Falling film boiling of refrigerants over nanostructured and roughened tubes: Heat transfer, dryout and critical heat flux

This is the ACCEPTED version of this article. The final, published version of the article can be found at: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120452

Bradley D. Bock¹, Matteo Bucci³, Christos N. Markides⁵, John R. Thome⁴ and Josua P. Meyer*⁷

¹Department of Mechanical and Aeronautical Engineering, Faculty of Engineering, the Built Environment and IT, University of Pretoria, Pretoria, South Africa
²Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
³Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
⁴Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, Edinburgh, UK and JJ Cooling Innovation Sàrl, Lausanne, Switzerland

Abstract

Falling film evaporators offer an attractive alternative to flooded evaporators as the lower fluid charge reduces the impact of leaks to the environment and associated safety concerns. A study was conducted of saturated falling film boiling of two refrigerants on one polished, one roughened and three nanostructured copper tubes in order to evaluate the potential of nanostructures in falling film refrigerant evaporators. Tubes were individually tested, placed horizontally within a test chamber and heated by an internal water flow with refrigerant distributed over the outside of the tubes. Wilson plots were used to characterise the internal water heat transfer coefficients (HTCs). A layer-by-layer (LbL) process was used to create the first nanostructured tube by coating the outside of a tube with silica nanoparticles. A chemical bath was used to create copper oxide (CuO) protrusions on the second nanostructured tube. The third tube was coated by following a commercial process referred to as nanoFLUX. R-245fa at a saturation temperature of 20 °C and R-134a at saturation temperatures of 5 °C and 25 °C were used as refrigerants. Tests were conducted over a range of heat fluxes from 20 to 100 kW/m² and refrigerant mass flow rates per unit length from 0 to 0.13 kg/m²s, which corresponds to a film Reynolds number range of 0 to approximately 1500 to 2500, depending on the refrigerant. Heat fluxes were increased further to test whether the critical heat flux (CHF) point due to a departure from nucleate boiling (DNB) could be reached. The CuO and nanoFLUX tubes had the lowest film Reynolds numbers at which critical dryout occurred at heat fluxes near 20 kW/m², but as the heat fluxes were increased towards 100 kW/m², critical dryout occurred at the highest film Reynolds numbers of the tubes tested. Furthermore, in some higher heat flux cases, CHF as a result of DNB for the CuO and nanoFLUX tubes was reached before critical dryout occurred, and DNB became the limiting operational factor. The refrigerant condition that had the worst dryout performance in terms of film Reynolds number was R-134a at 25 °C, followed by R-134a at 5 °C and R245fa at 20 °C. Tests across the heat flux range and refrigerant conditions revealed that compared to the polished tube, the roughened tube had HTCs between 60 to 100% higher, the LbL tube had HTCs between 20% lower and 20% higher, the CuO tube had HTCs between 20% lower and 80% higher and the nanoFLUX tube had HTCs between 40 to 200% higher than the polished tube. The falling film enhancement ratios for the plain and nanostructured tubes were found to be of a similar order of magnitude, typically between 1.3 and 0.8.

Keywords

falling film evaporation, boiling, nanostructures, dryout, critical heat flux, departure from nucleate boiling

*Corresponding author

Email address: josua.meyer@up.ac.za
1. Introduction

Liquid falling films are important free-surface flows that have attracted considerable research attention since the late 1940s. These flows allow considerable heat transfer rates with low flow rates and low liquid volumes, as well as low pressure drops and, as such, play a key role in many thermal engineering applications. They have been investigated computationally and experimentally, from fundamental and applied perspectives [1-3], in external or internal flow systems with and without heat transfer, in the latter case in an effort to understand the emergence of different wave phenomena. Such waves are known to play a controlling role in affecting flow hydrodynamics and heat transfer [4-6] in simple film flows. The case of boiling films is even more complex and requires further attention, with studies of the boiling of stationery thin films [7,8] and thin falling films [9-11] having shown the importance of bubble nucleation and microlayer evaporation on the heat transfer process and the accompanying limitations of dryout and critical heat flux.

Horizontal falling film evaporators are used within the refrigeration industry and offer lower refrigerant charges than for flooded evaporators [12,13]. Especially for refrigerants this is an attractive alternative as it can reduce the impact of leaks to the environment and safety concerns regarding modern refrigerants, some of which are classified as mildly flammable (e.g. hydrofluoroolefins). But when insufficient liquid is supplied to prevent dry patches from forming, this dryout can be a concern due to the subsequent reduction in heat transfer [12,13]. Typically, falling film dryout occurs in two stages. Firstly, as the refrigerant film flow rate is lowered from a high point at a constant heat flux, a plateau region is seen where heat transfer coefficients (HTCs) remain relatively insensitive to changes [14,15] or slightly decrease [16,17] or slightly increase [18] as film flow rates drop. After this, a critical film Reynolds number is reached where HTCs decrease significantly when film flow rates are decreased further as a result of critical dryout [14-17]. Highers HTCs have been measured for falling film boiling than for pool-boiling under identical conditions when boiling refrigerant on plain and micro-enhanced tubes but as heat fluxes are increased and refrigerant flow

Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Fitting coefficient</td>
</tr>
<tr>
<td>C</td>
<td>Wilson plot modifier coefficient</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of tube</td>
</tr>
<tr>
<td>F</td>
<td>Refrigerant mass rate per unit length</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>h_o</td>
<td>Normalised heat transfer coefficient</td>
</tr>
<tr>
<td>h_f</td>
<td>Latent heat of vapourisation</td>
</tr>
<tr>
<td>K</td>
<td>Enhancement ratio</td>
</tr>
<tr>
<td>L</td>
<td>Length of tube</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>n</td>
<td>Fitting exponent</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>p_r</td>
<td>Reduced pressure</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux</td>
</tr>
<tr>
<td>R</td>
<td>Thermal resistance</td>
</tr>
<tr>
<td>R_f</td>
<td>Film Reynolds number</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>U</td>
<td>Overall heat transfer coefficient</td>
</tr>
<tr>
<td>x</td>
<td>Coordinate dimension along the length of the tube</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscripts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr</td>
<td>Critical</td>
</tr>
<tr>
<td>evap</td>
<td>Evaporative limit</td>
</tr>
<tr>
<td>ff</td>
<td>Falling film</td>
</tr>
<tr>
<td>Gniel</td>
<td>Gnielinski correlation</td>
</tr>
<tr>
<td>i</td>
<td>Inner</td>
</tr>
<tr>
<td>o</td>
<td>Outer</td>
</tr>
<tr>
<td>pb</td>
<td>Pool-boiling</td>
</tr>
<tr>
<td>pol</td>
<td>Polished</td>
</tr>
<tr>
<td>r</td>
<td>Liquid refrigerant</td>
</tr>
<tr>
<td>sat</td>
<td>Saturated refrigerant</td>
</tr>
<tr>
<td>surf</td>
<td>Surface enhancement relative to polished surface</td>
</tr>
<tr>
<td>w</td>
<td>Water</td>
</tr>
<tr>
<td>ws</td>
<td>Wall superheat</td>
</tr>
<tr>
<td>wall</td>
<td>Tube wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>CHF</td>
<td>Critical heat flux</td>
</tr>
<tr>
<td>CuO</td>
<td>Copper oxide</td>
</tr>
<tr>
<td>DNB</td>
<td>Departure from nucleate boiling</td>
</tr>
<tr>
<td>HTC</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LbL</td>
<td>Layer-by-layer</td>
</tr>
<tr>
<td>MWR</td>
<td>Minimum wetting rate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SiO_2</td>
<td>Silicon dioxide/Silica</td>
</tr>
<tr>
<td>TiO_2</td>
<td>Titanium dioxide</td>
</tr>
</tbody>
</table>

rates lowered, the HTCs of falling film boiling lower below their pool-boiling counterparts due to dryout [19-21]. The operational abilities of falling film evaporators are thus practically limited by dryout, both in the plateau region, where lowered HTCs reduce performance, as well as critical dryout, where the HTCs are sharply reduced and the operational limit is effectively reached.

Nanostructured surfaces may be able to extend the operational limits of falling film evaporators. Some of these surfaces have been developed to have superhydrophilic wetting capabilities and many are wickable, drawing liquid into the surface through capillary action [22,23]. This improved wetting ability thus offers an exciting opportunity for falling film boiling against dryout.

No literature has been found for the use of surfaces that can be categorised as nanostructured in falling film-boiling conditions. Reduced dryout has been successfully achieved on 3D micro-enhanced and micro-porous tubes tested under falling film-boiling conditions with refrigerants, with plateau regions more insensitive to flow rate changes [16,17,24] and critical dryout at lower film flow rates [16,17,25,26] than for plain tubes. The improved wetting performance has been suggested to be through the ability of microstructured surfaces to better distribute the thin liquid films across the heat transfer surfaces [25] with interconnected internal pores distributing liquid [16] and nucleating bubbles further assisting by sucking liquid through the capillary pores to the nucleation sites [26]. Improved liquid distribution reduces falling film-boiling dryout as dry patches are thought to be formed by the evaporation of the thin liquid layers that appear between the larger waves that roll down the heat transfer surface during falling film boiling [25] or from the complete evaporation of the microlayer underneath nucleating bubbles [27]. Horizontal tube falling film convective heat transfer studies of water at sub-atmospheric pressures have shown reduced dryout for superhydrophilic and hydrophilic tubes compared with dryout for a plain tube [28] and porous and hydrophilic tubes compared with dryout for a plain tube [29].

When testing superhydrophilic, hydrophilic and plain tubes with water, Zheng et al. [28] showed that under falling film convective heat transfer conditions, the HTCs were similar for all tubes tested as the film Reynolds number was decreased. Once the film Reynolds number dropped below a value of approximately 300, the HTCs for the plain tube decreased and the tube was seen to experience dryout, while the superhydrophilic and hydrophilic tube HTCs increased and were able to maintain a fully wetted surface under these low flow conditions. The resulting thin fluid film was thought to reduce the evaporative thermal resistance and cause the increased HTCs. A study by Lee et al. [30] also showed that micro-porous tubes improved wetting through capillary-assisted wicking of water in a falling film convective heat transfer study and as film Reynolds number was decreased, the micro-porous tube HTCs increased, while plain tube HTCs remained constant and then decreased due to dryout.

Recent studies have shown that falling film boiling typically follows a number of trends seen in pool-boiling, with increased reduced pressure increasing HTCs in studies for plain and micro-enhanced surfaces [15,20,31,32], while increased roughness increases falling film-boiling HTCs and changes in material influence the HTCs in terms of the material’s effusivity for plain tubes [32].

Pool-boiling heat transfer of nanostructures with organic fluids should offer some insight into the expected falling film-boiling performance, despite the relative sparseness of literature on the topic, which is evident in reviews of the topic [22,23]. Previous studies found that organic fluid pool-boiling HTCs were improved or worsened by the addition of nanostructures. Increased HTCs were attributed to increased surface roughness [33-36], while decreased HTCs seen by Trisakri and Wongwises [37] in the pool-boiling of a cylindrical copper tube in a R-141b/TiO$_2$ nanoparticle solution could be attributed to reductions in surface roughness, with the nanoparticles coating the surface and possibly reducing the number of active nucleation sites. Increased HTCs as a result of nanostructured surfaces in our previous pool-boiling study [38] were found to be through changes in the nucleation site density and additional unique mechanisms as a result of capillary flow of liquid through the nanoporous surfaces. This capillary liquid flow may have induced high single phase convective HTCs within the nanoporous coating as well as reduced dryout underneath nucleating bubbles resulting in increased microlayer evaporation.

Another operational limit for falling film boiling is departure from nucleate boiling (DNB) where the falling liquid film separates from the heating surface [11,39,40] resulting in the critical heat flux (CHF) being reached. Ueda et al. [41] provided an illustration of CHF as a result of either dryout or DNB for the falling film boiling of water and refrigerants R-11 and R-113 on the outside of vertical tubes. Ueda et al. noted three distinct CHF operational limits, defined as Type I, II and III CHF, each identified by a sharp rise in wall temperature and each typically occurring at different film flow rates. At the lowest film flow rates Type I CHF occurred, characterised by dryout as a result of a film flow rate below that of the minimum wetting rate (MWR) of the surface. Type I CHF was not significantly influenced by changes in boiling heat flux. Type II CHF occurred at typically higher film flow rates with dryout occurring at film flow rates above that of the MWR of the surface and was dependent on heat flux. Type I and II CHF both consisted of dry patches limiting the boiling heat transfer, with wetted patches still boiling. Type III CHF occurred
typically at the highest film flow rates with DNB occurring with the falling liquid film seen to lift from the surface with a thin liquid subfilm underneath. This subfilm, also noted in studies on vertical plates [11,39,40], was thought to be key to the process and it was theorised that Type III CHF occurred when the subfilm dried out.

CHF as a result of DNB may be an increased concern for falling film boiling when nanostructures are used because the pool-boiling of organic fluids on nanostructured surfaces has shown reduced DNB CHF compared with that of plain surfaces [36,38,42,43]. Conversely these nanostructured surfaces have delayed the onset of DNB compared with plain surfaces in pool-boiling studies. This is thought to be through mechanisms such as the improved wettability of the surfaces, surface wicking of liquid [22,23] or increased bubble contact line length [44], which may all contribute to the prevention of the formation of a stable vapour layer.

In this study, nanostructured tubes were investigated to determine their viability in terms of reducing dryout and increasing HTCs for falling film boiling of refrigerants. HTCs were experimentally measured on three nanostructured horizontal copper tubes under saturated falling film-boiling conditions on the outside of tubes internally heated by water. Tests were conducted in R-245fa at a saturation temperature of 20 °C and R-134a at saturation temperatures of 5 °C and 25 °C to allow for a wide range of reduced pressures within the limits of the experimental equipment used, with respective reduced pressures of 0.034, 0.086 and 0.160. Heat fluxes ranged from 20 to 100 kW/m² and \(\Gamma \), on one side of the tube from 0 to approximately 0.13 kg/m²s, which corresponds to a film Reynolds number range of 0 to approximately 1500 to 2500, depending on the refrigerant. Heat fluxes were also increased above 100 kW/m² to see if the CHF as a result of DNB could be reached with the experimental apparatus. The HTCs measured on a polished and roughened plain copper tube were also included for comparison with the nanostructured tube results. Data previously published of the falling film-boiling HTCs measured on a polished and roughened copper tube in R-134a at 5 °C and 25 °C [32] were therefore referenced in this study, while new tests were conducted with a polished and roughened tube in R-245fa at 20 °C and included in this work to aid comparison across the entire range of conditions tested as well as further expand our understanding of plain tube falling film boiling. This study also builds upon previous work by the same authors on pool-boiling over nanostructured tubes [45], with those results at times used and referenced in this study.

2. Experimental apparatus and tubes tested

2.1. Experimental apparatus

Bock et al. [32] and Christians [46] gave a detailed description of the testing equipment and procedure so they will only be described here in brief. Falling film-boiling studies were conducted with tubes placed horizontally into a test chamber with a thin film of refrigerant distributed along the length of the outside of the tube and heated internally by flowing heating water. The tubes all had an external diameter of 19.05 mm and were placed in a tube-sheet with a pitch of 22.3 mm, resulting in an inter-tube gap of 3.25 mm. Tubes were individually tested.

The falling film of liquid refrigerant was conditioned by a liquid refrigerant loop, while the refrigerant vapour produced was condensed by a vapour refrigerant loop, both illustrated in Figure 1 (a). The refrigerant vapour produced from the boiling in the test chamber was initially drawn downwards away from the boiling tubes so as not to obscure the falling film-boiling process and so that the vapour flowed concurrently with the falling film. This vapour flow was considered to have minimal influence on the falling film process because Ribatski and Thome [47] found that concurrent vapour flow of a velocity of approximately 1 m/s had little influence on falling film distribution or heat transfer and the maximum vapour velocity in this study was an order of magnitude smaller, calculated as 0.08 m/s.

The falling film of liquid refrigerant was distributed along the length of the tubes with a refrigerant distributor (Item 5 in Figure 1 (a) and illustrated again in Figure 1 (b)). The distributor consisted of a tube with a series of 3 mm diameter holes spaced at 5 mm intervals long its upper length which fed liquid down into a stainless steel box packed with a series of foams. After exiting the box the liquid passed into a specially machined stainless steel tube cut lengthwise in half with a lip underneath lengthwise along its centre. Adjustment of the half tube ensured that liquid was fed onto the top most point of the tube below it. These efforts to distribute the liquid as evenly as possible along the length of the tube were considered largely successful based on visual inspection of the liquid distribution.

The refrigerant saturation temperature was measured in the test chamber by both pressure transducers and thermocouples, illustrated in Figure 1 (b). These values were compared at start-up to ensure that minimal non-condensable gases were present in the system. The heating water temperature profile within the tested tube was measured by a custom probe consisting of an 8 mm stainless steel tube with six thermocouples protruding into the heating water at three locations along the length of the tube.
The test chamber had windows on the front and back, which allowed a Photron FASTCAM Mini UX100 high-speed video camera with a Tonica AT-X 100 mm 2.8 macro lens and GS Vitec PT high-power white LEDs to capture images of the falling film-boiling process at 2000 fps.

The maximum possible refrigerant mass film flow rate per unit length, Γ_r, on a single side of a tube was approximately 0.13 kg/m/s across the range of conditions, with the maximum achieved Γ_r at each test condition of 0.14 kg/m/s for R-245fa at 20 °C, 0.13 kg/m/s and 0.12 kg/m/s for R-134a at 5 °C and 25 °C respectively. Tests were conducted where the Γ_r was kept at this maximum to minimise dryout and HTC’s were measured as the heat flux was varied from 20 to 100 kW/m². The heat flux was initially raised at the start of testing above 100 kW/m² to ensure no hysteresis influence before beginning the tests at 20 kW/m². The heat fluxes were also raised above 100 kW/m² at the end of the test to determine whether CHF as a result of DNB could be reached. Tests were also conducted at constant heat fluxes of 20, 50 and 80 kW/m² and the Γ_r was decreased from its maximum to the minimum value that could sustain the particular heat flux tested at to determine the critical dryout point and general dryout characteristics.

2.2. Tubes tested

All tubes tested were copper and had an outer diameter of 19.05 mm (nominally ¾”) and thickness of 1.2 mm with a heated length of 568 mm. A tube was polished with 1 200-grit sandpaper along the length of the tube to create a polished tube with a mean arithmetic roughness, R_a of 0.12 µm measured across the grain with a Mitutoyo SJ Surftest 210 diamond tip profilometer. A tube was sanded with 40-grit sandpaper along the length of the tube to create a roughened tube with a R_a across the grain of 1.37 µm. Data from Bock et al. [32] of a 100-grit sandpapered tube with a R_a of 0.74 µm was also used in Section 5 as a roughened tube sample.

Three different nanocoatings were applied to the outside of copper tubes. The tubes were first polished with 1 200-grit sandpaper and cleaned with an ultrasonic probe in an acetone bath followed by a deionised water rinse.

The first nanocoating used a layer-by-layer (LbL) process developed by Rubner and Cohen [48] to apply LUDOX® TM-40 silica (SiO₂) nanoparticles with a diameter of approximately 20 nm to the surface of the tube. The tube was constantly rotated by an automated apparatus and dipped first into a cationic solution of poly (allylamine hydrochloride) followed by an anionic solution of silica nanoparticles with three deionised water rinses between each. Forrest et al. [49] gave a more detailed description of the process used in this study. This process was repeated 50 times to create a nominally 50 nanoparticle thick layer on the surface.
The second nanocoating process immersed a tube in an alkali oxidising solution heated to 95 °C for 10 min, which created copper oxide (CuO) nanostructures on the surface of the tube. The solution was detailed in Nam and Ju [50] and listed as the Type I solution. The tube was manually rotated at 1 min intervals to ensure an even distribution of nanostructures.

The nanoFLUX© coating was the third nanocoating applied. The nanoFLUX coating is applied through a proprietary process by Oxford nanoSystems. The process produces a metallic dendritic structure on a surface which can be optimised to a specific size from 1 µm to 30 µm.

Images from a scanning electron microscope (SEM) of samples taken around the circumference of the LbL and CuO tubes showed no discernible difference in surface structure, which proved that the coating process was applied uniformly around the tube.

The SEM images in Figure 2 illustrate the surface structure of the tubes. The polished (Figure 2 (a)) and roughened (Figure 2 (b)) surfaces showed longitudinal scratches of different sizes. The silica nanoparticles used to create the LbL surface are visible in Figure 2 (c). However, the nanoparticles appear to have clumped compared with previous studies that used the LbL coating [51,52], which was further confirmed by AFM images of the LbL surface, shown in Ref. [38]. The measured thickness of the LbL coating in Figure 2 (d) was approximately 0.4 to 0.5 µm. The CuO coating produced a mat of protrusions (Figure 2 (e)) with a thickness of approximately 2 to 3 µm. The nanoFLUX coating (Figure 2 (g)) also produced a mat of protrusions, but of a larger scale than for the CuO surface. The roughness of the nanocoatings could not be measured by the diamond tip profilometer as the tip scratched the surfaces. An atomic force microscope (AFM) was not able to characterise the CuO and nanoFLUX surfaces reliably due to their high aspect ratios.

Figure 2. SEMs of plain and nanostructured surfaces ((a) and (b) from Ref. [32], (c) to (g) from Ref. [38]).
The LbL and CuO coatings were so thin that they added no more than 0.1% to the thermal resistance of the tubes based on a calculated thermal resistance of the coatings with the layers assumed non-porous and composed only of silica and copper oxide respectively. Therefore, the influence of the nanocoatings on the wall thermal resistance was ignored.

The contact angles of distilled water in air are listed in Table 1 and were measured with a sessile drop contact angle tester at atmospheric conditions using a low-bond axisymmetric drop-shaped algorithm [53] implemented in the ImaGe software program [54]. The CuO surface was initially superhydrophilic with a contact angle of less than 5°, but after boiling in refrigerant for approximately two hours, its surface characteristics changed and stabilised as a hydrophobic surface likely in the Cassie-Baxter state with a contact angle of 122° with water. This was likely through the adsorption of the organic refrigerant onto its surface [55,56]. The CuO surface also aged similarly if left out in the atmosphere for a few weeks, again likely through the adsorption of organic molecules from the atmosphere. Thus, all surfaces were first boiled in refrigerant for a number of hours before testing began to ensure all surfaces were aged. The aged CuO surface was considered stable as it showed good repeatability of HTCs for the duration of testing for this study. The nanoFLUX surface was also hydrophobic and likely in the Cassie-Baxter state, with air trapped in the nanostructure resulting in the poor wetting of the surface.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Average contact angle (Average ± standard deviation) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished</td>
<td>78 ± 4</td>
</tr>
<tr>
<td>Roughened</td>
<td>85 ± 3</td>
</tr>
<tr>
<td>LbL</td>
<td>52 ± 7</td>
</tr>
<tr>
<td>CuO</td>
<td>122 ± 24</td>
</tr>
<tr>
<td>nanoFLUX</td>
<td>161 ± 16</td>
</tr>
</tbody>
</table>

The contact angles of refrigerant in air at atmospheric conditions were measured with R-245fa and recorded with the high-speed video camera. Contact angles of approximately 20° were measured for all surfaces. The atmospheric temperature of 25 °C meant that significant evaporation took place as droplets were placed onto the surfaces and the droplets moved as a result, which introduced significant noise to the process. Therefore, discernible differences in contact angle between the surfaces could not be measured with this technique and refrigerant. However, all surfaces were wetted by the refrigerant and were likely in the Wenzel state.

The CuO and nanoFLUX surfaces were shown to wick liquid due to their porous nanostructures. This was confirmed with adiabatic tests where drops of refrigerant were seen to create a wicking front when placed onto the surface in saturated conditions within the test chamber. This was further confirmed with high-speed images of the falling film-boiling process, shown and discussed later in Section 7. No such wicking was seen for the polished, roughened or LbL surfaces.

2.3. Operational limits – CHF, DNB and dryout

It should be noted that the term CHF is not used nor measured consistently between pool-boiling and falling film-boiling studies. Falling film-boiling studies have at times defined CHF as the point where wall superheats increased dramatically as a result of DNB and the falling liquid film separating from the heating surface [11,39], while other studies defined CHF as where wall superheat dramatically increased as a result of dryout as film flow rates were reduced, with no liquid separation from the heat surface [25,41]. Onset-of-dryout was another falling film-boiling limit defined in some studies [14,15] which referred to the point where HTCs collapse as a result of dryout.

Pool-boiling studies use the term CHF to indicate the peak heat flux that can be reached as wall superheats are increased before the heat flux collapses [57,58], as was done in our respective pool-boiling study reported on separately [45], as dryout due to a lack of liquid mass flow is not a mechanism present in pool-boiling.

In this study, as the CHF point can be a result of either dryout or DNB, the term DNB CHF has been used to describe the peak heat flux recorded before the heat flux collapsed because of DNB where the falling liquid film separated from the boiling surface. The term critical dryout was defined as the point where wall superheats increased, and thus HTCs collapsed, as the film flow rate was decreased, with no liquid separating from the tube and liquid still boiling on the tube surface in parts. The term critical dryout is thus the same as the term onset-of-dryout already mentioned. Dryout
CHF was defined as the minimum film flow rate that could support a particular set heat flux, or vice versa, and occurred once the film flow rate was decreased beyond that of the critical dryout point. However, while the dryout CHF was recorded, it was not discussed in any detail in this study as the critical dryout point was used as the dryout operational limit. Critical dryout is the more conservative dryout limit and is typically used within more recent falling film-boiling studies [14-17]. Precise descriptions of how these limits were measured are given in the next section.

3. Data reduction and uncertainty

A brief overview of the data reduction and calculated uncertainties are given here, with further details available in Bock et al. [32].

3.1. Data reduction

The local heat flux at the midpoint of the tube, \(q \), was calculated according to Christians [46] as follows:

\[
q = \frac{m_w c_{pw} dT_w}{\pi D_o} \left(\frac{dT_w}{dx} \right)
\]

where \(D_o \) was the measured outer diameter of the tube, \(m_w \) was the measured mass flow rate of the heating water and the temperature gradient of the heating water along the length of the tube, \(dT_w/dx \), was estimated at the midpoint of the tube using a second-order polynomial fit to the measured temperatures along the length of the tube.

All properties of the refrigerant and heating water, such as the specific heat capacity of the heating water, \(c_{pw} \), were estimated using REFPROP 8 [59] based on the measured temperature of the particular fluid.

The internal HTC, \(h_i \), was determined through a Briggs and Young-type Wilson plot as implemented by Van Rooyen et al. [60]. \(h_i \) was assumed to take the form of the Gnielinski correlation [61], \(h_{Gn} \), with a lead coefficient, \(C_f \), calculated from the Wilson plot to account for the presence of the temperature probe within the tube and correlation error as follows:

\[
h_i = C_f h_{Gn} \tag{2}
\]

The overall HTC, \(U_o \), was calculated at the midpoint of the tube as follows:

\[
U_o = \frac{q}{T_w - T_{sat}} \tag{3}
\]

where \(T_w \) was the estimated temperature of the water at the midpoint of the tube based on the second-order polynomial fit to the measured temperatures along the length of the tube and \(T_{sat} \) was the saturation temperature estimated with REFPROP 8 based on the measured saturation pressure of the refrigerant.

The external HTC, \(h_o \), at the midpoint of the tube was thus calculated as follows:

\[
h_o = \left(\frac{1}{U_o} - R_{wall} - \frac{1}{h_i D_i} \right)^{-1} \tag{4}
\]

where \(R_{wall} \) was the calculated wall thermal resistance and \(D_i \) was the measured inner diameter of the tube.

The surface enhancement ratio relative to a polished tube, \(K_{surf} \), was calculated as follows:

\[
K_{surf} = \frac{h_o}{h_{o, pol}} \tag{5}
\]

where \(h_{o, pol} \) was the external HTC of the polished tube.

The falling film heat transfer enhancement ratio, \(K_{ff} \), was calculated as follows:

\[
K_{ff} = \frac{h_{o, ff}}{h_{o, pb}} \tag{6}
\]

where \(h_{o, ff} \) and \(h_{o, pb} \) were the external HTCs under falling film boiling and pool boiling conditions respectively. The pool-boiling HTCs used in this paper were described in Ref. [38].
The refrigerant mass flow rate per unit length, r_r, was calculated for one side of the tube as follows:

$$ r_r = \frac{\dot{m}_r}{2L} \quad (7) $$

where \dot{m}_r was the total measured mass flow rate of the liquid refrigerant film supplied to the tube and L was the measured length of the tube. The film Reynolds number, Re_f, for one side of the tube was calculated as follows:

$$ Re_f = \frac{4r_r}{\mu_r} \quad (8) $$

where the dynamic viscosity of the liquid refrigerant, μ_r, was estimated using REFPROP 8.

The evaporative limit, which is the minimum film Reynolds number that can support a particular heat flux assuming all supplied liquid is vaporised by the boiling process, was calculated as follows:

$$ Re_{evap} = 4\pi D_o \frac{q}{h_{fg} \mu_l} \quad (9) $$

where the latent heat of vapourisation, h_{fg}, was estimated using REFPROP 8.

A normalised HTC, h^+, was calculated for studies where the r_r varied at a constant heat flux as follows:

$$ h^+ = \frac{h_o}{h_o (Re_f=1250)} \quad (10) $$

where the h_o at a film Reynolds number of 1250 was used as the normalising denominator, as this was the highest film Reynolds number achieved under all refrigerant conditions.

The critical dryout point was characterised by decreasing the film Reynolds number and noting when a sharp decline in HTC occurred due to dryout. This was previously identified in Bock et al. [32] by the point at which the gradient of the HTC versus film Reynolds number, $dh_o/\,dRe_f$, first went below 5 W/m2K as the film Reynolds number was increased. This approach struggled with some of the data generated in this study, particularly the HTC hump (discussed in section 5) and the high HTC data of the nanoFLUX tube. The approach was refined to use the gradient of the normalised HTC, h^+, against the film Reynolds number. The critical dryout point was thus defined as the first point, as the film Reynolds number was decreased from the maximum to the minimum recorded, at which all subsequent normalised HTC gradient points met the criteria as follows:

$$ \frac{dh^+}{\,dRe_f} > 0.0005 \quad (11) $$

The dryout CHF point was the last data point successfully recorded at a constant heat flux as the film flow rate was decreased and no liquid separation occurred.

The DNB CHF point was determined in two ways, depending on the test conducted. In tests where the heat flux was increased and the r_r was kept constant at a maximum (typically 0.13 kg/m/s), the DNB CHF point was recorded at the peak heat flux obtained if separation occurred. In tests where the heat flux was kept constant and the refrigerant film mass flow decreased, the DNB CHF point was the last data point successfully recorded at that heat flux before the liquid separation was noted. If no liquid separation was noted, that was then a dryout CHF point.

The critical film Reynolds number, Re_{fc}, was determined as the highest film Reynolds number at a particular heat flux at which either critical dryout, dryout CHF or DNB CHF occurred.

3.2. Uncertainty

The methodology of Dunn [62] was used to calculate the expanded standard uncertainties of the various sensors. The average expanded uncertainty of the temperature probes was 0.1 K, that of the pressure probes was 0.2%, that of the mass flow rate of water, \dot{m}_w, was 0.2% and that of the r_r was 0.3%. JCGM 100:2008 [63] was used to calculate the combined standard uncertainties of the calculated quantities through the law of propagation of uncertainty. These uncertainties varied across the heat flux range and are summarised in Table 2.
Table 2. Summary of uncertainties.

<table>
<thead>
<tr>
<th></th>
<th>Overall average uncertainty</th>
<th>Average uncertainty at 20 kW/m²</th>
<th>Average uncertainty at 100 kW/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>11%</td>
<td>26%</td>
<td>5.3%</td>
</tr>
<tr>
<td>(h_o)</td>
<td>31%</td>
<td>48%</td>
<td>23%</td>
</tr>
<tr>
<td>(k_{ff})</td>
<td>3.2%</td>
<td>7.4%</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

4. Departure from nucleate boiling critical heat flux

DNB CHF occurred during testing of the CuO and nanoFLUX nanostructured surfaces resulting in a peak heat flux being reached. Tests that achieved DNB at the maximum \(\Gamma_r \) of the experimental apparatus of approximately 0.13 kg/m/s are illustrated in Figure 3 with the DNB CHF point indicated by an arrow. DNB was also recorded in some instances for the CuO and nanoFLUX tubes in tests where the \(\Gamma_r \) was reduced and these instances are indicated with arrows in Figure 5.

![Figure 3](image.png)

Figure 3. Heat flux versus wall superheat illustrating DNB CHF of nanostructured tubes.

Increased wall superheat resulted in increased heat flux before the DNB CHF point was reached. As the DNB CHF point was approached, separation between the surface and liquid film was seen, initially at the inlet end of the tube. The liquid separation progressively moved along the length of the tube as wall superheat was further increased resulting in heat flux peaking and then decreasing because of the decreased proportion of the tube in contact with the liquid. DNB eventually enveloped the entire tube and heat fluxes then collapsed to values below 10 kW/m², not shown in Figure 3. The heat fluxes of the plain and LbL surfaces were set to the maximum limit that the experimental equipment could support but no DNB could be obtained.

Images from the high-speed video camera illustrating the DNB liquid separation process are shown in Figure 4, taken at the midpoint of the tube length.

As the DNB CHF was approached at a particular point on the tubes, the falling film began to separate from the tube. The separation started at the bottom of the tube and moved up the tube circumference until the fluid was completely separated from the tube. The tube was no longer wetted by the fluid and the falling liquid film bounced off the tube and deflected around it. It should be noted that the images in Figure 4 were taken at the midpoint of the tube, while the liquid separation first began at the water inlet end of the tube. Thus, while the tube in Figure 4 (a,i) and (b,i) was fully wetted, the water inlet end of the tube was already experiencing film separation.

Studies of falling film boiling on plain flat plates and vertical tubes [11,39-41] noted that liquid separation began at the bottom end of the heater plate or vertical tube, similar to this study. However, the studies of flat plates and vertical tubes noted the presence of a thin subfilm of liquid beneath the main separated liquid film and theorised that this subfilm played a key role in the falling film DNB process. However, no subfilm was seen in this study, suggesting that this DNB took place through a different mechanism.
The DNB CHF measured for the nanostructured surfaces was lower than that of a plain surface also experiencing CHF as a result of DNB. For example, the polished surface was able to reach 100 kW/m2 in R-245fa at 20 °C, above the 71 kW/m2 DNB CHF of the nanoFLUX tube. Unfortunately, the DNB point of the plain and LbL tubes could not be reached as tests could not be conducted at higher fluxes due to the low HTCs of the plain and LbL tubes and the wall superheat limitations of the experimental equipment. The falling film DNB CHFs were also lower than those recorded under pool-boiling conditions in our previous study with the same tubes and identical refrigerant conditions [38], as indicated in Table 3. The falling film DNB CHFs were only about 50 to 60% of the respective pool-boiling values.

![Images of CHF liquid separation at midpoint of tube length.](image1)

Table 3. Measured DNB and comparison with pool-boiling DNB.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Surface</th>
<th>(DNB) [kW/m2]</th>
<th>(DNB_{pb}) [kW/m2] (from Ref. [38])</th>
<th>(\frac{DNB_{ff}}{DNB_{pb}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-245fa at 20 °C</td>
<td>nanoFLUX</td>
<td>71</td>
<td>112</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>CuO</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-134a at 5 °C</td>
<td>nanoFLUX</td>
<td>127</td>
<td>245</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>CuO</td>
<td>108</td>
<td>189</td>
<td>0.57</td>
</tr>
<tr>
<td>R-134a at 25 °C</td>
<td>CuO</td>
<td>154</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure 4 (a,ii) shows that the nanoFLUX and CuO surfaces experienced this early DNB despite wicking still taking place on the upper section of the tube, while separation was occurring on the bottom half of the tube. The early onset of DNB was possibly caused by the same mechanism as proposed in our pool-boiling study [38], namely once the wicking was overcome and the nanostructures dried out, a Cassie-Baxter state of wetting was initiated (a likelihood illustrated by the water contact angle data) and thus an early onset of DNB compared to plain tubes.
5. Dryout

The influence of the Γ_r on the HTC's of the polished, roughened and nanostructured tubes is shown in Figure 5. As the Γ_r was decreased, both plain and nanostructured tubes displayed a relatively insensitive HTC response, resulting in the typical plateau region. The sensitivity of the plateau region increased as the heat flux was increased for most tubes, particularly for the plain tubes. Dry patches were observed within these plateau regions with the aid of the high-speed camera. These patches were temporary and quickly covered by the flowing liquid film, as noted in previous studies [47].

![Figure 5](image.png)

(a) R245fa, 20 °C, $p_r=0.034$
(b) R134a, 5 °C, $p_r=0.086$
(c) R134a, 25 °C, $p_r=0.160$

Figure 5. HTCs as a function of Γ_r (polished and roughened data for R-134a at 5 °C taken from Bock et al. [32]). Critical dryout indicated by filled-in markers.

The HTCs collapsed as the refrigerant film flow rate was reduced further for both the plain and nanostructured tubes. This was caused by critical dryout, with the formation of large dry patches visible on the tube surfaces and insufficient liquid flow available to rewet the dry patches, while liquid boiled on the wetted portions of the tubes. The point of critical dryout is noted by filled-in markers in Figure 5. This critical dryout was seen to occur at higher film flow rates as the heat flux was increased for both plain and nanostructured tubes.

DNB CHF was seen on the CuO and nanoFLUX tubes in a number of cases as the Γ_r was decreased, which resulted in the separation of the fluid from the tube surface and led to almost instantaneous decrease in HTC as the tube was no longer wetted and no boiling could take place. DNB CHF cases are noted in Figure 5 with a downward arrow.
However, a number of these cases occurred after the T_r was below the critical dryout point. In these cases, critical dryout was the limiting factor rather than DNB CHF because the HTCs had decreased significantly already. Lastly, dryout CHF was reached on those cases where DNB CHF was not, with the minimum T_r data point recorded for each tube indicating this point. The critical dryout point always occurred at a higher T_r that the dryout CHF and thus was the dryout operational limit in all cases.

The nanoFLUX tube displayed an increase in HTC as T_r was decreased in some cases, for example in R-134a at 25 °C at 20 kW/m2, as shown in Figure 5 (c.iii), resulting in an HTC ‘hump’. This phenomenon of increased HTC at reduced falling film flow rates was captured before in the convective heat transfer of water falling films on Gewa-T 3D micro-enhanced tubes [64] and superhydrophilic and hydrophilic tubes [65]. This was also seen in the falling film boiling of refrigerants on micro-enhanced tubes in R-134a [16,18]. A thinned liquid layer, which resulted in a decrease in evaporative thermal resistance, was considered the likely cause [64,65].

Images of the boiling process during the increased HTC hump are shown in Figure 6. The HTC hump occurred at T_r of 0.02 kg/m/s, as shown in Figure 6 (b), with a completely wetted surface with very little waves or rivulets compared with the higher film flow rates, as shown in Figure 6 (a), supporting the idea of a stable thin layer being formed. Furthermore, the backlight below the tube where the vapour passed, as shown in Figure 6 (b), was the darkest, which again suggested that significant evaporation of fluid was taking place, increasing the HTCs. The HTC dropped rapidly after T_r was further decreased through the formation of stable dry patches visible in Figure 6 (c). The nanoFLUX tube had to maintain a film layer so thin that the evaporative thermal resistance became so low that it could meaningfully contribute to the HTC thus causing the hump, because previous reductions in film thickness at higher T_r were not accompanied by increased HTCs.

In an effort to understand the influence of surface and refrigerant properties on dryout, a normalised HTC, h^*, and the dimensionless film Reynolds number, Re_f, were plotted for 50 kW/m2, as shown in Figure 7. The plateau region of the polished tube was the most sensitive to film Reynolds number changes. The nanoFLUX tube and to a lesser degree the CuO tube had plateau regions that were very insensitive to film Reynolds number changes. The roughened and LbL tubes had plateau regions of intermediate film Reynolds number sensitivities.
The differing sensitivities of the surfaces could be through intermittent dryout. While the dry spots which formed within the plateau region were temporary, these dry spots would still temporarily reduce the heat transfer and thus have a negative effect on the time-averaged HTC. Surfaces with lower wettability could have a greater frequency of intermittent dry spots than surfaces with a higher wettability. The frequency of intermittent dry spots was expected to increase as the film Reynolds number was decreased thus having a progressively more negative effect on the HTCs of affected surfaces. Image analysis of these intermittent dry spots would be a recommended method of determining if this indeed was the case.

Figure 7 shows that at a given film Reynolds number, the normalised HTC was typically the lowest for R-134a at 25 °C, followed by R-134a at 5 °C and then R-245fa at 20 °C across all tubes tested. Therefore, on a film Reynolds number basis, HTCs in R-134a at 25 °C were most negatively affected by dryout, followed by R-134a at 5 °C and then R-245fa at 20 °C.

6. Operational limits

The operational limits of the tubes are illustrated in Figure 8 with the critical film Reynolds number as a result of critical dryout (open markers) or DNB CHF (filled markers) as a function of heat flux. The evaporative limit for each respective refrigerant condition was also plotted.
Lower heat fluxes resulted in lower film Reynolds numbers at which critical dryout or DNB occurred. Higher film flow rates suppressed critical dryout, with the liquid film rewetting dry spots that formed. Similarly, higher film flow rates suppressed DNB, with the falling liquid likely suppressing the dryout of the nanostructures and preventing the separation of the liquid film from the surface.

The critical film Reynolds numbers were the lowest for R-245fa at 20 °C, while R-134a at 25 °C had slightly higher critical dryout limits than for R-134a at 5 °C. This agrees with the trends in Figure 7 in terms of rate at which the normalised HTC, h^*, decreased as film Reynolds number was decreased, where R-134a at 25 °C had the earliest normalised HTC drop, followed by R-134 at 5 °C and then R-245fa at 20 °C.

The polished tube had some of the highest film Reynolds numbers at which critical dryout occurred at a heat flux of 20 kW/m2, while the CuO and nanoFLUX tubes had some of the lowest. As the heat fluxes were increased above 20 kW/m2, the critical film Reynolds number increased for the CuO and nanoFLUX surfaces by the greatest amount of all the tubes such that they were the highest at 80 kW/m2. At approximately this heat flux, DNB now became a concern and at times, the limiting factor for the CuO and nanoFLUX surfaces.

Figure 8. Critical film Reynolds number as a function of heat flux.

The CuO and nanoFLUX surfaces were thus shown to provide good dryout resistance at low heat fluxes (~ 20 kW/m2) but at increased heat fluxes (~ 80 kW/m2), these surfaces had poor critical dryout resistance and poor DNB resistance. The worsened dryout and DNB performance of the CuO and nanoFLUX surfaces were possibly
through the dryout of the underlying nanostructures and subsequent operation in the Cassie-Baxter state of wetting, resulting in poor wetting and thus poor critical dryout and DNB performance.

However, the normalised HTC data of Figure 7 should be kept in mind when considering the dryout limits, as shown in Figure 8. For example, the polished tube HTCs dropped by between 20 to 30% at a film Reynolds number of 500 at 50 kW/m² across the conditions tested, while the nanoFLUX tube still had HTCs within 3% of its maximum HTC. This merits consideration from designers of falling film evaporators, as both surfaces have critical dryout limits below a film Reynolds number of 500, but the high sensitivity of tubes such as the polished surface means that significant HTC reduction can take place within the plateau region.

7. Surface wicking

Figure 9 shows a zoomed-in progression of dry spots on the vertical sides of the polished and nanoFLUX tube in R-245fa at 20 °C at 50 kW/m² and a film flow rate of 0.13 kg/m/s. Wetting of the surfaces at these high film flow rates took place with a series of intermittent thick waves of liquid wetting the surface. The images of Figure 9 were of dry spots that developed undisturbed between these waves. Figure 9 (a) indicates that a dry spot was started on the polished tube by a bubble popping, just before the frame began. The dry spot increased in size as the wetting front receded and then merged with a neighbouring dry spot. As the two dry spots merged, necking could be seen between the two spots, as indicated by the arrows at t = 11 ms. No wicking front was visible in these images for the polished tube. A dry spot began on the nanoFLUX surface with a thinned region, indicated by arrows in Figure 9 (b) at the 0 and 3.5 ms mark. As the wetting front receded, a small receding wicking front could also be seen around the dry spot. A larger wicking front appeared once the dry spot merged with a neighbouring dry spot at the 17.5 ms mark, indicated by arrows. This wicking front was visible around most of the circumference of the dry spot, suggesting that the wicking front was able to overcome the influence of gravity (which is downwards in Figure 9).

![Figure 9](image)

Figure 9. Dry spot progression of polished and nanoFLUX tubes in R-245fa at 20 °C at 50 kW/m² at 0.13 kg/m/s.

The difference between the polished tube and nanoFLUX tube wetting ability was not evident from the refrigerant or water contact angles measured. But with wicking confirmed to take place on the nanoFLUX tube, as illustrated in Figure 9, it was likely the reason for the insensitive plateau region of the nanoFLUX tube and the ability to maintain a thin stable film at low Γ_r, resulting in the increased HTC hump seen under some conditions.

![Figure 10](image)

Figure 10. CuO wicking front in R-245fa at 20 °C at 50 kW/m² at 0.13 kg/m/s.
The CuO tube also displayed wicking fronts, as seen in Figure 10. However the CuO wicking front was smaller than that seen on the nanoFLUX surface, and was not always visible, with the wicking front only visible on some edges of the dry spots, highlighted with arrows in Figure 10. Thus the CuO surface likely had a lower wicking ability than that of the nanoFLUX tube, and under some conditions it is likely no wicking took place at all.

8. Heat transfer

8.1. Heat transfer coefficients

The HTCs measured during falling film boiling of the polished, roughened and three nanostructured tubes are shown in Figure 11 at a \(\Gamma_r \) of approximately 0.13 kg/m/s at three reduced pressures. All tubes showed a linear increase in HTCs as heat flux was increased on the log-log plot.

![Heat transfer coefficients](image)

(a) R-245fa, 20 °C, \(p_r \) of 0.034

(b) R-134a, 5 °C, \(p_r \) of 0.086

(c) R-134a, 25 °C, \(p_r \) of 0.160

Figure 11. HTCs as a function of heat flux at different reduced pressures with a \(\Gamma_r \) of approximately 0.13 kg/m/s (Polished and roughened tube data for R-134a taken from Ref. [32]).

However, at a reduced pressure of 0.034, the gradient of the HTCs of some surfaces began to decrease as heat fluxes approached the upper end of the heat flux range tested. This was caused by dryout for the polished and roughened surfaces and DNB for the nanoFLUX surface, as previously discussed. The polished and LbL tubes recorded the lowest HTCs across the three reduced pressures, the roughened and nanoFLUX tubes recorded the highest HTCs and the CuO surface HTCs were intermediate.
The polished tube was used as a baseline to better illustrate the performance of the nanostructured tubes through the surface enhancement ratio in Figure 12. The roughened tube HTCs outperformed the polished tube HTCs by approximately 60% at the highest two reduced pressures and reached a maximum of 100% higher HTCs at the lowest reduced pressure. The LBL tube at a reduced pressure of 0.034 outperformed the polished tube by up to 20% but at the higher reduced pressures, the HTCs were 20% lower. The CuO tube HTCs were 20% lower than the polished tube HTCs at the lower range of the heat fluxes, but between 60 to 80% higher at the upper end of the heat flux range. The nanoFLUX tube had HTCs between 40 to 80% higher than those of the polished tube at the lower end of the heat flux range and up to 200% higher HTCs at the upper end of the heat flux range. Therefore, both the CuO and nanoFLUX tubes had increased sensitivity to heat flux changes compared with the polished tube.

![Figure 12](image12a.png)
(a) R-245fa, 20 °C, \(p_r \) of 0.034

![Figure 12](image12b.png)
(b) R-134a, 5 °C, \(p_r \) of 0.086

![Figure 12](image12c.png)
(c) R-134a, 25 °C, \(p_r \) of 0.160

Figure 12. HTC performance relative to smooth polished tube as a function of heat flux.

This increased sensitivity was further investigated by fitting the relation \(h_0 = a q^m \) to the data of Figure 11 with the results in Figure 13 (a). The heat flux sensitivities of the smooth, roughened and LBL tubes were similar, with an \(m \) of approximately between 0.4 to 0.6, while the CuO and nanoFLUX were more sensitive to heat flux changes with an \(m \) of approximately 0.8. This was similar to the pool-boiling results seen in our pool-boiling paper [38], which suggested that the CuO and nanoFLUX tubes had a higher number of smaller nucleation cavities that were activated under both pool-boiling and falling film-boiling conditions as heat fluxes were increased compared with the other tubes.

In order to quantify the influence of liquid properties, the HTCs were plotted against the reduced pressure at 50 kW/m², as shown in Figure 13 (b). The HTC of all tubes increased as the reduced pressure was increased, as...
indicated in the corresponding pool-boiling results [38]. The CuO and nanoFLUX tubes showed a linear increase in HTC on the plot, while the polished, roughened and LbL tubes showed a reduction in the gradient as the reduced pressure reached its maximum. This may again be a result of a large population of small nucleation cavities that were activated as reduced pressure increased or as a result of dryout at the highest reduced pressure, which influenced the nanoFLUX and CuO plateau region the least.

![Graph showing fitted exponent and HTC vs reduced pressure](image)

(a) Fitted exponent, m
(b) HTC at 50 kW/m²

Figure 13. Influence of reduced pressure on HTCs and coefficient m.

8.2. Nucleation site density

In an attempt to quantify the nucleation site density of the surfaces, images from the high-speed camera were taken at the lowest HTCs and thus lowest expected nucleation site density in R-245fa at 20 °C and these are shown in Figure 14. Nucleation sites could not be counted as was done for the pool-boiling case in Ref. [38] because nucleation primarily occurred at the top of the tube with limited nucleation on the sides of the tube. The bubbles slid down the tube, which also obscured the sidewall nucleation sites more than was the case for pool-boiling.

![Images of boiling surfaces at 20 kW/m²](image)

(a) Polished (b) Roughened (c) LbL (d) CuO (e) nanoFLUX

Figure 14. Images of boiling surfaces at 20 kW/m² in R-245fa at 20 °C with a γᵣ of approximately 0.13 kg/m/s.

However, it is clear from the images that the roughened tube had the most bubbles. This agrees with the findings of the pool-boiling study where the roughened tube was found to have the most nucleation sites [38]. The 60 to 100%
higher HTCs of the roughened tube compared with those of the polished tube seen in Figure 12 were thus likely due to increased nucleation site density, as the surfaces were otherwise structurally similar.

The LbL and CuO tubes had HTCs approximately 10% higher and lower than the polished tube respectively at 20 kW/m² in R-245fa at 20 °C and it is not clear whether they had differing nucleation site densities based on Figure 14 compared with those of the polished tube. The nanoFLUX tube appeared to have a lower nucleation site density than for the roughened tube in Figure 14, despite having HTCs approximately 10% higher than that of the roughened tube at 20 kW/m² in R-245fa at 20 °C, with a similar trend seen in the pool-boiling results. This suggested that the unique heat transfer mechanism of the nanoFLUX tube (and possibly the CuO tube) seen within our pool-boiling study [38] was active under falling film conditions.

However, this evidence was not conclusive and an approach to measuring nucleation site density under falling film conditions would need to be developed to confirm this.

8.3. Falling film heat transfer enhancement

The falling film heat transfer enhancement ratios, K_{ff}, where the falling film HTCs at a Γ_r of approximately 0.13 kg/m/s were compared with the pool-boiling HTCs from our previous study [38] are shown in Figure 15 as a function of heat flux.

![Graphs showing falling film enhancement as a function of heat flux](image)

(a) R-245fa, 20 °C, p_r of 0.034

(b) R-134a, 5 °C, p_r of 0.086

(c) R-134a, 25 °C, p_r of 0.160

Figure 15. Falling film enhancement as a function of heat flux.
The polished tube had some of the lowest enhancement ratios, while the roughened tube had some of the highest enhancement ratios. This is consistent with the theory that falling film enhancement is driven by increased microlayer evaporation from trapped and sliding bubbles [8,66]. The greater nucleation site density of the roughened tube compared to the polished tube would allow it to have more sliding bubbles and thus a greater enhancement ratio. The LbL tube had an intermediate enhancement ratio throughout.

The nanoFLUX tube also had some of the highest falling film enhancement ratios measured, while the CuO surface had some of the lowest enhancement ratios. Considering that both the CuO and nanoFLUX surfaces had similar nanostructures, it was likely that the difference in falling film enhancement ratios could also be attributed to differences in microstructure and the expected increased nucleation site density of the nanoFLUX tube, seen and measured in the pool-boiling results [38], which would result in a greater number of sliding bubbles.

It should be noted that the falling film enhancement of the nanostructured tubes was similar in magnitude to that of the plain tubes. Therefore, the unique heat transfer mechanisms of the nanostructured tubes appear not to be enhanced under falling film conditions and rather any enhancement appears to be through a similar mechanism to that of the plain tubes.

Figure 16. K_f as a function of p_r with T_r of approximately 0.13 kg/m/s.

The falling film enhancement ratio of the polished, roughened and LbL surfaces all displayed a sensitivity to heat flux, particularly in R-245fa at 20 °C, while the nanoFLUX and CuO surface did not. This could be linked to dryout, because while our results showed that at similar film Reynolds number, R-134a at 25 °C had the worst dryout...
performance, at the same film flow rate of 0.13 kg/m/s, the worst dryout would occur in R-245fa at 20 °C because the film Reynolds number of R-245fa was approximately half that of R-134a due to R-245fa having over double the dynamic viscosity of R-134a at 20 °C.

The influence of reduced pressure on the falling film enhancement ratio is illustrated in Figure 16 at three heat fluxes of 20, 50 and 80 kW/m². The falling film enhancement ratio of the polished tube decreased as reduced pressure was increased at 20 kW/m², but increased at 80 kW/m². The roughened tube showed a relatively stable enhancement ratio at heat fluxes of 20 and 50 kW/m², but an increasing enhancement ratio at 80 kW/m².

The LbL, CuO and nanoFLUX tubes showed a clear increase in falling film enhancement ratios of approximately 10% as the reduced pressure was increased across the range of heat fluxes. This fits in with the already discussed theoretical framework, because increased reduced pressure leads to more activated nucleation sites and thus a greater number of sliding bubbles and increased microlayer evaporation than for pool-boiling.

It is unclear why the polished tube had a reduction in enhancement ratio and the roughened tube enhancement ratio remained relatively constant as reduced pressure was increased at 20 kW/m². Dryout could be a factor, as the normalised HTCs in Figure 7 show that the polished and roughened tubes had a sensitive HTC plateau possibly caused by intermittent dryout. Therefore, at a Γ_r higher than those tested in this study, the HTCs of the polished and roughened tubes could increase and thus also increase the falling film enhancement ratio resulting in trends similar to those displayed by the CuO and nanoFLUX tubes, which had less of a dryout influenced plateau region.

9. Conclusions

The heat transfer coefficients (HTCs) on one polished, one roughened and three nanostructured horizontal tubes were measured during saturated falling film boiling of refrigerants R-245fa at 20 °C and R-134a at 5 °C and 25 °C. The refrigerant mass flow rate per unit length, Γ_r, on the outside of the tubes was varied from 0 kg/m/s to a maximum of approximately 0.13 kg/m/s. The three nanostructured tubes tested were: (i) a layer-by-layer (LbL) tube, created through the deposition of silica nanoparticles with a diameter of approximately 20 nm onto the surface of a CuO tube, (ii) a tube with copper oxide (CuO) nanostructures over its surface, created by using a chemical bath to oxidise the surface of the tube, and (iii) a commercial nanoFLUX-coated tube.

Both plain and nanostructured tubes displayed the characteristic plateau region with HTCs being relatively insensitive to reductions in Γ_r, followed by critical dryout where the HTCs collapsed as dry patches became predominant. The nanoFLUX tube, and the CuO tube to a lesser degree, produced a very insensitive plateau region as the Γ_r decreased, while the polished, roughened and LbL tubes all showed decreased HTCs within the plateau region up until the critical dryout point. In some cases, a HTC hump was observed for the nanoFLUX tubes, where up to a 20% increase in the HTC occurred just prior to the critical dryout limit as the Γ_r was decreased. This was thought to be due to maintaining a very thin film of liquid that reduced the evaporative thermal resistance to a point where it could meaningfully contribute to the HTC.

Critical dryout occurred at higher film Reynolds numbers as the heat flux was increased for both plain and nanostructured tubes. The nanostructured CuO and nanoFLUX tubes had the lowest critical film Reynolds numbers at low heat fluxes (20 kW/m²), but the highest critical film Reynolds numbers at higher heat fluxes (80 kW/m²) due to the early onset of critical dryout or departure from nucleate boiling (DNB) at higher heat fluxes. The CuO and nanoFLUX tubes experienced early onset of DNB compared with the other tubes, with liquid separating and no longer wetting the surface of the tubes.

Evidence of wicking suggested that this was the mechanism that improved the dryout capabilities of the nanoFLUX and CuO tubes under lower heat flux conditions. However, increased heat fluxes possibly led to dryout of the CuO and nanoFLUX nanostructures resulting in operation in the Cassie-Baxter state and thus reduced wettability with subsequent critical dryout and DNB critical heat flux occurring. The worst dryout performance was seen when boiling R-134 at 25 °C, followed by R-134a at 5 °C and then R245fa at 20 °C when compared on an equal film Reynolds number basis.

Nanostructured tubes achieved both higher and lower falling film-boiling HTCs than those associated with the plain tubes over the heat flux range from 20 to 100 kW/m² at the maximum film flow rate of approximately 0.13 kg/m/s. The roughened tube had HTCs between 60% and 100% higher than the polished tube, the LbL tube had HTCs between 20% lower and 20% higher than the polished tube, the CuO tube had HTCs between 20% lower and 80% higher than the polished tube, and the nanoFLUX tube had between 40 to 200% higher HTCs than the polished tube. Both plain and nanostructured tubes had HTCs that increased as the heat flux or reduced pressure were increased. The CuO and nanoFLUX tubes showed higher sensitivities to changes in the heat flux and reduced pressure than the other tubes.
The falling film heat transfer enhancement ratios of the nanostructured tubes tested in this study were of a similar order of magnitude to those of the plain tubes. The enhancement ratios of the LbL, CuO and nanoFLUX nanostructured tubes increased as the reduced pressure was increased, thought to be caused by increased bubble nucleation at higher reduced pressures resulting in greater microfilm evaporation from sliding bubbles. The falling film heat transfer enhancement ratios of the roughened and nanoFLUX tubes were higher than those of the polished and CuO tubes respectively, likely as a result of a greater number of active nucleation sites on the roughened and nanoFLUX tubes. The polished and roughened tube falling film heat transfer enhancement ratios did not increase monotonically as the reduced pressure increased, possibly as a result of dryout considerations.

Credit authorship contribution statement

Bradley D. Bock: Conceptualisation, methodology, validation, formal analysis, investigation, data curation, visualisation, writing – original draft, project administration. Matteo Bucci: Conceptualisation, funding acquisition, resources, supervision, writing – review and editing. Christos N. Markides: Conceptualisation, funding acquisition, writing – review and editing. John R. Thome: Conceptualisation, methodology, funding acquisition, resources, supervision, writing – review and editing. Josua P. Meyer: Conceptualisation, methodology, funding acquisition, resources, supervision, writing – review and editing.

Declaration of competing interest

The authors declare that there are no conflicts of interest.

Acknowledgements

This work was supported by the MIT International Science and Technology Initiatives (MISTI) programme under an MIT-Africa-Imperial College London seed fund grant, by the UK Department for International Development (DFID) through the Royal Society-DFID Africa Capacity Building Initiative and by the European Union’s Horizon 2020 Research and Innovation Programme within the TheraSMART network under the Marie Sklodowska-Curie Grant Agreement No. 778104. The authors would also like to acknowledge Dr Victor Voulgaropoulos for assistance with the coatings, as well as Dr Dorette Kritzinger and Professor Jackie Nel at the University of Pretoria for assistance with the surface characterisation.

References

