energy
ET = EV + EM = h|v|2 + |b|2i/2, the magnetic helicity HM = ha · bi/2, and
the generalized helicity HG:

HG = HM + 2✏HHC + ✏2HHV = HM + ✏HHX , (6)

with HV = hv · !i/2 the kinetic helicity, HC = 1
2 hv · bi the cross helicity,

and HX = 2HC +HV , HX being also an invariant. For the Boussinesq case,
the ideal invariants with ⌫ =  = 0, are again the total energy now expressed
as EB

T = EV + E✓ = h|v|2 + ✓|2i/2, and the point-wise potential vorticity

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 A. Pouquet, D. Rosenberg and J.E. Stawarz

PV = f@z✓ � N!z + ! ·r✓. Kinetic helicity is only invariant in the absence
of stratification, and is otherwise created by the flow in the rotating stratified
case [50–52].

One also defines the relative helicity rates, measuring the alignment or
anti-alignment of the vectors involved, through cosine functions, and noting
that the terms hx, x = a, b, in the relative rate of generalized helicity are
defined as ha = a+ ✏Hv, hb = r⇥ ha = b+ ✏H!:

�M =
a · b

|a||b|
, �C =

v · b

|v||b|
, �G =

ha · hb

|ha|hb|
, �V =

v · !

|v||!|

. (7)

Finally, dimensionless parameters measuring the relative strengths of the
terms appearing in these equations are written as usual as:

Re =
ULint

⌫
, F r =

U

LintN
, Ro =

U

Lintf
, RB = ReFr2 , RIB = ✏V /[⌫N

2] ,

(8)
where Re, Fr,Ro and RB are the Reynolds, Froude, Rossby and buoyancy
Reynolds numbers respectively.RIB is the buoyancy interaction parameter and
measures the e↵ective amount of energy dissipation in a stratified turbulence in
the presence of waves, properly normalized using the Brunt-Väisälä frequency.
U and Lint are characteristic velocity and length scales for the fluid (Lint

is called the integral scale), and ✏V = DEV /DT = ⌫
⌦
|!|

2
↵
is the kinetic

energy dissipation rate. The eddy turn-over time ⌧NL is defined as Lint/U .
The Prandtl number Pr = ⌫/ and the magnetic Prandtl number PM = ⌫/⌘
are assumed to be equal to unity in the following.

For high Re, the flow is turbulent and dissipative, whereas for low Fr or low
Ro, the wave periods are faster than the eddy turn-over time characteristic of
the nonlinear eddies, and dissipation is less e�cient. Note that when RIB = 1,
the Kolmogorov scale `D = 2⇡[⌫3/✏V ]1/4 at which dissipation sets in is equal
to the Ozmidov scale `Oz = 2⇡[✏V /N3]1/2 at which isotropy is thought to be
recovered (see, e.g., [53]), since one can show that, for a Kolmogorov spectrum
at small scale, one has RIB = [`Oz/`D]4/3, similarly to Re = [Lint/`D]4/3 for
homogeneous isotropic turbulence.

3 A few recently-unraveled novel features of turbulent flows

Although a complete theory of turbulence is still lacking, our understanding
of turbulent flows has progressed substantially in this century through the
analysis of experimental, observational and numerical data, as well as the use
of simplified models. We give below three specific examples.

3.1 Bi-directional cascades

A given invariant of the ideal non-dissipative dynamical equations cascades
to either small scales (such as the energy in three-dimensional (3D) Navier-
Stokes or MHD turbulence, with a positive flux), or (exclusive) to the large

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Turbulence and waves: Inverse transfer and direct mixing in fluids and Hall-MHD 5

scales (such as the energy in 2D Navier-Stokes fluids, or the L2 norm of the
magnetic potential in 2D MHD), with a negative flux. But, starting around
2005, data appeared showing fluxes that were, more or less plausibly, constant
and with two signs and thus referring to the possibility of two constant-flux
cascades, going both to the large scales and to the small scales, starting from
the scale at which the energy is injected. This was obtained, for fluid dynamics,
for example through a Fourier analysis of ocean drifters [54,55], as well as in
laboratory and numerical experiments of strongly rotating flows in the presence
or not of stratification [56–59]. It is also observed in three-dimensional fluid
dynamics in thin layers, with a clear threshold behavior [60,61]. In MHD,
similar detailed analyses were performed on numerical data in two and three
space dimensions [62,63], as well as in the solar wind [19], and more recently
in the atmosphere of Jupiter [64].

One of the first examples of such a phenomenon, in the case of the Solar
Wind using Ulysses data, was observed through the derivation of exact scaling
laws [65–67] (see [68] for a recent review); these are linked to the conservation
of energy and of cross-correlation in MHD. It was then argued in [19] that
this bi-directional cascade was due to the instability of large-scale coherent
structures after they form through an inverse cascade which itself is attributed
to the quasi bi-dimensionalization of the flow because of the presence of a
strong uniform magnetic field.

Another example occurs when taking the case of rotating stratified tur-
bulence (RST), with a forcing at intermediate scales. High-resolution numer-
ical simulations indicated clearly that the direct energy cascade, leading to
small-scale mixing and dissipation, was governed by the Froude number, Fr,
whereas the inverse energy cascade was governed by the Rossby number,
Ro [58] (see also [69]). This is illustrated in the top of Fig. 1 (left), which
gives the fluxes in spectral space of potential energy (PE, in blue) and of
total (kinetic+potential) energy (in red) for quasi-geostrophic forcing (QG)
at k = 10, that is a forcing with a balance between pressure gradient, Cori-
olis and buoyancy forces. This was computed for a flow on a grid of 5123

points and with initial conditions that are also in QG balance. In this case,
the initial conditions in the temperature are non-zero, contrary to the runs
presented in the other figures. For this run, the governing parameters were
Re ⇡ 6.8⇥ 103, F r ⇡ 0.076, Ro ⇡ 0.38, RB ⇡ 36 (see [70] for more details).

The PE flux is zero in the large scales, showing that the inverse cascade
of total energy, with a constant and negative flux for k < 10 corresponds to a
quasi-two-dimensional flow. The kinetic energy flux (not shown) also displays
bi-directional and rather constant ranges. At right are given the correspond-
ing kinetic (KE) and potential (PE) energy spectra for the same flow and at
the same time. The kinetic energy displays a clear accumulation in the largest
scales for this three-dimensional rotating stratified turbulent flow; strong gra-
dients appear in both fields and correspond to the observed intermittency for
flows close to the threshold of instability (see also [53], and below). An em-
bryonic Kolmogorov law ⇠ k�5/3 is visible for the kinetic energy for k ⇡ 10
(see indicative line). The potential energy follows the kinetic energy upscale,
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6 A. Pouquet, D. Rosenberg and J.E. Stawarz

possibly because at this Froude number, inertia-gravity waves are e�cient at
producing a large-scale potential transfer. At scales noticeably smaller than
the forcing, these spectra follow a steep behavior because of the rather low
Reynolds number.

3.2 Large-scale intermittency

Small-scale eddies in fluid turbulence have been known for a long time to
be intermittent, that is highly localized in space and time, and giving rise
to non-Gaussian wings in the Probability Distribution Functions (PDFs) of
field gradients such as the vorticity [71] and current density [30]. In the ideal
case, these events possibly lead to the existence of finite-time singularities as
in 2D-MHD [72], or rotational singularities as in 3D MHD [73]. It was shown
recently that such non-dissipative flows can nevertheless display turbulent fea-
tures such as power-law energy spectra, e.g. in a 3D truncated Euler flow [74],
as well as in 2D and 3D ideal MHD [75]. In MHD, this quasi-singular behav-
ior, with wings in the PDFs of current and vorticity structures, correspond to
topological changes in the geometrical organization of the fields [76] which can
be associated with nano-flares emanating from the solar photosphere [22], or
Kelvin-Helmoltz instabilities in the magnetosphere [27]. These wings are also
observed with Wind data in the Earth’s magnetotail [77]; they correspond to
the acceleration of high energy electrons, up to 300 keV in reconnection re-
gions, and they display a high degree of anisotropy. It is argued in [78] that
this occurs through the reflection of electrons on multiple magnetic islands.

Furthermore, large velocity shear layers can lead as well to intermittent
events in the velocity itself in the magnetotail, as argued and shown in [42].
This is akin to what was later observed in stratified turbulence for which
anisotropy, intermittency of the vertical velocity and mixing occur in the vicin-
ity (in terms of gradient Richardson number) of the convective and Kelvin-
Helmholtz instabilities [80], an observation also made in the presence of rota-
tion [81,53,82]; this can be associated with Lagrangian particle acceleration
[82]. We show in Fig. 1 (bottom row) two vertical cuts of the temperature fluc-
tuations (left) and of the horizontal velocity (right) for a rotating stratified
flow computed on a grid of 40963 points in the absence of forcing; the snap-
shots are given only for a portion of the flow, and are taken at the temporal
peak of dissipation. For this run, the Reynolds number is close to 54,000 with
a Froude number of 0.024, a Rossby number of 0.12 and a buoyancy Reynolds
number of RB ⇡ 32 (see [79] for details). Note that the stratification of the
flow is organized in layers that are slanted because of the rotation, and is
a manifestation of the spatial intermittency of the temperature fluctuations.
Also note the formation of small-scale structures linked to waves that are con-
vectively destabilized, or for example in the form of Kelvin-Helmoltz billows
that further destabilize locally and are one of the sources of both large- and
small-scale intermittency and dissipation [79,81,53].
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Fig. 1 Top left: Potential (blue) and total (red) energy fluxes (left), and potential (red) and
total (black) energy spectra (right). Both plots are for Rotating Stratified Turbulence (RST)
for Quasi-Geostrophic (QG) initial conditions; at right, a k�5/3 line is given for reference
[70]. Bottom: Blow-up of a vertical (XZ) cut of temperature (left) and of horizontal velocity
(right); grid of 40963 points, Ro/Fr ⇡ 5, Re ⇡ 5.4⇥ 104, RB ⇡ 32 [79].

Non-Gaussian wings in the PDFs of the velocity field itself were already
obtained and analyzed in numerical simulations of shear flows [83]. They are
also observed in the vicinity of the terrestrial foreshock [84], in quantum tur-
bulence in super-fluid Helium [85], and in the computation of normalized third
and fourth order moments of temperatures and other synoptic fields in the free
troposphere, in the context of re-analysis of climate data [86]. They thus ap-
pear as a common feature of turbulence. We note that temporal intermittency
is also present in these complex flows.

Moreover, for RST, strong intermittency, as measured by high kurtosis of
the vertical velocity and, to a lesser degree, of the temperature fluctuations,
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10-4 10-2 100 102

RoFr

10-2

10-1

100

[ 0.0, 0.3]
[ 0.3, 3.0]
[ 3.0, 6.0]
[ 6.0,10.0]
[10.0, Inf]

Fig. 2 E�ciency of dissipation as a function of RoFr for a large range of parameters
[70,53]; color/symbol for Rossby-number intervals are given in insets. A [RoFr]1/2 scaling,
compatible with what is derived in [70], is indicated for reference as a black line.

takes place in a narrow peak of Froude number. This striking behavior can be
reproduced following the dynamics of a simple 2-variable system, inspired from
the velocity-gradient model of Vieillefosse for strong turbulence [87], in which
the linear (wave) terms have been added, as well as dissipation and forcing
[81], or in the context of models of the temperature gradient and velocity-
gradient matrix and its so-called PQR invariants [88,89] ((with P = 0 in the
incompressible case, see [90]).

3.3 Dissipation e�ciency

As a third example of the significant progress made in our understanding of
turbulent flows, and in particular in the presence of waves and anisotropic
structures, we now consider the e�ciency of dissipation in turbulence. The
measured dissipation in fluid and MHD turbulence is known to plateau to
a value close to its dimensional expression, namely ✏D ⇠ U3/Lint [91,92]
(see also [93]). A recent numerical study in MHD showed that the level at
which this e�ciency settles depends on the strength of the imposed magnetic
field, and thus on the characteristic time scale of Alfvén waves, in a smooth
manner [94]. In fact, a simple phenomenological argument can be constructed
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Fig. 3 E�ciency of mixing �? defined as ✏P /✏V as a function of Reynolds number for the
same runs as in Fig. 2.

to show that such a scaling is linear in the control parameter, that is the
ratio of the wave period to the nonlinear eddy turn-over time, i.e. the Froude
number for stratified flows [70,53]. Such a scaling is compatible, and in fact
embodies the slowing-down of energy transfer to small scales because of wave-
eddy interactions, in a way that is compatible with weak (wave) turbulence.

It was also shown in [95], studying turbulence regimes modified by Alfvén
and kinetic Alfvén waves, that the e�ciency of (total energy) dissipation is
governed as well by the ratio of the turn-over time to the period of the rele-
vant wave, a formulation that includes also the nonlocal e↵ect of a large-scale
shear. And a comparison with solar wind observations at electron scales leads
to a model of kinetic Alfvén waves for which the dissipation length scale is
independent of the energy dissipation rate but depends on the strength of the
waves [96]. This is very similar to the case of the so-called saturation regime
in the atmosphere and ocean [97] in terms of a balance that is established in
the vertical direction between gravity and wave steepening; it leads to a spec-
trum E(kz) ⇠ N2k�3

z where the energy injection rate does not appear, and
which gives for the dissipation scale in that case `diss ⇠ [⌫Lint/N ]1/3, again
independent of the energy input ✏V .

This third novel feature of turbulent flows is illustrated in Fig. 3 and Fig. 4,
showing respectively the e�ciency of kinetic energy dissipation as a function
of RoFr, and a measure of small-scale mixing as a function of Re for rotating
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Fig. 4 Top: HC/ET (left) and HV (right) as a function of time for the runs of Table 1 (see
inset). Bottom: �X (left) and �V (right) as a function of time. The MHD run is in black.

stratified turbulence. In these scatter plots, stars indicate runs with QG initial
conditions, and the size of the symbols is proportional to the viscosity (and
inversely proportional to the Reynolds number and numerical resolution).

The measured kinetic energy dissipation ✏V , normalized by its dimensional
evaluation ✏D defined above, has been shown to govern the ratio of inverse to
direct energy flux [98] in the forced case. Here, the data stems from a large
data base of decaying rotating stratified flows [99,70,53], and the color/symbol
scheme, given in the insets, is based on the strength of the imposed rotation.
The variation can be seen as following two or three distinct and rather parallel
lines, each one close to a [RoFr]1/2 scaling; this is compatible with the linear
scaling in Froude number found previously, provided rotation and stratifica-
tion play similar roles. Note the shift in data between strongly rotating sys-
tems (blue triangles and black circles, at left) and weakly rotating ones (green
diamonds, red squares and magenta inverted triangles, at right): stronger ro-
tation, at a given RoFr implies of course a weaker stratification and thus a
more turbulent and dissipative flow.

In Figure 3, mixing is defined with the (positive) ratio of potential to ki-
netic energy dissipation, �? = ✏P /✏V , with ✏P = DEP /Dt. On a logarithmic
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Table 1 List of the runs described in [100] and analyzed further herein, with their iden-
tification ID, ✏H the Hall parameter and �G the rate of relative generalized helicity. The
Reynolds number Re is rather constant and kept at a low value. Finally kdi = 1/✏H is
the wavenumber beyond which the Hall term is felt, with a forcing concentrated around
kF ⇡ 20. For all runs, Np = 1283 is the numerical resolution, with ⌫ = 0.016 the viscosity;
�M = 0.65; �V = 0.13 and �C = �0.027 are respectively the rates of relative magnetic,
kinetic and cross helicities for the forcing (see Equation (7)).

ID ✏H �G Re kdi

AM1 0.0 – 15.1 –
AH2 0.0667 0.295 17.2 15
AH3 0.0833 0.247 17.6 12
AH4 0.14 0.174 18.5 7
AH5 0.2 0.15 18.8 5

scale, �? appears relatively constant, �? ⇡ 0.55 for a sizable range of Reynolds
number. This value is close to that expected on the basis of modal equipar-
tition, with one temperature mode and two independent velocity modes per
wave vector in the incompressible case. The substantially smaller values of
�? for lower Reynolds numbers denote the fact that, at these Re values, the
coupling between the momentum and scalar equations becomes negligible, the
temperature fluctuations become passively advected, and since the initial con-
ditions, except for the QG runs, are equal to zero for ✓, the potential energy
dissipation has become negligible as well. Note that these runs are performed,
by necessity, at lower Reynolds numbers since the nonlinear terms are stronger
in that case, unimpeded by the somewhat slower waves.

4 The scaling behavior of magnetic helicity in Hall MHD

We now examine some aspects of the temporal and spectral dynamics of energy
and helicity in Hall-MHD, with an emphasis on the behavior of the large scales,
which are scarcely studied. To that e↵ect, we analyze data stemming from a
series of numerical simulations performed at moderate resolution and in the
presence of a forcing term at kF ⇡ 20 (see Table 1 and equations (1-2)). These
runs were already analyzed in [100] for their overall behavior, and we shall
concentrate here on the properties of relative helicity.

4.1 Temporal growth and spectral behavior

We first give an overall vision of the temporal behavior of these flows, by
examining in Fig. 4, as a function of time, the ratio HC/ET (top left) and
the kinetic helicity (top right), the relative rate of the alternate helicity HX =
2HC+✏HHV (bottom left), and the relative rate of kinetic helicity �V (bottom
right). The color coding of the runs is given in the inset (see also Table 1),
and time is expressed in units of the nonlinear turnover time. As the scale
at which the Hall current becomes important increases, so does the relative
amount of generalized helicity and of HX , and the reverse is true for their
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Fig. 5 Relative helicity spectra |HR(k)| = |HV (k)�k2HM (k)|, in absolute value, for various
times (see inset) for the MHD run AM1 (left) and for the Hall-MHD run AH5 (right). See
Table 1 for parameters. Note the large-scale constancy across most scales, together with the
slower build-up at the largest scale in the Hall-MHD case.

kinetic counterpart. This is related to the fact that, as ✏H increases, kinetic
helicity plays a more prominent role in the nonlinear dynamics constrained
by its inviscid invariants. Contrasting with the temporal evolutions of �G,M,C

shown in [100] (see Figure 2), we see that �X emphasizes the e↵ect of the
kinetic helicity and of the large scales as ✏H increases, but with rather similar
growth rates for all runs, as seen in their slopes, displaying opposite e↵ects of
large and small scales.

This is confirmed by what we observe in Fig. 5 which gives information
about the so-called relative helicity (in absolute value), |HR(k)| = |HV (k) �
k2HM (k)|, with MHD on the left and Hall-MHD on the right (note that, in
[101,102], one also examines, for MHD turbulence, the relative ratio of kinetic
and magnetic energy and helicity). The balance between the kinetic and mag-
netic helicity is achieved more rapidly across scales in Hall-MHD, but at a
higher level, indicating a less-e�cient equipartition in Hall MHD, as expected
since Alfvén waves are less prevalent. On the other hand, the gravest mode
undergoes a di↵erent dynamics: the force-free field that is dominant in MHD is
no longer as attractive in Hall-MHD; it is in fact replaced by a more complex
Beltramization [103] (see also [104]). In the two-dimensional case in MHD,
the cross-helicity is also conserved, and invariants again strongly influence the
nonlinear dynamics. For example, a recent numerical analysis at high resolu-
tion shows that small-scale current and vorticity structures, although highly
intermittent, are organized in a manner compatible with variational principles
based on these invariants [105].
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4.2 Scaling with Hall parameter

We finish this short review by recalling what scaling is obtained, in terms
of ✏H , in measuring the strength of the inverse helicity cascades as the Hall
current becomes more important in the large scales. To this end, in Fig. 6,
we give the slope of the temporal growth of the ratio of magnetic to kinetic
energy as a function of the Hall control parameter ✏H , in lin-log coordinates.
An exponential decay scaling emerges, with a slope of ⇡ 12.7, which can be
shown to be compatible with the scaling found in [100] for the magnetic and
generalized helicity, HM and HG.

As stated before, one particularity of Hall MHD is that HG involves various
scales : when ✏H increases, smaller scales get involved in the constraining
dynamics of maintaining invariants because of detailed conservation for each
triadic modal interaction. Thus, the inverse cascade of magnetic helicity is less
e�cient and there is less growth of the magnetic energy at large scale, with a
resulting declining ratio.

The physical argument that leads to such an exponential decrease with ✏H
is based on the scaling of the generalized helicity and of the magnetic helicity
HG,M (k) ⇠ k�2, together with the plausible assumptions of maximal magnetic
helicity in the inverse cascade and of kinetic and magnetic energy equipartition
due to Alfvén waves, in an intermediate regime of parameters. Of course, these
results may depend on Reynolds number (and on numerical resolution as well),
and in particular on whether or not resolving the small-scale inertial range will
a↵ect the large-scale growth of magnetic helicity at fixed ✏H . This was not the
case for the inverse cascade of magnetic helicity in MHD once the Reynolds
number at the forcing scale was of order unity or more, but this point remains
to be studied in the future for Hall-MHD.

We finally note that the non-local properties of the inverse cascade of mag-
netic helicity for Hall-MHD have been studied very recently in the framework
of a two-fluid model [106]. These authors conclude that the system is strongly
sensitive to the value of the governing parameter (the ratio of the wave period
to the eddy turn-over time).

5 Conclusion

In the ideal (non-dissipative) case, it is known that the role of invariants in
the dynamical behavior of nonlinear multi-dimensional systems is essential,
as discussed in earlier sections. This role carries over to the dissipative (tur-
bulent) case, and it leads to the breaking of the universality of scaling laws
[107]. Invariants are physically important, be it only because of the property of
detailed conservation: any nonlinear exchange between three (Fourier) modes
satisfying the convolution compatibility condition is conservative of the invari-
ants, such as energy or helicity. This translates itself, in configuration space,
in a detailed conservation embodied in the so-called exact laws of turbulence
strongly constraining the scaling of interactions of third-order structure func-
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Fig. 6 Slope of the temporal decay of the magnetic to kinetic energy ratio as a function of
the Hall control parameter ✏H . Note the exponential scaling with ✏H [100].

tions over a distance r: in fact, a linear variation in r is obtained with a known
coe�cient of proportionality [108,66,68].

Beyond magnetic helicity, a second quadratic invariant has been known
to exist for a long time [109], namely the cross-correlation HC = hv · bi. It
was shown in [110], using a second-order turbulence closure, that its dynam-
ical evolution is towards a one-signed correlation in the inertial range with a
change of sign at the dissipation scale, together with an inertial spectral index
that changes with the relative rate of cross-helicity �C . These results were
later confirmed by direct numerical simulations in two space dimensions [111]
(see also [112] in three dimensions). Symmetries, as embodied for example in
a strong �C or �M , or a weak �V for a non-helical forcing flow, can impede
dynamo action (see [113] for the specific case of the so-called Taylor-Green
vortex with �V = 0). It is also known that HC plays a role in the dynamo
problem of generation of magnetic field through vortex stretching [114], in-
cluding in the Hall-MHD case [104], and on the rate of the turbulent cascade
to small scales as observed in the solar wind [115,116] (see [117] for a recent
observation in the context of the newly-launched Parker Solar Probe).

New studies continue to deal with this issue. In [118], it is shown that,
in the forced case, there is an enhanced inverse transfer of kinetic energy to
the large scales. The role of a (generalized) cross-helicity is studied in [119]
(see also [120]). It can be seen as allowing for a smooth transition from MHD
scales to kinetic scales. In these papers, it is claimed in particular that, using
a weak turbulence approach, the forcing may alter the dynamics in the pres-
ence of dispersive waves. Furthermore, these authors can argue, on the basis
of a model based on nonlinear di↵usion equations, that di↵erent streams ob-
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served in highly Alfvénic regions of the solar wind with di↵ering cross-helicity
amounts (or for imbalanced states), are mixed. Finally, let us mention the
discovery of changes of signs of the cross-helicity observed, thanks again to
the Parker Solar Probe, in so-called magnetic switchbacks [121], that exhibit
polarity reversals.

There is no doubt that the tremendous e↵orts of the international com-
munity behind the many successful space missions, reaching from fluid scales
to the kinetic scales, in parallel with numerical e↵orts in the context of High-
Performance Computing and the development of algorithms using Artificial
Intelligence, will further bring more detailed understanding of the prevailing
interactions in these complex plasma flows.
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