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Abstract

In Marconi et al. 2007, the theory of nonlinear Luenberger observers was exploited to prove that a solution to the
asymptotic output regulation problem for minimum-phase normal forms always exists. The paper provided an existence
result and a very general regulator structure, although unfortunately, no constructive method was given to design
all the degrees of freedom of the regulator. In this paper, we complete this design by introducing an adaptive unit
tuning the regulator online by employing system identification algorithms selecting the “best” parameters according to
a certain optimization policy. Instead of focusing on a single identification scheme, we give general conditions under
which an algorithm may be used in the framework, and we develop a particular least-squares identifier satisfying these
requirements. Closed-loop stability results are given, and it is shown that the asymptotic regulation error is related to
the prediction capabilities of the identifier evaluated along the ideal error-zeroing steady-state trajectories.
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1. Introduction

The goal of output regulation is to design a control law
able to steer to zero a particular output of a plant, referred
to as regulation error, despite the presence of exogenous
disturbances, modeled as trajectories of an autonomous
system (typically referred to as “exosystem”). In the con-
text of linear systems, this problem was completely solved
in [15, 16, 13] where the authors showed that any robust
regulator necessarily embeds an internal model of the ex-
ogeneous signals able to generate the ideal error-zeroing
control law in steady state. The design is then completed
by adding a stabilizer which stabilizes the system around
this steady-state.

The problem of output regulation for nonlinear systems
is more challenging and still open. “Local designs” first
appeared in [21, 19, 17, 6], strongly inspired by the lin-
ear setting. A fully nonlinear theory of output regulation
emerged in [7, 9, 8] based on the theory of invariant man-
ifolds. Regulators were proposed for single-input-single-
output (SISO) normal forms, under an immersion assump-
tion on the ideal steady-state control in [8, 18, 11] which
was then relaxed in [25]. More precisely, in [25], it was
shown that for the class of minimum-phase SISO normal
forms a solution of the output regulation problem always
exists. This result, however, is not constructive, in the
sense that, although the existence of a regulator is guaran-
teed and the general structure fixed, no general procedure
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is given to choose all its degrees of freedom. By leverag-
ing this existence result, in [24], some methods have been
proposed to construct “approximate” regulators. Never-
theless, the construction of the regulator remains mostly
impractical.

In this paper, we develop further the approach of [25] by
endowing the regulator with an adaptive unit tuning au-
tomatically the regulator’s degrees of freedom, whose cor-
rect value is unknown to the designer. Adaptation is cast
as a user-defined system identification problem, formally
expressed as an optimization task defined on the closed-
loop available signals. Sufficient conditions are given un-
der which an identification scheme can be embedded in
the adaptive unit, and the main result relates the pre-
diction capabilities of the identifier, evaluated along the
ideal error-zeroing trajectories, to the asymptotic regula-
tion performance.

Among the different adaptive designs available for linear
and nonlinear systems, the proposed approach shares some
similarities with [14, 5], as the requirements asked here to
the identifiers refer to the same stability properties. How-
ever, unlike [5], our design is purely nonlinear, and unlike
[14], we do not rely on a high-gain internal model and an
actual regression is guaranteed to exist in steady-state be-
tween the two input signals of the identifier without any
assumption on the steady-state error-zeroing input. Other
adaptive designs for nonlinear systems can be found, for
instance, in [30], under a linear immersion assumption, in
[28] with high-gain internal models and under an immer-
sion assumption into a linearly parametrized exosystem,
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and in [29], where the same regulator as in this paper
is made adaptive by using a canonical Lyapunov-based
adaptive control strategy. Compared to these works, here
we propose a regulator in a more general setting, with-
out immersion assumptions, and in which adaptation is
approached in a broader sense as a system identification
problem, without assuming that a correct model exists in
the identifier’s model set. An approximate regulation re-
sult is given, with the asymptotic bound of the regulation
error that is directly related to the performances of the
identifier.

The paper is organized as follows. In Section 2 we de-
scribe our nonlinear setting, we recall the main result of
[25], and we highlight the contribution of the paper. The
adaptive regulator is constructed in Section 3, and the
main result of the paper is given in Section 4. Finally,
in Section 5, we provide an example of least-square based
identifier satisfying the requirements.

Notation: R denotes the set of real numbers, N the set
of naturals and R+ := [0,∞). Snθ denotes the set of posi-
tive semi-definite symmetric matrices of dimension nθ. If
S ⊂ Rn (n ∈ N) is a closed set, |x|S := infs∈S |x − s| de-
notes the distance of x ∈ Rn to S. C1 denotes the set of
continuously differentiable functions. A continuous func-
tion f : R+ → R+ is of class-K (f ∈ K) if it is strictly
increasing and f(0) = 0. It is of class-K∞ (f ∈ K∞) if
f ∈ K and f(s) → ∞ as s → ∞. A continuous function
β : R2

+ → R+ is of class-KL (β ∈ KL) if β(·, t) ∈ K for
each t ∈ R+ and β(s, ·) is strictly decreasing to zero for
each s ∈ R+. Id ∈ K denotes the map Id(s) = s. With
h : Rn → R a C1 function in the arguments x1, . . . , xn, and

f : Rn → R, for each i ∈ {1, . . . , n} we denote by L
(xi)
f h

the map x 7→ L
(xi)
f(x)h(x) := ∂h/∂xi(x)f(x). In the text

“ISS” stands for Input-to-State Stability [31]. Finally, for
a matrix M , M† denotes its Moore-Penrose pseudo-inverse
and msv(M) its minimal nonzero singular value, namely
the smallest nonzero eigenvalue of M>M .

2. The Framework

2.1. Problem Statement

We consider systems of the form

ż = f(w, z, y)
ẏ = q(w, z, y) + b(w, z, y)u,

(1)

with state (z, y) taking values in Rnz × R, control input
u ∈ R, measured output y ∈ R, and with w ∈ Rnw an
exogenous input that we suppose to belong to the set of
solutions of an exosystem of the form

ẇ = s(w), (2)

originating in a compact invariant subset W of Rnw . We
suppose that f : Rnw×Rnz×R→ Rnz is locally Lipschitz,
q : Rnw ×Rnz ×R→ R and b : Rnw ×Rnz ×R→ R are C1,

and for any compact set Z ⊂ Rnz and Y ⊂ R, there exists
b > 0 such that

b(w, z, y) ≥ b ∀(w, z, y) ∈W × Z×Y . (3)

Given a compact set Z0 × Y0 ⊂ Rnz × R, the goal of this
paper is to design a regulator{

ẋc = fc(xc, y)
u = hc(xc, y),

(4)

with state xc ∈ Rnc , and a set Xc ⊂ Rnc , such that
the solutions x := (w, z, y, xc) of the closed-loop system
(1),(2),(4) originating in W×Z0×Y0×Xc are defined on
[0,+∞) and uniformly eventually equibounded1and sat-
isfy lim supt→∞ |y(t)| ≤ µ?w, with µ?w as small as possible
according to an optimality index to be specified. In other
words, for a particular solution w of (2), the positive scalar
µ?w represents the desired/tolerated asymptotic bound on
the output y, thus allowing for regulation objectives milder
than the usual asymptotic output regulation where µ?w = 0.

We consider the problem at hand under the following
minimum-phase assumption.

A1) There exists a C1 map π defined on an open neigh-
borhood of W and with values in Rnz , satisfying

L
(w)
s(w)π(w) = f(w, π(w), 0)

on its domain of definition, and such that the system

ẇ = s(w)
ż = f(w, z, y)

(5)

is ISS relative to the compact set

A = {(w, z) ∈W × Rnz : z = π(w)}

and with respect to the input y.

We observe that, by using the same arguments of [25],
A1 could be weakened to a local asymptotic stability re-
quirement of the set A for the zero dynamics

ẇ = s(w), ż = f(w, z, 0), (6)

as long as the domain of attraction includes W×Z0×Y0.
This, however, comes at the price of a more involved tech-
nical treatise without substantial conceptual added value.
Assumption A1 is customary in the literature of output
regulation (see e.g. [20, 27]). Necessary and sufficient
conditions for the existence of a single-valued steady-state
map π can be found in [27]. By definition, continuity of π
holds whenever A is closed, while its differentiability has
to be assumed.

To conclude, we observe that, although we have chosen
to restrict our attention to systems with unitary relative
degree, extension to higher relative degree is straightfor-
ward along the lines of [22, 25].

1That is, there exists a compact set K ⊂ Rnz × R × Rnc and a
τ ≥ 0 such that every solution x := (z, y, xc) of (1)-(4) originating
in Z0 ×Y0 ×Xc satisfies x(t) ∈ K for all t ≥ τ .
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2.2. The Marconi-Praly-Isidori Regulator

Let us define

u?(w, z, y) = −q(w, z, y)

b(w, z, y)
. (7)

From (1) and A1, we see that the input u should ideally
take the value u?(w, π(w), 0) in steady state. The ability of
the regulator to generate such an input is typically referred
to as the “internal model property”. Under A1, it is proved
in [25] that this can always be done by means of a controller
of the form

η̇ = Fη +Gu
u = γ(η) +K(y)

(8)

with state η taking values in Rnη , with nη = 2(nw+nz+1),
(F,G) a controllable pair with F a Hurwitz matrix, and
with γ : Rnη → R and K : R → R suitably defined con-
tinuous functions. More details about this design will be
given in Lemma 1 below. Intuitively, the function γ is
tuned to reproduce u?(w, π(w), 0) in steady state, while
K plays the role of stabilizer. The latter, in [25], is se-
lected as a high-gain feedback in order to steer y to small
values regardless of the value of γ. Then, once y is close
to zero, the term γ(η) steers y to zero by approaching
u?(w, π(w), 0), thus ensuring asymptotic regulation.

Although constructive insight is given in [25] for the de-
sign of F , G, and K, the map γ is only guaranteed to exist,
without any analytical procedure to design it outside the
class of linear systems. As a consequence, the construc-
tion of the regulator (8) is hardly applicable in practice
and, even if some numerical methods to approximate γ
have been proposed (see [24]), their implementation re-
mains difficult.

2.3. Contribution of the Paper

Towards a constructive design solution which is effec-
tively implementable, in this paper we propose a regulator
that employs online adaptation to approximate the map
γ at run time. In particular, we augment the regulator of
[25] with an adaptive unit, called the identifier, whose aim
it to produce and update an estimate γ̂ of the function γ to
employ. Specifically, the identifier is a system that solves
a user-defined system identification problem [23] cast on
the closed-loop signals and adapts its guess of γ on the
basis of an optimization problem. Instead of proposing a
particular design of the identifier, we give sufficient stabil-
ity conditions characterizing a class of algorithms that can
be used, thus leaving to the designer a further degree of
freedom in the choice of the actual identification strategy.

The main result of the paper, in turn, is to relate the
asymptotic bound µ?w on the regulated variable y to the
prediction performance of the chosen identifier, in partic-
ular leading to asymptotic regulation (i.e., µ?w = 0) when-
ever the correct map γ is in the model set of the employed
identification algorithm. Finally, we show how least-square
identifiers fit into the framework, thus providing a fully
constructive design.

3. The Regulator Structure

We consider a controller of the form

η̇ = Fη +Gu

ξ̇ = ϕ(ξ, η, u)

ζ̇ = `(ζ, y)
u̇ = κ(y, ζ) + ψ(ξ, η, u)

(9)

with state (η, ξ, ζ, u) ∈ Rnη × Rnξ × Rnζ × R, input y,
and output u. We refer to the subsystems η, ξ, ζ and u
respectively as the internal model unit, the identifier, the
derivative observer and the stabilizer. These subsystems
are constructed in the next subsections.

3.1. The Internal Model Unit

In this section, we detail the choice of the pair (F,G)
following the guidelines of [25]. We start by reporting the
following result, formalizing the fact that the subsystem η
provided by an appropriate output map γ has the internal
model property.

Lemma 1 ([25]). Suppose that A1 holds and pick nη =
2(nw + nz + 1). Then there exist a Hurwitz matrix F ∈
Rnη×nη , a matrix G ∈ Rnη×1, and continuous maps τ :
Rnw × Rnz → Rnη and γ : Rnη → R such that

γ ◦ τ(w, z) = u?(w, z, 0) ∀(w, z) ∈ A (10)

with u? defined in (7), and the system

ẇ = s(w)
ż = f(w, z, y)
η̇ = F η +G(u?(w, z, y) + δ0).

is ISS relative to the set

G :=
{

(w, z, η) ∈ A× Rnη : η = τ(w, π(w))
}
,

and with respect to the input (y, δ0).

More precisely, according to [25], the pair (F,G) can be
chosen as a real realization of any complex pair (Fc, Gc)
of dimension nw + nz + 1, with Gc a vector with non zero
entries, and Fc such that its eigenvalues λi have sufficiently
negative real part and (λ1, . . . , λnη/2) is outside a set of

zero-Lebesgue measure in Rnη/2. As for the map K, it
must be chosen such that K(0) = 0, K(y)y < 0 for all
non zero y ∈ R and an appropriate small gain condition
is verified. If A is also locally exponentially stable for (6),
then K can be taken linear, with sufficiently large gain.

Intuitively, Lemma 1 says that γ(η) gives a proxy for
u?(w, π(w), 0) in steady state when (y, δ0) is small. This
is why it is used in (8) as key element of the internal model
unit. However, since this map γ is not available, we are go-
ing to look for another proxy of u?(w, π(w), 0) and identify
γ online.
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3.2. The Identifier

The goal of the identifier is to estimate online the un-
known map γ which, according to (10), relates the steady-
state signals

α?in := τ(w, π(w)), α?out := u?(w, π(w), 0), (11)

as α?out = γ(α?in). This latter relation is interpreted here as
a regression model between the signals α?in and α?out, and
the estimation of γ cast as an identification problem. Un-
fortunately, the signals in question are unknown, and the
identifier must be fed by some known “proxies” (αin, αout)
instead. To that end, we observe that η is a good proxy
for the quantity α?in close to the attractor G introduced in
Lemma 1, while u will be shown to provide a proxy for
α?out when (y, ẏ) is small. Therefore, we choose

αin := η , αout := u. (12)

The design of the identifier then relies on the following
steps.

Let Ain ⊂ Rnη and Aout ⊂ R be compact sets verifying

τ(W, π(W)) ⊆ Ain , u?(W, π(W), 0) ⊆ Aout .

We start by considering a class I of functions with value in
Ain × Aout containing the ideal regression signals defined
in (11), namely satisfying

I ⊇
{

(α?in, α
?
out) : R+ → Ain ×Aout

α?in = τ(w, π(w)), α?out = u?(w, π(w), 0),

w solves (2) with w(0) ∈W
}
, (13)

and a model set, namely a C1 map γ̂ : Rnθ × Rnη → R
such that a parametrized function of the form γ̂(θ, ·) is
a good model for the ideal map γ(·) in some sense to be
defined. More precisely, the ultimate goal is to identify
an “optimal” θ (hereafter indicated with θ?) minimizing
the mismatch between γ̂(θ?, α?in) and α?out = γ(α?in). This
minimization is made formal through the definition of a
cost functional associated to the elements in I, assigning
to each value of θ and each t ∈ R+ a value to be minimized.
More precisely, to each α? := (α?in, α

?
out) ∈ I, we associate

a function Jα? : Rnθ × R+ → R+ of the form

Jα?(θ, t) :=

∫ t

0

c
(
ε(α?(s), θ), t, s

)
ds+ %(θ) (14)

where
ε(α(s), θ) := αout(s)− γ̂(θ, αin(s))

denotes the prediction error at time s of the model γ̂(θ, ·)
corresponding to a given choice of θ ∈ Rnθ , c : R × R+ ×
R+ → R+ assigns to each error and each time instant s a
“cost”, and where % : Rnθ → R+ is a regularization term.

The next step consists in choosing nξ, nθ ∈ N, a con-
tinuous map ϕ : Rnξ × Rnη × R, and a bounded function
h : Rnξ → Rnθ , such that the following identifier

ξ̇ = ϕ(ξ, αin, αout)
θ = h(ξ)

(15)

asymptotically produces the optimal model parameter θ?,
when fed with ideal inputs α? := (α?in, α

?
out) ∈ I. In other

words, system (15) then asymptotically converges to a tra-
jectory ξ? : R+ → Rnξ whose output θ? := h(ξ?) is such
that the inferred prediction model

α?out ≈ γ̂(θ?, α?in) (16)

fits “at best” in the sense of the cost function Jα? .
As explained above, because the ideal input (α?in, α

?
out)

defined in (11) is unknown, we will need to feed the iden-
tifier (15) with some proxy signals (αin, αout) defined in
(12). Therefore, we must also ask that, whenever α be-
comes close to α?, the identifier solutions ξ become close
to the ideal one ξ?, whose output θ? := h(ξ?) is a point-
wise solution to the minimization problem associated with
(14). This is formalized via an ISS-like property in the
following requirement.

Requirement 1. The pair (ϕ, h) with h bounded is said
to fulfill the identifier requirement relative to I if there
exist βξ ∈ KL, ρξ ∈ K, a scalar t̄, and a compact set
Ξ ⊂ Rnξ , such that for each α? = (α?in, α

?
out) ∈ I, there

exists a function ξ? : R+ → Rnξ verifying ξ?(t) ∈ Ξ for all
t ≥ t̄ and such that the following properties hold:

1. Optimality: for each t ≥ t̄, the output θ? := h(ξ?)
satisfies

θ?(t) ∈ arg min
θ∈Rnθ

Jα?(θ, t).

2. Stability: for each d = (din, dout) : R+ → Rnη × R,
the system

ξ̇ = ϕ(ξ, α?in + din, α
?
out + dout)

satisfies

|ξ(t)− ξ?(t)| ≤ max
{
βξ(|ξ(0)− ξ?(0)|, t), ρξ(|d|[0,t))

}
for all t ≥ 0.

3. Regularity: the map

λ(ξ, αin, αout) := lim
ε→0

h(ξ + εϕ(ξ, αin, αout))− h(ξ)

ε

is well-defined and continuous on Ξ×Ain ×Aout.

An example of a least-square identifier that fulfills such
conditions is shown in Section 5. In view of this discussion,
we make the following assumption.

A2) The pair (ϕ, h) fulfills the identifier requirement rel-
ative to I.

To make the dependency on w explicit, we associate
with each solution of (2) a signal ξ?w defined as the optimal
steady state of ξ introduced in the identifier requirement
corresponding to the ideal inputs (11) and we let θ?w(t) :=
h(ξ?w(t)) be the corresponding optimal parameter. With
those definitions and according to (10), we obtain α?out =
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γ(α?in), so that we associate with each solution w of (2)
the signal

ε?w := γ
(
τ(w, π(w))

)
− γ̂
(
θ?w, τ(w, π(w))

)
, (17)

which represents the optimal prediction error (i.e. the pre-
diction error attained by the optimal model) along the so-
lution w.

We remark that, while knowledge of the maps (11) is
not assumed in this paper, the choice of the identifier, and
in particular of the structure and parametrization of the
map γ̂, can be guided by a priori qualitative and quantita-
tive information that the designer may have on the ideal
steady-state signals (α?in(t), α?out(t)). We stress, however,
that such information is only needed for the purpose of
setting up the identification problem. In turn, the choice
of the structure of γ̂, and thus of the corresponding identi-
fication algorithm, depends on the amount and quality of
the available information on (11), and it may range from a
very specific set of functions, such as linear regressions, to
universal approximators, such as wavelet bases or neural
networks. We also stress that the inferred parametriza-
tion of γ̂ does not require any assumption on the structure
of the map γ. Indeed, the fact that there may not exist
any θ? ∈ Rnθ such that γ(·) = γ̂(θ?, ·) just implies that
the optimal prediction error (17) may not be zero at the
steady state. In turn, the main result of the paper relates
the asymptotic bound on the regulated variable y to the
optimal prediction error (17) (i.e., to the best prediction
performance of the identifier), thus resulting in an approx-
imate regulation property, which can be strengthened to
asymptotic regulation only if γ(·) = γ̂(θ?, ·).

Finally, we stress that the regression map γ between the
input and output of the identifier is always guaranteed to
exist in steady state according to Lemma 1. This differs
from [14] where a regression assumption is made on the
steady state input u?.

3.3. The Stabilizer

The role of the stabilizer is mainly to bring y close to
zero (implying that η is a good proxy for α?in according to
Lemma 1) regardless of the internal model. But it should
also ensure that u behaves as α?out after this transient, in
order for the identifier to work. For this, since q is C1, we
immerse (1) into the system

ż = f(w, z, χ1)
χ̇1 = χ2

χ̇2 = Φ(w, z, χ) + b(w, z, χ1)u̇
(18)

with

χ1 = y

χ2 = q(w, z, y) + b(w, z, y)u,

new input u̇, and

Φ(w, z, χ) = q′(w, z, χ) +
b′(w, z, χ)

b(w, z, χ1)
(χ2 − q(w, z, χ1))

(19)

where

q′(w, z, χ) :=
(
L

(w)
s(w) + L

(z)
f(w,z,χ1) + L(χ1)

χ2

)
q(w, z, χ1),

and

b′(w, z, χ) :=
(
L

(w)
s(w) + L

(z)
f(w,z,χ1) + L(χ1)

χ2

)
b(w, z, χ1).

From (7) and the definition of the new state variables
χ, we have

u?(w, z, χ1) = u− χ2

b(w, z, χ1)
. (20)

According to the minimum-phase assumption A1, z is close
to π(w) when χ1 is small. We thus deduce from (20) that
αout = u is indeed a good proxy for α?in = u?(w, π(w), 0)
when χ is small. The idea is therefore to design u̇ as a
stabilizer for both χ1 and χ2 around 0. This is done in the
following, first assuming χ2 is available for feedback.

As a first step, with γ̂ the prediction model of the iden-
tifier given in (16), and with λ the map introduced in
the identifier requirement, we define the continuous map
γ̂′ : Ξ×Ain ×Aout → R as

γ̂′(ξ, αin, αout)

:=
(
L

(h(ξ))
λ(ξ,αin,αout)

+ L
(αin)
Fαin+Gαout

)
γ̂(h(ξ), αin).

(21)
We then let ψ : Rnξ × Rnη × R → R be any bounded
function that agrees with γ̂′ on the compact set Ξ×Ain×
Aout and for which2 there exists ρψ ∈ K such that for
all (ξ, αin, αout) ∈ Rnξ × Rnη × R and all (ξ?, α?in, α

?
out) ∈

Ξ×Ain ×Aout,

|ψ(ξ, αin, αout)− γ̂′(ξ?, α?in, α?out)|
≤ ρψ (|ξ − ξ?|+ |αin − α?in|+ |αout − α?out|) . (22)

We then consider the following virtual system

ẇ = s(w), ż = f(w, z, χ1)

η̇ = Fη +G
(
u?(w, z, χ1) + ∆1(w, z, χ1, χ2 + δ1)

)
ξ̇ = ϕ

(
ξ, η, u?(w, z, χ1) + ∆1(w, z, χ1, χ2 + δ1)

)
χ̇1 = χ2 + δ1
χ̇2 = ∆2(w, z, η, ξ, χ1, χ2 + δ1) + b(w, z, χ1)κ0(χ) + δ2.

(23)
with

∆1(w,z, χ) =
χ2

b(w, z, χ1)

∆2(w,z, η, ξ, χ) = Φ(w, z, χ)− Φ(w, π(w), 0)

+ b(w, z, χ1)ψ
(
ξ, η, u?(w, z, χ1) + ∆1(w, z, χ)

)
− b(w, π(w), 0)γ̂′

(
ξ?w, τ(w, π(w)), u?(w, π(w), 0)

)
,

(24)

2ψ can be chosen as any bounded uniformly continuous extension
of γ̂′ that always exists according to [26].
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with input δ = (δ1, δ2), and with κ0 a “nominal” stabi-
lizing action to be fixed. For the sake of conciseness, we
define

G̃ :=
{

(w, z, η, ξ) ∈ G × Rnξ : ξ = ξ?w
}

B :=
{

(w, z, η, ξ, χ) ∈ G̃ × R2 : χ = 0
}
.

Then, the following result holds.

Lemma 2. Suppose that A1 and A2 hold, then for each
pair of compact sets Z0 ⊂ Rnz and Y0 ⊂ R and for each
positive scalar δ̄, there exist a C1 function κ0, maps β0 ∈
KL and ρ0 ∈ K, such that for every input δ : R → R2

verifying |δ| ≤ δ̄, any solution of (23) originating in W×
Z0 × Rnη × Y0 × R is defined on [0,+∞) and verifies for
all t ≥ t̄,

|(w(t), z(t), η(t), ξ(t), χ(t))|B ≤ max
{
ρ0(|δ|[t̄,t)),

β0

(
|(w(t̄), z(t̄), η(t̄), ξ(t̄), χ(t̄))|B, t− t̄

)}
.

Proof. First, A1 and Lemma 1 show that the subsystem
(w, z, η) of (23) is ISS relative to the set G and with re-
spect to the input (χ1,∆1). Then, under A2, Item (2) of
Requirement 1 applied with

din = η − τ(w, π(w))

dout = u?(w, z, χ1)− u?(w, π(w), 0) + ∆1(w, z, χ)

shows that the subsystem ξ of (23) is ISS relative to ξ?w
and with respect to the input (η − τ(w, π(w)), χ1,∆1). It

follows that the cascade (w, z, η, ξ) is ISS relative to G̃ with
respect to the input (χ1,∆1). Therefore, using standard
high gain arguments ([25]), by boundedness of ψ, conti-
nuity of Φ and b, and lower-boundedness of b on compact
sets according to (3), for any δ̄, there exist compact sets
Z ⊂ Rnz and Y ⊂ R, and a map κ0 such that for all κ0 ver-
ifying |κ0| ≥ |κ0| and κ0(e)e < 0 for all e, every solution of
(23) initialized in W×Z0×Rnη×Y0×R with input |δ| ≤ δ̄
is bounded, defined on [0,+∞) and such that (z, y) ∈ Z×Y
at all times. Besides, from the identifier requirement, for
all t ≥ t̄, ξ?w ∈ Ξ so that (22) holds along trajectories. Since
(z, y) ∈ Z×Y, b is lower-bounded with (3) and since ∆ is
linear in χ2, by continuity of Φ and thanks to (22), there
exists $ ∈ K such that along any of those trajectories,
|∆(w, z, η, ξ, χ1, χ2+δ1)| ≤ $(|(w, z, η, ξ, χ)|B+|δ1|) for all
t ≥ t̄. Then, invoking arguments from [25], κ0 can be cho-
sen so that the subsystem χ is ISS with respect to the input
(|(w, z, η, ξ)|G̃ , δ) after t̄ and a small-gain condition holds
in the interconnection with the subsystem (w, z, η, ξ), thus
ensuring the result. �

Following the guidelines given in [25], κ0 can for instance
be taken linear of the form

κ0(χ) = −k(χ2 + aχ1) (25)

with a > 0 and with k > 0 sufficiently large, if ∆ is locally
Lipschitz and if A defined in A1 is locally exponentially

stable for the zero-dynamics (6). The design of the stabi-
lizer is then concluded in the following section by choosing
κ in (9) on the basis of the functions κ0 defined here and by
using the state estimate of χ2 provided by the derivative
observer in place of χ2 itself.

3.4. The Derivative Observer

The goal of this section is to design the degrees of free-
dom (nζ , `, ν), such that the unimplementable stabilizing
control law claimed by Lemma 2 can be substituted by a
control action which employs the quantity ν(ζ) in place of
the unmeasured derivative χ2 of the output y = χ1. In
other words, we use a separation principle for the stabi-
lization problem (23) and we require that the new control
law makes the interconnection (w, z, η, χ, ζ) ISS relative to
the set

D :=
{

(w, z, η, ξ, χ, ζ) ∈ B × Rnζ : ν(ζ) = 0
}

and with respect to the input δ, thus complementing the
result of Lemma 2.

A3) For each pair of compact subsets Z0 ⊂ Rnz and Y0 ⊂
R, and for any positive scalar δ̄, there exist functions κ :
R2 → R, β ∈ KL, ρ ∈ K and a non-empty subset T0 ⊂ Rnζ
such that, for every input δ = (δ1, δ2) : R → R2 verifying
|δ| ≤ δ̄, every solution of the system

ẇ = s(w), ż = f(w, z, χ1)

η̇ = Fη +G
(
u?(w, z, χ1) + ∆1(w, z, χ1, χ2 + δ1)

)
ξ̇ = ϕ

(
ξ, η, u?(w, z, χ1) + ∆1(w, z, χ1, χ2 + δ1)

)
χ̇1 = χ2 + δ2
χ̇2 = ∆2(w, z, η, ξ, χ1, χ2 + δ1)

+b(w, z, χ1)κ(χ1, ν(ζ)) + δ2
ζ̇ = `(ζ, χ1)

(26)
originating in W×Z0×Rnη ×Rnξ×Y0×R×T0 is defined
on [0,+∞) and verifies for all t ≥ t̄,

|(w(t), z(t), η(t), ξ(t), χ(t), ζ(t))|D ≤ max
{
ρ(|δ|[t̄,t)),

β
(
|(w(t̄), z(t̄), η(t̄), ξ(t̄), χ(t̄), ζ(t̄))|D, t− t̄

)}
.

To satisfy A3 from the result of Lemma 2, one can use
separation principles appearing for instance in [32, 2, 1]).
Because ∆ = 0 on D, following for instance the separation
principle exposed in [2], if ∆ is locally Lipschitz, then `
can be chosen as a dirty high-gain observer of dimension
2, i.e.

ζ̇1 = ζ2 + L(χ1 − ζ1) , ζ̇2 = L2(χ1 − ζ1) , (27)

with L sufficiently large, T0 = R2, ν(ζ) = ζ2, and κ a
saturated version of κ0.
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4. Main Result

We now consider the interconnection of the system (1)-
(2) with the controller (9). For the sake of readability we
define the set

M :=
{

(w, z, y, η, ξ, ζ, u) :

(w, z, η, ξ, ζ) ∈ D , y = 0 , ν(ζ) = 0 , u ∈ R
}
.

The main result reads as follows.

Proposition 1. Suppose that A1, A2 and A3 hold. Then
for each pair of compact subsets Z0 ⊂ Rnz and Y0 ⊂ R
there exist κ : R2 → R, βx ∈ KL, ρx ∈ K, and
a non-empty subset T0 ⊂ Rnζ such that each solution
x := (w, z, y, η, ξ, ζ, u) of the closed-loop system (1)-(2)-
(9) originating in W × Z0 × Y0 × Rnη × Rnξ × T0 × R is
bounded, defined on [0,+∞), and satisfies

|x(t)|M ≤ max
{
βx(|x(t̄)|M, t− t̄), ρx(|ε?w|[t̄,t))

}
,

for all t ≥ t̄. Thus, each of those solutions satisfies

lim sup
t→∞

|y(t)| ≤ ρx
(

lim sup
t→∞

|ε?w(t)|
)
.

Proof. Consider a solution x of (1)-(2)-(9) initialized in
W × Z0 × Y0 × Rnη × Rnξ × T0 × R. Define χ := (y, ẏ).
Then, (w, z, η, ξ, χ, ζ, u) is solution to

ẇ = s(w)
ż = f(w, z, χ1)
η̇ = Fη +Gu

ξ̇ = ϕ(ξ, η, u)
χ̇1 = χ2

χ̇2 = Φ(w, z, χ) + b(w, z, χ1)(κ(χ1, ν(ζ)) + ψ(ξ, η, u))

ζ̇ = `(ζ, χ1)
u̇ = κ(χ1, ν(ζ)) + ψ(ξ, η, u)

(28)
and verifies (20) at all times. Consider the change of co-
ordinates χ 7→ χ̃, where

χ̃1:=χ1

χ̃2:=χ2 + b(w, π(w), 0)(u?(w, π(w), 0)− γ̂(θ?w, τ(w, π(w)))).

Noting that u?(w, π(w), 0) = γ(τ(w, π(w))), (17) yields

χ = χ̃− Eb(w, π(w), 0)ε?w, (29)

with E := col(0, 1). Moreover, from (7),

χ̃2 = χ2 − q(w, π(w), 0)− b(w, π(w), 0)γ̂(θ?w, τ(w, π(w)))).

so that

˙̃χ1 = χ̃2 − b(w, π(w), 0)ε?w
˙̃χ2 = Λ(w, z, η, ξ, χ̃, u) + b(w, z, χ1)κ(χ̃1, ν(ζ))

where

Λ(·) := Φ(w, z, χ̃− Eb(w, π(w), 0)ε?w) + b(w, z, χ1)ψ(ξ, η, u)

− q′(w, π(w), 0)− b′(w, π(w), 0)(u?(w, π(w), 0)− ε?w)

− b(w, π(w), 0)γ̂′
(
ξ?w, τ(w, π(w)), u?(w, π(w), 0)

)
.

With (19), we thus get

Λ(·) = Φ(w, z, χ̃− Eb(w, π(w), 0)ε?w) + b(w, z, χ1)ψ(ξ, η, u)

− Φ(w, π(w), 0) + b′(w, π(w), 0)ε?w

− b(w, π(w), 0)γ̂′
(
ξ?w, τ(w, π(w)), u?(w, π(w), 0)

)
.

We thus notice that, in view of (20) and (24), Λ can be
written as Λ(w, z, η, ξ, χ̃, u) = ∆2(w, z, η, ξ, χ̃1, χ̃2 + δ1) +
δ2, where

δ1 = −b(w, π(w), 0)ε?w , δ2 = b′(w, π(w), 0)ε?w .

Now by boundedness of h and continuity of γ, τ , π and γ̂,
there exists a nonnegative scalar ε?w such that |ε?w(t)| ≤ ε?w
for all t and for any solution w of (2) in W. The result
then follows directly from A3 with

δ̄ = max
w∈W
{|b(w, π(w), 0)|ε?w, |b′(w, π(w), 0)|}.

�

The regulation performance thus depends on the opti-
mal prediction error ε?w defined in (17), namely on how well
γ̂(θ?w, ·) approximates the map γ given by Lemma 1. The
choice of γ̂ is therefore crucial, and if there exists θ such
that γ = γ̂(θ, ·) then asymptotic regulation is achieved.

5. Least-square identifier

In this section, we present an example of identifier that
fulfills the Requirement 1. Consider the set I of maps
α? : R+ → Rnη × R such that there exist compact sets
Ain ⊂ Rnη , Aout ⊂ R such that α?(R+) ⊆ Ain × Aout for
all α? ∈ I. Consider a model set made of functions γ̂(θ, ·)
that are linearly parametrized in θ, namely such that there
exists a C1 regression vector σ : Rnη → Rnθ such that

γ̂(θ, ·) =

nθ∑
i=0

θiσi(·) = θ>σ(·) . (30)

In other words, we hope that along the ideal signals
(α?in, α

?
out), there exists θ? ∈ Rnθ such that α?out ≈

θ?>σ(α?in) . Since we know that α?out = γ(α?in), the family
of functions {σi} can typically be chosen as elements of a
basis for a decomposition of functions, such as a wavelet
expansion for instance [12]. Then, the dimension nθ char-
acterizes the refinement of the approximation of γ.

We consider as cost function (14) a weighted least-
square norm of the past prediction errors of the form

Jα(θ, t) := p

∫ t

0

e−p(t−s)|αout(s)− θ>σ(αin(s))|2ds

+ θ>Ωθ , (31)
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with p a positive forgetting factor and Ω a positive semi-
definite regularization matrix Ω ∈ Snθ . We then build an
identifier with state ξ = (ξ1, ξ2) ∈ Snθ×Rnθ and dynamics
ϕ = (ϕ1, ϕ2) defined by{

ξ̇1 = −p ξ1 + p sat1

(
σ(αin)σ(αin)>

)
ξ̇2 = −p ξ2 + p sat2(σ(αin)αout)

(32)

with input (αin, αout) and output

h(ξ) = sat3((ξ1 + Ω)†ξ2) (33)

and with sati bounded continuous maps to be defined.
For that, consider a positive scalar ε. Let ξ1 > 0 and

ξ2 > 0 such that for all (α?in, α
?
out) ∈ Ain ×Aout,

|σ(α?in)σ(α?in)>| ≤ ξ1 , |σ(α?in)α?out| ≤ ξ2

and define the compact set

Ξ = {(ξ1, ξ2) ∈ Snθ × Rnθ : msv(ξ1 + Ω) ≥ ε
|ξ?1 | ≤ ξ1 , |ξ?2 | ≤ ξ2} . (34)

We have the following result.

Lemma 3. Assume the maps sat1, sat2 and sat3 are
bounded, continuous and such that for all (α?in, α

?
out) ∈

Ain ×Aout, and for all ξ? ∈ Ξ,

sat1

(
σ(α?in)σ(α?in)>

)
= σ(α?in)σ(α?in)> (35a)

sat2(σ(α?in)α?out) = σ(α?in)α?out (35b)

sat3((ξ?1 + Ω)†ξ?2) = (ξ?1 + Ω)†ξ?2 . (35c)

If there exists a positive scalars t̄ such that for all α? =
(α?in, α

?
out) ∈ I and for all t ≥ t̄,

msv
(

Ω +

∫ t

0

e−p(t−s)σ(α?in(s))σ(α?in(s))>ds
)
≥ ε , (36)

then the pair (ϕ, h) fulfills the identifier requirement rela-
tive to I.

Proof. First, h is bounded. Then, take α? =
(α?in, α

?
out) ∈ I and define ξ? = (ξ?1 , ξ

?
2) by

ξ?1(t) = p

∫ t

0

e−p(t−s)σ(α?in(s))σ(α?in(s))>ds

ξ?2(t) = p

∫ t

0

e−p(t−s)σ(α?in(s))α?out(s)ds

which is solution to (32) with input α? according to (35a)-
(35b). By (36) and definition of (32), ξ?(t) ∈ Ξ for all
t ≥ t̄. It is easy to see that at each time t,

∂Jα?
∂θ

(θ, t) = 0 ⇐⇒ (ξ?1(t) + Ω)θ = ξ?2(t) ,

so that by (35c), θ?(t) := h(ξ?(t)) minimizes Jα?(θ, t) for
all t ≥ t̄. Besides, it is clear to see that the ISS property

of the stability requirement holds thanks to the continuity
of σ and the boundedness of the saturations.

Now, according to [10, Theorem 10.5.3], defining the
map ϕ† : Rnθ×nθ × Rnθ×nθ → Rnθ×nθ by

ϕ†(M, Ṁ) := −M†ṀM† + (I −M†M)Ṁ>(M†)>M†

+M†(M†)>Ṁ>(I −MM†) ,

the map λ defined in the regularity requirement writes as

λ(ξ, αin, αout) = (ξ1 + Ω)†ϕ2(ξ, αin, αout)

+ ϕ†(ξ1 + Ω, ϕ1(ξ, αin, αout))ξ2 (37)

which is well-defined everywhere and continuous on Ξ ×
Ain ×Aout. Therefore Requirement 1 is satisfied. �

The requirement (36) is a persistence of excitation con-
dition on the ideal inputs α?in, which requires that Ω + ξ?1
remains (uniformly) of constant rank after a certain time
(and not necessarily invertible). It is important to note
that this assumption is always satisfied if the regulariza-
tion matrix Ω is chosen positive definite. However, in that
case, the minimizer θ? of the cost (31) no longer minimizes
the past prediction errors due to the regularization term
θ>Ωθ. In particular, if, by chance, γ is in the model set,
i.e. there exists θ0 such that γ = γ̂(θ0, ·), the algorithm
will yield θ? 6= θ0 thus resulting in a non-zero prediction
error ε? and approximate regulation. This mismatch can
nevertheless be made small by choosing Ω small and has
the advantage of numerically robustifying the algorithm.
On the other hand, if asymptotic regulation is desired, Ω
must be chosen equal to zero and the regularity of the
identifier exclusively relies on the excitation power of the
ideal input α?in.

In our context, according to A2, α?out represents the ideal
input u?(w, π(w), 0) to apply in steady state, and α?in is the
steady state of the filter

η̇ = Fη +Gu?(w, π(w), 0) .

In other words, α?out is determined by the exosystem and
the plant, while α?in also depends on F and G. Usually, the
knowledge of the set W and of the plant, gives a bound on
the ideal input u?(w, π(w), 0) to apply in steady state, and
thus enables to define Aout. Then, a bound for α?in can be
deduced depending on the choice of F and G, thus leading
to Ain. From there, the saturation maps sat1 and sat2 can
be chosen as prescribed by Lemma 3. As for sat3, it can
either be chosen based on the compact set Ξ if the value of
ε is known or based on a priori bounds on the parameter
θ? needed to model γ. Then, along (21), we define

γ̂′(ξ, αin, αout) = λ(ξ, αin, αout)
>σ(αin)

+ h(ξ)>σ′(αin)(Fαin +Gαout)

which is continuous on Ξ × Ain × Aout. Finally, we can
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simply take3 ψ of the form

ψ(ξ, αin, αout) = sat(γ̂′(ξ, αin, αout)) (38)

with sat a bounded map such that ψ = γ̂′ on Ξ×Ain×Aout.
All in all, a possible regulator is made of (9) with F , G

chosen along the lines of Section 3.1, κ a saturated version
of κ0 defined in (25) with k sufficiently large to ensure
stability in Lemma 2, ψ defined in (38), ` as a high-gain
observer (27) with L sufficiently large to verify A3, and ϕ
defined by the least-square dynamics (32). An example is
provided in the following section.

6. Example

Consider the system

ż = −2z + y + 2w1

ẏ = w2
2 + zy + u

with y to be regulated towards zero, and a disturbance w
generated by an exosystem of the form (2). Although the
knowledge of the exosystem could (to some extent) guide
the choice of the model set as explained in Section 3.2,
we want to highlight in this example that the explicit ex-
pression of the map s is not used for the internal model
design. Indeed, the adaptation provided by the identifier
enables to learn online the steady-state input u?, as pre-
cisely as possible, depending on the prediction capabilities
of the model set. The only thing we need to know is some
bounds of the disturbance and its derivative, namely that
|w(t)| ≤ wmax and |ẇ(t)| ≤ dwmax for all t.

From these bounds, we deduce that in steady state,
|u?(t)| ≤ u?max := wmax

2 and |u̇?(t)| ≤ ψmax :=
2wmaxdwmax, which gives us the bound for ψ, since ψ
equals u̇? in steady state. Then, we choose nη = 2(nw +
1) = 6 and for instance,

F :=


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

 , G :=


0
0
0
0
0
1

 .

It follows that in steady state, |η(t)| ≤ ηmax :=
‖F−1‖‖G‖u?max. The identifier is then chosen as a least-
square identifier of the kind presented in Section 5 with a
simple linear regressor vector, i.e. σ(η) = η. Therefore, in
(32), sat1 can be chosen as a saturation by ξ1 := nθηmax

2

and sat2 by ξ2 := nθηmaxu?max, with maybe an additional
security margin. The regularization matrix is chosen as

3(22) can be shown observing that Ξ has non-empty interior, and
γ̂′ is continuous on a compact inflation C of Ξ × Ain × Aout with
non-empty interior. Then, ρψ exists on C and (22) holds outside of
C by lower-bounding the distance to points in Ξ × Ain × Aout and
using the boundedness of ψ. See [3, Section A.2].
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Figure 1: Trajectory t 7→ y(t) with exosystem (39) with and without
internal model (IM), namely with and without ψ.

Ω = 10−6I and the forgetting factor as p = 0.05. As for
θ, it can be saturated to ±‖Ω−1‖ξ2. Finally, it remains to
choose the parameters of the observer and the stabilizer:
we empirically took k = 5 in (25), L = 15 in (27), and
saturated the stabilizer κ at 250.

Once these parameters have been fixed, we present the
results obtained with initial condition (z, y)(0) = (1, 10)
and two different exosystems defined by

ẇ1 = w2

ẇ2 = −w1 − w3
1

(39)

and

ẇ1 = w2

ẇ2 = (1− w2
1)w2 − w1

(40)

with initial condition (0, 4). In each case, we compare the
results with and without internal model, namely with and
without the identified consistency term ψ. The trajecto-
ries of y are plotted in Figures 1 and 3: the adaptation
provided by the identifier enables to reduce the asymp-
totic static error. Note that, when removing the inter-
nal model, the saturation of the stabilizer had to be dou-
bled to preserve stability. This is why the peaking during
the transient may seem smaller with the internal model
in those particular simulations. The performance of the
identifier are illustrated on Figures 2 and 4. The slow
convergence is due to the low forgetting factor p, which
allows the least square algorithm to keep a sufficient data
history. Of course, choosing a larger model set or more
complex (maybe discrete) identifiers could allow a better
fitting (polynomial decompositions, wavelets, neural net-
works etc.) However, the numerical cost of running the
identifier in continuous-time limits its dimension. Using
discrete-time identifiers as in [4] would significantly reduce
this load. Finally, the impact of the choice of structure and
eigenvalues of F and G is not well understood at this point.
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Figure 2: Comparison of the ideal steady state input u? = −w2
2 and

the one estimated by the identifier, namely γ̂(θ, η) = θ>η for the
exosystem (39).
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Figure 3: Trajectory t 7→ y(t) with exosystem (40) with and without
internal model (IM), namely with and without ψ.
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Figure 4: Comparison of the ideal steady state input u? = −w2
2 and

the one estimated by the identifier, namely γ̂(θ, η) = θ>η for the
exosystem (40).

7. Conclusion

We have proposed a constructive design of a regulator
solving the (approximate) output regulation problem for
general single-input-single-output normal forms under a
minimum-phase assumption. It extends the existence re-
sult of [25] by adding adaptation to tune online the un-
known quantities characterizing the internal model unit.
Adaptation is cast as a system identification problem, and
the main result relates the asymptotic regulation perfor-
mances to the prediction capabilities of the chosen identi-
fication algorithm. The proposed approach thus provides
a constructive and systematic adaptive regulator design
that yields an “optimal”, and possibly asymptotic, regu-
lation result. However, the controller still heavily relies
on high gain to force the system to steady state, and on
a saturation that may not be straightforward to choose.
Parallel work presented in [4] develops an alternative “low-
gain” strategy where the stabilizer’s gain and saturation
level are fixed beforehand and where handier discrete-time
identifiers are used.
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