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Abstract—The need to recognise long-term dependencies
in sequential data such as video streams has made Long
Short-Term Memory (LSTM) networks a prominent Arti-
ficial Intelligence model for many emerging applications.
However, the high computational and memory demands
of LSTMs introduce challenges in their deployment on
latency-critical systems such as self-driving cars which are
equipped with limited computational resources on-board.
In this paper we introduce a progressive inference comput-
ing scheme that combines model pruning and computation
restructuring leading to the best possible approximation
of the result given the available latency budget of the
target application. The proposed methodology enables
mission-critical systems to make informed decisions even
in early stages of the computation, based on approximate
LSTM inference, meeting their specifications on safety and
robustness. Our experiments on a state-of-the-art driving
model for autonomous vehicle navigation demonstrate that
the proposed approach can yield outputs with similar
quality of result compared to a faithful LSTM baseline,
up to 415× faster (198× on average, 76× geo. mean).

I. INTRODUCTION

Recurrent neural networks (RNNs) are a family of
machine learning models with the ability to recognise
patterns in sequential and temporal data. In the past
decade, long short-term memory (LSTM) networks [1]
have emerged as the dominant RNN by setting the state-
of-the-art record in various AI tasks, such as machine
translation and video understanding. Among the various
LSTM-enabled applications, time-constrained mission-
critical systems [2] are rapidly becoming an ubiquitous
scenario. In this setting, AI agents are equipped with
LSTM-based mechanisms of sensing, perceiving and,
eventually, acting [3]. In such scenarios, making the
most informed decision under a limited time budget is
of vital importance in order to ensure the robust, safe
and successful operation of the system within complex
and uncertain environments [4].

Fig. 1 depicts an example of such a latency-critical
system. In this case, a driverless car navigates au-
tonomously in an urban environment under the control of
an LSTM that predicts the desired throttle/brake position
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Fig. 1: Throttle/brake and steering angle prediction for
autonomous driving with an LSTM model (trained on
the dataset of [6]), relying on visual inputs.

Video & Webpage: www.imperial.ac.uk/intelligent-digital-systems/approx-lstms/

and steering angle based on the input video sequence.
With human driver reaction time ranging between 0.7
and 3 seconds (varying with situation and individual
person) [5], autonomous driving systems target a relevant
low-latency envelope to take action from the moment an
event occurs on the road, in order to preserve the ability
of achieving comparable reliability with humans. In this
respect, extracting the best possible approximation of the
desired action to be commanded within the real-time
latency constraints is preferred from a more accurate
decision later in time.

From a technical viewpoint, performing the most
informed action under a time budget reduces to the
problem of obtaining the highest quality output from an
LSTM given a constraint in computation time. Current
methods of deploying LSTMs follow the behaviour
depicted in Fig. 2. Conventional implementations [7],
[8] require the whole inference computation to finish
in order to obtain meaningful information from the
LSTM and thus prolong the sensing-to-action loop with
potentially catastrophic effects. Instead, the stringent
latency deadlines of real-life systems call for progressive
inference designs that can provide the best possible
estimate of their final output for a given time budget
and improve on it as more time budget becomes available
(Fig. 2). This property would enable the agent to exploit
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the maximum possible amount of information that is
available in the current input and effectively optimise
its overall operation.

From a workload perspective, LSTMs are challenging
by being memory-bound. This property means that the
performance of brute-force implementations is limited by
the available memory bandwidth of the platform, rather
than by the available computational power. Furthermore,
the excessive memory accesses and the inefficient use
of computational resources when executing LSTMs on
conventional platforms leads to substantial power in-
efficiencies which are critical for battery-constrained
settings. To attack this issue, recent works deviated
from general-purpose computing platforms and adopted
a model-hardware co-design approach for the generation
of custom FPGA-based hardware architectures [9]. Field-
programmable gate arrays (FPGAs) typically consist of
one or more processors and a reconfigurable fabric. The
processor is responsible for executing non-critical code
and coordinates the operation of the overall system. The
reconfigurable fabric can be customised at the hardware
level, allowing the on-chip computational and memory
resource allocation to be optimised to match the partic-
ular workload and the performance needs of the target
application and its underlying implementation.

Enabled by the customisation and flexibility of FP-
GAs, the works below propose different approximation
techniques, focusing on model compression [10], quan-
tisation [11] and pruning [12], together with an associ-
ated FPGA-based hardware accelerator, tailored to the
computational needs of the model and its approximate
computing scheme, to match the computational demands
of LSTMs. Despite the effectiveness of these methods,
their application requires a retraining step, which allows
the refinement of the model in order to compensate for
any approximation losses in the model’s accuracy. For
the retraining step to be feasible, availability of the train-
ing set is required, which is not a realistic assumption
in privacy-aware applications [13], as in the case of
large-scale datasets collected by commercial companies
that remain proprietary, or medical-oriented institutions
that are prevented by confidentiality regulations from
sharing their clinical datasets, making privacy-preserving
AI techniques increasingly relevant [14]–[16].

In this context, we propose a novel methodology for
the high-performance deployment of LSTMs in time-
constrained applications, which is also complementary
to the existing approaches. The proposed approximate
computing scheme is implemented on custom hardware,
also exploiting the customisation and flexibility of FP-
GAs. The goal is to generate an optimised hardware
mapping of a given LSTM on a target FPGA, tailored to

Fig. 2: The concept of progressive inference: Con-
ventional and target behaviour of time-constrained AI
systems. The y-axis metric reflects the application-level
accuracy (higher-is-better).

the available time budget and error tolerance. To meet
the needs of this task, an iterative scheme is introduced
that exploits the resilience of the target application to
approximations in order to relax the computational and
memory requirements of the given LSTM, and executes
the model under time constraints, with increasing accu-
racy as a function of the time budget.

In this work, we showcase a significantly improved
computation-time, accuracy and power trade-off pre-
sented by our progressive inference scheme that effec-
tively reduces the computational workload of a given
LSTM model to meet the desired quality of result,
compared to a baseline implementation of the same
model, while both designs are exploiting the customi-
sation capabilities of an FPGA. The experimental eval-
uation of the proposed approach is conducted on a
state-of-the-art driving model for autonomous vehicles.
Self-driving cars, being tightly coupled with the recent
developments in Consumer Electronics [17] [18], form
a representative example of a system with tight com-
putation time budget to make mission critical decisions,
while being also constrained in a limited computational
resource environment. At the same time, autonomous
driving is emerging alongside with the revolution of
electric vehicles, imposing a low-power envelope for
the deployment of increasingly compute-hungry models
[19]. This makes special-purpose FPGA-based hardware
architectures the most prominent solution, offering high
computational efficiency for deployment on resource-
and power-constrained environments.

II. LEARNING LONG-TERM PATTERNS WITH LSTMS

LSTMs are specialised RNNs with enhancements that
enable the learning of long-term dependencies. The key
feature of an LSTM is a set of units named gates which
control its behaviour at run time. Fig. 3 depicts the
structure of an LSTM. The core element of LSTMs is
the cell state c, shown along the horizontal line at the top
of the diagram. At each time step t, the LSTM removes
or adds information to the cell state via its gate modules.
Computationally, a gate receives as inputs the new input
sample x(t) and the previous output h(t−1) and performs
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c(t)

o(t)i(t)f(t)

x(t)

σ σ tanh σ

h(t)

h(t-1)

c(t-1)

tanh

g(t) = σ(Wxx(t) + Whh(t−1))

y(t) = y(t−1) � g(t)

Fig. 3: Structure of an LSTM model. g(t) represents
each of the LSTM gates (f (t), i(t), c(t),o(t)), while �
denotes the element-wise multiplication between two
vectors defined as (a� b)i = aibi.

a matrix-vector multiplication with the weight matrices
Wx and Wh, as described in Fig. 3. The elements of the
weight matrices are learned during the training stage of
the target application and remain fixed throughout the
inference stage that takes place upon deployment.

Next, the resulted vector of the matrix-vector multi-
plication is passed through a nonlinear function, such
as a sigmoid σ(·), to form g(t). The nonlinear function
operates in an element-by-element fashion and outputs
a vector with values between 0 and 1, capturing how
much of each element should be kept. A value of 0
represents total forgetting of information, 1 represents
total propagation and intermediate values dictate what
fraction of the information should be kept. In this man-
ner, by multiplying element-by-element another vector
y(t−1) with the output of the nonlinear function, a new
vector y(t) is produced which is a filtered version of its
previous state (Fig. 3).

An LSTM consists of four gates. Starting from the left
of the diagram in Fig. 3, the forget gate f(t) determines
the amount of information that will be forgotten from
the previous cell state c(t−1). Next, the input gate i(t)
and the cell gate determine the new information to be
stored in the new cell state c(t). The cell gate employs
tanh for its nonlinear function and creates a vector of
new candidate values for the new cell state, while the
input gate controls which values of the current cell state
will be updated. At this point, the new cell state c(t) has
been formed. The final step involves the calculation of
the new output vector h(t), which is a filtered version of
the cell state. This is generated by passing the cell state
through a tanh nonlinearity and multiplying the result
with the output of the output gate o(t) in order to update
only parts of the cell state.

III. APPROXIMATE COMPUTING FOR LSTMS

At the core of an LSTM’s workload lie the linear
algebra operation of matrix-vector multiplication, shown
on the first line in Fig. 3, which takes place in each of

the four gates. Neural networks have been extensively
studied to have redundancy in terms of their trained
parameters [20]. This property allows the restructuring
of the computations of LSTM gates in such a manner
that enables us to extract the maximum information
at any time instant. In this respect, we propose an
approximate computing scheme that enables the tuning
of the quality of result (QoR) in exchange for an increase
in performance. The proposed approach exploits the
statistical redundancy of LSTMs by acting at two lev-
els: (i) approximating weight matrices with a low-rank
Singular-Value Decomposition (SVD) and (ii) pruning
the network by sparsifying the weight matrices based
on an importance criterion of their elements. These
techniques enable us to restructure the computations of
an LSTM and design a computing system that performs
the most information-carrying computations first in order
to obtain the peak QoR given a time budget.

Information-maximising approximation. Each
LSTM gate consists of two weight matrices
corresponding to the current input and previous
output respectively. In our scheme, we first concatenate
the two weight matrices and the input and output
vectors to obtain a single augmented matrix and vector
respectively for each gate as W = [WxWh] ∈ RR×C

and x̃(t) =
[
x(t)>h(t−1)>

]>
∈ RC×1. As a next step,

we substitute the augmented weight matrix with a low-
rank approximation that reduces the computation and
memory footprint cost while minimising the information
loss. These properties are satisfied by the rank-1
approximation of each weight matrix based on the SVD.
This approach enables us to approximate the weight
matrix as the outer product of two vectors (the singular
vectors) followed by an elementwise multiplication
with a constant number (the singular value). For the
i-th gate, the rank-1 approximate weight matrix is
given by W̃i = σi1ui

1vi>1 . With respect to computational
cost, the original matrix vector multiplication W̃ix̃(t) is
replaced by a dot product followed by an elementwise
multiplication between a vector and a constant number,
i.e. σi1ui

1(vi>1 x̃(t)), leading to a significant reduction on
both the number of operations and the memory footprint
of the weight matrix, while retaining the highest amount
of information that a rank-1 approximation can have.

Pruning by means of network sparsification. The
second level of approximation on the LSTM comprises
the structured pruning of the weight matrices at each
gate. Pruning can interpreted as a type of sparsity in
which individual weights are masked as zeros. In our
structured pruning scheme, we limit sparsity to the
structure of rows of the weight matrices. This selection
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of granularity allows us to always obtain an approximate
value for each element of the resulted output vector,
instead of having zeroed values at the output vector that
carry no information. Individual weight values are set
to zero by means of a magnitude-based criterion which
determines the importance of a weight using its absolute
value. Overall, the pruning scheme preserves the NZ
elements with the highest absolute value on each row
of each weight matrix. The value of NZ is tuned to
provide the highest possible application-level accuracy,
considering the user-specified latency budget.

Hybrid compression and pruning. To obtain a
refinement mechanism that allows us to increase the
quality of result as a function of time while leverag-
ing the advantages of both aforementioned techniques,
we combine them in a hybrid iterative approximation
method given by Eq. (1). The iterative nature of the
hybrid method involves the refinement of the computed
output over a number of iterations, with each refinement
step involving the addition of a low-rank approximation
of a correction factor (residual) together with its pruning.

ỹi =
Nsteps∑
n=1

{σi(n)1 ui(n)
1 (

pruning︷ ︸︸ ︷
prune(vi(n)1 ,NZ)> x̃(t))︸ ︷︷ ︸

refinement step

} (1)

With this scheme, the final approximate output vector
is formed after applying Nsteps refinement steps. The
weight matrices of each LSTM gate are approximated
by Nsteps vector pairs. At the n-th refinement iteration,
the value σi(n)1 and vectors ui(n)

1 and vi(n)1 capture the
rank-1 approximation of a correction factor. In this
manner, at each refinement step, the current vi(n)1 vector
is pruned using our pruning scheme, in order to end
up with NZ non-zero elements, and then is multiplied
with the current augmented input vector, resulting to an
non-full rank-1 approximation. By utilising the approx-
imation residual at each time step (R(n)

i = Wi-W̃
(n−1)
i )

to extract an SVD-based rank-1 correction factor for
the progressive refinement of the augmented weight-
matrix approximation, the error due to both the SVD
and the pruning are considered in contrast to the case
of progressively applying higher-rank approximations of
the original weight matrix, minimising in this way the
information loss [21]. Hence, the workload of each gate
is reduced to Nsteps(2R+ 2NZ + 1) operations.

Therefore, in the hybrid method, different combina-
tions of level of pruning and number of refinement
steps correspond to different candidate designs with
different computation cost and QoR. In this respect, the
number of non-zeros (NZ) and the number of refinements
(Nsteps) form tunable parameters that are optimised by
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Fig. 4: Custom LSTM accelerator architecture (see [21]).

the proposed methodology to meet the time constraints
and QoR requirements of the target application.

IV. DOMAIN-SPECIFIC ARCHITECTURE FOR LSTMS

The philosophy behind the proposed architecture is to
overcome the limitations of programmable processors by
introducing a set of strategies that exploit the properties
of LSTMs. These include the adoption of dataflow
processing to alleviate the overheads of conventional
computing platforms, the exploitation of both the inter-
gate and intra-gate parallelism of LSTMs to boost
performance and the compile-time tunable scaling of
the architecture to match the available resources and the
response-time demands of the target application.

Dataflow processing. In contrast with the control-flow
paradigm of general-purpose computers where individual
instructions are scheduled for execution, we adopt a data-
driven dataflow architecture. In this scheme, the avail-
ability of input samples triggers the LSTM processing
to be performed on them without the need for explicit
control and synchronisation between computation units.
From a hardware perspective, this approach allows us
to remove any generic instruction-handling hardware
logic and repurpose the resources of the FPGA chip
specifically for LSTMs. In this way, the architecture
avoids the time, resource and power overhead of off-the-
shelf platforms and boosts the attainable performance by
dedicating more hardware resources for computation.

Inter- and intra-gate parallelism. Fig. 4 shows
the block diagram of the architecture. At its core, the
architecture is organised as a pipeline of five coarse
stages, including four parallel hardware gate units, a
set of nonlinear operators and a number of multiplier
and adder arrays. Starting on the left-hand side, the
four parallel hardware gate units are the heart of the
architecture. The proposed design exploits the coarse-
grained, inter-gate parallelism by mapping each LSTM
gate to a dedicated hardware gate unit, with all units
operating concurrently. At each LSTM time-step t, a
hardware gate unit computes its output by performing
Nsteps refinement iterations. As a first step, the current
input vector is sent from the off-chip memory into an
on-chip buffer as it will be reused across all refinement
iterations. In the n-th iteration, the singular vectors ui(n)

1
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and vi(n)1 for the i-th gate are streamed in from the off-
chip memory in a tiled manner with tile sizes Tr and Tc
respectively, along with the singular values σi(n)1 .

Internally, each hardware gate unit contains three pro-
cessing modules: a dot-product unit, a multiplier array
and adder array (Fig. 4). By mapping the operations of a
gate to parallel circuits, the architecture capitalises on the
fine-grained, intra-gate parallelism of these operations to
obtain performance gains. After the hardware gate units
have applied all the necessary refinements, the outputs
of the four gates are passed through nonlinear operators.
Consequently, the produced outputs are processed using
the multiplier and adder arrays to produce the new cell
state c(t) and output vector h(t).

Configurable scaling. At compile time, the configu-
ration of the architecture is controlled by means of two
parameters: Tr ∈ [1, R] and Tc ∈ [1,NZ]. Tr controls the
size of all the arrays, while Tc determines the number of
multiply-add operators in each hardware gate unit. Dif-
ferent values of Tr and Tc correspond to different scaling
of the architecture and provide a tunable performance-
resource cost trade-off which is used to customise the
design based on the available resources and the response-
time requirements.

V. NAVIGATING THE DESIGN SPACE

Given an LSTM and a target FPGA, the parameters
of the overall methodology comprise the approximation
method parameters, NZ and Nsteps, and the architectural
parameters, Tr and Tc. Different combinations of these
parameters correspond to alternative designs. For a fixed-
time constraint, each candidate design is characterised
by its: 1) quality of result (QoR), 2) performance in
terms of processing speed and 3) resource consumption.
To explore this space, we need to study the effect of
the architectural parameters on the performance of the
hardware implementation as well as the impact of the
approximations on the QoR of the target application.

A. Performance: Following the Roofline

To investigate the attainable performance of different
architectural configurations, we adopt the roofline model
[22] from the high-performance computing (HPC) com-
munity. The roofline model is a visual model for identify-
ing the causes of performance bottlenecks in computing
systems. Based on this model, the performance of a
design can be limited by either the peak processing rate
of the target platform or by the maximum bandwidth that
the external memory subsystem can support.

In this context, we built a roofline model for the
proposed architecture which can be used to explore the
performance of a large space of alternative designs,

Pilot
Dataset

Approximation
Method

Approximation
Parameters 
(NZ, Nsteps)

Quality 
Evaluator

Original LSTM

Approximate 
LSTM

QoR

Fig. 5: Process of capturing the approximation-QoR
trade-off.

without the need for long simulations [21]. The various
candidate designs differ in terms of number of refinement
iterations (Nsteps), level of pruning (NZ) and scaling of
the hardware (Tr, Tc). Given the pruning level NZ, the
number of refinements Nsteps and a pair of architectural
parameters (Tr, Tc), the attainable performance of the
architecture (in GOp/s) can be modelled as the operation
number to latency ratio for each LSTM inference.

As the weights of an LSTM do not typically fit
in the on-chip memory of an FPGA, we model op-
erational intensity, also referred to as computation-to-
communication ratio (CTC), as multiplication and ad-
dition operations per byte of weights accessed from
the external memory (GOp/byte). Utilising the above
scheme, a design space exploration is conducted to
obtain the highest performing set of parameters for both
the approximation method and the architecture given the
target platform.

B. Level of Approximation vs. Quality of Result

Typically, approximation methods exploit the error
tolerance of an application together with the perceptual
limitations of humans to trade off quality of result (QoR)
with faster processing. Nevertheless, emerging mission-
critical systems, such as driverless cars, place safety and
robustness at the forefront and hence require guarantees
with respect to both QoR and processing latency [23]. To
make principled design decisions that meet the require-
ments of such applications, it is essential to capture the
relationship between application-level QoR and level of
approximation and use it to tune the computing system
based on the application specifications.

To achieve that, we follow the methodology shown
in Fig. 5. Initially, the error induced by the proposed
LSTM approximations on an application is experimen-
tally measured as a function of the targeted iterations.
Given a (NZ, Nsteps) pair, the approximate LSTM is
generated from the original LSTM (top to bottom of Fig.
5). Next, we run the target application end-to-end over a
pilot dataset using both the original and the approximate
LSTM. By treating the final output of the original model
as the ground truth, an application-specific metric is
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employed to assess the QoR of the approximate LSTM
(left to right of Fig. 5). The quality metric measures
the similarity between the original and the approximate
result and must have a suitable form based on the
target domain, such as the relative error between the
approximate and reference result or the Kullback-Leibler
(KL) divergence that captures the distance between the
respective probability distributions. Overall, by varying
the values of (NZ, Nsteps) and observing the associated
QoR, the relationship between the level of approximation
and the QoR is captured.

VI. CASE STUDY: AUTONOMOUS DRIVING

A. Overview

One of the emerging AI-driven applications with the
highest potential for societal impact is autonomous driv-
ing. Although initial efforts begun in the late 1980s [24],
the field of autonomous driving has experienced signif-
icant progress in the past decade, owing to efforts from
both the industrial and academic communities. The main
enablers of the emerging technologies being developed
are: (i) the advancement of deep learning algorithms
allowing the extraction of powerful representations, (ii)
the availability of real-world training data provided by
open-source datasets [6], [25] and (iii) the develop-
ment of embedded processing platforms with enhanced
computational capabilities that allow the deployment of
computationally expensive software on-board the vehicle
[26] [9], satisfying the imposed low-latency and safety
constraints.

Vision-based driving assistance and autonomy [27],
[28] [19] is gaining attention due to the low-cost, widely
available cameras that can be used independently or
accompany other sensors for environmental perception.
With such sensors providing a stream of measurements,
recurrent models such as LSTMs form a promising
learning paradigm that can extract and exploit temporal
information from the incoming data to develop a smooth
and consistent driving policy, in place of the independent
per-input predictions provided by classical deep learning
models that exploit solely spatial information [29].

Self-driving car systems consist of a large set of
computationally demanding tasks, including sensor pre-
processing, localisation, mapping, path planning and ob-
stacle avoidance, control and emergency handling [30].
Hard low-latency constraints [2] between perception and
action impose the need for high-performance implemen-
tations that guarantee the extraction of highly accurate
approximations on each individual component, to meet
the real-time performance requirements of the overall
system with insignificant effect on accuracy. As an
example, a coarse but in-time estimation of the vehicle’s

obstacle avoidance system to take a “sharp” left turn and
avoid a collision, is preferred to a delayed but rather
accurate regression of an exact steering angle response
to a visual input.

Target Application. The driving model presented
in [31], trained on the Berkeley DeepDrive Video
dataset (BDDV), a large-scale crowdsourced driving
video dataset forming an early version of the BDD100K
Dataset [6], is examined as a case study for evaluating
the proposed framework. Similar to the work of [32] on
vision-based autonomous mobile robot navigation, Xu et
al. also exploit the end-to-end learning paradigm. Input
frames for each video are first processed by a Fully-
Convolutional Network (FCN) to encode the spatial
features which are then fed to a trained LSTM model
that predicts the probability distribution across a discrete
set of feasible future actions for the vehicle (go forward,
stop, turn left, turn right) taking advantage of the tem-
poral motion information from previous representations.
The LSTM input is enhanced with the linear and angular
velocities of the vehicle predicted by the system from the
previous frame. This FCN-LSTM architecture is a novel
version of Long-term Recurrent Convolutional Networks
(LRCNs), typically consisting of a convolutional neural
network feeding its output to an LSTM, combining the
current state-of-the-art in visual and sequence learning
to extract spatio-temporal information for input streams.

B. Evaluation

In this section we discuss the extensive experimental
evaluation conducted to showcase the effectiveness of
the proposed approach in the target application of this
case study. The proposed progressive inference method-
ology is initially compared with an FPGA-based base-
line for LSTM inference to demonstrate its efficacy on
making informed predictions under computation time
constraints (Sec. VI-B1). Then, a comparison of the
proposed methodology with faithful off-the-self LSTM
implementations targeting other computing platforms
(CPU and GPU) considering latency, power consumption
and performance efficiency is discussed (Sec. VI-B2).

Experimental Setup. We focus on the LSTM of the
examined driving model for this case study, each gate of
which forms an R × C augmented weight matrix, with
R = 64 and C = 8320. We evaluate the method on part
of the validation set of the dataset that was used to train
the model, by cropping a segment of 100 consequent
frames from over 1800 real videos of diverse driving
scenarios. To generate action probability distributions
that will act as ground truth for the evaluation of the
proposed approximation method, we follow the process
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of Sec. V-B and execute the original driving model
end-to-end over the validation set using TensorFlow. As
a metric of the effect of low-rank approximation and
prunning on the QoR, we employ Kullback-Leibler (KL)
divergence -a commonly used metric of dissimilarity be-
tween distributions- between the reference and predicted
probability distribution.

In our experiments, we target the Xilinx’s ZC706
board mounting the Zynq 7045 chip. This platform is
an industry standard for FPGA-based embedded systems
and is based on the Zynq-7000 System-on-Chip which
integrates a dual-core Arm CPU alongside an FPGA
fabric on the same chip. For the data format, we use
single-precision floating-point representation to comply
with the typical precision requirements of LSTMs as
used by the deep learning community. All hardware
designs are synthesised with Vivado HLS and Vivado
Design Suite (v2017.1) achieving a clock frequency of
100 MHz.

The core LSTM workload of the proposed approx-
imate computing scheme (dot-product followed by a
vector scaling by a constant), as well as the baseline
LSTM implementation of Sec. VI-B1 (matrix-vector
multiplication), is implemented on the FPGA. At the
same time, the CPU coordinates the operation of the
system by: (i) scheduling the computations between
different tiles from all 4 LSTM gates and mapping
them to the available processing elements of the custom
hardware accelerator, and (ii) setting up the communi-
cation interface between the accelerator and the external
memory. To this end, we use the four AXI-based High-
Performance (HP) ports that are available on the target
device. For each port, we configure it with a 64-bit width
and instantiate a dedicated DMA engine, clocked at 150
MHz, to independently perform the memory transfers.
Overall, our memory interface subsystem yields a mea-
sured bandwidth of around 4 GB/s as shown on the slope
of the roofline model in Fig. 6, with the CPU initialising
the DMA engines state prior to execution.

In the comparison of the proposed methodology with
a CPU- and GPU-based LSTM implementation (Sec.
VI-B2), we used PyTorch (v1.1.0) with CUDA 10, to
develop a faithful LSTM baseline and deploy it on the
widely used NVIDIA Jetson AGX Xavier board (which
was also presented at the 2017 Consumer Electronics
Show [18]), featuring an 8-core Arm 64-bit CPU along
with a 512-core Volta GPU. Average performance and
power are calculated after completing 1000 iterations of
each experiment across all platforms. The idle power is
subtracted from all measurements, leading to a compar-
ison of the actual power consumed by the benchmark
execution (including the memory accesses).

4 GB/s

Fig. 6: Roofline model analysis for the baseline architec-
ture and various configurations of the proposed method.

1) Comparison with FPGA baseline: A hardware
architecture implementing a faithful mapping of the orig-
inal LSTM model described in Sec. II is developed to act
as a baseline for the evaluation of the proposed system.
This baseline architecture consists of four gate units
with a total of 2.1M parameters, implemented in parallel
hardware that performs the matrix-vector multiplication
operations of LSTM gates (Fig. 3) in a blocked manner.
The computational workload for the kernel of each
gate is 2RC operations. Parametrisation with respect
to the tiling along the rows (Tr) and columns (Tc) of
the weight matrices is applied and roofline modelling
is used to obtain the highest performing configuration
(Tr, Tc), similarly to the proposed system’s architecture
(Fig. 6). As Fig. 6 demonstrates, the designs are mainly
memory-bound and as a result a small portion of the
FPGA resources are utilised. To obtain the application-
level QoR of the baseline design under time-constrained
scenarios, the KL divergence between the intermediate
LSTM output at each tile step of Tr and the predictions
of the reference model is examined and illustrated by the
black line of Fig. 7b.

The gains of the proposed methodology compared to
the baseline design under computation-time constraints
are investigated by exploring the design space, defined
by (NZ, Tr, Tc), in terms of (i) performance (Fig. 6)
and (ii) the relationship between error (described by the
KL-divergence between the approximate prediction and
ground truth) and computation time (Fig. 7b). Fig. 7a
also depicts the relationship between error and compu-
tation step for numerous configurations of the proposed
system. As illustrated, the QoR of a configuration is
inversely proportional to its level of sparsity. Dense
configurations, such as those with 50% non-zero ele-
ments or more, tend to converge to negligible divergence
values (below 10−6) in less than 15 computation steps,
in contrast with sparser configurations that require more
than 75 computations steps to converge to the same
divergence level (~2% non-zero elements) or converge
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to higher divergence values (as in the case of 0.4% non-
zero elements). Additionally, Fig. 8 presents probability
distribution instance samples of numerous progressive
refinement steps for a representative input frame along
with their corresponding KL-divergence values. It can
be seen that the proposed approach convergences to
“meaningful results” (application-wise) in much smaller
number of computation steps, by exploiting the inherent
redundancy of the LSTM model.

As shown in Fig. 7b, since computation time per
computation step is also inversely proportional to the
level of sparsity of a given configuration, some sparse
configurations demonstrate superior accuracy than other
denser settings under the same latency constraint. This
behaviour, however, is not monotonic due to extremely
dense configurations requiring a larger number of com-
putation steps to converge. Therefore, the selection
of the appropriate level of sparsity is dependent on
the latency constraint imposed by the application-level
needs. Overall, we notice that the proposed methodology
achieves a speed-up of 198× on average (76× geo.
mean) across different quality-of-result levels compared
to the baseline approach. In particular, when only neg-
ligible KL-divergence is allowed between the approx-
imate and reference prediction, the proposed system
achieves 2.93× faster inference by exploiting the LSTM
model’s inherent redundancy. Furthermore, the proposed
method demonstrates up to 415× lower inference time
to achieve an intermediate QoR prediction exploiting the
computation time-accuracy trade-off. Fig. 9 illustrates
two representative intermediate probability distributions
extracted by an instance of the proposed approach and
the baseline, both satisfying the same latency constraint.
To obtain these outputs, both methods were fed with
the same input and while calculating their predictions
their computation was cut short as the available time
budget was hit. The illustrated intermediate output dis-
tributions indicate that the proposed approach makes
a more informed prediction, significantly closer to the
ground-truth compared to the baseline. This property
is particularly useful in scenarios where tight real-time
requirements impose hard latency constraints on the
available computation time budget for inference.

2) Comparison with CPU and GPU baselines: Tar-
geting the efficient deployment on the embedded space,
deep-learning models should abide in a low-power enve-
lope. Power efficiency becomes increasingly prominent
in the case of autonomous systems [19] that rely on self-
contained power supply resources, and especially in self-
driving cars that are emerging alongside with the rise of
the electric vehicle era. Power-constrained applications
are primarily concerned about: (i) the absolute power

(a)

(b)

Fig. 7: KL-divergence between approximate prediction
and reference model output (lower-is-better) as a func-
tion of: (a) Computation Step, (b) Computation Time.

TABLE I. Comparison with other computing platforms

Platform Benchmark Latency Power Perf. Efficiency
CPU Baseline 2.4266 ms 5.13 W 0.342 GOp/s/W
GPU Baseline 0.7974 ms 7.11 W 0.752 GOp/s/W

FPGA Baseline 1.0620 ms 2.72 W 1.476 GOp/s/W
FPGA †∗ (KL≤ 0.001) 0.36190 ms 2.76 W 4.267 GOp/s/W
FPGA †∗∗ (KL≤ 0.01) 0.03924 ms 3.20 W 33.943 GOp/s/W
FPGA †∗∗ (KL≤ 0.1) 0.00335 ms 3.20 W 397.713 GOp/s/W
FPGA †∗∗∗ (KL≤ 1.0) 0.00072 ms 3.41 W 1735.992 GOp/s/W
† This work, ∗SVD-4160NZ (no pruning), ∗∗SVD-130NZ, ∗∗∗SVD-32NZ

consumption (watts) and (ii) the performance efficiency
(performance-per-watt).

In this respect, we also compare multiple instances
of the proposed methodology and its underlying FPGA-
based hardware implementation with highly optimised
off-the-shelf CPU- and GPU-based traditional imple-
mentations of LSTM inference, commonly used by the
deep learning community, in terms of raw performance,
absolute power consumption and performance efficiency.
Although raw performance and power consumption are
also reported, the most equitable metric for cross-



9

0

0.2

0.4

0.6

0.8

1

1 2 3 5 7 8 12 16 20 26 43 51 55 62 64

P
ro

b
ab

ili
ty

Baseline Tiling Step

go forword stop turn left turn right

0

0.2

0.4

0.6

0.8

1

1 2 3 5 7 8 12 16 20 26 43 51 55 62 64

P
ro

b
ab

ili
ty

SVD-based Approximation Step

Baseline

Proposed (SVD-4160NZ)

4.04            3.45            3.36             3.68            3.20             2.69             1.74            1.38     1.04                  0.53            0.28             0.12             0.02            0.002           0.0

4.35            1.27            0.70                 0.02             0.0009        0.0007        1x10-4 4x10-5                2x10-4 5x10-5               2x10-6 9x10-7               5x10-7 2x10-7 0.0

KL-divergenceforward

Fig. 8: Intermediate prediction instances obtained by the progressive inference baseline (achieving 16.6−2ms/step)
and a dense instance of the proposed SVD-based approach (achieving 15.9−2ms/step) on the same data sample, as
a function of computation steps. KL-divergence values with respect to the final result are also shown (grey row).

0

0.5

1

Baseline SVD-4160NZ Ground-Truth

Pr
ob

ab
ilit

y

Go forward
Stop
Turn Left
Turn Right

Fig. 9: Intermediate prediction instances obtained by the
baseline and the proposed approach with NZ=4160 on
the same data sample, under the same latency constraint
(t=10−1ms).

platform comparison is power efficiency, as it effectively
normalises the results with respect to the available com-
putational resources of each target platform.

Table I summarises the results of this comparison.
The employed FPGA baseline achieves a 2.28× speed-
up compared to the CPU implementation, while suffering
a 0.75× slow-down with respect to the GPU, in terms of
absolute latency. However, when power consumption is
also considered, these results are translated into a 4.31×
and 1.96× improvement on performance efficiency com-
pared to the CPU and GPU baseline respectively. These
demonstrated gains in power efficiency achieved by the
use of a custom FPGA-based solution render FPGAs as
the cardinal platform for LSTM deployment in many
power-constrained applications, especially in the embed-
ded space of autonomous systems.

Multiple instances of the proposed approximate com-
puting scheme are also listed in Table I. It can be
seen that by utilising solely the proposed computation-
restructuring methodology, a speed-up of 6.7×, 2.2×
and 2.93× is achieved in the latency required to yield
(almost) identical outputs (KL-divergence≤ 0.001) with
the reference design, compared to the CPU, GPU and
FPGA baselines accordingly, also translated into an im-

provement of 12.46×, 5.67× and 2.89× in performance
efficiency. These significant gains arise by the pro-
posed methodology exploiting the inherent redundancy
of LSTM models in order to maximise the achievable
accuracy at every stage of the computation. By perform-
ing the most information-carrying computations first,
the workload (and computation time) required to reach
similar accuracy with the baseline is effectively reduced.

By relaxing the error tolerance into slightly higher
KL-divergence values (≤ 0.1), the proposed hy-
brid compression-and-pruning methodology provides in-
formed approximations of the inference outputs, while
demonstrating remarkable performance gains of up to
724×, 238× and 317× in latency (1161×, 529× and
269× improved performance efficiency) compared to the
same CPU, GPU and FPGA baselines respectively. These
gains are amplified remarkably by further relaxing the
error tolerance into higher KL-divergence (≤ 1.0), which
however still yield “meaningful” results.

Since all the configurations of the proposed (and
baseline) approach are memory bounded (Fig. 6), the
attainable parallelism and performance (GOp/s) of the
underlying hardware architecture increase proportionally
to the selected sparsity level. As it can be noticed
in Table I, the absolute power consumption of sparser
configurations increases. This is due to the fact that since
sparser configurations lead to higher CTC ratio (Fig. 6),
more parallel processing can be exploited in this case,
by instantiating more on-chip computational resources
on the FPGA. Consequently, although processing be-
comes faster, the absolute power of the accelerator also
increases as a result of the on-chip power consumption.

Exploiting the computation time-accuracy trade-off,
the proposed progressive inference methodology can
provide high-quality approximations of the final result



10

at early stages of the computation, which are iteratively
refined as more time budget becomes available. This
scheme is particularly useful for systems with hard
computation-time constraints (e.g. in mission-critical
real-time applications), enabling them to maximise the
attainable quality of result within the given latency en-
velope. Furthermore, the introduced highly-parametrised
custom hardware architecture for the proposed method-
ology demonstrates remarkable power efficiency by ex-
ploiting the enhanced customisation capabilities and
flexibility of FPGAs. In this manner, highly-optimised
hardware mappings of different configuration instances
of the proposed approximation scheme are generated,
while being tailored to the needs of the target application.

VII. RELATED WORK

The rapid advances in deep learning have lead to
significant research effort invested in optimising the
execution of deep neural networks. The majority of
existing work has focused on compute-intensive con-
volutional neural networks (CNNs) for computer vision
tasks. The substantial redundancy of modern deep CNNs
together with the inherent parallelism and data-reuse of
CNN workloads have made them amenable to various
compression and acceleration techniques. At the algo-
rithmic level, methods such as knowledge distillation
[33], efficient convolutions [34] and neural architecture
search [35] have been successfully applied to signifi-
cantly compress CNN models by leveraging their high
inherent redundancy. At the same time, techniques such
as reduced precision [15], [36] and custom hardware
designs [37] have been employed for acceleration by
exploiting the high levels of parallelism and data reuse
of CNNs. Nevertheless, with memory-bound LSTMs
having substantially different computational patterns,
the CNN-centric methods and accelerator designs either
provide minimal gains or are not directly applicable to
LSTMs [38], [39].

Closer to the progressive inference philosophy of our
approach lie CNNs that employ early-exit classifiers.
CNNs with early exits [40]–[42] provide a run-time
accuracy-latency trade-off and are able to produce an
increasingly refined output as a function of time, which
casts them suitable for time-constrained inference sce-
narios. However, as the early-exit classifiers have to
be trained, access to the training set is necessary and
complex hyperparameter tuning is required [41], [42].
Furthermore, although early exiting has been applied
to CNN-based classifiers with promising results, this
mechanism is not directly applicable to the substantially
different topology of LSTMs. Alternatively, our method
enables us to perform progressive inference using LSTM

models without the need to access the training set and
the excessive time overhead of tuning the associated
hyperparameters.

With a focus on LSTM workloads, several works
have proposed optimisations for executing LSTMs on
conventional programmable platforms such as CPUs [43]
and GPUs [38], [44], [45]. By employing tailor-made
caching and data-locality strategies, this line of work
has demonstrated significant performance gains and has
approached the performance limits of commodity pro-
grammable hardware architectures. To push further the
attainable performance of LSTMs, another line of work
has exploited the characteristics of FPGAs to propose
custom accelerator designs. Based on the stage where
optimisations are applied, FPGA-based LSTM designs
can be categorised into: 1) post-training with fine-tuning,
2) training-stage and 3) run-time methods.

1) Post-training methods with fine-tuning: By putting
emphasis on minimising the effect of memory bounded-
ness of LSTM workloads, ESE [10] proposes to sparsify
LSTMs via a pruning scheme and map it on an FPGA-
based accelerator tailored for sparse workloads. Given a
pre-trained model, its weights are pruned in an iterative
manner using a load-balance-aware strategy that aims to
sustain the utilisation of the accelerator high. Further-
more, to avoid excessive accuracy drop, at each iteration
the unpruned weights are fine-tuned using the training
set. To overcome the inefficiencies of CPUs and GPUs
when executing the sparse, pruned model, ESE exploits
the customisability of FPGAs to propose an accelerator
optimised for sparse computations. As a result, the load-
balance-aware pruning leads to 6.2× faster execution
over dense LSTMs on ESE’s accelerator. To further
improve the load balancing, Park et al. [46] proposed an
alternative encoding format for storing sparse matrices
and managed to achieve higher sustained utilisation of
the PEs on the same accelerator.

Overall, despite the fact that the pruning method used
by both ESE and Part et al. is applied post-training on
pre-trained LSTMs, access to the training set is required
in order to iteratively prune and fine-tune the model’s
weights and thus not significantly degrade the accuracy.
In contrast, our method is also applied post-training on
pre-trained models, but it does not require access to the
dataset and hence is suitable for privacy-aware cases.

2) Training-stage methods: By modifying the model
design process, Wang et al. [11] proposed a compression
technique that modifies the LSTM model before the
training stage. By applying a circulant structure to the
matrices within each LSTM gate, this approach allows
the same weights to be shared across several neurons
and substantially reduces model size and storage re-
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quirements. Further parametrising this technique, the E-
RNN [47] framework introduces a blocking version of
circulant matrices and treats the block size as a tunable
parameter to balance processing speed and accuracy.
The block-circulant matrix operations were executed in
the frequency domain to leverage the computational
efficiency of FFT. At the hardware level, to bypass
the limitations of conventional platforms when execut-
ing irregular computations, E-RNN proposed a highly-
parametrised custom hardware architecture mapped on
the flexible FPGA fabrics, leading to a 7.7× speed-up
over ESE [10].

In contrast with our post-training approach, both of
these methods are applied at the LSTM model level and
intervene substantially with the LSTM model design and
training. Nevertheless, since the SVD-based decomposi-
tion of our work is applicable to circulant matrices, our
scheme is orthogonal to these works and can be applied
in a complementary manner to yield further performance
improvements.

3) Run-time methods: This class of methods exploits
techniques to dynamically skip unnecessary computa-
tions during the execution of an LSTM. In this context,
DeltaRNN [48] employs a strategy to dynamically avoid
computations based on the estimated impact on the
output of the network. The skipping criterion is based
on the degree of change of each input activation. To ef-
fectively implement this technique without significantly
dropping the accuracy, the target LSTM has to be trained
using the Delta Network scheme [49]. From a hardware
perspective, to overcome the inefficiency of GPUs due to
the conditional execution strategy, the DeltaRNN-trained
LSTM is mapped on a custom accelerator design which
exploits the reconfigurability of FPGAs to efficiently
perform the dynamic computations. Nevertheless, despite
the run-time computation-skipping, DeltaRNN has re-
quires the target model to be trained using the Delta
Network algorithm and hence is limited to settings where
the training set is available, while requiring substantial
modification of the training scheme and tuning of the
hyperparameters. In contrast to this, our method avoids
the time overhead and engineering effort of training and
parameter tuning and can be directly applied to pre-
trained LSTMs.

Among the existing designs, reduced arithmetic pre-
cision schemes have also been used to obtain gains in
terms of performance and power efficiency. ESE [10] and
E-RNN [47] employ 12-bit fixed-point precision for both
weights and activations. However, to avoid the severe
degradation of accuracy due to the limited numerical
precision, a fine-tuning step is required by means of
additional training iterations. Alternatively, DeltaRNN

[48] avoids fine-tuning and employs a 16-bit fixed-point
representation. Nonetheless, DeltaRNN’s quantisation is
not network-agnostic, but hand-tuned to minimise the
accuracy losses of the target network. In our work,
32-bit single-precision floating-point format is used to
avoid the need for fine-tuning and limit the sources of
quality-of-result degradation to our approximate comput-
ing techniques. Nevertheless, our method is orthogonal
and independent of employed numerical precision and
thus can be combined with existing quantisation schemes
to further boost both performance and power efficiency.

VIII. CONCLUSION

The deployment of LSTMs in latency-critical appli-
cations is a challenging task due to their high compu-
tational requirements. In this paper, an iterative approx-
imate computing method together with an FPGA-based
architecture are introduced combining model pruning
with computation restructuring to make approximate, but
informed LSTM predictions in time-constrained environ-
ments. In a self-driving car scenario, the proposed system
demonstrates significant improvements in accuracy for
every given computation time budget compared to a
baseline that follows conventional implementations.

It is noteworthy the proposed approximation method-
ology effectively reduces the workload required to
achieve a desired quality of result for a given model and
therefore it can be decoupled from the proposed custom-
hardware implementation and adapted for deployment
on other computing platforms with variable performance
gains. Future work encompasses an investigation of
ways to adapt the proposed methodology for efficient
deployment on other platforms.
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