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Abstract— We present a numerical method for the
minimization of objectives that are augmented with
large quadratic penalties of overdetermined inconsis-
tent equality constraints. Such objectives arise from
quadratic integral penalty methods for the direct
transcription of equality constrained optimal con-
trol problems. The Augmented Lagrangian Method
(ALM) has a number of advantages over the Quadratic
Penalty Method (QPM) for solving this class of
problems. However, if the equality constraints of the
discretization are inconsistent, then ALM might not
converge to a point that minimizes the unconstrained
bias of the objective and penalty term. Therefore,
in this paper we explore a modification of ALM
that fits our purpose. Numerical experiments demon-
strate that the modified ALM can minimize certain
quadratic penalty-augmented functions faster than
QPM, whereas the unmodified ALM converges to a
minimizer of a significantly different problem.

I. Motivation in the Optimal Control Context

The method of choice for the numerical solution of
optimal control problems is direct transcription. Typ-
ical direct transcriptions methods use orthogonal col-
location [2]. It is known that the latter can struggle
with singular arc and high-index differential algebraic
equalities (DAEs); the former arising in the example

min
y,u

J =
∫ π

2

0

(
y(t)2 + cos(t)u(t)

)
dt,

s.t. y(0) = 0, ẏ(t) = 1
2y(t)2 + u(t) ,

(OCP)

which has the analytic solution y?(t) = sin(t)
cos(t)−2 and J? ≈

−0.2569969625 .
Quadratic integral penalty methods [1], [4], [6] are an

alternative to collocation methods, where the squared
path equality constraint residual is integrated and added
as a penalty into the objective. In [6] the authors present
such a method with a proof of convergence under mild
assumptions, including convergence for singular arcs and
high-index DAEs. This is verified in [6] in comparison to
collocation methods via numerical experiments.
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Before proceeding, we guide the reader through the
solution of (OCP) via the quadratic integral penalty
method: let y, u be represented with continuous piece-
wise linear finite element functions yh, uh on a uniform
mesh of N ∈ N elements, h := π

2N ; represented with
x := [yh(h), . . . , yh(Nh), uh(0), . . . , uh(Nh)]T ∈ Rn, n :=
2N + 1. yh(0) = 0 is fixed and removed from x. We
minimize

min
x∈R2N+1

Φω(x) :=
∫ π

2

0

(
yh(t)2 + cos(t)uh(t)

)
dt

+ 1
2ω

∫ π
2

0

∥∥∥∥−ẏh(t) + 1
2yh(t)2 + uh(t)

∥∥∥∥2

2
dt .

(1)
The integrals are evaluated with Gauss-Legendre quadra-
ture of q = 8 points per element. Writing τ, α for
abscissae and weights, m := Nq, and

f(x) :=
Nq∑
j=1

αj
(
yh(τj)2 + cos(τj)uh(τj)

)
(2a)

c(x) :=


...√

αj
(
−ẏh(τj)2 + 1

2yh(τj)2 + uh(τj)
)

...

 ∈ Rm

(2b)

allows us to express (1) as an unconstrained quadratic
penalty program:

min
x∈Rn

Φω(x) = f(x) + 1
2ω ‖c(x)‖2

2 , (UQPP)

ω ∈ R+ \ {0} controls the quadratic penalty and should
be chosen on the order of approximation of the finite
element space [4], [6].

A sometimes related problem is the equality con-
strained program:

min
x∈Rn

f(x) s.t. c(x) = 0 ∈ Rm , (ECP)

with Lagrangian L(x,λ) := f(x)−λTc(x) and Lagrange
multiplier λ ∈ Rm. The Karush-Kuhn Tucker optimality
system of (UQPP) and (ECP) is

∇xL(x,λ) = 0
c(x) + ωλ = 0

(KKT)

where ω = 0 for (ECP). The KKT multiplier for (UQPP)
is a substitution trick such that ∇L matches ∇Φω.



We recommend the use of the above penalty finite
element method when numerically solving optimal con-
trol problems, because penalty methods have favourable
convergence properties over collocation methods [6].

A difficulty that remains is with numerically solving
(UQPP). This can be more challenging than solving a
problem of the form (ECP). Below we describe important
details.

A. Problems (UQPP) and (ECP) have different solutions
In our discretization (2) it holds that m = Nq ≡ 8N

and n = 2N + 1 � m, hence (ECP) is overdetermined.
Clearly, problem (UQPP) cannot be overdetermined be-
cause it is unconstrained.

Considering problem (ECP) in the context of overde-
termination poses the risk of inconsistency. For instance,
suppose that in (OCP) we had added the constraint
y(π/2) = − 1

2 . Then c(x) 6= 0 ∀x ∈ Rn would hold,
i.e. (ECP) would be infeasible due to inconsistent con-
straints c. In contrast, problem (UQPP) obviously pos-
sesses feasible points because it is unconstrained.

For our example, (ECP) is feasible, i.e. ∃x ∈ Rn :
c(x) = 0 . Namely, the equality is achieved (only) by x =
0, regardless of the discretization parameter h. This is far
away from y?, to which solutions of (UQPP) converge as
h, ω ↘ +0. In conclusion, solutions to (ECP) can differ
significantly from solutions to (UQPP).

The Modified Augmented Lagrangian Method
(MALM), discussed in Section II, converges to
minimizers of (UQPP) instead of (ECP).

B. Solutions of (UQPP) depend on the value of ω
As experimentally verified in [4] and outlined in the

analysis in [6], the discretization (1)–(2) converges when
both h, ω ↘ +0. That is, for fixed h, too large values of ω
result in bad feasibility of the numerical optimal control
solution, whereas too small values of ω result in feasible,
yet far from optimal solutions.

Fig. 1 demonstrates this. Our discretization of (OCP)
with N = 40 is solved ∀ω ∈ {102, 10−1, 10−4}. The
value ω determines the bias between minimization of
f(x) and ‖c(x)‖2 ≡ ‖− ẏh+ 1

2yh+uh‖L2(0,π/2); note that
the latter is accurate due to the order of quadrature. For
ω = 10−1 the solution achieves a good trade-off between
feasibility and optimality on that coarse mesh.

In conclusion, the value of ω can have a significant
influence on the solution of (UQPP) and it is hence
important that (UQPP) be minimized for the specified
value of ω.

The value ω appears within the dual update formula
of MALM. This is an important feature, so that MALM
can converge to minimizers of (UQPP) for the specific
value of ω.

C. Direct minimization of (UQPP) is numerically inef-
ficient

To the unprejudiced it appears natural to minimize the
unconstrained objective Φω using a numerical method
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Fig. 1. Numerical solution to (OCP) for N = 40 and different
values of ω.

for unconstrained minimization. However, (unless c is an
affine function) this will result in very many iterations.
This is so because the nonlinear penalties result in curved
valleys through which iterative minimization methods
make slow progress.

To demonstrate this inefficiency, consider the instance

f(x) := −x1 − x2 (3a)

c(x) :=
[
(x1 + ε)2 + x2

2 − 2
(x1 − ε)2 + x2

2 − 2

]
∈ Rm (3b)

with primal and dual initial guesses x0 :=√
2[cos(3π/8) sin(3π/8)]T and λ0 := 0.4619[1 1]T, for

ε = 0. We discuss later with Table II that minimization
of (UQPP) of (3) with a simple trust-region method in
Algorithm 2 takes 334 iterations when ω = 10−6. This is
inefficient when compared to MALM, which solves the
same instance in only 16 iterations.

The Augmented Lagrangiam Method (ALM) uses a
local minimization method (typically a quasi-Newton
variant) for the primal variables, and then updates the
duals. Since ALM eventually solves (ECP), the quasi-
Newton system must solve (KKT) with ω = 0. In
contrast, MALM converges to minimizers of (UQPP),
i.e. solves (KKT) with ω > 0. This yields a dual regular-
ization, which keeps the magnitude of ‖λ‖ bounded and
improves the convergence of the Newton iteration.



D. Structure of the Paper
Section II derives the proposed modified ALM

(MALM) for nonlinear functions f, c. Section III presents
numerical experiments. This section also elaborates on
the numerical difficulties of solving either (UQPP) or
(ECP) and suitable values of ω for a given instance
x0,λ0, f, c. The numerical experiments compare the effi-
ciency in terms of computational cost and iteration count
for the Quadratic Penalty Method (QPM), ALM, and
MALM.

II. Derivation of the Modified Augmented
Lagrangian Method

MALM is a solution method for (UQPP). MALM has
been presented for minimizing convex quadratic penalty
functions in [11], where f must satisfy certain convexity
properties and c must be linear. Here, we derive MALM
for nonlinear problems, in a stronger relation to its
origins in ALM [5], [8].

We derive MALM for (UQPP) from ALM for (ECP).
To apply ALM, we need an auxiliary problem of form
(ECP) instead. Our approach to achieving this works
by temporarily using an auxiliary variable ξ ∈ Rm.
This variable will be eliminated later in the augmented
optimality system.
A. Auxiliary Problem

Consider the following equivalent problem to (UQPP):

min
x̂:=(x,ξ)∈R(n+m)

f̂(x̂) := f(x) + ω

2 ‖ξ‖
2
2 (4a)

subject to ĉ(x̂) := c(x) + ωξ = 0 . (4b)
Using Lagrange multipliers λ ∈ Rm, the optimality
conditions of (4) are[

∇f(x)
ωξ

]
−
[
∇c(x)
ωI

]
λ = 0 (5a)

c(x) + ωξ = 0 . (5b)
B. Augmented Optimality System

Since (4) is of form (ECP), we can apply ALM [7,
Alg. 17.3]. To this end, we augment (5) with an auxiliary
vector z ∈ Rm and a moderate penalty parameter ρ > 0:[

∇f(x)
ωξ

]
−
[
∇c(x)
ωI

]
(λ + z) = 0 (6a)

c(x) + ωξ + ρz = 0 . (6b)
The intuition for doing so in ALM is similar to what
we did in (KKT) for (UQPP), where the Lagrange
multipliers were used as a substitute to ensure that the
gradient of L matches that of Φω. Likewise, here z works
as a penalty substitute for (5b).

We could use (6) directly in order to form an ALM
iteration. That iteration would consist of alternately
solving the optimality system (6) for (x, ξ, z) where λ
is fixed and updating λ ← λ + z, being equivalent to
λ← λ− 1

ρ (c(x) + ωξ).

Algorithm 1 Modified Augmented Lagrangian Method
1: procedure MALM(f, c, ω,x0,λ0, tol)
2: ρ← ρ0
3: for k = 1, 2, 3, . . . , kmax do
4: Compute xk by TRM(Ψk,xk−1, tol).

xk ← argmin
x∈Rn

Ψk(x)

5: Update λk ← λk−1 − 1
ω+ρ (c(xk) + ωλk−1)

6: if ‖c(xk) + ωλk‖∞ ≤ tol then
7: return xk,λk
8: else
9: Decrease ρ← cρρ to promote convergence.

10: end if
11: end for
12: end procedure

C. Elimination of the Auxiliary Vector
However, we propose to eliminate ξ = λ+z instead to

obtain

∇f(x)−∇c(x)(λ + z) = 0 (7a)
c(x) + ωλ + (ω + ρ)z = 0 . (7b)

As in ALM, we solve (7) with an iteration of two
alternating steps:

1) Keep the value of λ fixed, and solve (7) for (x, z).
2) Update λ as λ← λ + z .

Analogous to ALM, the first step can be realized by
minimizing a suitable augmented Lagrangian function
for x at fixed λ, whereas in the second step z can be
expressed in terms of x from (7b). Using this, the method
can be expressed compactly in Algorithm 1, where

Ψk(x) := L(x,λk−1) + 1
2(ω + ρ) ‖c(x) + ωλk−1‖2

2 (8)

is the augmented Lagrangian function, with L(x,λ) =
f(x)− λT · c(x) as in (KKT).

In our experiments we use tol = 10−8, cρ = 0.1, ρ0 =
0.1. Care must be taken that the problem in line 4 is
bounded below. To this end, practical methods use box
constraints [3, eq. 3.2.2] or a trust-region [3, eq. 3.2.4].

In order to minimize (8), one can use any uncon-
strained minimization method. Here, for simplicity and
reproducibility of the numerical experiments to follow,
we use the simplified trust-region method in Algorithm 2.
This method uses quasi-Newton directions d in line 7,
where the shift is determined directly by a decrease
condition instead of implicitly by a trust-region radius.
If we had used a line search method instead, then a shift
would have still been necessary due to non-convexity,
which would interfere with the line search; hence why
we opted against it.

As described in [7, eq. 17.21], the quasi-Newton direc-
tion for the quadratic penalty function can be computed



Algorithm 2 Simplified Trust-Region Method
1: procedure TRM(ϕ,x0, tol)
2: j ← 0
3: while ‖∇ϕ(xj)‖∞ > tol do
4: j ← j + 1, σ ← 10−11

5: H← ∇2ϕ(xj−1), g← ∇ϕ(xj−1)
6: repeat
7: σ ← 10σ, d← −(H + σI)−1g
8: until ϕ(xj−1 + d) < ϕ(xj−1)
9: xj ← xj−1 + d

10: end while
11: return xj
12: end procedure

in a more numerically stable fashion from a 2×2 saddle-
point linear equation system, by expressing the equations
in terms of both x and z. This has not been presented in
the algorithms here for accessibility, but caused no issue
in the numerical experiments with double precision and
ω ≥ 10−6.

D. Discussion
1) True Generalization of ALM: MALM is a true

generalization of ALM, because it differs merely by the
parameter ω. If ω = 0 then MALM is identical to
ALM. Both methods then enjoy the same convergence
properties and approach the same limit point.

2) Benefit: MALM solves the penalty function Φω
in (UQPP) by minimizing a sequence of penalty func-
tions Ψk. When does this make sense? By selecting
ρ� ω. Thereby, the penalty functions Ψk have less steep
valleys and hence can often be minimized more efficiently
in comparison to one minimization of Φω. The numerical
experiments in the next section verify this claim.

III. Numerical Experiments
We present two numerical test problems. The first is

instructional, the second is an optimal control problem.

A. Circle Problem
1) Setting: This problem considers the instance (3)

for various values of ε. Fig. 2 shows the geometry of
the instance: Level sets of f and c are red and blue,
respectively. The figure also shows two points

xA := [0
√

2]T , xB := [1 1]T

as the white and black star, respectively.
The instance can be interpreted in either of two ways:

(A) Either we meant c in a precise sense, meaning we
wish to find a solution to c(x) = 0 and, if non-
unique, select the point that gives the smallest yield
for f .

(B) Or we actually meant c in a rough sense, meaning
we wish to minimize f subject to ‖x‖2

2 = 2 +O(ε).
Both problems are reasonable in their own right: For

example, (A) makes sense when we have to solve a

x2

x1

32
Fig. 2. Level sets of components of c, and contours of f . The level
sets of c1 and c2 are two circles, that almost fully overlap each
other.

complex equation system and want to find a desirable
solution. On the other hand, (B) makes sense when our
constraints suffer from errors, e.g. measurement errors
or consistency errors, such as by discretization. For ex-
ample, imagine a discretized optimal control problem,
where c inherits consistency errors that have the size of
ε.

Crucially, both solutions xA,xB can be characterized
sharply with a suitable problem statement. Obviously,
xA is the solution of (ECP). Less obvious, xB can be
computed as the solution of (UQPP) when choosing ω
suitable w.r.t. ε. Here, a suitable choice is ω = O(ε).
To see this, notice that (KKT) admits a well-scaled
solution ‖x‖2, ‖λ‖2 = O(1) and ‖c(x)‖ = O(ε) when
this selection for ω is made.

Lastly, we stress that for this instance the solution xA
has an ill-conditioned KKT system with a dual solution
‖λ‖ = O(1/ε2), whereas xB is well-behaved, i.e, its KKT
equations are well-conditioned.

2) Computational Results: We solve the instance with
MALM and QPM, for various values of ε, ω, including 0.
We implement QPM by solving (UQPP) via Algorithm 2.
Recall that MALM=ALM for ω = 0 and that QPM is
not applicable (n.a.) when ω = 0.

Further, we investigate the limit points x∞ (which are
identical for both tested methods throughout all tests)
for each ε, ω, by measuring the quantities

eA := ‖x∞ − xA‖2 , eB := ‖x∞ − xB‖2 .

Table I shows the quantities eA, eB for respective ε, ω.
Dividing the table into a lower left and an upper right
triangle, we see that solutions in the lower triangle rather
converge to xA while those on the diagonal and in the
upper right converge to xB .

Table II shows the sum of the number of all inner
iterations (i.e. iterations j of Algorithm 2) of QPM and
MALM for respective ε, ω. We see a trend for each of
the two methods: QPM converges in a few iterations
when ω is moderate. However, when ε, ω both decrease,
the iteration count blows up. The trend for MALM is
different. MALM converges reliably for all ε, ω in the
upper right triangle, including those where ε, ω are very



TABLE I
Solution of the Circle Problem w.r.t. ε, ω. Smaller values
mean closer convergence to either point. Table cells in
the lower left converge to xA, cells in the upper right

to xB .

ε
eA

eB
1.0e–1 1.0e–2 1.0e–4 1.0e–6 0e+0

ω

1.0e–1 6.5e–1
4.6e–1

1.1e+0
1.0e–2

1.1e+0
8.8e–3

1.1e+0
8.8e–3

1.1e+0
8.8e–3

1.0e–2 1.2e–1
9.7e–1

1.0e+0
5.6e–2

1.1e+0
8.8e–4

1.1e+0
8.8e–4

1.1e+0
8.8e–4

1.0e–4 3.7e–3
1.1e+0

1.1e–1
9.8e–1

1.1e+0
5.7e–4

1.1e+0
8.8e–6

1.1e+0
8.8e–6

1.0e–6 3.5e–3
1.1e+0

1.2e–3
1.1e+0

1.0e+0
5.6e–2

1.1e+0
5.7e–6

1.1e+0
8.8e–8

0e+0 3.5e–3
1.1e+0

3.5e–5
1.1e+0

3.5e–9
1.1e+0

3.5e–13
1.1e+0

1.1e+0
0e+0

TABLE II
Number of iterations for MALM/ALM and QPM for the
Circle Problem w.r.t. ε, ω. Fewer iterations mean better

computational efficiency. MALM with ω = 0 (i.e. ALM)
sometimes does not converge (n.c.) for this problem. QPM

is not applicable (n.a.) when ω = 0.

ε
#MALM
#QPM

1.0e–1 1.0e–2 1.0e–4 1.0e–6 0e+0

ω

1.0e–1 22
6

19
9

18
9

16
9

16
9

1.0e–2 25
9

26
12

19
13

18
13

16
13

1.0e–4 25
10

83
30

28
77

21
77

16
77

1.0e–6 26
10

83
35

97
311

30
334

16
334

0e+0 26
n. a.

83
n. a.

n. c.
n. a.

n. c.
n. a.

16
n. a.

small. The last row shows ALM. ALM converges quickly
when ε = 0, but its iteration count blows up for positive
decreasing values of ε. In two instances ALM did not
converge (n.c.) within 1000 iterations.

3) Interpretation of the Results: Table I confirms that,
depending on the parameters ε, ω, we either solve for xA
or xB . Table II indicates that xA cannot be computed
numerically efficiently, as expected due to the almost
linearly dependent constraints.

In the optimal control context we are interested in
solving problems in the sense of (B), hence we now
investigate the upper right triangle in Table II. We see
that both methods converge for all of these instances.
Yet, when ε, ω are small, but strictly positive, then
MALM outperforms QPM. This is relevant because there
are problems from optimal control discretizations with
inconsistencies like ε from discretization errors. In these
cases, we wish to drive ω, h ↘ +0 to yield convergence
of the discretization, which brings us into the lower right
region of the table.

TABLE III
Solution of the Optimal Control Problem w.r.t. N,ω. For

a given mesh size N , the value for ω is suitable when it
yields a good balance between the orders of magnitude
for both δJ (optimality gap) and r (feasibility residual).
Table cells on and around the diagonal typically yield a

good balance.

N
δJ
r

16 64 256 1024 4096

ω

1.0e–1 -7.8e–2
9.2e–2

-7.9e–2
8.9e–2

-7.9e–2
8.9e–2

-7.9e–2
8.9e–2

-7.9e–2
8.9e–2

2.5e–2 -1.5e–2
2.7e–2

-2.0e–2
2.3e–2

-2.0e–2
2.2e–2

-2.0e–2
2.2e–2

-2.0e–2
2.2e–2

6.4e–3 7.6e–3
8.8e–3

-4.3e–3
8.4e–3

-5.0e–3
6.0e–3

-5.0e–3
5.7e–3

-5.0e–3
5.7e–3

1.6e–3 1.7e–2
2.5e–3

3.3e–3
4.3e–3

-1.2e–3
2.3e–3

-1.3e–3
1.5e–3

-1.3e–3
1.4e–3

4.0e–4 2.0e–2
6.5e–4

1.2e–2
1.7e–3

3.7e–4
1.6e–3

-3.1e–4
5.9e–4

-3.1e–4
3.7e–4

0e+0 2.6e–1
0e+0

2.6e–1
0e+0

2.6e–1
0e+0

2.6e–1
0e+0

2.6e–1
0e+0

B. Optimal Control Problem
1) Setting: We solve the instance (2) for various values

of N,ω for x0 = 0,λ0 = 0. Recall that the instance
represents the discretization (1) with mesh size h = π

2N ,
which only converges to the analytical solution when
h, ω ↘ +0 together, as was discussed along Fig. 1.

As for the former experiment, we solve the instance
with MALM and QPM, for various values of N,ω, in-
cluding ω = 0. We also investigate the limit points x∞
(which are identical for both tested methods throughout
all tests) for each N,ω, by measuring the quantities

δJ := f(x)− J? ≡ J(yh, uh)− J?

r := ‖c(x)‖2 ≡
∥∥∥∥−ẏh + 1

2y
2
h + uh

∥∥∥∥
L2(0,π/2)

.

Recall from the circle test problem that there are
two interpretations (A) and (B) for the instance. As is
clear from the context, we wish to compute a solution
of kind (B). However, if we are (deliberately) uncareful
in choosing ω suitable w.r.t. h then the iteration will
converge to a solution of kind (A).

2) Computational Results: Table III shows the quan-
tities δJ, r for respective N,ω. Dividing the table into
a lower left and an upper right triangle, we see that
solutions in the lower left achieve good feasibility but
at the sacrifice of optimality, whereas solutions in the
upper right are not sufficiently feasible. Only solutions on
the diagonal strike a good balance between minimizing
J and r, i.e. optimality and feasibility. Thus, when being
limited by computation time to solve on a moderately
sized mesh, then accordingly ω should not be chosen too
small. Therefore, we must consider the table column by
column. The table clearly shows that the best balance
between feasibility and optimality is obtained in those
table entries that live on the diagonal.



TABLE IV
Number of iterations for MALM/ALM and QPM for the
Optimal Control Problem w.r.t. N,ω. Fewer iterations

mean better computational efficiency. MALM with ω = 0
(i.e. ALM) does not converge (n.c.) for this problem. QPM

is not applicable (n.a.) when ω = 0.

N
#MALM
#QPM

16 64 256 1024 4096

ω

1.0e–1 16
7

16
7

14
7

12
7

10
7

2.5e–2 22
7

19
12

16
10

14
10

13
10

6.4e–3 23
11

20
13

19
20

18
19

14
19

1.6e–3 25
12

23
9

20
42

20
67

17
101

4.0e–4 28
16

27
19

23
30

23
68

20
60

0e+0 n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

Table IV shows the sum of the number of all inner
iterations of MALM and QPM for respective N,ω. We
see the same trend as for the circle problem: QPM
converges in a few iterations when ω is moderate. In
contrast, when ε, ω both decrease then its iteration count
increases. In contrast, MALM converges reliably for all
N,ω in the upper right triangle, including those where N
is very large and ω very small. The last row shows that
ALM does not convergence (n.c.) within 150 iterations
for any mesh size.

C. Interpretation of the Results
For this test problem, Table III demonstrates that

the numerical solution converges to the optimal control
solution when h, ω ↘ +0 together.

Table IV shows that QPM converges fast when N
is small and ω is moderate. In contrast to this, for
large N and small ω, MALM is clearly more efficient.
However, Table III reveals that large N and small ω are
a necessity for the numerical computation of accurate
optimal control solutions.

Importantly, both experiments make clear that ALM
is unsuitable for solving applications with inconsistent
constraints: For the experiment depicted in Fig. 2, ALM
converges to xA (white star) whenever ε > 0. For optimal
control problems, the magnitude of ε models consistency
errors of discretizations, in which case xB is the sought
solution of a well-conditioned problem, whereas xA is the
unsought solution of an ill-conditioned problem. Table IV
shows that ALM fails to converge for the discretized
control problem because it attempts to seek xA, which is

numerically hard. Table III shows further that the exact
minimizer is undesired here because ω = 0 results in a
bad balance between the goals of minimizing both r and
δJ , illustrated in Fig. 1.

IV. Conclusions
We derived a modified version of ALM, called MALM.

MALM outperforms QPM when minimizing uncon-
strained quadratic penalty programs (UQPP) when
ω is very small, in a similar manner as ALM out-
performs QPM when solving equality-constrained pro-
grams (ECP).

The efficiency of MALM for the minimization of
quadratic penalty functions has been demonstrated with
numerical experiments. These experiments show that
there are problem instances where it is beneficial to solve
a problem of type (UQPP) rather than (ECP), one im-
portant class arising from integral penalty discretizations
of optimal control problems.

In this paper we have presented the method in isolated
form for “approximately” equality constrained programs
in the sense that c(x) ≈ 0. Future work could extend the
approach to problems with both equality and inequality
constraints. Extensions of ALM for inequality constraints
have been proposed in [9], [10], which can form a basis
for similar extensions of MALM.
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