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Abstract— Some direct transcription methods can
fail to converge, e.g. when there are singular arcs.
We recently introduced a convergent direct transcrip-
tion method for optimal control problems, called the
penalty-barrier finite element method (PBF). PBF
converges under very weak assumptions on the prob-
lem instance. PBF avoids the ringing between col-
location points, for example, by avoiding collocation
entirely. Instead, equality path constraint residuals
are forced to zero everywhere by an integral quadratic
penalty term. We highlight conceptual differences
between collocation- and penalty-type direct tran-
scription methods. Theoretical convergence results
for both types of methods are reviewed and compared.
Formulas for implementing PBF are presented, with
details on the formulation as a nonlinear program
(NLP), sparsity and solution. Numerical experiments
compare PBF against several collocation methods
with regard to robustness, accuracy, sparsity and com-
putational cost. We show that the computational cost,
sparsity and construction of the NLP functions are
roughly the same as for orthogonal collocation meth-
ods of the same degree and mesh. As an advantage,
PBF converges in cases where collocation methods
fail. PBF also allows one to trade off computational
cost, optimality and violation of differential and other
equality equations against each other.

I. Motivation
Direct transcription is a popular method for the nu-

merical solution of optimal control, estimation and sys-
tem identification problems. Many direct transcription
methods are based on collocation methods [1]. It is
known that the latter can struggle with singular arcs
and high-index differential algebraic equalities (DAEs)
[1, Chap. 2 & 4.14]; the former arising in the example:

min
y,u

J =
∫ π

2

0

(
y(t)2 + cos(t)u(t)

)
dt, (X1)

s.t. y(0) = 0, ẏ(t) = 1
2y(t)2 + u(t), −1.5 ≤ u(t) ≤ 1 ,

which has the optimal solution u?(t) = 1
2 −

1.5
(cos(t)−2)2 .

Quadratic integral penalty methods [2]–[4] are an al-
ternative to collocation methods, where the squared path
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Fig. 1. Solutions to (X1): Explicit Euler (EE), Trapezoidal (TZ),
analytic solution (AS).
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Fig. 2. Solutions to (X1): Hermite-Simpson (HS), Gauss-Legendre-
Radau of degree 5 (LGR5), penalty-barrier finite element method
of degree 5 (PBF5).

equality constraint residual is integrated and added as
a penalty into the objective. In [4] we present such a
method, called the penalty-barrier finite element method
(PBF), with a rigorous proof of convergence under very
mild and easily verifiable assumptions, including con-
vergence for singular arcs and high-index DAEs. The
assumptions are discussed in Section III-C.2 below.

Convergence proofs with enforceable assumptions are
of high practical relevance. If convergence can only be
guaranteed under unverifiable or unenforceable assump-
tions, then a practitioner cannot determine whether
features in numerical solutions are due to optimality or
numerical failure.

Figures 1–2 illustrate this dilemma by showing numeri-
cal solutions to (X1). They show solutions for the explicit
Euler method (EE), trapezoidal method (TZ), Hermite-
Simpson collocation (HS), Legendre-Gauss-Radau collo-
cation of degree 5 (LGR5), and PBF of degree 5 (PBF5),
each using 100 mesh intervals of equal length. PBF5
converges, while EE diverges for the last section of the
time interval. The box constraints have been imposed



only to avoid unboundedness of the NLP resulting from
the discretization. The solutions from HS and LGR2
(the latter of which was not plotted) also diverge if
box constraints are removed. For LGR5 we see the best
result among the non-penalty-type methods, however the
solution suffers from ringing. All NLPs have been solved
until the unscaled KKT residual ∞-norm of < 10−10

stagnated.

A. Contributions

In this paper we summarise the presentation in [4] and
extend it with practical aspects and new examples.

First, we generalize the problem statement. We extend
the objective with a Mayer term and incorporate assump-
tions on the problem such that the convergence analysis
from [4] applies. We extend the box-constraints to both
the states and controls. We explain how these constraints
can be posed into the NLP via a projection matrix, and
where this matrix arises in the optimality conditions.

We then draw a connection between the first-order
optimality conditions between the PBF discretization
and the first-order optimality conditions of a regularized
primal-dual problem. In this context, we visualize and
compare sparsity patterns of the derivatives in PBF with
the LGR direct collocation method.

We cover further practical aspects: We illustrate the
stability condition for quadrature, which is a building
block when constructing a convergent implementation of
PBF. In the numerical experiments, we demonstrate how
PBF minimizes a bias between optimality and feasibility
with respect to the choice of the penalty parameter.

B. Outline

Section II reviews the problem statement and no-
tation. Section III compares collocation-type methods
with integral penalty-type methods. We highlight key
differences in the numerical approaches and review avail-
able convergence results. Section IV shows how PBF
can be implemented, with emphasis on the formulation
of the NLP and the sparsity of derivative matrices.
Section V presents numerical experiments, where we
compare several collocation methods with PBF and focus
on numerical cost, sparsity and (order of) convergence.

II. Numerical Optimal Control

A. Problem Statement

A common reference problem format for optimal con-
trol is the Bolza form [5], which can cover most optimal
control, estimation and system identification problem
instances, including multi-phase problems [6]. Without
loss of generality, the initial and end time can be fixed [1].
Using slack variables, constraints can be separated into
nonlinear equality constraints and box inequality con-

straints, resulting in the form

min
x:=(y,u)∈X

W
(
y(t0), y(tF )

)
+
∫

Ω
w
(
y(t), u(t), t

)
dt

(OCPa)
s.t. 0 = c

(
ẏ(t), y(t), u(t), t

)
f.a.e. t ∈ Ω ,

(OCPb)
0 = g

(
y(t0), y(tF )

)
, (OCPc)

xL(t) ≤ x(t) ≤ xU(t) f.a.e. t ∈ Ω ,
(OCPd)

where the constraints have to be satisfied for almost
every t ∈ Ω := [t0, tF ] ⊂ R. Here (OCPd) is optional,
or can be specified as only upper/lower bounds or only
over subintervals of Ω := [t0, tF ] for each component of x.

The trajectory x := (y, u) consists of continuous
functions y : Ω → Rny and (potentially) discontinuous
functions u : Ω→ Rnu . Many works [5], [7], [8] separate
(OCPb) into ODEs and algebraic constraints of the form

ẏ(t) = f1
(
y(t), u(t), t

)
, (OCPb1)

0 = f2
(
y(t), u(t), t

)
, (OCPb2)

with functions f1, f2, describing the dynamic constraints.
This is necessary if the ODE is solved with a different
scheme or when the convergence analysis poses different
criteria on f1 and f2.

In either case, it can be considered an advantage of
PBF to be capable of solving (OCPb) directly, i.e. with-
out algebraic transformation into (OCPb1)–(OCPb2),
because this allows avoiding divisions by zero and phras-
ing equations such that their derivatives are smoother,
which improves the efficiency of an NLP solver.

B. Notion of Convergence
Numerical methods must minimize

J(x) :=W
(
y(t0), y(tF )

)
+
∫

Ω
w
(
y(t), u(t), t

)
dt

subject to forcing the total constraint violation

r(x) :=
∫

Ω

∥∥c(ẏ(t), y(t), u(t), t
)∥∥2

2 dt+
∥∥g(y(t0), y(tF )

)∥∥2
2

to zero while obeying (OCPd). To keep their computa-
tion time finite, all methods search for an approximation
to the optimal x in a finite-dimensional space Xh,p, which
is a subspace of the solution space X of continuous
functions y and discontinuous functions u; here h is the
mesh step size and p is the degree of a method, in the
case where the method is parametric. Formal details on
the solution spaces are given in [4].

When solving optimization problems, implying (OCP),
there are two measures to take into account: feasibility
and optimality. One wants to find a weak numerical
solution xh ∈ Xh,p that solves (OCP) in a tolerance-
accurate sense. This means, the optimality gap

gopt := max{0, J(xh)− J(x?)} , (2)



where x? is a global minimizer of (OCP), and feasibility
residual

rfeas :=r(xh) (3)

converge to zero as the mesh step size h decreases. Order-
of-convergence results that specify the rate at which gopt
and rfeas approach zero in terms of h can be derived;
see [4].

III. Collocation vs Integral Penalty Methods
Many state-of-the-art methods for the solution

of (OCP) are collocation-type methods. We describe
their geometric approach below and discuss their prin-
ciple issues. We then introduce integral penalty methods
and explain how they can overcome the convergence
problems that collocation methods can exhibit. The
section ends with a direct comparison of theoretical
convergence results.

A. Collocation-type Methods
These methods determine solutions to y by solv-

ing (OCPb1) at a finite number of time instances.
The trajectory u must then be found such that (y, u)
satisfies (OCPb2). Examples of such methods (see [9]
for a survey) are: single- and multiple-shooting meth-
ods [10] based on certain classes of Runge-Kutta or
other collocation methods for solving the differential
equations; multi-step methods, in particular backward-
differentiation formula methods; and direct collocation
methods, an important class being orthogonal direct
collocation methods.

All these methods replace the uncountable set of path
constraints (OCPb1)–(OCPb2) by a finite set of con-
straints, namely

ẏ(t) = f1 (y(t), u(t), t) ∀t ∈ T̃h,p,
0 = f2 (y(t), u(t), t) ∀t ∈ Th,p,

where T̃h,p,Th,p are finite subsets of the interval [t0, tF ].
In pure collocation methods T̃h,p = Th,p, and these
points are called collocation points. In some Runge-Kutta
and linear multi-step methods, T̃h,p is determined from
the step size and Butcher tableau coefficients.

Depending on the method, various finite-difference
expressions are used for the derivative ẏ on T̃h,p. Col-
location methods (including certain implicit and explicit
Runge-Kutta methods), and linear multi-step methods
use derivatives of piecewise polynomial interpolants.
General Runge-Kutta methods (which are nonlinear)
may use nonlinear interpolants.

Since the differential equation is satisfied only at a
finite number of points and Xh,p is a strict subset of X ,
the feasibility residual rfeas is non-zero, in general. If
the residual is too large, then the dimension of Xh,p
is usually increased in correspondence with choosing a
set Th,p with more elements (as in h-methods) and/or
increasing the degree of the polynomials in Xh,p (as in p-
or hp-methods). It is well-known that if care is not taken

with the choice of Th,p and the degree of the polynomials
in Xh,p, then the feasibility residual will not converge,
e.g. due to Runge’s phenomenon. It is also possible that
a solution might not exist, e.g. when there are more
constraints than degrees of freedom.

Essentially, problems arise in collocation-type meth-
ods because they cannot explicitly take into account
what happens in-between collocation points. Problems
show up in two ways: On the one hand, convergence
analyses rely on very technical assumptions in order
for the numerical solution to converge. On the other
hand, numerical solutions ring or diverge when these
assumptions are violated.

Finally, collocation discretizations yield infeasible
NLPs when the OCP is consistently overdetermined.
Consider, for example

y(0) = 1 , ẏ(t) = u(t) , 0 =
[
exp(t)− u(t)
y(t)− u(t)

]
.

This set of constraints has the consistent analytic solu-
tion y?(t) = exp(t). However, using any collocation-type
method yields uh(t) = exp(t) ∀t ∈ Th,p from the second
path constraint. Further, ẏh(t) = uh(t) ∀t ∈ T̃h,p from
the ODE constraint. One would need to construct T̃h,p so
that yh(t) = exp(t) ∀t ∈ Th,p holds, because this would
be required in order for the second path constraint to
be satisfied. In the case of pure collocation methods, i.e.
T̃h,p = Th,p, the discretization is infeasible, because there
is no exact linear quadrature rule for the exponential.

B. Integral Penalty-type Methods
Integral penalty-type methods differ fundamentally

from collocation-type methods by explicitly considering
the violation of constraints everywhere in [t0, tF ] in
the formulation of the optimization problem. This is
possible due to the observation that one can replace the
uncountable set of constraints (OCPb) with the finite set
of constraints∫

T

‖c (ẏ(t), y(t), u(t), t) ‖22dt ≤ εT , ∀T ∈ Th . (OCPb’)

Here Th is a finite set of disjoint intervals such that⋃
T∈Th cl(T ) = [t0, tF ]. Clearly, (OCPb’) is satisfied with

εT = 0 only if (OCPb) is satisfied; however, since Xh,p
is finite dimensional, usually the best that one can do is
to satisfy the above constraint with εT > 0. This also
acknowledges the fact that one cannot assert feasibility
of a discretization when forcing the constraint residual
exactly to zero at any particular point.

The approach of integral penalty-type methods is
therefore to augment the objective functional with a
weighted version of the integrals in (OCPb’) and a
quadratic penalty on the equality constraints (OCPc),
namely r as defined in (3).

The inequality constraints (OCPd) also need care-
ful consideration. Here collocation methods again only
enforce these at a finite number of points Th,p. This



can result in overshooting of the numerical solution in-
between collocation points.

Our penalty-barrier method in [4] treats (OCPd) by
expressing them as positivity constraints, introducing
suitable slack variables s : Ω→ Rns+ , and then augment-
ing the objective functional with the integral logarithmic
barrier function

Γ(x) :=−
ns∑
j=1

∫
Ω

log
(
s(t)

)
dt (4)

to ensure that the inequality constraints are satisfied over
the whole interval Ω. Details on the exact reformulation
with the slacks and ensuring feasibility in the context of
interior points are given in [4].

The resulting method consists of solving the penalty-
barrier problem

min
x∈Xh,p

Jω,τ (x) = J(x) + 1
2ωr(x) + τΓ(x) (PBP)

for suitable penalty- and barrier parameters ω, τ > 0
with respect to the mesh size h > 0 and degree p ∈ N of
the finite elements.

C. Convergence Results
We briefly compare collocation-type methods to in-

tegral penalty-type methods in terms of convergence
guarantees. Most important is whether a method con-
verges. Desirably, this should be achieved under mild
assumptions. Thereafter, the order of convergence is
of importance, so that highly accurate solutions can
be obtained with an affordable amount of computing
resources.

1) Collocation Methods: A convergence proof for a
discretization based on the explicit Euler method is given
in [11]. The result makes the following assumptions:
(i) functions defining the problem must be locally differ-
entiable with Lipschitz continuous derivatives; (ii) there
must be a local solution where the trajectories of the
state and free variables are continuously differentiable
and continuous, respectively; (iii) a homogeneity condi-
tion on active constraints; (iv) surjectivity of linearized
equality constraints; and (v) a coercivity assumption.

These conditions are sophisticated, difficult to un-
derstand, and very hard to verify and ensure by con-
struction. The conditions ensure that the first order
optimality conditions of the non-discretized and of the
Euler-discretized optimization problem have a conver-
gent solution. This is why convergence proofs for other
collocation schemes make similar assumptions.

Since Euler’s method converges only to first order,
convergence results based on Euler’s method are of lim-
ited practical use compared to results for higher-order
methods. Convergence of a higher-order method is shown
in [12] by making additional assumptions: (vi) functions
W,w, c, g must be sufficiently smooth; (vii) the state
and co-state trajectories must be sufficiently smooth;
(viii) the NLP arising from the discretization must satisfy

the Linear Independence Constraint Qualification and
Second-Order Sufficient Condition.

2) The Penalty-Barrier Finite Element Method: In
contrast to the above results for collocation methods, for
PBF as in [4] convergence follows under the following
assumptions:
(A.1) (OCP) has a global minimizer x?.
(A.2) |w(ẏ(t), y(t), u(t), t)|, ‖c(ẏ(t), y(t), u(t), t)‖1,

‖W (y(t0), y(tF ))‖1, ‖g(y(t0), y(tF ))‖1 are
bounded for all arguments x ∈ X .

(A.3) W, w, c, g are globally Lipschitz continuous in all
arguments except t.

(A.4) The problem (PBP) has a bounded solution x?ω,τ .
(A.5) The solution x?ω,τ can be approximated by a func-

tion xh ∈ Xh,p with an error that converges to zero
as h↘ +0.

We review the discussion of these assumptions from [4]:
(A.1) is reasonable.
(A.2) can be enforced by construction. To this end,

W,w, c, g can be bounded below and/or above,
if necessary, with minimum and maximum terms.
For example, if |J(x?)| � 108 is expected, then we
can replace w by a modified function

w̃(χ, υ, t) := max
{
−108 , min

{
w(χ, υ, t) , 108}} ,

and W likewise. Similar box bounds can be em-
ployed for c, g, since r(x?) = 0� 108.

(A.3) can be enforced. Functions that are not Lipschitz
continuous, e.g. the square-root or Heaviside func-
tion, can be made so by replacing them with
smoothed functions, e.g. via a suitable mollifier.
This is a common practice to ensure the deriva-
tives used in a nonlinear optimization algorithm
are globally well-defined.

(A.4) can be ensured in practice by using suitable box
constraints (OCPd). Note that this assumption
also rules out solutions with finite escape times.

(A.5) is reasonable because without it no numerical
method based on piecewise polynomial represen-
tation of the solution can converge.

With the above, we give a reduced version of [4, Thm 2]:
Theorem 1: Suppose (A.1)–(A.5) hold. Let Xh,p con-

sist of finite elements of fixed degree p on a quasi-uniform
mesh. If xh is a solution to (PBP), then

gopt(xh), rfeas(xh) h→0−−−→ 0 .

In [4, Thm 3] the result is extended to an order-of-
convergence result by extending (A.5) with regard to
the order of convergence of the approximation error. The
result essentially says: If the finite element approximation
converges of order ` ∈ (0.5, p] then the optimality gap
and feasibility residual converge of the order `/2.

In addition, [4] analyses the convergence when (PBP)
is solved inexactly, which occurs when integrals are
approximated with numerical quadrature.
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Fig. 3. Continuous and discontinuous piecewise polynomial finite
element functions yh, uh on a mesh of four intervals.

IV. Implementation
This section outlines how PBF can be implemented.

We first discuss suitable finite element bases. For success
of the discretization, a stability condition on the quadra-
ture rule is introduced. Using the basis and quadrature,
the NLP is stated and discussed in terms of optimality
conditions and sparsity of derivative matrices.

A. Finite Element Basis
Independent of a collocation method or integral

penalty method, a candidate xh ∈ Xh,p is represented us-
ing a finite-dimensional solution vector x ∈ Rn, where n
is the total number of finite element functions of all
species of xh, which is identified with x by means of a
basis. Due to considerations on sparsity in the derivative
matrices of the NLP, collocation methods use a nodal
basis with abscissae that match the collocation points.
For an integral penalty method we may opt for a nodal
basis with abscissae that are a subset of the quadrature
points used for evaluating the integrals; instead, we
used equidistant nodes in favour of conditioning in the
experiments with PBF in Section V.

Species of y must be approximated with continuous
finite element functions, whereas for u one can use
discontinuous elements. Figure 3 shows an example of
a nodal basis representation with piecewise polynomial
finite element functions of degree p = 3.

B. Stability Condition and Quadrature Rule
To minimize (PBP), we approximate the integrals

in J and r with quadrature formulas. As a consequence
of this, our numerical solutions xh will not be exact
minimizers of Jω,τ , but of its numerical quadrature
approximation Jω,τ,h. In order to still be able to prove
convergence of xh, the quadrature rule must be chosen
to satisfy the following non-trivial requirement [4]:

|Jω,τ (xh)− Jω,τ,h(xh)| ≤ const · h
`

ω
∀xh ∈ Xh,p , (5)

where ` is the desired order of convergence of xh. While
in general it is not so difficult to devise a convergent
quadrature rule, the devil is in the detail that the scheme
must converge for every element in Xh,p.
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Fig. 4. A piecewise affine function, ranging from -1 to 1 on each
mesh interval, which serves as a counter-example to satisfaction of
(5) when using the midpoint quadrature rule when p = 1.

We illustrate the difficulty with an example. Consider
Ω = [0, 1], and a uniform mesh of size h ∈ 1/N of discon-
tinuous piecewise affine finite elements for u : Ω → R1.
Consider the path constraint c

(
u(t)

)
:= sin

(
πu(t)

)
= 0

and approximate r(x) with the midpoint rule quadrature
formula as rh(x). Then (5) requires that the difference

|rh(x)− r(x)|

=

∣∣∣∣∣h ·
1/h∑
j=1

sin2 (πuh(jh− h/2)
)
−
∫ 1

0
sin2 (πuh(t)

)
dt

∣∣∣∣∣
converges to zero as h↘ +0. However, Xh,1 contains the
element uh plotted in Figure 4, which yields rh(x) = 0
whereas r(x) = 1/2. Usually, the midpoint quadrature
rule converges in O(h3), but since here the integrand
uh(t) can be chosen in a larger space Xh,1, the quadrature
rule does not converge as h is decreased. If instead a
trapezoidal quadrature rule is used, then (5) is satisfied
with order ` = 3.

To satisfy (5) in practice, we suggest the use of Gauss-
Legendre quadrature with q = 2p quadrature points per
element. In [4] there are further precautions so that, in
addition, (4) can be approximated with Gauss-Legendre
quadrature. We write αj > 0, τj ∈ Ω for j = 1, . . . , N for
the quadrature weights and abscissae.

Finally, collocation methods must also satisfy (5) as
well if they want to ensure a bound on the path con-
straint residual. However, it is not possible for collocation
methods to choose q > p, due to over-determination of
the NLP.

C. Nonlinear Program
We define the following functions and matrix:

F (x) := W
(
yh(t0), yh(tF )

)
+

N∑
j=1

αjw
(
yh(τj), uh(τj)

)
, (6)

C(x) :=


g(yh(t0), yh(tF )

)
√
α1c
(
ẏh(τ1), yh(τ1), uh(τ1)

)
...√

αNc
(
ẏh(τN ), yh(τN ), uh(τN )

)
 ∈ RmE , (7)



Psx :=

 s(τ1)
...

s(τN )

 ∈ RmI , (8)

where mE := ng + qNnc, mI := qNns. The quadrature
approximation Jω,τ,h of the minimization function Jω,τ
in (PBP) can then be expressed as

min
x∈Rn

Φ(x) := F (x) + 1
2ω ‖C(x)‖22 − τgT log(Psx) ,

(NLP)

where g ∈ RmI is a vector of quadrature weights.
Φ should not be minimized with a general-purpose

unconstrained minimization solver. Instead, there are
suitable tailored solvers for minimization of this ex-
act function with quadratic penalties and log-barriers
[4], [13], [14]. These methods compute vectors x ∈ Rn,
y ∈ RmE , z ∈ RmI

+ , such that

∇xL(x,y)− PT
s z = 0 ,

C(x) + ωy = 0 ,
diag(Psx) · z− τg = 0 .

This is equivalent to the first-order necessary optimal-
ity conditions for minimizing (NLP), where L(x,y) :=
F (x)− yTC(x).

D. Derivatives and Sparsity
Second-order NLP solvers need ∇xL(x,y),

∇2
x,xL(x,y) and ∇xC(x). We see that (6)–(7) essentially

use the same formulas as collocation methods, except
that they replace collocation points with quadrature
points τj , and weight the constraints C by √αj . Hence,
the Jacobian ∇T

xC(x) ∈ RmE×n of PBF has the same
sparsity structure as for a collocation method of same
degree p, except the Jacobian in PBF has more rows
than in LGR; e.g. twice as many rows as a collocation
method of the same degree if we choose to use Gauss-
Legendre quadrature with q = 2p abscissae per element,
as proposed. The observations for ∇T

xC(x) can be
extended to ∇2

x,xL(x,y) ∈ Rn×n: PBF(p) and LGR(p)
of the same degree p on the same mesh have the same
Hessian dimension and sparsity structure. Section V
presents sparsity plots for PBF(5) and LGR(5).

V. Numerical Experiments
We now consider a test problem for which both types of

methods converge with success, so that we can compare
conditioning, convergence, and rate of convergence to a
known analytical solution:

min
y,u

J = y2(1), (X2)

s.t. y1(0) = 1, ẏ1(t) = u(t)
2y1(t) ,

√
0.4 ≤ y1(t),

y2(0) = 0, ẏ2(t) = 4y1(t)4 + u(t)2, −1 ≤ u(t) .

The solution is shown in Figure 5. u? is constant outside
t0 = 1 −

√
41

10 ≈ 0.35 and t1 = t0 + log 2 − log(
√

41−5)
2 ≈
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Fig. 5. Analytical solution to (X2).
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Fig. 6. Convergence of optimality gap and feasibility residualLGR
and PBF use polynomial degree p = 5. PBF uses two different
values: a) ω = 10−5, b) ω = 10−10.

0.88, between which u?(t) = 0.8 sinh (2(t− t1)), yielding
J ≈ 2.057866062168.

All methods yield accurate solutions. Figure 6 shows
the convergence of the optimality gap and feasibility
residual of a respective method. Remarking on the for-
mer, we computed J? − J(xh) and encircled the cross
when J(xh) < J?. Note in the figure that for ≥ 40 ele-
ments the most accurate solutions in terms of feasibility
are found by PBF with ω = 10−10. Further, we find that
the collocation methods significantly underestimate the
optimality value for this experiment.

Now we discuss rates of convergence. Convergence of
only first order is expected because higher derivatives
of y? are non-smooth and u? has edges. Indeed, rfeas
converges linearly for all methods. PBF5 with ω =
10−5 stagnates early because it converges to the optimal
penalty solution, which for this instance is converged
from 20 elements onwards. gopt, rfeas are then fully deter-
mined by ω. The issue is resolved by choosing ω smaller.
LGR5 and PBF5 with ω = 10−10 converge similarly, and
stagnate at rfeas ≈ 10−10. Due to the high exponent in
the objective, small feasibility errors in the collocation
methods amount to significant underestimation of the
objective.

Finally, we look into computational cost. Solving the
collocation methods with IPOPT and the PBF5 dis-
cretization with the interior-point method in [13], the
optimization converges in ≈ 20 iterations for any dis-
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Fig. 7. Sparsity of ∇xC(x)T for LGR5 when h = 1
10 , i.e. N = 10.

For LGR, notice q = p− 1. The discretization does not depend on
upN .
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Fig. 8. Sparsity of ∇xC(x)T for PBF5 when h = 1
10 , i.e. N = 10,

with q = 2p.

cretization. Differences in computational cost can arise
when one discretization results in much denser or larger
problems than others. Here, we compare the sparsity
structure of the Jacobian ∇xC(x)T for LGR5 in Figure 7
and PBF5 in Figure 8, each using a mesh size of h =
1
10 . Note that for PBF5, C(x) has a larger dimension
mE than LGR5, thus the Jacobian has more rows and
hence more non-zeros. However, critical for computations
is the primal Schur complement Σ = ∇2

xxL(x,λ) +
∇xC(x)TD∇xC(x), which is used when solving the KKT
system via the reduced form, where D is a diagonal
matrix. Σ is a narrow-banded matrix with dense band
of the same bandwidth for LGR5 and PBF5.

With regard to computational cost, it follows from
Figure 6 that the ability to choose ω in PBF can be
advantageous. In particular, on coarse meshes, one may
opt for small feasibility residual by manually decreasing
ω, whereas with a collocation method one is stuck with
the feasibility residual that one obtains for that particu-
lar mesh. The figure shows this: For ω = 10−10, even on
the coarsest mesh the PBF method achieves a solution
that has a smaller feasibility residual than other methods
on the same mesh. For this problem this becomes possible
because the path constraint could be satisfied with zero

error by choosing y a polynomial of degree 3 (because
here PBF uses p = 5).

VI. Conclusions

We compared classical direct discretization methods,
i.e. collocation-type methods, with integral penalty-type
methods, and in particular with PBF. We highlighted
the critical difference, that is, forcing exact constraint
satisfaction at a finite number of points for the former,
versus forcing approximate constraint satisfaction every-
where for the latter. We also described the consequences
of these approaches on the convergence: Collocation-type
methods achieve a fixed bias between optimality gap
and feasibility residual at a given mesh, whereas with
PBF one can trade between the two. Further, collocation
methods may fail to converge in several cases where PBF
converges.

The convergence has been investigated by reviewing
theorems and performing numerical experiments. Both
indicate that direct transcription based on integral penal-
ties is competitive in computational cost and accuracy
compared to state-of-the-art collocation methods in the
general case, but in addition also works reliably in appli-
cations where the latter struggle to converge.

The robustness of an optimal control solver is deter-
mined by the weakest link in the chain. The discretiza-
tion is only one half of the numerical method. Future
work could therefore be dedicated to the development of
tailored NLP solvers to improve reliability and compu-
tational efficiency.
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