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 

Abstract—Range anxiety is one of the problems that hinders the 

large-scale application of electric vehicles (EVs). We propose a 

driving-behavior-based State of Charge (SoC) prediction (DBSP) 

algorithm to overcome this problem. This algorithm can 

determine whether drivers can reach their destinations while also 

predicting the SoC if drivers were to return the trip. First, two 

supercapacitor equivalent circuit models are established, with one 

based on the historical average power and the other based on the 

equivalent current, which is proposed in this algorithm. Then, 

based on the equivalent transformation of the two models, an 

analytical expression relating the historical average power and the 

predicted SoC is derived by using the equivalent current as a 

‘bridge’. Therefore, the predicted SoC can be dynamically 

adjusted in response to recorded historical data, including the 

output power, speed and distance of EVs powered by 

supercapacitors. The simulation results demonstrate that the total 

prediction error is less than 0.5% of the real SoC at different 

initial SoC and temperature, which represents idealized 

behavior-based driving. In contrast, in actual driving experiments, 

the total prediction error is less than 3% of the real SoC at 

different initial SoC and temperature. 

 
Index Terms—SoC prediction; driving behavior; equivalent 

current; electric vehicles; supercapacitor 

I. INTRODUCTION 

UPERCAPACITORS, or electronic double-layer capacitors, 

have high power densities, long lifespans, and high 

efficiency and can respond quickly when charging or 

discharging. In contrast, traditional batteries need a longer 

charge times, which has restrained the development of battery 

based vehicles. Because of these beneficial characteristics, 

supercapacitors have been used in urban electric vehicles (EVs). 

For example, supercapacitor buses [1], light rail vehicles [2].  

For the passenger vehicles, there has been some literature 

discussing the possibility of supercapacitor-based EVs [3]. 

Light EVs are designed in [4] with full pure supercapacitors 

and the EV performances of acceleration and travelled distance 
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are predicted and valuated. A small EV prototype is built to 

research the feasibility of using supercapacitor based EVs in the 

public transport of Mexico City, validated in simulation and 

experiments [5]. A sightseeing car powered by supercapacitors 

is designed and analyzed in [6], which may also be used in city 

tourism. 

From application requirements, because of faster charging 

and longer life time than batteries, supercapacitors are indeed a 

competitive candidate for EVs with the specified applications. 

Sunvault Energy has cooperated with Edison Power to produce 

a graphene supercapacitor powered fully electric vehicle, the 

Edison Electron One [7]. Another potential application is 

supercapacitor-based electric taxis. For battery powered 

electric taxis, it takes at least 30 minutes to reach 80% power 

even with the latest charging technology [8]. The time cost of 

charging these cabs in a station will directly reduce taxi drivers’ 

incomes. Supercapacitors overcome this time wastage since it 

takes just a few minutes to charge fully. The travel range for 

supercapacitor vehicles is also not a problem, because for 

example cabs would mainly travel in urban areas, which can be 

equipped with charging stations throughout a city.  

However, all EVs are, and will remain for the foreseeable 

future, characterized by a considerably smaller range than that 

of conventional vehicles. Hence, drivers usually worry about 

whether they can arrive at destinations or whether they need to 

find a charging station first. Consequently, ‘range anxiety’ is 

unavoidable and is an impediment to the development of 

electric vehicles [9]. Therefore, it is important to judge whether 

an EV can arrive at its destination and to know the remaining 

charge when it reaches it.  

In fact, many models have been built to evaluate the states of 

supercapacitors, which makes it possible to solve the 

aforementioned problem. For instance, the simplest 

supercapacitor circuit model is the Rint model, which includes 

an ideal capacitor and a resistor [10]. Based on this model, more 

detailed models have been proposed. The RC parallel branch 

model has a different time constant in each RC branch, which 

can reflect the internal charge distribution process very well 

[11]. RC series-parallel branch models are also proposed, 

including the Thevenin model, DP model and 3-RC model [12]. 

In addition, the RC transmission line model has been developed 

based on Porous Electrode Theory, with consideration of both 

dynamic and long-time behaviors [13]. 

Methods for tackling range anxiety have also been developed. 
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One strategy is range prediction. The driving range is predicted 

based on various constant-speed trips and the initial state of 

charge [14]. To reduce the uncertainties of predictive range, 

Enthaler proposed a method that utilizes history-based average 

energy consumption and remaining energy [15]. An efficient 

approach was introduced to compute probabilistic attainability 

maps for electric vehicles [16]. However, range prediction can 

only help drivers understand whether they can reach the 

destination, but it fails to provide quantitative information: 

telling the users the remaining capacity which provides 

confidence and keeps them in the loop. Another strategy is 

runtime prediction. A remaining dischargeable time prediction 

framework is presented based on accurate battery modeling and 

state estimation [17]. The runtime is forecasted based on the 

estimated state of energy in the batteries [18]. Although useful 

to some extent, runtime prediction cannot offer exact 

qualitative information: telling drivers whether they can reach 

the end, or quantitative information: informing users of the 

remaining capacity. 

State of charge (SoC) prediction is a promising strategy, as it 

provides both qualitative as well as quantitative information. 

This strategy is advantageous because SoC is defined as the 

percentage of remaining capacity relative to the maximum 

capacity of a supercapacitor and is thus an indicator of the 

residual capacity of a supercapacitor, and also because range 

anxiety would be alleviated greatly if an EV driver knows the 

future SoC before starting the car. For instance, the information 

allows the driver to understand whether he or she can complete 

the entire journey so that they can judge whether they need to 

find a charger, where an EV is not fully charged. In addition, if 

a driver knows the remaining SoC in the future when the driver 

reaches the destination, they can drive with relatively less stress. 

Although an accurate prediction of the SoC is crucial for EV 

onboard applications, to the best of the authors’ knowledge, no 

studies have focused on SoC prediction techniques, which is a 

relatively newer field of study compared with SoC estimation 

[19, 20], State of Health (SOH) determination [21, 22] and 

State of Power (SOP) prediction [23]. 

Therefore, an SoC prediction method based on driving 

behavior is proposed in this paper. This method uses the 

historical average output power of EVs to represent average 

output power for the next trip. Then, the future average output 

power is transferred into a new concept, equivalent current, 

which is first proposed in this paper. Next, travel time is 

predicted according to historical speed and distance. Finally, 

the future SoC at the destination is predicted based on the 

equivalent current and predicted travel time, if drivers were to 

return the trip.  

The contributions of this paper are as follows.  

1. A SoC prediction method based on driving behavior is 

novel to this paper.  

2. The virtual concept of equivalent current is the first 

proposed to simplify the prediction process. 

3. A mathematical expression is first established between 

SoC and average power of a supercapacitor, using the 

definition of SoC by current. 

The remainder of this paper is divided into the following 

sections. In section II, two equivalent circuits of a 

supercapacitor are built, including an equivalent circuit of a 

supercapacitor under constant power discharge and an 

equivalent circuit of a supercapacitor under constant current 

discharge. In section III, the derivation of the SoC prediction 

method is explained. Section IV presents parameter 

identification results. Section V presents the simulation results 

in an idealized situation with invariable driving behavior in 

each simulation at different temperature. Section VI presents 

the experimental results at different temperature for a practical 

case of a driver driving a real vehicle. Section VII presents the 

conclusions of this paper. 

II. MODELING 

Two equivalent circuit models are introduced in this section. 

One model simulates the supercapacitor under constant power 

loading, representing the average output power of the 

supercapacitor during a trip. The other model considers the 

supercapacitor under constant current discharge, representing 

equivalent current for SoC prediction. 

A. Constant Power Discharge Modeling 

Definition 1: Historical average power is defined as 

1 2( ... ) /ha h h hnP P P P n    , where 1hP  is the practical average 

power in the first trip; 2hP  is the practical average power in the 

second trip; hnP  is the practical average power in the nth trip; 

and n  is the number of trips. 

We use a constant power load, average power, to replace the 

practical external load for a trip in the modeling since the 

energy consumed by the practical external load is equal to the 

energy consumed by the average power. The energy consumed 

by the practical external load varies, and is difficult to model. In 

contrast, the average power out of supercapacitors remains 

roughly unchanged for each trip, making it easy to calculate, 

although practical output power differs from trip to trip. 

Therefore, historical average power in Definition 1 is nearly 

equal to average output power for a future trip, which is 

normally constant. Hence, constant power loading, i.e. 

historical average power, is modeled to represent average 

output power for a future trip in the following model. 

rP

Pha

Uc(t) UP(t)
+

IP(t)
CvCi

 
Fig. 1. Equivalent circuit of the supercapacitor under constant power loading 

Model 1: The supercapacitor is modeled using the Rint 

equivalent circuit model with a linear capacitor [24, 25]. The 

model comprises a constant internal resistance Pr  and a linear 

capacitor, which is composed of a constant capacitor iC  and a 

voltage-dependent capacitor, (t)v cC KU . The linear 

double-layer capacitance has an initial potential coU  and an 
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applied constant discharge power loading, haP , which is 

predicted from the historical record or the parameters of electric 

vehicles. The internal potential ( )cU t , terminal potential ( )PU t  

and current during discharge ( )PI t  are all functions of time. 

B. Constant Current Discharge Modeling 

Definition 2: Equivalent current is defined as 

1

(1 / )
n

e j j j

j

I T i t 


  , where 
n

j

j

T t . 1i  is the practical 

discharge current for a duration 1t  with Coulombic efficiency 

1  for a trip; 2i  is the practical discharge current for a duration 

2t  with Coulombic efficiency 2  for the trip; ni  is the practical 

discharge current for duration nt  with Coulombic efficiency n  

for the trip. 

It is better to obtain the real-time current for the next trip, if a 

prediction of future SoC is needed. In this case, the SoC can be 

achieved by using the ampere-hour method. In reality, it is 

extremely difficult to obtain the future current exactly. We 

propose a virtual concept, i.e., equivalent current, to replace the 

complex accumulated items to overcome this problem. In fact, 

equivalent current is constant for a trip according to Definition 

2. Therefore, it is easy and simple to use the product of 

equivalent current and equivalent discharge time to replace the 

cumulative sum of actual real-time current, actual discharge 

time and actual Coulombic efficiency. This means that the SoC 

can be predicted if the equivalent current and equivalent 

discharge time can be ascertained.  

The equivalent current is represented by the constant current 

in model 2. This model is established to reflect equivalent 

current, so it is not a real supercapacitor model. The equivalent 

current can be achieved by establishing a relationship between 

itself (the constant current in model 2) and average output 

power (the constant power in model 1) according to the 

principle of conservation of energy. The equivalent discharge 

time can be estimated based on traveling distance and speed. 

The greatest benefit of this concept is that the practical 

discharge current does not need to be calculated. 

Uc(t)
+

CvCi

UI(t)Ie

rI(t)

 

Fig. 2. The equivalent circuit of a supercapacitor under constant current 

discharge 

Model 2: The equivalent circuit of the supercapacitor under 

constant current discharge is shown in Fig. 2. The constant 

capacitor iC , voltage-dependent capacitor vC , initial potential 

coU  and internal potential ( )cU t  are the same as those in Fig. 1. 

A constant discharge current loading (equivalent current eI ) is 

applied in this model. The internal potential (t)cU , terminal 

potential ( )IU t  and internal resistance ( )Ir t  are functions of 

time. Pr  in Fig. 1 is the practical internal resistance and can be 

measured, whereas ( )Ir t  in Fig. 2 is the virtual resistance and 

must be calculated. 

III. SOC PREDICTION ALGORITHM 

In this section, the SoC prediction algorithm is formulated 

based on the model of constant power discharge (representing 

average output power) and the model of constant current 

discharge (representing equivalent current). Based on the two 

models, we first use the historical average power estimating the 

average output power for the future trip to derive the equivalent 

current according to the principle of conservation of energy. 

Then, the equivalent current is used as the ‘bridge’ between 

historical average power and the future SoC. The predicted SoC 

is calculated by using the equivalent current instead of the 

practical discharge current. 

Before derivation, we first give some basic definitions based 

on the linear supercapacitor model, which is different from 

constant capacitance model. The definition of capacitance is 

borrowed from [26], which is suitable in both models. 

 i c

c

dQ
C C KU

dU
    (1) 

The second one is the relationship among the current, 

internal potential and linear capacitance. 

 ( ) ( )c c
P i c

dQ CdU dU
I t C KU

dt dt dt
     (2) 

Now, the derivation is as follows. The first step is to 

transform the historical average power in model 1 into the 

equivalent current in model 2 by analytic derivation.  

To begin with, the relationship between the two models 

needs to be expressed using equal equations. Historical average 

power is given information from historical data recorded in an 

EV. To complete the transformation from constant power into 

constant current, we must make sure the energy consumed in 

both models is identical. Namely, the energy expended by the 

internal resistance (formula (3)) and the energy consumed by 

the external load (formula (4)) in both models are equal. 

 
P Ir rW W  (3) 

 P IW W  (4) 

Pr
W  is energy consumed by the internal resistance Pr in 

model 1. 
Ir

W  is energy consumed by the internal resistance 

( )Ir t in model 2. PW  is energy consumed by the constant 

discharge power loading haP in model 1. IW  is the energy 

consumed by the constant discharge current loading eI . 

Formula (3) can then be represented by g and can be rewritten 

as formula (5) by integration.  

 2 2

0 0
( ) ( )

t t

P P e Ig I r d I r d       (5) 

where t is the discharge time. The current ( )PI t  is time-varying, 

and the internal resistance Pr  is constant in the equivalent 

circuit under constant power loading in Fig. 1. In contrast, the 
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current eI  is constant and the internal resistance ( )Ir t  is 

time-varying in the equivalent circuit under constant current 

discharge in Fig. 2.  

Furthermore, formula (4) can be presented in detail. In model 

1, the energy consumed under constant power loading PW  can 

be obtained as 

 =P haW P t  (6) 

In model 2, because the terminal potential ( )IU t  is 

time-varying, the energy consumed by the constant current load 

IW can also be obtained by integration:  

 
0

( )
t

I I eW U I d    (7) 

where the terminal potential ( )IU t  is  

 ( ) ( ) ( )I c e IU t U t I r t   (8) 

The internal potential (t)cU  is not known, and we have to 

build a relationship to represent (t)cU  with other known 

elements. The following derivation can be achieved. 

 0 t eQ Q I t    (9) 

Hence, the equation (10) can be changed as the following 

 
0 (t)

0 0

c cU U

c c eCdU CdU I t     (10). 

We can get (t)cU  by solving the aforementioned formulas 

(8-10) 

 
2 2 2

0 02 2
( )

i i e c i c

c

C C KI t K U KCU
U t

K

    
  (11). 

Substituting formula (11) and (8) into (7) yields 

 2

0 0
( ) ( )

t t

I c e e IW U t I d I r d      (12). 

The first item can be calculated 

 
3 3

2 2
20

1
( ) [(a 2 t) ]

3

t
i e

c e e

C I
U t I d t KI a

K K
       (13) 

where 

 
2 2 2

0 02i c i ca C K U KCU    (14). 

Substituting formulas (7) and (13) into (5), we obtain  

 
3 3

2 22 2

0
[(a 2 t) ] ( )

t
i e

ha e e e I

C I
P t t I KI a I r d

K
         (15). 

Finally, the equivalent current can be obtained using 

formulas (3) and (10): 

 

3

3 22

13

3 2 32

23

2 3 2 32

3

3 22

3

32

1 1 1
3 ( ( ))

6 3 4 2

(2 4 6 ( 12 12 ) )

1
( )(2 4 6 ( 12 12 ) )

4 3

1 1 1
2 ( ( ))

6 3 8 2

/ 2 (2 4 6 ( 12 12

e i i ha

i i ha

i i i ha

i i i ha

i i ha

b
I a C C a K P t g

b a C C a P t g K

a
C b a C C a P t g K

b
C a C C a K P t g

Kt b a C C a P t


      



      

        


       



     
2

2 3) )g K
 
 
 

 (16) 

where  

 
3 5

2 3 2 4 2 2 4 2 2 32 2(( 24 t 24g)K 2C )a 12 36(P t g) ( 6C 36a)(P g)C -3C 9 4ha i i ha i ha i i ib P a C K K a C a a               (17). 

 

And also, we use 2

0
( )

t

P Pg I r d   to replace the last item, 

because of formula (5). The current ( )pI t  of the supercapacitor 

under constant power loading can be obtained from formulas 

(18) and (19), and the derivation is provided in Appendix. 

 


0

2 2

3

3 2 2

( 4 ) 4r ln( 4 )
4

( 4r P)
6

c

i
c c c p ha p c c p ha

U

c c p

U

C
t U U U r P P U U r P

P

K
U U

P

      
 

 
    

 

 (18) 

 

2 4
( ) ( ( )) ( )

2

c c p ha

P i c c

p

U U r P
I t C KU t U t

r

 
   &  (19) 

The next step is to predict the SoC by using the obtained 

equivalent current. The SoC is typically calculated using the 

following formula based on the ampere-hour method, if 

practical current, discharge time and Coulombic efficiency are 

known 

1

0

max

n

j j j

j

i t

SoC SoC
Q




 


, 

where maxQ  is the maximum available capacity of the 

supercapacitor. In this paper, we can use 
1

=
n

j j j e

j

i t I T


 in 

Definition 2 to calculate the SoC; thus, we have 

0

max

eI T
SoC SoC

Q
   

The discharge time can be calculated by the ratio of the 

historical average distance traveled S  to the historical average 

speed V  during a trip; then, we have 

 0

max

( / )eI S V
SoC SoC

Q
    (20) 

The procedure for implementing the SoC prediction 

algorithm is as follows. 

DBSP Algorithm  

1:  Initialize the historical average power haP , historical 

average distance S , historical average speed V , initial 

state of charge 0SoC , internal potential 0cU  and 

internal resistance Pr  

2: Determine the time step t   

3: for 1: : ( / )t t S V   

4: Calculate the current ( )pI t of the supercapacitor 

under constant power loading according to formula 

(18) and (19) 

5: end 

6: Calculate the equivalent current eI  according to 

formula (16) 

7: Predict the SoC according to formula (20) 
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IV. MODEL PARAMETER IDENTIFICATION 

In this section, model parameters are identified at different 

temperature. We used a supercapacitor module 

MCP0165C0-0048R0SHZ as the test object, which is produced 

by Supreme Power Solutions Co., Ltd, Beijing, China. The 

experimental apparatus includes a NEWARE battery test 

system, a temperature chamber and a PC (Fig. 3). We referred 

parameter identification in [26] and the test result is as follows. 

During the capacity test, the cut-off voltage is 29V. 
TABLE 1 

MODEL PARAMETERS 

Temperature(℃) 0 10 20 30 

Capacity Qmax (A.s) 3244 3306 3308 3290 

Internal resistance rp (mΩ) 4.62 5.80 5.62 5.95 

Constant capacitance Ci 141.05 138.37 135.11 138.39 

Coefficient K 1.25 1.38 1.5 1.54 

 

 
Fig. 3. Experimental apparatus 

V. SIMULATIONS 

The prediction algorithm is now evaluated through 

simulations. We first describe the tools and settings used for 

evaluation and then demonstrate the accuracy of the predictor. 

A. Evaluation Tools and Settings 

ADVISOR, originally developed by the National Renewable 

Energy Laboratory (NREL), allows users to simulate and 

analyze vehicles, including hybrid electric and fuel cell 

vehicles. In this software, we applied the aforementioned 

measured parameters to 100 single supercapacitors and used 

the supercapacitors as the sole power source in the electric 

vehicle model VEH_EV1. The vehicle is simulated under a 

driving cycle: the Economic Commission for Europe + the 

Extra Urban Driving Cycle (ECE+EUDC). 

B. Acquisition of Historical Information 

In this section, we aim to extract historical data: historical 

average power and historical average speed at different SoC. 

This is because the historical average power can be affected by 

the initial SoC, since the initial SoC influences the output 

power capability of supercapacitors [23]. In the software, the 

output power and speed are equal at the same initial SoC in 

each simulation. This means that the driving behavior is rather 

steady and the driver can duplicate the previous trip precisely 

without changing the speed and route. This is ideal 

behavior-based driving, and historical average power and 

historical average speed are unchanged at the same initial SoC 

in each simulation. In addition, the historical average power 

and historical average speed are independent of initial SoC in 

ADVISOR.  

C. Simulation Results 

The simulation results are achieved by implementing the 

proposed method under the driving cycle ECE+EUDC (Fig. 4). 

The simulated SoC is a reference value, which is the final SoC 

after a complete journey given by ADVISOR. Additionally, the 

predicted SoC is a prediction value offered by the proposed 

algorithm before the beginning of the journey. 
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Fig. 4. Prediction results in simulations under ECE+EUDC 
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Fig. 5. Prediction errors in the simulations under ECE+EUDC 

The prediction results approximate the reference value 

closely (Fig. 4), although the predicted SoC is slightly larger 

than the simulated SoC for the driving cycle.  

Fig. 5 shows the prediction errors of DBSP under 

ECE+EUDC in the simulations. The prediction errors are less 

than 0.5% for the driving cycle, which is an acceptable level of 

error for the application. The errors are nearly independent of 
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the initial SoC for the driving cycle because the profiles of the 

vehicle’s speed and average power are the same at the various 

initial SoC in the simulations, which are ideal values provided 

by ADVISOR. The small errors imply that driving cycles have 

nearly no effect on the prediction results.  

D. Temperature Influence 

Here, we perform the algorithm under different temperature 

to evaluate the performance. We simulate the process at the 

initial SoC 75%. The prediction results and prediction error are 

shown in Fig. 6 and Fig. 7 respectively. From Fig. 6, 

temperature has weak effects on the real final SoC, since real 

SoC almost keeps unchanged. In addition, the predicted SoC 

keeps close to the real SoC at different temperature. In Fig. 7, 

temperature also has weak effects on the prediction error, since 

prediction errors almost keep constant at around 0.4%.  
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Fig. 6. Prediction results at initial SoC 75% at different temperature 
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Fig. 7. Prediction errors at different temperature in simulations 

VI. EXPERIMENTS 

We now evaluate the proposed SoC predictor experimentally. 

We first describe the experimental scheme. Then, we use the 

historical onboard data to test the accuracy of the predictor and 

perform a qualitative and quantitative analysis. 

A. Experimental Scheme 

The purpose of the experiments is to simulate drivers driving 

between a certain departure point and a certain destination. We 

select a road south of China University of Mining & 

Technology (CUMT) as the test road. The road incorporates 

uphill sections, downhill sections, flat roads and bends. In the 

experiments, one person drives the test vehicle two laps along 

the planned path (in Fig. 8) from the starting point. The test 

vehicle is powered by the tested supercapacitor module. During 

the trips, the terminal voltage, current and speed are recorded 

by a LabJack T7-PR0 data acquisition card with a sampling 

frequency of 100 Hz. 

 
Fig. 8. Planned vehicle route 

B. Acquisition of Historical Information 

The primary historical data is the historical average power. 

The historical average power is dynamical in practice, which 

differs from that found in the aforementioned simulations. As 

each driver’s behavior is unique, we obtained the following 

personal driving behavior profile from experiments conducted 

with one individual. The historical power profile and historical 

velocity profile are shown in Figs. 9 and 10, respectively. The 

historical information is measured in five repeated experiments 

at each initial SoC point, i.e., 100%, 90%, and 80%. Historical 

average power values can be determined directly from the data 

points in Fig. 9. For example, the historical average power with 

an initial SoC of 95%, can be acquired by interpolation. Data 

for the historical average speed at different initial SoC can also 

be obtained in a similar manner from Fig. 10. 

The features of the tester’s driving behavior in five repeated 

experiments are as follows, which is unique relative to other 

driving behaviors. The historical average power is 

approximately linear with initial SoC. Average power varies at 

higher initial SoC in five repeated trips . Similarly, historical 

average speed is roughly linear with initial SoC. Average speed 

varies greatly with different initial SoC. 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%ae%9a%e6%80%a7%e5%88%86%e6%9e%90&tjType=sentence&style=&t=qualitative+analysis
http://dict.cnki.net/dict_result.aspx?searchword=%e5%ae%9a%e9%87%8f%e5%88%86%e6%9e%90&tjType=sentence&style=&t=quantitative+analysis
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Fig. 9. Historical power profile obtained in five repeated experiments 
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Fig. 10. Historical velocity profile obtained in five repeated experiments 

C. Experimental Results 

Evaluation experiments are conducted at each initial SoC 

point (100%, 95%, 90%, 85%, 80%, and 75%). The prediction 

results are acquired in Fig. 11 using the historical information. 

The results demonstrate that predicted SoC is highly similar to 

the measured SoC. Generally, the predicted SoC approaches 

the measured SoC closely. Specially, the predicted SoC at some 

initial SoC, 85% and 95%, is slightly farther away from the real 

SoC, compared with other initial SoC. This is because the 

historical information (average power and average speed) at 

initial SoC, 85% and 95%, fails to describe the actual average 

output power and average speed in the verification 

experiments. 

In fact, it is difficult to ensure that the driving parameters 

(speed and output power) are equal in every experiment, which 

is different from idealized driving behavior conducted in 

simulations. Therefore, the total SoC prediction error in 

experiments includes two parts, a future driving behavior 

prediction error and an inherent algorithm error which is the 

accuracy of DBSP itself. The way of calculating the inherent 

algorithm error is to still use DBSP to predict SoC, but 

assuming all data including average power, speed and distance 

in the future driving can be exactly known in advance.  

With application of this method, Fig. 12 shows the prediction 

errors of the proposed algorithm in actual driving experiments 

on the test road, including the total prediction error and inherent 

algorithm error. In general, the total prediction error fluctuates 

within a certain range. The maximum total prediction error is 

less than 3% at 85% initial SoC and the minimum total 

prediction error is near zero. By comparison, the inherent 

algorithm error is steadier and keeps almost unchanged at 

around 1.2%. This prediction results keeps steady since the 

influence of historical information is removed and the left is the 

algorithm error, which reflects the real error of the algorithm. 

For both curves, the total prediction error is normally larger 

than the inherent algorithm error except the data point at 100% 

initial SoC. This is affected by historical information. In detail, 

history average power can be larger or smaller than that in a real 

driving situation, which will produce a positive or negative 

error. This positive or negative error plus the inherent error will 

change the value of the total prediction error, which explains 

why the total prediction error is larger or smaller than the 

inherent error sometimes. 
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Fig. 11. Predicted SoC and real SoC during experimental trips  
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Fig. 12. Prediction errors in experiments 
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D. Temperature Influence 

Here, we perform the algorithm at different temperature to 

evaluate the performance. We use the discharge current 

obtained from road test as the reference discharge current. 

These experiments are conducted in the temperature chamber 

and the battery test system which simulates road driving. We 

also conducted experiments at 75% initial SoC, and the average 

power and time is deduced from history data at initial SoC 

100%, 90%, 80%. Before showing the results, we need to 

clarify: the discharge current can only be approximately 

obtained from but not as exact as the discharge current in the 

road test. Therefore, final SoC in Fig. 13 is different from the 

Fig. 11 at the same initial SoC. 

The predicted SoC is slightly larger than the real SoC at 

different temperature, showing a well prediction result (Fig. 13). 

The total prediction errors are less than 1.6% and fluctuate 

within a certain range (Fig. 14). The inherent algorithm errors 

are less than 1.4%. Although there is a slight increase with the 

temperature, this error is rather small in general. 
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Fig. 13. SoC Prediction results at different temperature in experiments 
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Fig. 14. SoC Prediction error at different temperature in experiments 

 

VII. CONCLUSIONS 

We have developed an SoC prediction algorithm based on 

driving behavior to alleviate range anxiety. This paper first 

establishes two equivalent circuit models of supercapacitors, 

with one based on the historical average power and the other 

based on the equivalent current. Second, this paper provides the 

analytical expression relating the historical average power and 

predicted SoC. Finally, the DBSP is verified via simulations 

and experiments at different temperature. The following 

conclusions can be drawn from the results: 

1. The prediction errors are less than 0.5% in simulations, 

which represent idealized cases. In contrast, the prediction 

errors are less than 3% in the experiments, which represents 

practical cases. During these experiments, the inherent 

algorithm errors are less than 1.5% at different initial SoC and 

temperature. 

2. The SoC prediction can serve as both a qualitative and 

quantitative analysis, i.e., assessing whether the driver can 

reach the destination and forecasting what the SoC will be at the 

end of journey. 

APPENDIX 

CURRENT IN THE EQUIVALENT CIRCUIT OF A SUPERCAPACITOR 

UNDER CONSTANT DISCHARGE 

Here, we derive formulas (18) and (19). 

The discharge current ( )PI t , is dependent on the rate of 

change of the internal potential ( )cU t . We can obtain formula 

(22) using the relationship between output power haP  and 

terminal voltage ( )PU t . Applying Kirchhoff’s Voltage Law to 

the circuit in Fig. 1 yields formula (21). 

 ( ) ( ) c
P i c

dU
I t C KU

dt
    (21) 

 ( )
( )

ha
P

P

P
I t

U t
  (22) 

Rearranging (21) and (22) into (23) and then multiplying 

both sides by the derivative of ( )cU t , we obtain the first-order, 

second-degree differential equation (24). 

 ( ) ( ) ( )c P P PU t r I t U t   (23) 

 2( ) 0ha
P i c c c c

i c

P
r C KU U U U

C KU
   


 (24) 

Equation (24) can be written in terms of its two roots 1 , 2 , 

and the full expression can be rewritten as (25), (26). 

 
1 2( )( ) 0c cU U     (25) 

 
2

1 2

4
,

2 ( )

c c p ha

p i c

U U r P

r C KU
 

  



 (26) 

The solution can be obtained after a ( , t)cU  variable 

separation and an integration. 

 


0

2 2

3

3 2 2

( 4 ) 4r ln( 4 )
4

( 4r P)
6

c

i
c c c p ha p c c p ha

U

c c p

U

C
t U U U r P P U U r P

P

K
U U

P

      
 

 
    

 

  

The expression for the circuit current ( )PI t  can now be 

solved explicitly by substituting (21) for the internal potential 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%ae%9a%e6%80%a7%e5%88%86%e6%9e%90&tjType=sentence&style=&t=qualitative+analysis
http://dict.cnki.net/dict_result.aspx?searchword=%e5%ae%9a%e9%87%8f%e5%88%86%e6%9e%90&tjType=sentence&style=&t=quantitative+analysis
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rate of change. The following compact form for supercapacitor 

current completes the derivation: 

 
2 4

( ) ( ( )) ( )
2

c c p

P i c c
p

U U r P
I t C KU t U t

r

 
      
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