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Background. As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues its rapid global spread, 
quantification of local transmission patterns has been, and will continue to be, critical for guiding the pandemic response. Understanding 
the accuracy and limitations of statistical methods to estimate the basic reproduction number, R0, in the context of emerging epidemics is 
therefore vital to ensure appropriate interpretation of results and the subsequent implications for control efforts.

Methods. Using simulated epidemic data, we assess the performance of 7 commonly used statistical methods to estimate R0 as 
they would be applied in a real-time outbreak analysis scenario: fitting to an increasing number of data points over time and with 
varying levels of random noise in the data. Method comparison was also conducted on empirical outbreak data, using Zika surveil-
lance data from the 2015–2016 epidemic in Latin America and the Caribbean.

Results. We find that most methods considered here frequently overestimate R0 in the early stages of epidemic growth on simu-
lated data, the magnitude of which decreases when fitted to an increasing number of time points. This trend of decreasing bias over 
time can easily lead to incorrect conclusions about the course of the epidemic or the need for control efforts.

Conclusions. We show that true changes in pathogen transmissibility can be difficult to disentangle from changes in method-
ological accuracy and precision in the early stages of epidemic growth, particularly for data with significant over-dispersion. As lo-
calized epidemics of SARS-CoV-2 take hold around the globe, awareness of this trend will be important for appropriately cautious 
interpretation of results and subsequent guidance for control efforts.

Keywords.  outbreak analysis; SARS-CoV-2; reproduction number; estimation method comparison; emerging epidemics.

The reproduction number, R, is a key epidemiological pa-
rameter that quantifies the average number of new infec-
tions caused by a single infected individual. When a pathogen 
emerges in an entirely susceptible population, this parameter is 
referred to as the basic reproduction number, R0. When some 
population-level immunity exists, the parameter is referred to 
as the effective reproduction number, Re. These reproduction 
numbers provide valuable information about a pathogen’s po-
tential for spread in a population and the associated implica-
tions for control efforts [1–3]. Reproduction number estimates 
for any 1 pathogen are time and context specific, with factors 

such as contact patterns, population immunity, and behavioral 
change contributing to variability in these estimates [4, 5]. For 
these reasons, the reproduction number is usually monitored 
over time to track the progress of an outbreak. The instanta-
neous reproduction number, Rt, estimates the average number 
of secondary infections generated by an infected individual at 
time t, and sequential estimates over the course of an outbreak 
can provide valuable insights into the need for interventions 
and/or the effectiveness of control programs already in place. 
In the case of the Walling a and Teunis method, Rt is used to 
refer to the case reproduction number, which quantifies trans-
mission within a cohort of individuals—that is, individuals with 
the same date of infection or symptom onset—providing a ret-
rospective quantification of transmissibility.

Numerous mathematical and statistical methods have been 
developed to estimate the reproduction number of an emerging 
pathogen [6–12]. The choice of method to be used largely de-
pends on the available data, with more data typically allowing 
the parameterization and use of more complex methods. 
However, in the early stages of an outbreak, epidemiological 
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data are often sparse and highly uncertain. In the case of 
emerging pathogens, data can be particularly limited, as sur-
veillance systems may be unprepared for the detection and re-
porting of a new pathogen. In addition, limited understanding 
of the dynamics of a new pathogen can often inhibit the pa-
rameterization and use of more complex transmission models. 
This has particularly been the case for severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), which was first re-
ported in China in December 2019 and has reached more than 
235 countries and territories as of October 2020 [13]. Though 
new evidence is rapidly emerging on aspects of transmission 
dynamics, such as generation intervals and the proportion of 
asymptomatic infections [14], uncertainties remain as to the 
duration of immunity, the role of seasonality, and the effects 
of immunological cross-reactivity with endemic human cor-
onaviruses. Incorporating such uncertainties into mechanistic 
models of transmission can prove challenging in early out-
break contexts, where statistical methods are often the only 
available tool to infer the level of transmission from a limited 
amount of data, such as a time series of reported case numbers. 
Quantifying local transmission patterns of SARS-CoV-2 has 
been, and will continue to be, critical for guiding the pandemic 
response [15–18]. Understanding the accuracy and limitations 
of these methods in the context of real-time outbreak analysis 
scenarios is crucial to optimally inform outbreak response ac-
tivities, including the need for new control efforts or the relax-
ation of efforts already in place.

Here, we conduct a comparative performance analysis of 7 
commonly used statistical methods to estimate the reproduc-
tion number at sequential time points during the early stages of 
an emerging epidemic, in line with a real-time outbreak analysis 
scenario.

METHODS

Incidence data were simulated using a deterministic com-
partmental SEIR (susceptible, exposed, infectious, recovered) 
model of transmission, assuming closed populations of variable 
sizes and homogeneous mixing; random, time-constant basic 
reproduction numbers (R0); a variable number of infections 
seeding the epidemics; underreporting; and different levels of 
stochasticity in the reporting and infection process (details are 
given in Supplementary Methods S1.

Estimating an average, fixed R0, we assessed the performance 
of each statistical method by fitting it to the simulated epidemic 
data at sequential time points in the epidemic growth phase, 
in line with a real-time outbreak analysis scenario. A detailed 
description of each of the 7 statistical methods is given in 
Supplementary Methods S2. A fixed gamma distribution for the 
generation time interval, with a mean of 20 days and standard 
deviation of 7.4 days, was assumed to be known for all methods 
[19]. We initiated the analysis 6 weeks into each epidemic, 

fitting to the first 6, 9, 12, and 15 weeks, and so on (approxi-
mating to 2, 3, 4, 5, etc. generation times), up to the peak of 
the epidemic, simply defined as the week with the maximum 
number of cases from the entire epidemic curve. The perfor-
mance of each method was assessed at each of these stages, with 
methods being fit to an increasing number of data points. We 
used a number of metrics to assess method performance: bias, 
calculated as the absolute difference between the estimated and 
true R0 values; coverage, calculated as the proportion of times 
the estimated 95% confidence intervals (CIs) included the true 
R0 value; Pearson correlation coefficient; width of 95% CIs; and 
the root mean square error (RMSE). To ensure a systematic 
comparison of performance, we only compared the results from 
sections of the epidemic time series where all methods were 
able to produce estimates of R0.

We applied each method to weekly case-notification data 
from the 2015–2016 Zika epidemic in Latin America and the 
Caribbean. National-level data were available for 37 countries, 
3 of which reported their peak incidence within 6 weeks of the 
first reported case and were subsequently removed from the 
analysis. In the same manner as the simulated data, we applied 
each of the 7 methods to an increasing number of data points 
(using the first 6, 9, 12, 15, etc. weeks), up to the peak of the 
epidemic.

RESULTS

Biases in estimates of R0 (estimated R0—actual R0) when fitted 
to an increasing number of time points in the case time series 
(6, 9, 12, and 15 weeks) of simulated data are shown in Figure 1 
and Supplementary Figure S2 for the scenario of data with no 
added noise (ie, assuming that a constant proportion of infected 
individuals are detected and reported as cases). Estimates of R0 
were frequently overestimated at all time points assessed, the 
magnitude of which were generally greater for higher values of 
actual R0 (Supplementary Figure S2). As expected, higher values 
of R0 used for data simulation generally resulted in epidemics 
that peaked at earlier time points, subsequently resulting in a 
reduction in the number of epidemic simulations where the 
growth phase continues beyond 9, 12, and 15 weeks, and so on, 
and resulting in an underrepresentation of high R0 simulations 
at the later epidemic stages assessed (Supplementary Figure S2). 
To ensure a systematic analysis of methodological performance 
at sequential time points in the epidemic time series, the assess-
ment of performance was restricted to epidemic simulations 
that peaked at or after 15 weeks, highlighted by the blue points 
in Supplementary Figure S2.

The average bias between estimated and actual R0 values 
was highest in the earliest stages assessed for all methods con-
sidered (Figure 1; Supplementary Figure S3), with mean abso-
lute differences between estimated and actual R0 values ranging 
from 0.68 (Bettencourt and Ribeiro) to 1.29 (EpiEstim) when 
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fitting to the first 6 weeks of data (approximately 2 disease gen-
erations) of the epidemic growth phase with no added noise. 
The bias decreased substantially when fitting to an increasing 
number of time points, and ranged from 0.32 (Poisson and 
maximum-likelihood exponential growth) to 0.48 (Bettencourt 
and Ribeiro) at 15 weeks (approximately 5 disease generations) 

in the scenario of no random noise. Density distributions of bias 
from the scenarios of simulated epidemic data with added noise 
are shown in Supplementary Figure S6. For epidemic simula-
tions with Poisson noise, the mean absolute bias ranged from 
0.60 (Bettencourt and Ribeiro) to 1.65 (EpiEstim) at 6 weeks 
and from 0.34 (Poisson and maximum-likelihood exponential 

Figure 1. Density distributions of bias in R0 estimates (estimated R0—actual R0) obtained when fitting to the case time series on simulated data, without noise, by method 
and time point (in weeks), using only results from simulations that peaked at or after 15 weeks (n = 145). Columns represent the number of data points (weeks) each method 
was fitted to in the case time series (6, 9, 12, and 15 weeks, approximating to 2, 3, 4, and 5 generation times), and colors represent the method. Black dashed lines highlight 
the ideal bias value of 0, and colored lines represent method-specific values of median bias. Abbreviations: BR, Bettencourt and Ribeiro; EG_Lin, linear exponential growth 
rate method; EG_MLE, maximum likelihood exponential growth rate method; EG_P, Poisson exponential growth rate method; WP, White and Pagano method; WT, Wallinga 
and Teunis. 
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growth) to 0.46 (Bettencourt and Ribeiro) at 15 weeks. Similarly, 
for epidemic simulations with negative binomial noise, mean 
absolute bias ranged from 0.71 (Bettencourt and Ribeiro) to 
2.52 (Wallinga and Teunis) at 6 weeks and from 0.29 (linear 
exponential growth) to 0.82 (Wallinga and Teunis) at 15 weeks. 
The relationships between the estimated and actual R0 values 
by method and time point are shown in Supplementary Figures 
S3–S5 for the scenarios of data with no noise (Supplementary 

Figure S3), Poisson noise (Supplementary Figure S4), and neg-
ative binomial noise (Supplementary Figure S5).

Coverage of actual R0 values—that is, the proportion of 
simulations in which the 95% CI contained the actual value 
of R0—decreased when fitted to an increasing number of time 
points in the case time series for all methods assessed and in all 
noise scenarios (Figure 2). This decrease in coverage of actual 
R0 values corresponds to reduced uncertainty—that is, width of 

Figure 2. Comparative analysis of the performance of the 6 methods at different stages of the epidemic. Columns represent the 3 data noise scenarios explored (no noise, 
Poisson noise, and negative binomial noise). Rows represent different performance metrics: absolute bias (the absolute average difference between estimated and true R0 
values), uncertainty (95% confidence interval width), coverage (proportion of times in which the true R0 value is within the estimated 95% confidence intervals), PCC, and 
RMSE. Abbreviations: BR, Bettencourt and Ribeiro; EG_Lin, linear exponential growth rate method; EG_MLE, maximum likelihood exponential growth rate method; EG_P, 
Poisson exponential growth rate method; PCC, Pearson correlation coefficient; RMSE, root mean squared error; WP, White and Pagano method; WT, Wallinga and Teunis.
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the 95% CIs—surrounding the estimates of all methods when 
fitted to an increasing number of time points, as shown in 
Figure 2. In the scenario of data with no noise, coverage ranged 
from 46% (Bettencourt & Ribeiro) to 96% (Wallinga and 
Teunis) at 6 weeks and from 25% (linear exponential growth) 
to 75% (Wallinga and Teunis) at 15 weeks. When fitted to simu-
lations with Poisson random noise, coverage ranged from 54% 
(EpiEstim) to 92% (Wallinga and Teunis) at 6 weeks and from 
50% (Poisson and maximum-likelihood exponential growth) 
to 74% (Wallinga and Teunis) at 15 weeks. For simulations 
with negative binomial random noise, coverage ranged from 
51% (EpiEstim) to 98% (linear exponential growth) at 6 weeks 
and from 45% (Poisson and maximum likelihood exponential 
growth) to 90% (linear exponential growth) at 15 weeks. A sig-
nificant increase in the levels of uncertainty in the presence of 
increasing random noise was observed for each of the expo-
nential growth methods (Figure 2). This increase in uncertainty 
was most notable for the linear exponential growth method, 
with average CI widths (averaged across all time points as-
sessed) of 0.87, 2.70, and 4.13 when fitted to data with no noise, 
mild noise (Poisson), and high noise (negative binomial), re-
spectively. Only minor increases in uncertainty were observed 
for the EpiEstim (1.55, 1.61, and 1.73 for no noise, mild noise, 
and high noise, respectively), White and Pagano (2.24, 2.33, 
and 2.52 for no noise, mild noise, and high noise, respectively) 
and Bettencourt and Ribeiro methods (1.35, 1.76, and 1.84 for 
no noise, mild noise, and high noise, respectively). No signifi-
cant differences in levels of uncertainty were observed for the 
Walling a and Teunis method with the addition of random 
noise to the data (3.74, 3.49, and 3.48 for no noise, mild noise, 
and high noise, respectively).

The Pearson correlation coefficient between estimated and 
actual R0 values was close to 1 for all methods in the scenario 
of data with no added noise at all time points, though a slight 
reduction in this correlation was observed at 15 weeks for all 
methods except linear exponential growth (Figure 2). Reduced 
correlations between estimated and actual R0 values were ob-
served for the scenarios of data with random noise at all stages 
of the epidemic, the most significant reduction of which was ob-
served at the earliest time point assessed (6 weeks). The RMSE 
decreased when fitted to increasing numbers of data points for 
all methods considered and in all data noise scenarios. Trends 
in method-specific RMSE were similar for data with no noise 
and Poisson noise, though RMSEs increased significantly in the 
presence of negative binomial noise for all methods, particu-
larly in the earlier epidemic stages assessed.

Figure  3 shows the R0 estimates obtained from fitting each 
of the 7 methods to empirical outbreak data, with the examples 
of French Guyana, Martinique, Puerto Rico, and the US Virgin 
Islands highlighting empirical outbreaks where estimates of R0 
decreased when fitting to an increasing number of time points in 
the case time series during the phase of early epidemic growth. 

The estimates obtained for all Latin American and Caribbean 
countries are shown in Supplementary Figure S7. R0 estimates 
were generally higher in the early stages of the epidemic for all 
methods assessed, with estimates decreasing gradually over 
time. Confidence interval widths were also observed to gener-
ally decline when fitted to an increasing number of data points. 
Frequent inconsistencies between estimates of R0 produced by 
different methods on the same data were observed, particu-
larly during the early growth phase of the epidemics, such as in 
French Guyana, Martinique, and Brazil.

Density distributions of bias in R0 estimates when fitting to 
epidemic simulations using different generation time distri-
butions are shown in Figure 4. Trends in bias over time were 
similar when fitted to simulations for Zika and Ebola gener-
ation time distributions. A  larger average bias was observed 
for most methods and time points when fitted to simulations 
for the SARS generation time distribution. Biases in estimates 
of R0 when the mean generation time is incorrectly specified 
are shown in Supplementary Figure S8. Overestimation of the 
mean generation interval resulted in an overestimation of R0 es-
timates, while underestimation of the mean generation interval 
resulted in an underestimation of R0 estimates, as compared to 
results where the mean generation interval was correctly spe-
cified. A further sensitivity analysis regarding the assumed re-
porting fraction showed reduced bias at the earliest fitting stage 
(6 weeks) when assuming 100% of infection reporting, as com-
pared to assuming only 20% of infection results in reported 
cases (Supplementary Figure S9).

DISCUSSION

In the early stages of an outbreak response, efforts are often 
dedicated to estimating pathogen transmissibility in order to 
provide information on the potential for spread in the cur-
rent population and to inform the type and scale of interven-
tions required for control [20, 21]. Our results show variable 
accuracy of R0 estimates obtained, both between individual 
methods and across different stages of the early growth phase 
of the epidemic. Estimates of R0 obtained for the earliest stages 
of the epidemic assessed in this analysis (ie, at 6 and 9 weeks, 
corresponding to approximately 2 and 3 generation time inter-
vals, respectively) were associated with larger bias and un-
certainty for all methods assessed. Using simulated epidemic 
data, we found that estimates of R0 frequently overestimated 
the actual R0 value used in the simulation process, particularly 
in the early fitting stages, even when the true case time series 
is observed. Estimates of R0 became increasingly accurate for 
all methods when fitted to an increasing number of weeks in 
the case time series. A  higher average absolute bias was ob-
served for all methods when fitting to simulated data with 
added random noise, particularly in the earlier stages assessed 
(Supplementary Figure S6).
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Whilst the overestimation of R0 in the early stages of an 
epidemic may be preferable to underestimation for purposes 
relating to the planning of outbreak response activities, reduc-
tions in the magnitude of this overestimation over time can 
potentially lead to misconceptions about trends in transmissi-
bility. The trend of a decreasing average R0 estimated in the early 
stages of epidemic growth was also observed for some coun-
tries when fitting to national case surveillance data from the 
2015–2016 Zika epidemic in Latin America and the Caribbean 
(eg, French Guyana, Martinique, Puerto Rico, and the US 
Virgin Islands, as shown in Figure 3). The limited efficacy of 
existing interventions against vector-borne pathogens such as 
Zika suggest the possibility that methodological bias could ex-
plain these trends, rather than reductions in transmission at 
that time. In addition, an early analysis of the SARS-CoV-2 ep-
idemic in China estimated a declining trend in the reproduc-
tion number, from 7.93 (95% CI, 5.00–12.00) on 29 December 
2019 to 2.60 (95% CI, .57–5.17) on 18 January 2020 when using 
the Wallinga and Teunis method, attributing this reduction to 
the effectiveness of prevention and control measures taken at 

that time [22]. However, the largest decrease in Rt estimated by 
Liu et al [22] was observed between 29 December 2019 and 2 
January 2020, prior to the implementation of significant inter-
ventions, from which point the estimates of R largely stabilized 
for the remainder of the period of estimation. Awareness of this 
bias is crucial for critical evaluation of the transmissibility esti-
mates obtained in the early epidemic stages and for accurately 
interpreting subsequent implications for control [23].

In the current context of the SARS-CoV-2 pandemic, cau-
tion is required when using these methods for the estimation of 
R0. As countries expand surveillance systems to better manage 
the pandemic, the assumption of constant reporting of cases 
implicit in these methods likely does not hold true until the ca-
pacity of the surveillance system has stabilized and a consistent 
case definition is applied. In these contexts, whilst testing ca-
pacity is growing, the use of hospital admission or death data, 
where available, may be preferable for inferring R0 if the re-
porting of these data is believed to be constant in time. Delays 
in the time from infection to hospitalization and/or death, 
however, result in significant lags between when transmission 

Figure 3. R0 estimates obtained from each of the 6 methods, fitted at different stages of the 2015–2016 Zika epidemics in French Guyana, Martinique, Puerto Rico, and 
the US Virgin Islands. The top panel for each country shows the time series of reported Zika cases, with dashed lines showing the different stages at which each method 
was fitted to the data (first 6, 9, 12, etc.; in weeks) up to the peak of the epidemic, marked by the black line. The bottom panel for each country shows the mean and 95% 
confidence intervals of the R0 estimates produced with each method fitted to each time series. Abbreviations: BR, Bettencourt and Ribeiro; EG_Lin, linear exponential growth 
rate method; EG_MLE, maximum likelihood exponential growth rate method; EG_P, Poisson exponential growth rate method; WP, White and Pagano method; WT, Wallinga 
and Teunis.
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Figure 4. Density distribution of bias in R0 estimates (estimated R0—actual R0) obtained when fitting to the case time series of simulated data, without noise, by method 
and time point (in approximate generations), using only results from simulations that peaked at or after 15 weeks. Columns represent the approximate number of disease 
generations fitted in the case time series, and colors represent the method. Black dashed lines highlight the ideal bias value of 0, and colored lines represent method-specific 
values of median bias. The generation time distribution used, both for data simulation and method fitting, is shown on the y-axis. Mean and standard deviation, in days, for 
generation time distributions used: Zika (20 ± 7.4); Ebola (16 ± 9.3); and SARS (8 ± 3.8). Abbreviations: BR, Bettencourt and Ribeiro; EG_Lin, linear exponential growth rate 
method; EG_MLE, maximum likelihood exponential growth rate method; EG_P, Poisson exponential growth rate method; SARS, severe acute respiratory syndrome; WP, White 
and Pagano method; WT, Wallinga and Teunis.
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events occur and when they can be quantified. Regardless of 
the metric used for estimation of R0, we urge caution when 
interpreting short-term fluctuations in these estimates, as vari-
able data quality and methodological accuracy may play a role 
in these trends.

There are a number of limitations in our analysis, including the 
simplicity inherent in the assumptions of homogenous mixing 
in fully susceptible and closed populations that were used to 
simulate the case data. These assumptions do not reproduce the 
subexponential growth dynamics that can occur in empirical epi-
demics, as driven by complex spatial structures, local contact net-
works, and other socio-behavioral factors not accounted for in 
this analysis [24, 25]. Many methods exist that account for addi-
tional complexities in the epidemic process, such as simultaneous 
estimation of R and the serial interval, the use of household or 
contact tracing data, or the importation of cases from external 
populations [26–28]. The results of this analysis are based on 
weekly epidemic case-time series, which may not fully reflect 
results obtained when daily case reports are available. However, 
whilst the larger number of data points provided by daily time 
series may potentially improve methodological performance in 
the early epidemic stages, daily case counts may be subject to 
larger overdispersion and substantial day-of-the-week effects. 
In addition, noise was added to the case time series in the form 
of random errors to reflect stochasticity in the infection and re-
porting processes, inherently assuming the noise to be random. 
This analysis does not account for systematic forms of noise/bias, 
such as reporting delays or changes in health-seeking behavior or 
case definitions. Here, we show that R0 estimates frequently over-
estimate the actual R0 values even in the absence of noise, when 
we assume that a constant proportion of infections is accurately 
detected and reported, when the true generation time is known, 
and when the assumption of exponential growth is met (both 
in the simulation model and in the estimation method). Our 
finding that the bias in R0 estimates persists even in the absence of 
underreporting in the simulation stage suggests that the bias may 
be attributable to methodological differences, which warrants 
further research. The difference in bias observed at the earliest 
fitting stage under different assumptions of reporting rates can be 
explained by missing infections at the beginning of the case time 
series, when underreporting is present. Delayed detection and 
reporting of cases at the beginning of an epidemic is common, 
particularly for newly emerged pathogens, and caution should be 
taken when considering the first reported cases, which for many 
pathogens are unlikely to be the first acquired infections.

In this analysis, we highlight the varying strengths and limita-
tions of 7 commonly used statistical methods for estimating R0 
in emerging epidemics. We show how the performance of these 
methods can vary over time when fit to increasing amounts of data, 
in line with a real-time outbreak analysis scenario, and demonstrate 
the sensitivity of methodological performance to varying levels of 
random noise in the data. This has important implications for the 

ongoing SARS-CoV-2 pandemic, as we show that true changes 
in transmissibility in the early stages of epidemic growth may be 
difficult to disentangle from changes in methodological accuracy 
and precision, particularly for data with significant overdispersion. 
Cautious interpretation is warranted when using these methods to 
infer transmission patterns in the early stages of epidemic growth, 
as apparent declines in R0 estimates may be misattributed to the 
effectiveness of control efforts, and lead to incorrect conclusions 
about the course of the epidemic. Several generations of pathogen 
transmission may need to be observed for accurate R0 estimation 
by these methods. An awareness of this trend in bias over time is 
crucial for appropriate interpretation of R0 estimates and any subse-
quent implications for the planning of outbreak response activities.
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Notes
M. O. and C. H. contributed equally to this work. The data and R code 

necessary to reproduce this analysis are available on GitHub: https://github.
com/meganodris/R0-methods-comparison.
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