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A promising development of the last decade in the numerical modelling of geo-
physical fluids has been the compatible finite-element framework. Indeed, this
will form the basis for the next-generation dynamical core of the Met Office. For
this framework to be useful for numerical weather prediction models, it must
be able to handle descriptions of unresolved and diabatic processes. These pro-
cesses offer a challenging test for any numerical discretisation, and have not yet
been described within the compatible finite-element framework. The main con-
tribution of this article is to extend a discretisation using this new framework
to include moist thermodynamics. Our results demonstrate that discretisations
within the compatible finite-element framework can be robust enough also to
describe moist atmospheric processes. We describe our discretisation strategy,
including treatment of moist processes, and present two configurations of the
model using different sets of function spaces with different degrees of finite
element. The performance of the model is demonstrated through several test
cases. Two of these test cases are new cloudy-atmosphere variants of exist-
ing test cases: inertia–gravity waves in a two-dimensional vertical slice and a
three-dimensional rising thermal.
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1 INTRODUCTION
AND MOTIVATION

In the dynamical cores of global numerical weather pre-
diction models, latitude–longitude grids have long been
popular due to the orthogonality of the meridians and cir-
cles of latitude. This orthogonality can be exploited to gain

a number of desirable numerical properties, as discussed
in Staniforth and Thuburn (2012). However, as these grids
are refined, the grid points around the poles converge.
On the massively parallel computers that are expected to
dominate the future of numerical weather prediction, this
leads to a bottleneck in the data communication around
the poles. This compromises the scalability of the model:
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as more computational resources become available, there
will be diminishing returns to the resolution at which
the model can be run within a given wall-clock time.
There has therefore been a search for alternative grids
that will avoid the pole problem and deliver better scaling,
while still providing the desirable numerical properties
described in Staniforth and Thuburn (2012).

Compatible finite-element methods offer a promis-
ing solution to this problem. These are finite-element
methods in which the variables lie in different function
spaces, so that the discrete equations replicate the vec-
tor calculus identities of the continuous equations, such
as 𝛁×𝛁f=0 and 𝛁 ⋅𝛁×f=0. These methods can facilitate
the use of nonorthogonal meshes, for instance those that
are quasiuniform over the sphere, so the scalability bottle-
neck can be avoided. Cotter and Shipton (2012) showed,
for the linear rotating shallow-water equations, that a
compatible finite-element discretisation still maintains
many of the properties that are argued for by Staniforth
and Thuburn (2012). More recent work using compati-
ble finite-element methods for geophysical fluids includes
Cotter and Thuburn (2014), Natale et al., (2016), and
Yamazaki et al., (2017). The Met Office is therefore devel-
oping a dynamical core using such a discretisation; see
Melvin et al., (2019) for recent developments.

As of yet, the framework has not been combined
with “physics” (descriptions of unresolved and diabatic
physics processes). This is a vital step for such discreti-
sations to be used in weather prediction or climate mod-
elling. However, these processes can be challenging for the
discretisation.

The main result of this article is the first extension
of this framework to include moist thermodynamics, so
introducing a basic form of “physics”. We present the
details of discretisations for two sets of compatible spaces,
with elements of different approximation orders. Then we
demonstrate these discretisations through a series of test
cases featuring moisture.

The structure of this article is as follows. First we
present the form of the continuous equations that we aim
to solve in Section 2. Then Section 3 describes the spa-
tial and temporal discretisation of the dynamical part of
the model, presenting the function spaces for the vari-
ables and the strategy for solving the equations of motion.
Section 4 details the specifics of the moisture parametri-
sations, including a discussion of how to combine fields
from different function spaces within a parametrisation.
We then demonstrate its use in a number of test cases in
Section 5.

Finally, the model presented in this article is written
as part of Gusto, a library for dynamical cores using com-
patible finite element discretisations. Gusto itself is based
on the Firedrake software of Rathgeber et al., (2017), the

development of which is based at Imperial College Lon-
don. This software provides automated code generation
for finite-element methods. Firedrake also has the func-
tionality for tensor product element and extruded mesh
functionality, as described in McRae et al., (2016), Bercea
et al., (2016), and Homolya and Ham (2016), which we
used substantially.

2 GOVERNING EQUATIONS

We solve the compressible Euler equations featuring three
species of moisture: water vapour, cloud water, and rain.
The ice phase is neglected. Motivated by the Met Office’s
most recent dynamical core, ENDGame, described in Wal-
ters et al., (2014), our prognostic variables are the density
of dry air 𝜌d and the dry virtual potential temperature 𝜃vd,
alongside the wind velocity v and the mixing ratios rv,
rc, and rr. Here the subscripts respectively denote water
vapour, cloud water, and rain, whilst the mixing ratio ri is
the ratio of the density by volume of the ith substance to
that of dry air, that is, ri ∶= 𝜌i∕𝜌d. The total mixing ratio of
water species is rt:= rv + rc + rr. The dry potential temper-
ature 𝜃vd is defined for rv, temperature T, and air pressure
p by

𝜃vd ∶= T
(

pR

p

)Rd∕cpd

(1 + rv∕𝜖) = 𝜃d(1 + rv∕𝜖), (1)

where cpd is the specific heat capacity of dry air, pR is a
reference pressure, 𝜃d is the dry potential temperature,
and 𝜖 ∶= Rd∕Rv is the ratio of specific gas constants of dry
air and water vapour. The choice of 𝜃vd is motivated in
Walters et al., (2014), which notes that it is the more nat-
ural choice of variable to complement 𝜌d, and claims that
it may be smoother than the dry potential temperature 𝜃d.

The full equation set that we use is

Dv
Dt

+ f × v +
cpd𝜃vd

1 + rt
𝛁Π + 𝛁Φ = 0, (2a)

D𝜃vd
Dt

+ 𝜃vd

(
Rm
cvml

− Rdcpml

cpdcvml

)
𝜵 ⋅ v

= −𝜃vd

[
cvdLv(T)
cvmlcpdT

− Rv
cvml

(
1 − Rdcvml

Rmcpd

)
− Rv

Rm

]
Drv
Dt
,

(2b)

D𝜌d

Dt
+ 𝜌d𝜵 ⋅ v = 0, (2c)

Drv

Dt
= ṙr

evap − ṙc
cond, (2d)
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Drc

Dt
= ṙc

cond − ṙaccr − ṙaccu, (2e)

Drr

Dt
= ṙaccr − ṙaccu − ṙr

evap − S. (2f)

Here, Π is the Exner pressure function and Φ repre-
sents the geopotential, whilst f = f k̂ represents the Cori-
olis parameter multiplied by the vertical unit vector. The
specific heat capacities cpd, cvd, cpml, and cvml, are (respec-
tively) for dry air at constant pressure, dry air at constant
volume, moist air at constant pressure, and moist air at
constant volume. For these, as well as the specific gas con-
stant Rm and also the latent heat of vaporization Lv(T),
we follow closely the values used in Bryan and Fritsch
(2002), which are also listed in the Appendix. The advec-
tive derivative is given by

D
Dt

= 𝜕

𝜕t
+ v ⋅ 𝛁. (3)

The equation of state can be written as

Π =
(

p
pR

)𝜅

≡
(
𝜌dRd𝜃vd

pR

)𝜅∕(1−𝜅)

, (4)

with 𝜅 ∶= Rd∕cpd.
The terms on the left-hand sides of Equation 2 rep-

resent the dynamics, whilst the right-hand sides are con-
sidered to be the physics. The processes ṙc

cond, ṙaccr, ṙr
evap,

ṙaccu, and S are the microphysics parametrisations and are
described in Section 4.

The momentum equation can also be recast in vector
invariant form:

𝜕v
𝜕t

+ (𝛁 × v) × v + f × v + 1
2
𝛁v2

+
cpd𝜃vd

1 + rt
𝛁Π + 𝛁Φ = 0.

(5)

The final thing to note is the extra term proportional
to 𝛁 ⋅v appearing on the left-hand side of Equation 2b.
This term is neglected in many models, but is mentioned
in Thuburn (2017) and Bryan and Fritsch (2002) to be
important in capturing convection fully, particularly in
a saturated atmosphere. In our model, it appears in the
forcing step of the dynamical core.

3 DYNAMICS DISCRETISATION

3.1 Function spaces

One of the main results of Cotter and Shipton (2012)
was the suggestion of combinations of function spaces
for the velocity v and the (dry) air density 𝜌d within the

compatible finite-element framework that will satisfy the
properties described in Staniforth and Thuburn (2012).
These spaces mimic the Arakawa C-grid staggering, which
allowed for steady geostrophic modes, avoidance of spu-
rious pressure modes, and more accurate representation
of the dispersion relation for Rossby and inertia–gravity
waves. Compatible sets of finite-element spaces for v and
𝜌d will form part of a discrete de Rham complex, so that
𝛁 ⋅v is in the same space as 𝜌d. Some such families of
spaces can be found in the periodic table of finite elements,
described in Arnold and Logg (2014).

In this section, we will expand on this to list the
finite-dimensional function spaces (V𝜌,Vv,V𝜃) that we
use in our model for velocity, density, and potential tem-
perature, respectively. We consider both two-dimensional
vertical slices with quadrilateral cells and three-
dimensional domains using hexahedral elements with
quadrilateral faces. The stratification of geophysical flu-
ids, along with their high aspect ratio, motivates using an
extruded mesh in the vertical, meaning that the mesh has
regular layers. The finite elements on such a mesh can be
constructed as tensor product elements, as described in
McRae et al., (2016). We will present two configurations of
the model, using two different sets of spaces from the same
family of finite-element spaces. We label these two sets as
the lowest-order k= 0 spaces and next-to-lowest-order k= 1
spaces. More explanation on these can be found in Bendall
et al., (2019). All of these spaces are illustrated in Figure 1.

The density 𝜌d lies in a space that is discontinuous
between elements. For k= 0 spaces, the density is con-
stant within each cell, while it is linear in each cell for
k= 1 spaces. These are the discontinuous Galerkin spaces,
denoted by dQk.

The velocity v has continuous normal components
between cells but discontinuous tangential components.
The spaces that we use are the Raviart–Thomas spaces,
RTk, described in Raviart and Thomas (1977). For the k= 0
configuration, this means that for each component the
field is linear in the direction of that component and con-
tinuous between cells in that direction, but constant within
the cell in other directions. This becomes continuous and
quadratic in the direction of the component for the k= 1
spaces, but discontinuous and linear in other directions.

To replicate the Charney–Philips grid, the potential
temperature 𝜃vd is co-located with the vertical compo-
nent of velocity. This is the tensor product element of
the discontinuous Galerkin element dQk over the hori-
zontal part of the domain with the continuous Galerkin
element Qk+ 1 on the vertical part of the domain. We
therefore denote this space by dQk ⊗Qk+ 1. Moisture vari-
ables also lie in this space, a choice that facilitates the
latent heat transfer associated with changes of phase of
water.
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F I G U R E 1 An illustration of the function spaces that we use for density, velocity and potential temperature variables in vertical slice
(d= 2) and three-dimensional (d= 3) simulations. We have have two configurations for each case: with vertical and horizontal degree of k= 0
and k= 1. Degrees of freedom on cell facets are shared between cells and denote the continuity of the field between them

3.2 Overview

Here we present an outline of our model structure. It
is based on the Met Office ENDGame model, described
in Walters et al., (2014), in terms of the semi-implicit
formulation and physics–dynamics coupling, with the
exception that Eulerian advection schemes are used with
Eulerian averages in the semi-implicit time discretisa-
tion. This is in contrast to the ENDGame semi-Lagrangian
approach.

We illustrate this with some pseudocode that is sim-
ilar to that presented in Bendall et al., (2019). The
pseudocode describes how we evolve our prognostic
variables, which we denote by the single vector 𝝌 =
(v, 𝜌d, 𝜃vd, rv, rc, rr). Overall, the model is a mixture of
explicit and semi-implicit treatments. Terms in Equation 2
are divided into forcings  (𝝌), advection terms (𝝌), and
physics terms(𝝌), with forcing being semi-implicit while
advection and physics are explicit. This pseudocode is as
follows.

1 EXPLICIT FORCING:𝝌∗ = 𝝌n + 1
2
Δt (𝝌n)

2 SET:𝝌n+1
p = 𝝌n

3 OUTER:
a UPDATE:u = 1

2
(vn+1

p + vn)
b ADVECT:𝝌p = u(𝝌∗)
c INNER:

(i) FIND RESIDUAL (IMPLICIT
FORCING):
Δ𝝌 = 𝝌p +

1
2
Δt (𝝌n+1

p ) − 𝝌n+1
p

(ii) SOLVE:(𝝌 ′) = Δ𝝌 for𝝌 ′

(iii) INCREMENT:𝝌n+1
p = 𝝌n+1

p + 𝝌 ′

4 PHYSICS:𝝌n+1
p = (𝝌n+1

p )
5 ADVANCE TIME STEP:𝝌n = 𝝌n+1

p

Given 𝝌n, the state at the nth time step, the first stage
of the time step is to apply the explicit component of the
forcing terms, returning 𝝌∗. The action of the forcing is
discussed in Section 3.3.

We then enter two loops. In the outer loop, the advect-
ing velocity u is determined to be the average of vn and the
best guess of the velocity at the time step, vn+1

p . The vari-
ables are then advected explicitly by an advection operator
u, returning 𝝌p. The advection operators are described
in Section 3.4. We use different advection operators for the
k= 0 and k= 1 configurations.

To solve the implicit component of the forcing terms,
we enter the inner loop. The residual Δ𝝌 is calculated
between 𝝌p and the implicit part of the forcing  (𝝌n+1

p ), so
that the implicit part of the model is solved if Δ𝝌 = 0. The
forcing operator is the same as used in the explicit forcing
step, and is described in Section 3.3. We iterate towards the
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solution by solving a linearised system of equations for the
perturbation 𝝌 ′:

(𝝌 ′) = Δ𝝌 . (6)

The operator (𝝌 ′) represents a linearisation of
Equation 2 about a reference state. The solution 𝝌 ′ is
then used to increment 𝝌n+1

p . This is described further in
Section 3.5.

Once the outer loop is completed, the physics processes
are treated explicitly in their own stage.

3.3 Forcing

The “forcing” operation constitutes the sum of the nonad-
vective terms in Equations 2a and 2b, which are written in
weak form. Our goal is to find  (v) and  (𝜃vd). The same
operation is used here for both explicit and implicit stages
of the model, as illustrated by the pseudocode at the start
of Section 3.2.

For both k= 0 and k= 1 configurations, the forcing that
we apply to v is the solution for vtrial ∈V v, for all𝝍 ∈ Vv, to

∫Ω
𝝍 ⋅ vtrial dx = −∫Ω

[𝝍 ⋅ (f × v) + g(𝝍 ⋅ k̂)] dx

− ∫Ω
cpdΠ𝛁 ⋅

(
𝜃vd𝝍

1 + rt

)
dx − ∫Γ

cpd

⟦
𝜃vd𝝍

1 + rt

⟧
n
⟨Π⟩ dS, (7)

whereΩ is the domain,Γ is the set of all interior facets, and
the angled brackets ⟨⋅⟩ denote the average value on either
side of a facet. The double square brackets ⟦f⟧n = f+ ⋅ n̂+ +
f− ⋅ n̂− denote the jump in values between either side of the
facet, arbitrarily labelled with + and −. To solve equations
such as Equation 7 numerically, we expand the variables
as finite sums of coefficients multiplying the basis func-
tions that span the relevant finite-element function spaces.
This yields a set of equations for the coefficients of the
trial function, which can be solved by standard numerical
techniques.

The forcing  (𝜃vd) applied to 𝜃vd is the solution 𝜃trial,
for all 𝛾 ∈ V𝜃 , to

∫Ω
𝛾𝜃trial dx = −∫Ω

𝛾𝜃vd

(
Rm

cvml
−

Rdcpml

cpdcvml

)
(𝜵 ⋅ v) dx. (8)

3.4 Advection

In the advection stage, each of the variables is translated
by the velocity u. We represent this action by the opera-
tor u. Here we briefly provide details of the advection
schemes used. We use finite-element transport schemes,

as these are most easily implemented in the Firedrake
software that we use.

In the advection step, the k= 0 and k= 1 configura-
tions differ. This is because the advection schemes that we
use for the k= 1 spaces do not have second-order accu-
racy in space when applied to the k= 0 spaces. In the k= 1
configuration, we transport 𝜌d using an upwind discon-
tinuous Galerkin scheme, and for 𝜃vd and the moisture
variables we use the embedded version of this scheme
presented by Cotter and Kuzmin (2016). These schemes
use the three-step Runge–Kutta time-stepping procedure
(SSPRK-3) from Shu and Osher (1988). For the transport
of v, we write the equation in vector-invariant form and
use the theta time-stepping method. The remainder of this
section details these methods.

The schemes used for the k= 0 spaces, called the recov-
ered advection schemes, were presented in Bendall et al.,
(2019). They involve obtaining a representation of the
fields in a higher-order space, where the finite-element
transport methods will have second-order accuracy. This
process is explained in Section 3.4.3.

3.4.1 Discontinuous Galerkin upwind
advection

First, we define a single forward-Euler step of discon-
tinuous Galerkin upwinding, which we describe as the
operation u upon a scalar quantity q. For the advective
form of the transport equation, this involves finding the
solution qtrial, for all p∈V q:

∫Ω
𝜓qtrial dx − ∫Ω

𝜓q dx − Δt∫Ω
q[𝛁 ⋅ (pu)] dx

+Δt∫Γ
(u ⋅ n̂+)q∗⟦p⟧+ dS = 0,

(9)

where the jump is ⟦p⟧+ = p+ − p−. The outward normal on
the+ side of the facet is denoted by n̂+ and q* is the upwind
value, identified by

q∗ =

{
q+, if u ⋅ n̂+

> 0,
q−, otherwise.

(10)

This equation can also be cast in continuity form, as it
will be for the transport of 𝜌d. The SSPRK-3 time-stepping
scheme presented in Shu and Osher (1988) involves com-
posing these steps as follows:

q(1) ∶= q + uq, (11a)

q(2) ∶= 3
4

q + 1
4
(q(1) + uq(1)), (11b)
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uq ∶= 1
3

q + 2
3
(q(2) + uq(2)). (11c)

This is the scheme used for transport for 𝜌d in the
k= 1 configuration, and is the basis for the embedded
DG and recovered advection schemes. The discontinu-
ous Galerkin upwinding method provides some stability,
and is not difficult to use with slope limiters to ensure
monotonicity.

3.4.2 Embedded DG advection

The embedded DG transport scheme introduced in Cot-
ter and Kuzmin (2016) is used for advecting 𝜃vd and the
moisture variables in the k= 1 configuration. The fields
are first interpolated into fully discontinuous analogues of
their spaces, where the advection takes place. The fields
are then returned to their original spaces using a Galerkin
projection. See Cotter and Kuzmin (2016) for more details.

3.4.3 Recovery operator and recovered
advection

The advection schemes used for the k= 0 spaces were
presented in Bendall et al., (2019). The motivation for
using these schemes is that the methods used for the k= 1
spaces do not have second-order accuracy when used with
the k= 0 spaces. Other approaches, such as finite-volume
schemes with large stencils, are not currently available
through the Firedrake software. The recovered schemes
extend the embedded DG scheme described in the previ-
ous section: the fields are converted from the original space
to spaces with higher degrees of polynomial. The trans-
port then occurs in a discontinuous higher-degree space.
As in the embedded scheme, this field is projected back to
the original space to complete the advection. The spaces
used as part of this scheme were described in Bendall et al.,
(2019).

The operator that we use to obtain the higher-order
representation is called the recovery operator. It involves
finding the gradients within cells by converting to a
higher-order continuous function space. The operator
determines the values of degrees of freedom shared
between elements to be the average from neighbouring ele-
ments. These values are then adjusted to ensure that the
mass of the field in each cell is preserved. At the exte-
rior boundaries of the domain, this process may not have
second-order numerical accuracy and a further extrapola-
tion step is required to represent gradients accurately. For
a full description, see Bendall et al., (2019). The recovery
operator is also used in physics–dynamics coupling, which

is described in Section 4. This is because it can be used to
obtain a field in V𝜃 from a field in V𝜌.

3.4.4 Vector invariant advection

In the k= 0 configuration, we solved the transport
equation for v in advective form:

𝜕v
𝜕t

+ u ⋅ 𝛁v = 0. (12)

However, for the k= 1 spaces, we write the advection
equation in vector-invariant form, discretising

𝜕v
𝜕t

+ (𝛁 × v) × u + 1
2
𝛁(v ⋅ u) = 0. (13)

The action of the advection operator u gives the solu-
tion vtrial ∈V v for all 𝝍 ∈ Vv to

∫Ω
𝝍 ⋅ (vtrial − v) dx − ∫Γ

v∗ ⋅ [n̂+ × ⟦u × 𝝍⟧+]dS

+∫Ω
v ⋅ [𝛁 × (u × 𝝍)]dx − 1

2∫Ω
(v ⋅ u)(𝛁 ⋅ 𝝍)dx = 0,

(14)
with v* as the upwind value of v and ⟦⋅⟧+ taking the same
definition as in Section 3.4.1.

The implicit midpoint rule is used, so that the velocity
at the (n+ 1)th time step is found by solving

vn+1 = vn + Δt
[1

2
uvn + 1

2
uvn+1

]
. (15)

3.4.5 Limiting

The advection schemes that we use do not preserve
the monotonicity property of the continuous transport
equation. This can result in unphysical negative concen-
trations when advecting moisture variables. A way of pre-
venting this is to apply a slope limiter.

We provide the option of adding a limiter to the
advection of variables in V𝜃 . The vertex-based limiter
of Kuzmin (2010) is designed for use on fields that are
piecewise-linear and discontinuous between cells. It pre-
vents the formation of new maxima and minima by sep-
arating the field into a constant mean part and adjusting
the perturbed part in each cell. It is applied to the field
before the advection operator u first acts at each time
step and after each stage of the three-step Runge–Kutta
method.

For advection of moisture variables in the k= 0 set of
spaces, we use the recovered space scheme and apply the
vertex-based limiter of Kuzmin (2010). When returning
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F I G U R E 2 Slices of the final
fields, following one rotation
around the domain, of the
slotted-cylinder, hump, and cone
function of LeVeque (1996). The
fields represent moisture variables
in the two-dimensional dQ1 ⊗Q2,
(a,c) with the limiter applied, and
(b,d) without the limiter. (a,b)
Slices along x = 0.5 m and (c,d)
slices through the cylinder along
z= 0.8 m. The left plots (with the
limiter) show that the limiter
prevents formation of overshoots
and undershoots without damping
the solution excessively, in contrast
to the plots on the right, which do
show overshoots and undershoots

the field back from the higher order space, we first perform
a Galerkin projection into a fully discontinuous version of
the original space and restore continuity using the appro-
priate recovery operator. For more details, see Bendall
et al., (2019).

With the k= 1 spaces, the vertex-based limiter of
Kuzmin (2010) is again used. However, this field is
quadratic in the vertical and the values of the field at
the vertical midpoint of the cell are unchanged by the
vertex-based limiter. We bound these values by restricting
them to the average of the values at the adjacent vertices
if this falls outside the range spanned by them. In other
words, if ri+ 1/2 is the value of the field at a degree of
freedom halfway up the ith cell, then the new value is

ri+1∕2 =

⎧⎪⎪⎨⎪⎪⎩
ri+1∕2,

if min (ri, ri+1) ≤ ri+1∕2

and ri+1∕2 ≤ max (ri, ri+1),

1
2
(ri + ri+1), otherwise.

(16)

To illustrate the effectiveness of this limiter, we per-
formed the rotation of the slotted-cylinder, hump, and
cone of LeVeque (1996) in a 2D vertical slice. Figure 2
shows the fields in V𝜃 space for the k= 1 configuration,
rotated once around the domain by a velocity defined by

the stream function

𝜓 = 𝜋(z(z − 1) + x(x − 1)). (17)

The domain used was the unit square, with Δx = Δz =
0.01, whilst the time step was Δt = 10−4. The final fields
were recorded at t = 1. Figure 2 demonstrates that the lim-
iter does indeed prevent overshoots and undershoots from
developing.

3.5 Solving

We now present the strategy for the linear solve step of
the model. When initialising the model, we set mean 𝜌d
and 𝜃vd states, which we denote respectively as 𝜌d and
𝜃vd. The residual Δ𝝌 between the predicted explicit 𝝌p
and the latest guess 𝝌n+1

p of the prognostic variables is
computed first. Reducing this residual to zero solves the
implicit part of the model. This is done by solving a lin-
ear set of equations, with the residual on the right-hand
side, to calculate increments that are added to 𝝌n+1

p ,
updating it.

The linear equations that we solve are arrived at by
linearising the full Equations 2 around the background
state of 𝜌d, 𝜃vd, and zero velocity. Discretised in time, these
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linear equations are:

v′ +
Δtcpd

2(1 + rt)
(𝜃′vd𝛁Π + 𝜃vd𝛁Π′) = Δv, (18a)

𝜌′d +
1
2
Δt𝛁 ⋅ (𝜌dv′) = Δ𝜌d, (18b)

𝜃′vd +
1
2
Δt(k̂ ⋅ v′)(k̂ ⋅ 𝛁𝜃vd) = Δ𝜃vd, (18c)

where the primed quantities represent the perturbations to
be found.

The values of the perturbations are found by solving
a mixed finite-element problem, with more than one test
and trial function. First we simplify the equations by elim-
inating the potential temperature perturbation 𝜃′vd. This
allows us to produce a mixed system coupling the velocity
and density perturbations, v′ and 𝜌′d. Taking k̂ as the unit
upward normal, we introduce

Θ′ = Δ𝜃vd −
1
2
Δt(k̂ ⋅ 𝛁𝜃vd)(k̂ ⋅ v′trial). (19)

The Exner pressure perturbation is then approximated
as

Π′ = 𝜅

1 − 𝜅
Π

(
Θ′

𝜃vd
+
𝜌′trial

𝜌d

)
,

where Π =

(
𝜌d𝜃vdRd

pR

)𝜅∕(1−𝜅)

. (20)

To solve the mixed finite-element problem for v′trial
and 𝜌′trial, we use a technique known as hybridisation. This
involves relaxing the continuity requirement on the nor-
mal components of functions in V v. This new space, V̂ v,
is a discontinuous variant of V v, since we are no longer
requiring v′ ⋅ n̂ to be continuous on cell interfaces. We
then introduce an auxiliary field 𝓁′ in a function space
V trace, which approximates the average values of Π on cell
faces. The auxiliary space V trace consists of scalar func-
tions, which are represented as polynomials on cell facets.
In order to ensure that the discretisation remains within
the compatible finite-element framework, we require the
trial function v′trial to satisfy the condition

∫Γ
𝜆⟦v′trial⟧n dS + ∫

𝜕Ω
𝜆(v′trial ⋅ n̂) ds = 0 (21)

for all 𝜆 ∈ Vtrace. Equation 21 ensures that, while we
appear to be searching for a velocity perturbation in

the discontinuous V̂ v, it is actually in V v. In other
words, satisfying Equation 21 is equivalent to having
v′trial ∈V v.

After substituting Equation 19 into Equation 18a,
we multiply the result and Equation 18b by test func-
tions in V̂ v and V𝜌 and integrate. Adding the condi-
tion of Equation 21, the resulting mixed system for
(v′trial, 𝜌

′
trial,𝓁

′
trial) ∈ (V̂ v,V𝜌,Vtrace), which holds for all𝝍 ∈

V̂ v, 𝜙 ∈ V𝜌, and 𝜆 ∈ Vtrace, can be written as

∫Ω
𝝍 ⋅ (v′trial − Δv) dx

−Δt
2

cpd

(
∫Ω

𝛁 ⋅
[
Θ′w

1 + rt
k̂
]
Π dx

−∫Γ
⟦ Θ′w

1 + rt
k̂⟧n⟨Π⟩ dS

)
+Δt

2
cpd

(
∫
𝜕Ω

Θ′w
1 + rt

k̂ ⋅ n̂⟨Π⟩ ds

−∫Ω
𝛁 ⋅

[
𝜃vd

1 + rt
𝝍

]
Π′ dx

)

+Δt
2

cpd∫Γ
⟦ 𝜃vd

1 + rt
𝝍⟧n𝓁′

trial dS

+Δt
2 ∫

𝜕Ω

𝜃vd

1 + rt
(𝝍 ⋅ n̂)𝓁′

trial ds

+∫Ω
𝜙(𝜌′trial − Δ𝜌d) dx − Δt

2 ∫Ω
(𝛁𝜙 ⋅ v′trial)𝜌d dx

+Δt
2

(
∫Γ

⟦𝜙v′trial⟧n⟨𝜌d⟩ dS∫
𝜕Ω
𝜙v′trial ⋅ n̂⟨𝜌d⟩ ds

)
+∫Γ

𝜆⟦v′trial⟧n dS∫
𝜕Ω
𝜆(v′trial ⋅ n̂) ds = 0,

(22)

where w = k̂ ⋅ 𝝍 is the vertical component of the veloc-
ity test function and 𝜕Ω is the external boundary of the
domain. This mixed system can be manipulated alge-
braically into a single system for 𝓁trial′. This is the only
globally coupled system requiring iterative inversion. Once
𝓁′ has been determined, 𝜌′d and v′ are reconstructed locally
using values of 𝓁′. Finally, the value of 𝜃vd is found as the
𝜃′trial that solves, for all 𝛾 ∈ V𝜃 ,

∫Ω
𝛾

[
𝜃′trial − Δ𝜃vd +

Δt
2
(k̂ ⋅ v)(k̂ ⋅ 𝛁𝜃vd]

)
= 0. (23)

Further information on hybridisation techniques and
their implementation can be found in Gibson et al. (2019;
2020). More on this particular linear solver and its perfor-
mance will be detailed in future work.
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4 PHYSICS PARAMETRISATIONS

In this section, we consider the discretisation of the
“physics” terms in Equations 2. The term labelled ṙc

cond rep-
resents the condensation of water vapour into cloud water
and the evaporation of cloud water into water vapour. We
use the rate given in Rutledge and Hobbs (1983) and Bryan
and Fritsch (2002), with the saturation mixing ratio from
Tetens (1930), giving

rsat(p̃,T) =
𝜖Csat

0

p̃ exp
[
−Csat

1 (T−TR)
T−Csat

2

]
− Csat

0

, (24)

where Csat
0 , Csat

1 , and Csat
2 are constants, the values of which

are given in the Appendix. The pressure p̃ will be explained
in the following section.

The similar term ṙr
evap describes the evaporation of rain

water into water vapour, with the value taken from Klemp
and Wilhelmson (1978).

The coalescence of cloud water into rain droplets
is described by ṙaccr and ṙaccu, the accretion and
auto-accumulation processes respectively. The formu-
las that we use are also those described in Klemp and
Wilhelmson (1978), with values from Soong and Ogura
(1973).

The sedimentation of rain is given by S. Our approach
to determining S is similar to the single-moment scheme
described in Milbrandt and McTaggart-Cowan (2010). We
assume that the number nr(D) of raindrops of diameter
D forms a spectrum described by a Gamma distribution.
This is used to determine the terminal velocity of rain-
drops averaged over D. The rain field rr is then advected
by this averaged velocity using the same advection scheme
used by the dynamics for 𝜃vd and the moisture variables
described in Section 3.

4.1 Combining fields from different
function spaces

Many diagnostic fields, such as temperature T or satura-
tion mixing ratio of water vapour rsat, must be determined
from prognostic fields in different function spaces, usually
𝜌d, 𝜃vd, and rv.

As 𝜌d and 𝜃vd lie in different function spaces, when
determining some diagnostic variable q there are a number
of different choices that can be made. With our emphasis
on parametrisations of moist processes, we choose q ∈ V𝜃 ,
so that it is also in the same function space as the mois-
ture variables. Our approach to combining these fields is
to recover 𝜌d is into V𝜃 using the recovery operator out-
lined in Section 3.4.3 to give a result that we denote as

𝜌̃d. For the lowest-order spaces, the values of 𝜌̃d (which
are shared on the interfaces between layers in the mesh)
are simply the average of the values in the cells above and
below. Then q can be calculated algebraically within V𝜃 .
This approach can be used with both the k= 0 and k= 1
sets of spaces, and with the k= 0 spaces it has second-order
numerical accuracy (including at the boundaries of the
domain). For example, the temperature T and pressure p
used in parametrisations are calculated as

T = 𝜃vdΠ̃
1 + rv∕𝜖

, p̃ = pRΠ̃
1∕𝜅
, (25)

where

Π̃ =
(
𝜌dRd𝜃vd

pR

)𝜅∕(1−𝜅)

. (26)

4.2 Time discretisation

At present, we are performing simple explicit first-order
integration in time for the physics routines. In other words,
for a process ṙ affecting a variable r, the new value rnew will
be related to the old rold by

rnew = rold + Δt ṙ(rold). (27)

The exception here is the treatment of the sedimen-
tation of rainfall, which was described in the previous
section. The value of ṙ comes from the state of the model
just before this physics routine is called. This is the state
of the model after either the dynamics or the preceding
physics routine has been completed. The physics routines
are executed consecutively (this is commonly known as
“sequential splitting”), in the following order:

1. accretion of cloud water,
2. auto-accumulation of rain water,
3. sedimentation of rain,
4. evaporation of rain water, and
5. evaporation of cloud water/condensation of water

vapour.

We choose to perform the evaporation/condensation
step last so as to prevent any supersaturation at the end of
the time step.

5 TEST CASES

In this section, we demonstrate the discretisation detailed
in previous sections through a series of test cases, with
some comparison of the k= 0 and k= 1 configurations
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of the model. Two new variants of test cases are pre-
sented, featuring a gravity wave in a saturated atmosphere
and a three-dimensional rising thermal in a saturated
atmosphere.

Throughout this section, x and y are the horizon-
tal coordinates, and z is the vertical coordinate. For the
two-dimensional tests, r is given by

r =
√
(x − xc)2 + (z − zc)2, (28)

while for the three-dimensional thermal test it is

r =
√
(x − xc)2 + (y − yc)2 + (z − zc)2, (29)

where xc, yc, and zc represent the centre of some perturba-
tion.

5.1 Bryan and Fritsch moist benchmark

The first demonstration of our discretisation is through the
moist benchmark test case of Bryan and Fritsch (2002),
which simulates a rising thermal through a cloudy atmo-
sphere. The domain is a vertical slice of width L= 20 km
and height H = 10 km. Periodic boundary conditions are
applied at the vertical boundaries, but the top and bottom
boundaries are rigid, so that v ⋅ n̂ = 0 along them. As in
Bryan and Fritsch (2002), we include no rain microphysics
and no Coriolis force.

The initial conditions defined in Bryan and Fritsch
(2002) specify a background state with constant rt = 0.02
kg⋅kg−1 and constant wet-equivalent potential tempera-
ture 𝜃e = 320 K, which is defined in Equation B2. Along
with these, the background state is given by the require-
ments of hydrostatic balance, rv = rsat, and p= 105 Pa at the
bottom boundary. The procedure described in Appendix
B2 allows us to obtain the prognostic variables 𝜃vd, 𝜌d, rv,
and rc that satisfy these conditions approximately.

The following perturbation is then applied to 𝜃vd:

𝜃′vd =
⎧⎪⎨⎪⎩
ΔΘcos2

(
𝜋r
2rc

)
, r < rc,

0, otherwise,
(30)

where ΔΘ = 2 K, lc = 2 km, xc =L/2, and zc = 2 km. The
initial 𝜃vd field is given in terms of the background field 𝜃vd:

𝜃vd = 𝜃vd

(
1 +

𝜃′vd

300 K

)
. (31)

In the test case of Bryan and Fritsch (2002), the pres-
sure field is unchanged by the perturbation. To replicate

this with our prognostic variables, we find 𝜌d such that, for
all 𝜁 ∈ V𝜌,

∫Ω
𝜁𝜌d𝜃vd dx = ∫Ω

𝜁𝜌d𝜃vd dx, (32)

where 𝜌d and 𝜃vd are the background states for 𝜌d and 𝜃vd.
The system is returned to saturation by finding the rv that
solves, for all 𝜙 ∈ V𝜃 ,

∫Ω
𝜙rv dx = ∫Ω

𝜙rsat(𝜌̃d, 𝜃vd, rv) dx, (33)

where rsat(𝜌̃d, 𝜃vd, rv) is the expression for the saturation
mixing ratio. This expression is given in terms of the ini-
tial 𝜌d recovered into V𝜃 and the initial 𝜃vd field that has
already been found, and also the unknown rv to be solved
for. Finally, rc is found from applying rc = rt − rv. The ini-
tial velocity field is zero in each component.

Figures 3 and 4 show the 𝜃e and vertical velocity w
fields at t = 1,000 s. Figure 3 shows these fields for the con-
figuration using the k= 0 lowest-order spaces, with the
k= 1 spaces shown in Figure 4. Both simulations used
Δx = Δz = 100 m and Δt = 1 s. These final states are visi-
bly different: whilst the k= 0 solutions resemble those of
Bryan and Fritsch (2002), the k= 1 solution displays an
extra plume forming at the top of the rising thermal. We
believe this to be a manifestation of a physical instability
that is damped by numerical diffusion in the k= 0 case.
The k= 1 solution appears highly sensitive to the choice of
mesh, as, at higher resolution, the 𝜃e field does not appear
to converge to a single solution. Indeed, if the domain is
spanned horizontally by an odd number of cells, rather
than a secondary plume emerging, the top of the primary
plume appears to collapse. This behaviour is also observed
in the absence of moisture.

5.2 Inertia–gravity waves in a saturated
atmosphere

We present here a new test case, a moist version of the
nonhydrostatic gravity-wave test of Skamarock and Klemp
(1994), but in a saturated atmosphere like that of the moist
benchmark in Bryan and Fritsch (2002). The final state of
this test is spatially smooth, making this test appropriate
for convergence tests. No rain physics is used in this test
case, and there is also no Coriolis force.

The problem is set up in a two-dimensional vertical
slice of length L= 300 km and height H = 10 km. The dry
gravity-wave setup used in Skamarock and Klemp (1994)
applies a perturbation to 𝜃d, which has a stratified back-
ground profile and is in hydrostatic balance. Our variation
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(a) (b) F I G U R E 3 (a) 𝜃e field contoured every 0.5 K and
(b) vertical velocity w field contoured every 2 m⋅s−1,
with both fields plotted at t = 1,000 s for a simulation of
the moist benchmark case Bryan and Fritsch (2002)
representing a thermal rising through a saturated
atmosphere. The 320-K contour has been omitted for
clarity in the 𝜃e field. This simulation is with the k= 0
lowest-order set of spaces, with grid spacing
Δx = Δz = 100 m and a time step of Δt = 1 s. These
solutions are visibly similar to those presented in Bryan
and Fritsch (2002)

(a) (b) F I G U R E 4 Fields output from the k= 1
next-to-lowest degree space simulation at t = 1,000 s of
the moist benchmark from Bryan and Fritsch (2002). (a)
𝜃e with contours spaced by 0.5 K and (b) vertical
velocity w contoured every 2 m⋅s−1. The simulation
used grid spacing Δx = Δz = 100 m and a time step of
Δt = 1 s. The 320-K contour has been omitted for clarity
in the 𝜃e field. A second plume can be seen forming at
the top of the primary plume

on this is to apply the perturbation to the stratified back-
ground profile of 𝜃e in hydrostatic balance. Using (x,z) as
the horizontal and vertical coordinates, the specified 𝜃e
profile is

𝜃e = Θ0eN2z∕g, (34)

whereΘ0 = 300 K and N2 = 10−4 s−2. With rt = 0.02 kg⋅kg−1

everywhere and the boundary condition of p= 105 Pa at
z= 0, we use the hydrostatic balance procedure laid out in
Appendix B2 to find the 𝜃vd, 𝜌d, rv, and rc fields that cor-
respond to these initial conditions with the requirements
of hydrostatic balance and rv = rsat everywhere. The initial
velocity applied is v=(U,0), with U = 20 m⋅s−1 describing
uniform flow in the x-direction. This defines each of the
mean fields.

A perturbation is then added, which is specified as

𝜃′e =
ΔΘ

1 + a−2(x − L∕2)2 sin
(
𝜋z
H

)
, (35)

with a= 5× 103 m and ΔΘ = 0.01 K. The perturbed initial
condition is then given by 𝜃e = 𝜃e + 𝜃′e. Setting the new
requirements that both rt and the pressure are unchanged
by the addition of the perturbation and that we still have
rv = rsat defines the problem necessary to solve in order to
find the initial prognostic fields. We do this via a nested

iterative process related to that described in Appendix B2.
In the outer loop, we find 𝜌h

d such that, for all 𝜁 ∈ V𝜌,

∫Ω
𝜁𝜌h

d𝜃
n
vd dx = ∫Ω

𝜁𝜌d𝜃vd dx, (36)

which is combined with the previous best estimate of 𝜌n
d to

give 𝜌n+1
d = (1 − 𝛿)𝜌n

d + 𝛿𝜌h
d, where 𝛿 = 0.8. Nested inside

this process are more damped iterations to find 𝜃vd and rv,
exactly as in Appendix B2.

Figure 5 shows the perturbation to the final diagnos-
tic 𝜃e field at t = 3,600 s for simulations with the k= 0
lowest-degree spaces with Δx = Δz = 500 m and the k= 1
set of spaces, where Δx = Δz = 1,000 m, both with Δt =
1.2 s. These different cases are not visibly different from
one another, and closely resemble the final state of the dry
case from Skamarock and Klemp (1994).

To measure the spatial accuracy of our model, we ran
this test case at different resolutions, each using a time
step of Δt = 1.2 s. The error is measured looking at the
𝜃e diagnostic in V𝜃 at t = 3,600 s. The 𝜃e fields are inter-
polated on to the finest mesh, which has Δx = 100 m for
the k= 0 case but Δx = 200 m for the k= 1 case. The error
between the high-resolution solution for 𝜃e and those run
at coarser resolutions is plotted in Figure 6, which indi-
cates that in both the k= 0 and k= 1 cases the model has
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F I G U R E 5 The perturbations to the 𝜃e

fields at t = 3,600 s for the moist gravity-wave test
case. (a) The k= 0 lowest-order spaces set up
using Δx = 500 m and (b) the k= 1 spaces with
Δx = 1,000 m. Both cases used Δt = 1.2 s.
Contours are spaced every 5× 10−4 K. The
solutions in both configurations are visibly
similar

(a) (b)

F I G U R E 6 A convergence plot showing the error as a
function of resolution in the final state from the moist gravity-wave
test of Section 5.2. The true solution was taken from a
high-resolution simulation. Both the k= 0 and k= 1 configurations
of the model have second-order or better accuracy

second-order spatial accuracy, with the error proportional
to (Δx)2.

5.3 Rising thermal with rain

This test case is based upon one described in Grabowski
and Clark (1991). This involves a thermal rising in an
unsaturated atmosphere, forming a cloud, which rains
out. This is another two-dimensional vertical slice test,
this time with a domain of height H = 2.4 km and length
L= 3.6 km, again with periodic conditions at the vertical
sides. The Coriolis force is neglected.

In contrast to the saturated atmosphere initial condi-
tions of Section 5.1, the initial state is defined by the dry
potential temperature 𝜃d and a relative humidity field .
The background fields are  = 0.2 everywhere and

𝜃d = ΘeSz, (37)

where Θ is the dry potential temperature corresponding
to Tsurf = 283 K and p= 8.5× 104 Pa, which also provides
the pressure condition at the boundary. The stratification
is given by S= 1.3× 10−5⋅m−1. We then use the procedure
outlined in Appendix B3 to find the background 𝜃vd, 𝜌d,
and rv fields that satisfy hydrostatic balance. The initial rc
and rr fields are zero.

The perturbation is then applied to the relative humid-
ity field , with a circular bubble that is just saturated,
with an outer disc smoothing the perturbation into the
background state. This initial relative humidity field is
given by

 =
⎧⎪⎨⎪⎩

, r ≥ r1,

 + (1 −)cos2
(
𝜋(r−r2)
2(r1−r2)

)
, r2 ≤ r < r1,

1, r < r2,

(38)

where  = 0.2, with xc =L/2, zc = 800 m, r1 = 300 m, and
r2 = 200 m. The rv and 𝜃vd that correspond to this  are
found via a fixed-point iterative method.

Fields are displayed in Figures 7 and 8 for 𝜃′vd at t = 300
and 600 s. Both simulations use the k= 0 lowest-order
space set-up, with Δx = 20 m and Δt = 1 s. Figure 7 shows
the results with no limiter applied to the advected mois-
ture fields, whilst Figure 8 shows the same set-up but with
a limiter applied to all the moisture variables.

The length-scales of the simulation are small enough
for it to be highly turbulent, with the final state dependent
on the resolution in the absence of a turbulence parametri-
sation. Indeed, the lack of turbulence parametrisation in
our model explains why these results look significantly
different from those of Grabowski and Clark (1991). Com-
paring Figures 7 and 8 demonstrates the effect of limiting
the transport of moisture species. In the absence of the
limiter, the mass of water vapour depreciates less and so
more cloud is formed, associated with a greater release of
latent heat and a stronger updraught. We found that rain
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(a) (b) F I G U R E 7 The perturbation to 𝜃vd,
contoured every 0.5 K with zero contour omitted,
at (a) t = 300 s and (b) t = 600 s from the rising
thermal test with rain. These were produced
using the k= 0 spaces with Δx = Δz = 20 m and
a time step of Δt = 1 s

(a) (b) F I G U R E 8 The perturbation to 𝜃vd,
contoured every 0.5 K with zero contour
omitted, at (a) t = 300 s and (b) t = 600 s from
the rising thermal test with rain. This
simulation is like that of Figure 7, but a limiter
was applied to the transport of the moisture
variables. The appearance of the bubble is
noticeably different here, as less cloud is
formed, with less associated latent heat release

forms earlier in the absence of a limiter. However, some
negative moisture values do form, which are absent from
the limited case.

5.4 Three-dimensional thermal in a
saturated atmosphere

We now demonstrate the use of our discretisation upon
small-scale dynamics in three dimensions. This test case
is a three-dimensional version of the moist benchmark of
Bryan and Fritsch (2002) that was described in Section 5.1.
Rain and the effects of planetary rotation are not
included.

The domain is now periodic in the horizontal direc-
tions, with length, width, and height 10 km. The back-
ground state set-up is the same as that in Section 5.1, with
𝜃e = 320 K, rt = 0.02 kg⋅kg−1, and pressure p= 105 Pa on
the bottom surface. Using the initialisation procedure that
was outlined in Appendix B2 generates the values of the
prognostic variables such that the model is in hydrostatic
balance and saturated with respect to water vapour.

Using xc = yc = 5 km and zc = 2 km, we apply the per-
turbation

𝜃′vd =
⎧⎪⎨⎪⎩
ΔΘcos2

(
𝜋r
2lc

)
, r < lc,

0, otherwise,
(39)

with ΔΘ = 1 K and lc = 2 km. As in Section 5.1, the pertur-
bation is applied using the background field 𝜃vd:

𝜃vd = 𝜃vd

(
1 +

𝜃′vd

300 K

)
. (40)

The same routine as used in Section 5.1 is then applied
to obtain the initial 𝜌d, rv, and rc fields, ensuring that
the atmosphere is exactly saturated and that the initial
pressure field is equal to the background pressure field.

Cross-sections of the 𝜃e and vertical velocity w fields
at t = 1000 s and y= 5 km are shown in Figures 9 and 10,
for both the setups, using k= 0 lowest-order spaces (which
had Δx = Δy = Δz = 100 m) and k= 1 spaces (which had
Δx = Δy = Δz = 200 m). Both simulations had Δt = 1 s.
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F I G U R E 9 (a) 𝜃e and (b) vertical velocity
w fields at t = 1,000 s for the three-dimensional
simulation of a thermal rising through a
saturated atmosphere. The 𝜃e field is contoured
every 0.25 K with the 320-K contour omitted,
whilst the contour spacing for the w field is
1 m⋅s−1. Cross-sections are shown at y= 5 km,
with values plotted on the lower side of the
plane. This simulation is with the k= 0
lowest-order set of spaces, with grid spacing
Δx = 100 m and a time step of Δt = 1 s

(a) (b)

F I G U R E 10 The fields output along y= 5 km
from the k= 1 next-to-lowest order space simulation
at t = 1,000 s of the three-dimensional simulation of a
rising thermal in a saturated atmosphere. (a) 𝜃e and
(b) vertical velocity w fields for a simulation using
grid spacing Δx = 200 m and a time step Δt = 1 s.
The 𝜃e field is contoured every 0.25 K with the 320-K
contour omitted, whilst the contour spacing for the w
field is 1 m⋅s−1. Cross-sections are shown at y= 5 km,
with values plotted on the lower side of the plane. As
with the two-dimensional case, a second plume can
be seen forming at the top of the primary plume

(a) (b)

As in Section 5.1, we see a secondary plume beginning to
form at the top of the rising thermal in the k= 1 case.

5.5 Moist baroclinic wave

The final test case that we present is the moist baro-
clinic wave outlined in Ullrich et al., (2015). This is the
only test featuring the Coriolis force, although rain is
again neglected. A three-dimensional channel of length
L= 40,000 km in the x-direction (in which the domain
is periodic), width W = 6,000 km in the y-direction, and
height H = 30 km in the z-direction is used. The walls at the
y and z boundaries of the domain are rigid, with no flow
through them.

This test case uses initial conditions that are analyt-
ically in thermal wind balance. In Ullrich et al., (2015),
the vertical coordinate used is a pressure coordinate 𝜂.
This is used to define the background zonal wind u, the
geopotentialΦ, the virtual temperature Tv, and the specific
humidity q according to the following equations:

u = −u0sin2
(𝜋y

W

)
ln 𝜂 exp

[
−
(

ln 𝜂
b

)2
]
, (41a)

Φ = T0g
Γ
(1 − 𝜂RdΓ∕g) + f0u0

2

×
[

y − W
2
− W

2𝜋
sin

(
2𝜋y
W

)]
ln 𝜂 exp

[
−
(

ln 𝜂
b

)2
]
,

(41b)

Tv = T0𝜂
RdΓ∕g + f0u0

2Rd

[
y − W

2
− W

2𝜋
sin

(
2𝜋y
W

)]
×
[

2
b2 (ln 𝜂)2 − 1

]
exp

[
−
(

ln 𝜂
b

)2
]
,

(41c)

q =
q0

2
exp

[
−
(

y
Δyw

)4
]⎧⎪⎨⎪⎩

1 + cos
[
𝜋(1−𝜂)
1−𝜂w

]
𝜂 ≥ 𝜂w,

0 otherwise.

(41d)

The constants take the values Γ = 0.005 K⋅m−1,
f 0 = 2.00× 10−6⋅s−1, a= 6.37× 106 m, T0 = 288 K, u0 = 35
m⋅s−1, b= 2, Δyw = 3.2 × 106 m, and 𝜂w = 0.3. We use a
slightly lower value than Ullrich et al., (2015) of q0 = 0.016
to prevent our model being too close to saturation initially.

This initial condition is converted to our prognostic
variables using the Newton iteration procedure suggested
in Ullrich et al., (2015) to find 𝜂. Using the requirement
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(a) (b)

(c) (d)

F I G U R E 11 Cross-sections of
fields at t = 12 days from the moist
baroclinic wave test case using the
k= 0 spaces. The grid sizes used were
Δx = Δy = 200 km and Δz = 1 km,
with Δt = 300 s. Shown are (a) the T
field on z= 500 m contoured every
4 K, (b) the rc field on y= 3,000 km
contoured every 10−3 kg⋅kg−1 with
the zero contour omitted, (c) the
perturbed temperature field on
y= 3,000 km with contours every
2 K, and (d) the perturbed zonal
wind u′ , with contours spaced by
5 m⋅s−1 and the zero contour
omitted. Values shown on the
y= 3,000 km plane are computed
from the lower side of the plane

that Φ = gz and taking 𝜂 ∈ V𝜃 , the procedure uses

𝜂n+1 = 𝜂n −
Φ(𝜂n) − gz

Tv(𝜂n) − Rd∕𝜂n . (42)

This 𝜂 field is then used to compute u, Tv, and q. In
order to convert Tv and q into 𝜃vd and rv, we use the defi-
nitions of 𝜃vd, 𝜂 = p∕ps for ps = 105 Pa, and the equations

T = Tv

1 + q(Rv∕Rd − 1)
(43)

and
rv =

q
1 − q

. (44)

These 𝜃vd and rv fields are used to compute the 𝜌d field
that provides hydrostatic balance for the background state
using the procedure outlined in Appendix B.

The perturbation is added to the x-component of the
background velocity, which we will denote as u, so that
u = u + u′. With xc = 2× 106 m, yc = 2.5× 106, Lp = 6× 105,
up = 1 m⋅s−1, we use

r =
√
(x − xc)2 + (y − yc)2, (45)

to obtain

u′ = up exp

[
−
(

r
Lp

)2
]
. (46)

Figures 11 and 12 show fields from this test case
at t = 12 days for the k= 0 and k= 1 spaces, respec-
tively. For the k= 0 configuration, Δx = Δy = 200 km and
Δz = 1 km, whilst for k= 1 these were Δx = Δy = 250 km
and Δz = 1.5 km. For both simulations, Δt = 300 s. In
the k= 1 simulation, the baroclinic wave becomes much
stronger than in the k= 0 simulation. As the wave devel-
ops, the maxima and minima in the temperatures in
the k= 1 case are higher than for the k= 0 lowest-order
spaces. When these minima coincide with regions close to
water-vapour saturation, more condensation occurs. This
releases latent heat and strengthens the baroclinic wave,
reinforcing the behaviour.

6 CONCLUSIONS

This article represents the first application of the compati-
ble finite-element framework of Cotter and Shipton (2012)
to the moist atmosphere. These methods are promising
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F I G U R E 12 Cross-sections of fields at
t = 12 days from the moist baroclinic wave
test case using the k= 1 spaces. The grid
sizes used were Δx = Δy = 250 km and
Δz = 1.5 km, with Δt = 300 s. Plots shown
are the same as in Figure 11, but note the
different scale in the zonal wind
perturbation plot (panel d). With the k= 1
spaces, the baroclinic instability is stronger
than with the k= 0 spaces, more cloud
appears to form, and the wave is less linear

(a) (b)

(c) (d)

for avoiding the data-communication bottleneck associ-
ated with the convergence of points at the poles in a
latitude–longitude mesh of the sphere. The work pre-
sented here marks a significant step in the development of
these methods for use in numerical weather prediction.

We applied a discretisation to the moist compress-
ible Euler equations, with configurations for two sets of
function spaces with different finite-element orders. This
builds upon the work of Cotter and Shipton (2012), Natale
et al., (2016), Yamazaki et al., (2017), and Bendall et al.,
(2019). The model configuration for each of the sets of
spaces has been described, detailing the discrete equations
that are solved and the transport schemes used, including
slope limiters that can be used with moisture variables. A
discussion is given of the parametrisation of the moist pro-
cesses and how these are coupled to the description of the
resolved flow. The performance of the model is displayed
through the presentation of five test cases, including two
new ones which we have introduced.

Our results demonstrate that this framework and our
discretisation strategies are robust enough to deal with
the more strenuous demands of the diabatic atmosphere,
which is promising for the future development of such
models. The results also offer some insight into how such
discretisations may depend upon the order of the finite
element.

Planned future work will extend this discretisation to
spherical domains, and test the numerical properties of
the different choices of finite-element spaces. More physics
parametrisations should be included and the procedure
used in the linear solve stage of the model, will be thor-
oughly detailed along with its performance.
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APPENDIX

Notation, thermodynamic variables,
and constants

The values or definitions of some thermodynamic con-
stants or variables used in the text are shown in Table A1.

HYDROSTATIC BALANCE ROUTINES
For many test cases, the background or initial state of

the model will be in hydrostatic balance. The procedure
that we use to obtain a discrete hydrostatic balance is based
on that presented in Natale et al., (2016). Given a bound-
ary condition for the pressure and a 𝜃d field, this procedure
finds the 𝜌d that gives rise to zero vertical accelerations.
Here, we describe two developments to this: the extension
of the routine of Natale et al., (2016) to use a hybridisation
technique and the treatment of cases in which thermo-
dynamic and moist variables and the prognostic variables
need to be found.

Hybridised hydrostatic balance
The hybridised hydrostatic balance system uses a sim-

ilar approach to that described in Section 3.5. As in that
case, the variables are expressed in discontinuous spaces
and Lagrange multipliers 𝓁 are introduced in a trace space
on the horizontal facets to provide continuity constraints.
We also introduce V̊ v, the subspace of the fully discon-
tinuous velocity space V̂ v with zero flow normal to the
boundaries. The problem is then to find (vtrial, 𝜌trial,𝓁trial) ∈
(V̈ v,V𝜌,Vtrace), such that, for all (𝝍 , 𝜙, 𝜆) ∈ (V̈ v,V𝜌,Vtrace),

∫Ω𝝍 ⋅ vtrial dx

−∫ΩcpdΠ̂(𝜌d, 𝜃vd)𝛁 ⋅
(
𝜃vd𝝍

1+rt

)
dx + ∫Γ⟦𝝍⟧n dS

= −∫
𝜕Ω0

cpd𝜃vd

1+rt
(𝝍 ⋅ n̂)Π0 dS − ∫Ωg𝝍 ⋅ k̂ dx,

(B1a)

∫Ω
𝜙cpd𝛁 ⋅

(
𝜃vdvtrial

1 + rt

)
dx = 0, (B1b)

∫Γ
𝜆⟦vtrial⟧n dS = 0, (B1c)

where 𝜕Ω0 is the boundary at which the condition
that Π = Π0 is to be satisfied and Π̂ is a linearisation
of Π. Equation B1a can be manipulated into a single
elliptic equation for 𝓁, which can be inverted efficiently
in each column of the mesh. In fact, it turns out that
𝓁 is an approximation for cpd𝜃vdΠ∕(1 + rt) on the hori-
zontal facets of the mesh. Once 𝓁 is determined, v and
𝜌d can be solved for via local back-substitution in each
cell of the mesh. Continuity is restored in v again by
using the recovery operator. By hybridising, we avoid
solving a larger, more ill-conditioned mixed system and

instead invert a condensed elliptic problem. The imple-
mentation of this procedure is described by Gibson et al.,
(2020), with the application taking the form of a cus-
tom Python-base preconditioner conforming to standard
PETSc library options (Balay et al., 1997; Petty and Huang,
2011), as described in Gibson et al., (2020). The advantage
is that the solver options for solving the condensed system
arising from reducing Equation B1a can be easily updated,
even when nested inside a nonlinear method.

Saturated conditions
This setup involves initial conditions like those in

the moist benchmark of Bryan and Fritsch (2002). The
problem is to find 𝜌d, 𝜃vd, and rv given 𝜃e, rt, and a bound-
ary condition on the pressure. Assuming the absence of
rain, rv = rsat, and rc = rt − rv. The wet-equivalent poten-
tial temperature, 𝜃e, is a conserved quantity in reversible,
moist adiabatic processes, that is, D𝜃e∕Dt = 0. Following
Emanuel (1994), for our equation set (Equation 2), 𝜃e can
be written as

𝜃e ∶= T
(

p0

p

) Rd
cpd+cplrt

()
−rvRv

cpd+cplrt e
Lv(T)rv

(cpd+cplrt)T , (B2)

which, with  = 1 for a saturated atmosphere, is the
same as used by Bryan and Fritsch (2002) and derived
in the appendix of Paluch (1979) from the second law of
thermodynamics. The saturation mixing ratio is given by
Equation 24.

The challenge is to obtain the 𝜃vd and 𝜌d fields that sat-
isfy the specified 𝜃e field whilst ensuring that rv = rsat. We
use an initial guess for 𝜃vd and feed it to Equation B1a to
generate a guess for 𝜌d. This density is then converted into
V𝜃 , before a nested fixed-point iteration-style procedure is
used to invert 𝜃e(𝜃vd, 𝜌̃d, rv) and rsat(𝜃vd, 𝜌̃d, rv), to obtain 𝜃vd
and rv.

Let l, m, and n count the number of iterations to find 𝜌d,
𝜃vd, and rv respectively. These form nested loops, such that
the outer loop uses the latest approximations of 𝜃vd and rv
with Equation B1a to obtain 𝜌(l+1∕2)

d . We then combine this
with the previous value to update the approximation to 𝜌d,
using

𝜌
(l+1)
d = (1 − 𝛿)𝜌(l)d + 𝛿𝜌(l+1∕2)

d , (B3)

where 𝛿 = 0.8. The next loop finds 𝜃vd using

𝜃
(m+1∕2)
vd =

𝜃
(m)
vd 𝜃e

𝜃e(𝜃(m)
vd , 𝜌̃

(l)
d , r

(n)
v )

, (B4)

𝜃
(m+1)
vd = (1 − 𝛿)𝜃(m)

vd + 𝛿𝜃(m+1∕2)
vd , (B5)
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Description Variable Value or definition

Specific heat capacity of dry air at constant V cvd 717 J⋅kg−1 ⋅K−1

Specific heat capacity of dry air constant p cpd 1004.5 J⋅kg−1 ⋅K−1

Specific heat capacity of water vapour constant V cvv 1424 J⋅kg−1 ⋅K−1

Specific heat capacity of water vapour constant p cpv 1885 J⋅kg−1 ⋅K−1

Specific heat capacity of liquid water constant p cpl 4186 J⋅kg−1 ⋅K−1

Specific heat capacity of moist air constant V cvml cvd + rvcvv + (rc + rr)cpl

Specific heat capacity of moist air constant p cpml cpd + rvcpv + (rc + rr)cpl

Specific gas constant for dry air Rd 287 J⋅kg−1 ⋅K−1

Specific gas constant for water vapour Rv 461 J⋅kg−1 ⋅K−1

Specific gas constant for moist air Rm Rd + rvRv

Reference Latent heat of vaporisation of water at TR LvR 2.5×106 J⋅kg−1

Latent heat of vaporisation of water Lv LvR − (cpl − cpv)(T −TR)

Reference temperature TR 273.15 K

Reference pressure pR 105 Pa

Constant in Tetens’ formula Csat
0 610.9 Pa

Constant in Tetens’ formula Csat
1 −17.27

Constant in Tetens’ formula Csat
2 35.86 K

Ratio of Rd to Rv 𝜖 0.623

Ratio of Rd to cpd 𝜅 2/7

T A B L E A1 Thermodynamic
values and constants used in the
text

whilst the inner loop computes

r(n+1∕2)
v = rsat(𝜃(m)

vd , 𝜌̃
(l)
d , r

(n)
v ), (B6)

r(n+1)
v = (1 − 𝛿)r(m)

v + 𝛿r(m+1∕2)
v , (B7)

where 𝜃e without arguments denotes the specified value.
These loops are iterated until 𝜃e(𝜃vd, 𝜌̃d, rv) converges to the
specified value to some tolerance.

Unsaturated conditions
We now discuss how to find the prognostic thermody-

namic variables given 𝜃d and the relative humidity, such
as the case in Section 5.3 or Grabowski and Clark (1991).
The relative humidity is related to rv by

 = rv

rsat

(
1 + rsat∕𝜖
1 + rv∕𝜖

)
. (B8)

As in Appendix B2, we use what can be thought
of as a nested iterative procedure. Counting the latest
approximations of 𝜌d, 𝜃vd, and rv with l, m, and n, the
outer loop uses 𝜃(m)

vd and r(n)v in the hydrostatic balance

equation (Equation B1a) to determine 𝜌(l+1∕2)
d . Again, the

next value of 𝜌d is given by

𝜌
(l+1)
d = (1 − 𝛿)𝜌(l)d + 𝛿𝜌(l+1∕2)

d . (B9)

There is only one inner loop in this case, so that m=n.
The new value of rv is found by rearranging Equation B8
so that

r(m+1∕2)
v =

rsat(𝜃(m)
vd , 𝜌̃

(l)
d , r

(m)
v )

1 + (1 −)rsat(𝜃(m)
vd , 𝜌̃

(l)
d , r

(m)
v )∕𝜖

, (B10)

r(m+1)
v = (1 − 𝛿)r(m)

v + 𝛿r(m+1∕2)
v , (B11)

where is the specified value of the relative humidity. The
final step is to use the specified value of 𝜃d to obtain

𝜃
(m)
vd = 𝜃d(1 + r(m)

v ∕𝜖). (B12)

This iterative process continues until (𝜃(m)
vd , 𝜌

(l)
d , r

(m)
v )

has converged to its specified value to some tolerance.


