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Abstract

The dN=dS ratio provides evidence of adaptation or functional constraint in protein-coding genes by quantifying the
relative excess or deficit of amino acid-replacing versus silent nucleotide variation. Inexpensive sequencing promises a
better understanding of parameters, such as dN=dS, but analyzing very large data sets poses a major statistical challenge.
Here, I introduce genomegaMap for estimating within-species genome-wide variation in dN=dS, and I apply it to 3,979
genes across 10,209 tuberculosis genomes to characterize the selection pressures shaping this global pathogen.
GenomegaMap is a phylogeny-free method that addresses two major problems with existing approaches: 1) It is fast
no matter how large the sample size and 2) it is robust to recombination, which causes phylogenetic methods to report
artefactual signals of adaptation. GenomegaMap uses population genetics theory to approximate the distribution of allele
frequencies under general, parent-dependent mutation models. Coalescent simulations show that substitution param-
eters are well estimated even when genomegaMap’s simplifying assumption of independence among sites is violated. I
demonstrate the ability of genomegaMap to detect genuine signatures of selection at antimicrobial resistance-conferring
substitutions in Mycobacterium tuberculosis and describe a novel signature of selection in the cold-shock DEAD-box
protein A gene deaD/csdA. The genomegaMap approach helps accelerate the exploitation of big data for gaining new
insights into evolution within species.

Key words: dN/dS, adaptation, natural selection, recombination, big data, parent-dependent mutation.

Introduction
Interpreting patterns of substitution in genetic sequences is a
fundamental approach in evolutionary biology. For example,
an excess rate of amino acid-replacing nonsynonymous sub-
stitution compared with silent synonymous substitution,
quantified by the dN=dS ratio (also denoted KA=KS or x),
provides evidence of adaptive change, whereas the reverse
pattern, more prevalent in functional protein-coding sequen-
ces, provides evidence for purifying selection (e.g., Miyata and
Yasunaga 1980; Perler et al. 1980; Nei and Gojobori 1986;
Nielsen and Yang 1998). Although the dN=dS ratio has known
limitations (see Discussion), it is simple and widely used.

Estimating substitution parameters like dN=dS typically
relies on first estimating, or co-estimating, a phylogenetic
tree relating the observed sequences. Two major drawbacks
commonly arise when 1) recombination is present or 2) sam-
ple sizes are large. The first major drawback, often encoun-
tered in analyses of within-species variation, is that
recombination breaks the assumption of a single phylogeny,
and instead generates a network of ancestral relationships in
which different genes, and different positions within genes,
can have different phylogenetic histories (Schierup and Hein
2000). It is well established that inappropriate application of
phylogeny-based methods to recombining data can produce
highly misleading biological inferences, including false signals

of adaptive evolution in the form of artificially elevated dN=dS

(Anisimova et al. 2003; Shriner et al. 2003).
The second major drawback is the computational cost of

estimating a phylogeny when the number of sequences
becomes large, for example, the 10,209 genomes recently
published by CRyPTIC Consortium and 100,000 Genomes
Project (2018) that bear witness to the relentless evolution
of antimicrobial resistance in tuberculosis. This is a double
blow because the cost of evaluating the fit of an individual
phylogeny increases at the same time as the number of pos-
sible phylogenies explodes (Felsenstein 1973, 1978). Although
highly efficient algorithms exist, the problem will become
increasingly acute with the steady march toward ever more
sequencing.

Wilson and McVean (2006) developed a method,
omegaMap, to estimate dN=dS in the presence of recombi-
nation. Although omegaMap avoids the false signals of adap-
tive evolution suffered by phylogenetic methods, its
application to large data sets is limited by the underlying
PAC (product of approximate conditionals) approach, whose
computational complexity increases quadratically with sam-
ple size (Li and Stephens 2003).

In this article, I address these drawbacks with existing
methods by introducing genomegaMap, a phylogeny-free sta-
tistical approach to estimating substitution parameters that
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implicitly integrates over phylogenetic relatedness using dif-
fusion theory and the coalescent (Wright 1949; Kingman
1982). Since genomegaMap interprets codon count informa-
tion, its computational cost remains constant even as the
sample size increases arbitrarily, making it a viable approach
for extremely large data sets. The method assumes indepen-
dence between sites, yet simulations show that the method
performs well even when the absence of recombination
causes strong linkage disequilibrium. I demonstrate the utility
of the method by estimating variation in dN=dS ratios in 3,979
genes sequenced in 10,209 Mycobacterium tuberculosis
genomes (CRyPTIC Consortium and 100,000 Genomes
Project 2018).

Materials and Methods

Population Genetics Model
Estimating the dN=dS ratio is a special case of the more gen-
eral problem of estimating a substitution rate matrix. The
Nielsen and Yang (1998) (NY98) codon model assumes
that a nonsynonymous substitution occurs at x times the
rate of its synonymous counterpart. It is defined by the fol-
lowing substitution rate from codon i to j (j 6¼ i):

hij ¼ pjl

1 for synonymous transversion

j for synonymous transition

x for nonsynonymous transversion

jx for nonsynonymous transition

0 otherwise

;

8>>>>>>>><
>>>>>>>>:

(1)

where x is the dN=dS ratio, j the transition:transversion ratio,
and pj the equilibrium frequency of allele j. To form a proper
rate matrix, the diagonal elements must be defined as
hii ¼ �

P
j6¼i hij. The scaling constant l is determined by

the expected substitution rate, h ¼
P

i

P
j 6¼i pihij.

Following the convention in population genetics, the rate is
defined here in units of 2PNe generations, where P is the
ploidy and Ne the effective population size.

GenomegaMap estimates substitution parameters by
modeling the allele frequency distribution at each site.
Analyses of dN=dS within species (e.g., Nielsen and Yang
1998; Wilson and McVean 2006) have implicitly treated se-
lection as a form of mutational bias, in which the mutation
rate matrix equals the NY98 substitution rate matrix, and
fitness differences between individuals are ignored. I follow
the convention here (see Discussion). For an alternative ap-
proach, see gammaMap (Wilson et al. 2011), which separately
models mutation and selection.

The distribution of allele frequencies under the simplifying
assumptions of a stable and unstructured population, selec-
tive neutrality, and parent independent mutation, in which
the rate of mutation from allele i to j (hij) depends only on the
target allele j (so can be written hij ¼ h�j), is derived from
diffusion theory and follows a Dirichlet distribution (Wright
1949; Watterson 1977):

pðfÞ ¼

QK
j¼1

f
h�j�1
j

Bðh�
Þ; (2)

where fj is the population frequency of allele j, K is the number
of alleles and Bðh�Þ ¼

QK
j¼1 Cðh�jÞ=Cð

PK
j¼1 h�jÞ is the mul-

tivariate beta function.
For more general, parent-dependent, mutation models, the

distribution cannot be easily calculated. Instead, I employ the
approach of Wilson et al. (2011, eq. B1) who approximated
the allele frequency distribution as a Dirichlet distribution by
conditioning on the identity of the oldest allele A:

pðfjAÞ �

QK
B¼1

f aAB�1
B

BðaA
Þ; (3)

where aAB ¼ mAB=mAA and mAB is the probability of sam-
pling an allele B conditional on having sampled allele A in a
sample of size two, calculable using the coalescent as

mAB ¼
ð1

0

fehtgABe�tdt

¼
XK

k¼1

VAkV
f�1g
kB

1� Dkk
; (4)

where h ¼ VDV�1 is the eigendecomposition of the substi-
tution rate matrix. This approximation, which in principle
allows any Markovian substitution process to be fitted, is
motivated by a low mutation rate assumption and therefore
expected to work best when the expected number of sub-
stitutions per site is small.

Assuming random sampling, the conditional allele count
distribution is Multinomial-Dirichlet distributed:

PrðxjAÞ ¼
ð

PrðxjfÞpðfjAÞdf

¼ n
x

� � Bðxþ aAÞ
BðaAÞ

; (5)

where xj is the number of times allele j was counted, n the
sample size and PrðxjfÞ represents the multinomial distribu-
tion. The identity of the oldest allele A is then averaged over
to obtain the likelihood for the allele counts at a site:

PrðxÞ ¼
XK

A¼1

pAPrðxjAÞ: (6)

The coarsest approximation made by genomegaMap is
independence between sites, which is motivated by the ben-
efits it confers with the rest of the model: 1) The computa-
tional complexity is constant irrespective of sample size,
whereas the likelihoods in phylogenetic and PAC models in-
crease linearly and quadratically with sample size, respectively.
2) Missing data can be handled easily because the sample size
need not be the same from site-to-site. 3) No haplotype in-
formation is required.
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Statistical Inference
GenomegaMap uses Bayesian inference for parameter estima-
tion. Three models of variation in x within individual genes
were implemented. In the independent codon model, the
prior distributions on x are independent across codons, so
no information is shared about the parameters along the
alignment. In the sliding window (or piecewise constant)
model, adjacent codons share the same value of x with prob-
ability 1� px. This shares information between codons
within a “block” of identical x’s and has a smoothing effect
on the point estimates (Wilson and McVean 2006). In the
constant model, x is assumed constant along the alignment
so information is shared across all codons.

Parameters were estimated by Markov chain Monte Carlo
(MCMC) using previously published Metropolis–Hastings
moves. Scalar parameters (x, j, and h) were updated using
log-uniform proposal distributions. For the sliding window
model, block boundaries were updated with a geometric pro-
posal whereas blocks were split and merged using reversible
jump moves (Wilson and McVean 2006, Appendix B). The
equilibrium codon frequencies p were fixed to be uniform
(porB3 analysis only) or to match the empirical codon fre-
quency distribution among 10,209 M. tuberculosis genomes
(CRyPTIC Consortium and 100,000 Genomes Project 2018).

Simulations
I performed simulations to test the performance of
genomegaMap under two scenarios. In the Unlinked simula-
tions, every codon was simulated independently, in keeping
with the assumption of genomegaMap. In the Clonal simu-
lations, all codons were completely linked, maximally violat-
ing this assumption of genomegaMap. For each scenario, I
simulated 100 data sets of 334 codons in 10,000 individuals.
The parameters were simulated independently for each data
set from log-normal distributions with (2.5%, 97.5%) quantiles
of (0.05, 5) for x, (1, 9) for j, and (0.001, 0.1) for h. x was
assumed constant along the sequence. Codon frequencies
were simulated from the empirical frequency distribution.
For each simulated data set, parameters were estimated using
as priors the same distributions used to simulate x, j, and h.
Under these conditions, the 95% credibility intervals (CIs)
should include the true parameters in 95% of simulations, if
the approximate likelihood performs optimally (Dawid 1982).
For each analysis, I ran two independent MCMC chains of
10,000 iterations.

Analysis of Neisseria meningitidis porB3
To compare genomegaMap with omegaMap, I re-analyzed 23
of 79 porB3 N. meningitidis sequences of Urwin et al. (2002)
comprising the carriage study subset of Wilson and McVean
(2006). Columns in the alignment with any indels were re-
moved to aid the comparison because omegaMap handles
them differently. I assumed an exponential prior distribution
with mean 1.0 for x and improper log-uniform priors for j
and h. I assumed a sliding window model for variation in x
along the gene, with a mean block length of p�1

x ¼ 30
codons. For both genomegaMap and omegaMap, I ran two
independent MCMC chains of 500,000 iterations. Trace plots

were compared visually with assess convergence. 1,000 iter-
ations of burn-in were removed. Chains were merged to ob-
tain final results.

Analysis of 10,209 M. tuberculosis Genomes
CRyPTIC Consortium and 100,000 Genomes Project (2018)
collected and whole-genome sequenced 10,209
M. tuberculosis samples from 16 countries across six conti-
nents comprising strains enriched for antimicrobial resistance
and unenriched strains collected for routine clinical diagnos-
tics. They mapped all genomes to the H37Rv reference ge-
nome (Cole et al. 1998) (GenBank accession number
NC_000962.2). I downloaded the alignment of every genome
to H37Rv and combined these to create a multiple sequence
alignment for each of the 3,979 CDSs in the GenBank anno-
tation, ignoring insertions relative to H37Rv and masking
nonsense mutations.

Inference of x, j, and h for an individual gene can be
improved by gleaning information from other genes. Often
this is implemented through a hierarchical model, for exam-
ple, estimating a distribution for the selection parameters
across all sites in all genes (Wilson et al. 2011). However,
hierarchical modeling requires sophisticated techniques for
simultaneously analyzing thousands of genes across a high
performance computing cluster. Instead, I mimicked a hier-
archical model heuristically by training a prior for x, j, and h
using an alignment of 334 codons randomly chosen from the
3,979 genes. For this preliminary analysis, I employed an ex-
ponential hyperprior with mean 1.0 for x, imposing a single
block across the alignment, and improper log-uniform
hyperpriors for j and h, running two MCMC chains for
10,000 iterations. This produced posterior means of –0.79,
1.2, and –2.9 and standard deviations of 0.20, 0.21, and 0.15
for log x; log j, and log h, respectively.

I used these results to form priors for the analyses of the
3,979 individual genes by assuming log-normal distributions,
multiplying the standard deviation parameters by 10 for x
and 3.2 for j and h to avoid overinformative priors. This
produced a prior median and (2.5%, 97.5%) quantiles of
0.45 (0.0098, 21) for x, 3.2 (0.90, 12) for j, and 0.057 (0.023,
0.14) for h. I analyzed the data under a mixture of two models
with equal prior probability: 1) the sliding window model
with mean block length p�1

x ¼ 33 codons and 2) the inde-
pendent codon model. For each gene, I ran two independent
MCMC chains of 500,000 or 1,000,000 iterations for the two
models, respectively, with 50,000 iterations removed as burn-
in. The chain lengths were chosen from preliminary runs
where convergence and burn-in were assessed visually. The
median run times per gene per chain were 233 and 172 min
for the two models, respectively. I used the harmonic mean
estimate of the Bayes factors to merge the results for each
gene and to obtain posterior model probabilities.

Software and Data Availability
GenomegaMap is available as a Docker container and Cþþ
source code from https://hub.docker.com/r/dannywilson/
genomegamap and https://github.com/danny-wilson/
genomegaMap. The following data are available: codon
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counts for every annotated CDS https://doi.org/10.6084/m9.
figshare.7599020.v1 and a summary of the Bayesian analysis at
the gene level (supplementary table S1, Supplementary
Material online) and codon level https://doi.org/10.6084/
m9.figshare.10329311.

Results

General Performance of GenomegaMap
The motivation for developing genomegaMap came from the
observation that omegaMap estimates of substitution param-
eters, including the dN=dS ratio x, were not strongly affected
by the exact value of the recombination rate, as long as it was
nonzero. This observation is reflected in the comparison of
the analyses of the N. meningitidis porB3 gene (fig. 1), for
which the point estimates and 95% CIs of x were almost
identical between omegaMap and genomegaMap, even
though the latter assumes codons are independent, that is,
unlinked. Although the results were near-identical, the
genomegaMap point estimates and 95% CIs were slightly
more conservative, in the sense that they were closer to the
prior expectation of x¼ 1. These results suggest that substi-
tution parameters are well estimated within species when
sites are assumed independent, despite the presence of link-
age disequilibrium.

To test this claim more thoroughly, I evaluated the relative
performance of genomegaMap in two scenarios. In the
Unlinked simulations, 334 codons were simulated indepen-
dently across 10,000 individuals, favoring the genomegaMap
assumption. In the Clonal simulations, all codons were
completely linked, strongly violating the genomegaMap as-
sumption of unlinked sites. As expected, genomegaMap per-
formed well in the Unlinked simulations, producing point
estimates strongly correlated with the true values of the dN=
dS ratio x, the transition:transversion ratio j and the muta-
tion rate h, and 95% CIs that included the truth in 98%, 98%
and 97%, respectively, of the 100 simulations (fig. 2).

In the Clonal simulations, codons were completely linked,
maximally violating the independence assumption of
genomegaMap. Despite this, the correlation between point
estimates and true parameters remained strong, whereas the
95% CIs still included the truth in 92% of the 100 simulations
for x and j and 88% of simulations for h (fig. 2). These results
suggest that genomegaMap produces only small loss in the
accuracy of its point estimates and 95% CIs even when its
independence assumption is completely wrong.

The major advantage of genomegaMap over omegaMap is
its robustness to sample size. The computational run time of
omegaMap increases with the square of the sample size. The
run time of a comparable phylogenetic method would in-
crease linearly with the sample size if the phylogeny were
known; in practice co-estimating the phylogeny makes the
computation much more intensive. In contrast, the run time
of genomegaMap is constant with respect to sample size. This
means it is uniquely suitable for the analysis of extremely large
within-species data. To demonstrate its capabilities, I applied
genomegaMap to 3,979 genes across 10,209 M. tuberculosis
genomes.

Characterizing Selection in 10,209 M. tuberculosis
Genomes
Mycobacterium tuberculosis is a bacterial pathogen responsi-
ble for tuberculosis, one of the world’s leading causes of death.
Twenty three percent of the global population is thought to
carry latent infection, of whom 9.0–11.1 million people are
estimated to have developed tuberculosis in 2017, with 1.5–
1.7 million resulting deaths. Drug resistance is a major prob-
lem for tuberculosis treatment; an estimated 483,000–
639,000 new cases were resistant to first-line drugs in 2017
(World Health Organization 2018).

The aim of the CRyPTIC Consortium is to help improve
control of tuberculosis and facilitate better, faster and more
targeted treatment of drug-resistant tuberculosis via genetic
resistance prediction, paving the way toward universal drug
susceptibility testing. CRyPTIC Consortium and 100,000
Genomes Project (2018) collected and whole-genome se-
quenced 10,209 M. tuberculosis genomes to quantify the per-
formance of genomic prediction of drug resistance. The
predictions were correct in 91.3–97.5% of resistant isolates
and 93.6–99.0% of susceptible isolates for the four first-line
drugs.

These predictions rely on existing knowledge of the genetic
mechanisms of drug resistance. Vast data sets have the po-
tential to reveal novel mechanisms of drug resistance through
genome-wide association studies (GWAS). Such studies can
benefit from an understanding of the selection pressures
shaping genetic diversity and the identification of sites under
positive selection because often that selection is driven by
drug therapy (e.g., Farhat et al. 2013; Os�orio et al. 2013;
Pepperell et al. 2013; Zhang et al. 2013; Lee et al. 2015;
Koch et al. 2017; Mortimer et al. 2018).

Mycobacterium tuberculosis is known for its complete lack,
or near-complete lack, of homologous recombination
(Godfroid et al. 2018), but as simulations showed,

FIG. 1. Comparison of omegaMap and genomegaMap estimates of the
dN=dS ratio x along the porB3 outer membrane protein gene of
Neisseria meningitidis. Solid lines and shaded regions show the point
estimates (posterior medians) and 95% credibility intervals, respec-
tively, for omegaMap (in blue) and genomegaMap (in red). The
genomegaMap runs were 4.9 times faster for these 23 sequences at
92 min each.
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genomegaMap inference is robust to both recombination and
the lack of recombination. I analyzed the 3,979 genes se-
quenced across the 10,209 genomes with genomegaMap. In
3,138 genes (79%), the model with independent x for every
codon fit better than the Bayesian sliding window model
(supplementary table S1, Supplementary Material online).
Figure 3 summarizes the evidence for positive selection across
the genome by quantifying the posterior probability of
x > 1. Most codons in most genes showed evidence against
positive selection, that is, Prðx > 1Þ < 0:5, indicating func-
tional constraint. In very few genes, such as pncA encoding
pyrazinamidase, did positive selection appear to be more
common. More often, the strongest evidence for positive
selection was found in a small number of codons within genes
dominated by negative selection, such as gyrA, encoding DNA
gyrase subunit A. This shows how positive selection occurs
against backdrops of both rapid amino acid change and func-
tional constraint, so the mean Prðx > 1Þ per gene provides
limited insight.

Instead, I identified every gene with one or more codons
exhibiting a posterior probability of positive selection of at
least 90% (i.e., Prðx > 1Þ � 0:9) (supplementary table S1,
Supplementary Material online). The genes are annotated

by their descriptions in GenBank and MycoBrowser
(Kapopoulou et al. 2011). In total, 15,931/1,330,612 codons
(1.2%) spanning 2,729/3,979 genes (69%) showed strong ev-
idence of positive selection, a mean of 4.0 per gene. Among
the most enriched for positively selected sites were genes
encoding membrane proteins, toxin–antitoxin proteins
(Sala et al. 2014), PE/PPE family proteins (Fishbein et al.
2015), ESX family proteins (Gröschel et al. 2016), and antimi-
crobial resistance (Farhat et al. 2013; Os�orio et al. 2013;
Pepperell et al. 2013; Zhang et al. 2013; Lee et al. 2015;
Koch et al. 2017; Mortimer et al. 2018).

Positive Selection in Known Resistance-Determining
Genes
Figure 4 shows in detail the variation in x along ten genes,
ordered by the mean Prðx > 1Þ and cross-referenced above
figure 3. In all ten genes, the model of independent x for
every codon fitted so much better than the Bayesian sliding
window model that it dominated the results (100% posterior
model probability, supplementary table S1, Supplementary
Material online).

The signature of selection in rpoB, which encodes RNA
polymerase subunit b, exemplifies the evolutionary response

FIG. 2. Performance of genomegaMap inference of x, j, and h in simulations. In the Unlinked simulations (top row), every codon was simulated
independently, favoring the genomegaMap assumption. In the Clonal simulations (bottom row), all codons were completely linked, disfavoring the
genomegaMap assumption. Point estimates (posterior medians) and 95% credibility intervals are indicated by the circles and solid vertical lines,
respectively, the latter colored red when they exclude the actual parameter. The number of simulations (out of 100) in which the 95% credibility
intervals included the actual values of x, j, and h were 98, 98, and 97 in the Unlinked simulations and 92, 92, and 88 in the Clonal simulations. The
correlation between the point estimates and actual values of log x; log j, and log h were 0.86, 0.69, and 0.92 in the Unlinked simulations and 0.82,
0.61, and 0.88 in the Clonal simulations.
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to antibiotic usage. Subunit b is targeted by the first-line drug
rifampicin, which binds the RNA polymerase, interfering with
transcription of DNA to mRNA (see e.g., Palomino and
Martin 2014). Strong evidence of positive selection was found
at 41 codons in rpoB, with a concentration of 15 in a 28-
codon hotspot covering codons 427–454 coinciding with the
rifampicin resistance determining region and including the
common serine-to-leucine substitution at position 450
(S450L; positions relative to NC_000962.2). The population
harbors a large number of alternative amino acid alleles in this
region, represented by an accumulation of orange points in
figure 4; this provides the signature of elevated dN=dS. The
extremely large sample size greatly enhances the ability to
discover these alternative alleles, many of which are rare.
For example, codon 445, which showed the highest point
estimate of x ¼ 79:8, harbors 14 alleles encoding 12 different
amino acids, with H445Y the most abundant amino acid
substitution at only 1.5% frequency. Additional signals were
observed including codons 45, 399–400 and 491. None of
these sites is included in the WHO-endorsed GeneXpert
MTB/RIF assay despite evidence of involvement in MDR-TB
outbreaks (e.g., Makhado et al. 2018). For exhaustive results at
the codon level, see https://doi.org/10.6084/m9.figshare.
10329311.

The adjacent rpoC gene, encoding RNA polymerase sub-
unit b0, showed similar peaks of positive selection against a
backdrop of constraint. 51 codons showed strong evidence of
positive selection, including codons 434, 483–485, 491, 515–
519, 698, and 1039–1040. Several of these regions coincide
with high-probability compensatory mutations identified by
Comas et al. (2012): P434R, V483A/G, D485H/N, I491T/V, and
N698H/K/S. The compensatory mutations mitigate the fit-
ness deficit imposed on rifampicin-resistant M. tuberculosis by
mutations in the rifampicin resistance determining region of
rpoB. These positions localize to the interface between RNA

polymerase subunits a and b0, suggesting they play a role in
the interaction between subunits (Comas et al. 2012). The
extremely large sample size revealed other rare amino acid
alleles at these positions that could also be compensatory:
D485Y and N698D/L.

The World Health Organization (2018) report that 82% of
rifampicin-resistant tuberculosis cases are also resistant to the
first-line drug isoniazid, making them multidrug resistant tu-
berculosis (MDR-TB), which requires longer treatment with
more toxic drugs. Isoniazid is a prodrug requiring activation
by catalase-peroxidase, encoded by katG. In an earlier draft of
the article, where the results were based solely on a Bayesian
sliding window analysis, genomegaMap did not detect evidence
of positive selection surpassing the posterior probability thresh-
old of 90% in katG. This was puzzling because katG displayed
the highest level of homoplasy (an indicator of positive selec-
tion) among 23 resistance-associated genes in an earlier study
of 2,099 genomes (Walker et al. 2015). Upon reanalysis, the
independent x per codon model fitted much better than the
Bayesian sliding window model (100% posterior probability)
and picked out strong evidence of positive selection at 28
codons in katG. They included the resistance-conferring
S315T substitution, which (Walker et al. 2015, supplementary
fig. S17, Supplementary Material online) found emerged 180
times. Intense selection for an individual mutation has been
characterized as a “tight target” by Mortimer et al. (2018).
GenomegaMap does not exploit the signal of homoplasy to
infer positive selection because it does not use a phylogenetic
tree, relying instead on the relative number of nonsynonymous
alleles. Nevertheless, the posterior probability of positive selec-
tion at codon 315 was 100% in the new analysis.

Resistance to the first-line drug ethambutol is conferred by
mutations in embB, which encodes an essential part of the
cell wall biosynthetic pathway (Palomino and Martin 2014).
Selection is predominantly conservative in embB. Against this

FIG. 3. The evidence for positive selection across 3,979 genes in 10,209 Mycobacterium tuberculosis genomes. Each column is a stacked bar chart
showing the proportion of codons in one gene with a given strength of evidence for positive selection, indicated by color. Blue indicates weakest
evidence, Prðx > 1Þ � 0, whereas red indicates strongest evidence, Prðx > 1Þ � 1. Genes are ordered left-to-right by the mean Prðx > 1Þ across
codons, from highest to lowest. Notable genes containing codons with strong evidence of positive selection are labeled; these occur across the
spectrum. The genes with predominantly sky blue color, scattered between pncA and katG, contained little information because they mapped
poorly to the reference genome.
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background, 16 codons were found to exhibit strong evidence
of position selection, including D328F/G/H/I/F and M306I/L/
V, which has been implicated in ethambutol resistance,
Q497H/K/P/R and Y319C/D/S.

The DNA gyrase-encoding genes gyrA and gyrB displayed
strong signatures of positive selection localized to the quino-
lone resistance determining regions, surrounded by con-
straint characteristic of essential proteins. Eleven and

FIG. 4. Evidence of positive selection in ten Mycobacterium tuberculosis genes across 10,209 genomes. Genes are ordered by the mean Prðx > 1Þ
across codons, from highest (gidB) to lowest (gyrA). Point estimates (black points) and 95% credibility intervals (gray bars) for x are shown across
codons. Codons for which Prðx > 1Þ � 0:9 are highlighted with yellow boxes. Stacked points indicate the number of alleles that are non-
synonymous (orange) or synonymous (green) relative to the commonest allele.
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sixteen codons, respectively, reached the 90% probability
threshold, including codons 88, 90, and 94 in gyrA and
537–540 in gyrB. Several of these positions are known to
confer resistance to second-line quinolone drugs, including
gyrA A90E/G/V and D94A/G/H/N/Y (Palomino and Martin
2014).

Selection at ethA, which encodes a nonessential monoox-
ygenase, bore a similar profile of selection to katG (fig. 3),
whose product is also nonessential. Loss-of-function muta-
tions in ethA prevent activation by monooxygenase of the
second-line ethionamide from a prodrug to its active form
(Palomino and Martin 2014). Strong evidence for positive
selection was apparent at 21 codons in ethA, including pairs
of codons at positions 50–51, 61–62, and 262–264. Like katG,
this suggests that although resistance-conferring loss-of-func-
tion mutations could occur throughout the gene, they tend
not to. The selection regimes of ethA and katG presumably
reflect a balance between antimicrobial-imposed positive se-
lection for loss-of-function mutations conflicting with func-
tional constraint favoring conservation of the gene products.

Rapidly evolving genes dominated by positive selection are
rare in M. tuberculosis, and when they do occur they are
perhaps exemplified by pncA. Whereas 44/186 codons
(24%) showed strong evidence of positive selection, this signal
is driven by probable loss-of-function mutants, making it a
particular form of positive selection that adapts the organism
by disrupting protein function. The pncA gene encodes the
nonessential enzyme pyrazinamidase, which converts the
first-line prodrug pyrazinamide to its active form. Resistance
to pyrazinamide is achieved by loss-of-function mutations in
pncA (Palomino and Martin 2014). Function-ablating mis-
sense and nonsense mutations have spread rapidly in re-
sponse to the widespread use of pyrazinamide. The regions
where evidence for positive selection is weaker may be under
stronger functional constraint in environments where expres-
sion of the gene is favored.

The gidB gene shows strong evidence of positive selection
at 31/224 codons (14%) scattered throughout most of its
length. This gene encodes a methyltransferase that increases
resistance to the second-line drug streptomycin.
Streptomycin inhibits protein synthesis by binding to the
16S rRNA component of the 30S ribosomal subunit, increas-
ing mistranslation. Loss-of-function of the gidB methyltrans-
ferase is thought to alter methylation of a highly conserved
16S rRNA residue, preventing binding by streptomycin
(Okamoto et al. 2007; Wong et al. 2011). Like in pncA, this
mechanism creates a selection pressure favoring missense
and nonsense mutations throughout the gene, a phenome-
non characterized as a “sloppy target” by Mortimer et al.
(2018). However, the modest increase in resistance conferred
by this mechanism and the current status of streptomycin as
a relatively less-frequently used, second-line drug with strong
side effects suggests there may be other selection pressures
driving gidB loss-of-function.

Positive Selection in a Cold-Shock Protein
I scanned the genomegaMap results for evidence of positive
selection at genes in which the selective forces driving

adaptation are unknown or incompletely understood. In par-
ticular, I looked for genes with the characteristic signature of
positive selection against a backdrop of functional constraint.
The deaD gene, encoding cold-shock DEAD-box protein A
and also known as csdA, is one such example (fig. 4), with
strong evidence of positive selection at 13/563 codons (2.3%).

DEAD-box proteins are a large family of ATP-dependent
RNA helicase proteins found in prokaryotes and eukaryotes
that separate double-stranded RNA molecules in an energy-
dependent manner. They are named after their highly con-
served Asp-Glu-Ala-Asp (D-E-A-D) motif. DEAD-box proteins
are involved in ribosome biogenesis, translation initiation and
RNA decay, fundamental processes that must dynamically
respond to changes in environment and stress (Linder and
Fuller-Pace 2013).

In Escherichia coli, the DeaD/CsdA protein has been char-
acterized as essential for ribosome formation during cold
shock because it separates stable secondary RNA structures
which form at low temperature (Jones et al. 1996). DeaD/
CsdA is important for biogenesis of both the 30S and 50S
ribosome subunits, conferring tolerance toward mutants of
other regulators and ribosomal proteins (Moll et al. 2002;
Charollais et al. 2004). DeaD/CsdA has also been found to
control gene expression at temperatures relevant to the
mammalian host, and for modulating the carbon storage
regulatory (Csr) system, which globally regulates mRNA trans-
lation and turnover (Vakulskas et al. 2014).

Strong evidence of positive selection in M. tuberculosis
deaD was evident at codons 140 and 143, with weaker evi-
dence of positive selection at four of the five other codons in
the region 139–145 (Prðx > 1Þ � 0:65). This region, which
encodes TPGRMID, corresponds to motif Ib, consensus se-
quence TPGRXXD, one of a series of highly conserved motifs
that characterize DEAD-box proteins. Motif Ib overlaps a
nine-residue alpha helix (a7) beginning at codon 140 in
M. tuberculosis. Sengoku et al. (2006) characterized the struc-
ture of the Drosophila melanogaster DEAD-box protein Vasa
in detail. They found that two RecA-like domains in the
DEAD-box protein core bind a single RNA strand and sharply
bend it. The bend avoids a clash between the RNA and a
“wedge” formed by a7 when the RNA is single stranded,
whereas the unbound strand of an RNA duplex would be
predicted to clash with the a7 wedge, resulting in disrupted
base-pairing.

The residues homologous to four codons in motif Ib di-
rectly interact with the bound RNA (Sengoku et al. 2006).
These positions exhibited a single alternative amino acid allele
each across the 10,209 genomes: T139P, G141D, R142P, and
D145H. The two positions with strong evidence of positive
selection—P140L/S and M143I/R/V—exhibited multiple al-
ternative amino acid alleles, whereas I144 was invariant. No
synonymous variation was seen across the motif. Despite the
relatively abundant amino acid variation in the motif in terms
of allele numbers, the frequency of all substitutions except
M143I/R/V was extremely low, <0.5%. The sensitivity of the
dN=dS ratio to allele numbers, irrespective of allele frequen-
cies, was observed earlier in rpoB. The diversity of rare alleles
could mirror the mode of selection in the rpoB rifampicin

GenomegaMap . doi:10.1093/molbev/msaa069 MBE

2457

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/8/2450/5804989 by Im
perial C

ollege London Library user on 29 Septem
ber 2020



resistance determining region, in which any of a large collec-
tion of amino acid substitutions improve fitness in the pres-
ence of the drug.

The DEAD-box motif itself, covering codons 163–166
and responsible for RNA binding, ATP binding and inter-
domain interactions, was situated in a region of conser-
vation, with a mean probability of positive selection of
22%. This, together with the general conservation
throughout the gene, suggests that the effect of substitu-
tions in motif Ib might not be to knock out the function of
DeaD, but to modify it in some way; for instance, by al-
tering conformation in such a way as to change interac-
tions with other molecules.

Given the functional characterization of DeaD, candidate
drivers of adaptation in motif Ib may in some way inhibit
ribosome biogenesis or translation by interfering with ribo-
somal proteins, rRNAs or amino acids through mutation, for
example with reactive oxygen radicals produced by the im-
mune response, conformational change, for example binding
by an antibiotic, or changes in molecular availability, for ex-
ample caused by nutrient deprivation, cold shock or other
stress. In the case of drug resistance, the detection of localized
positive selection against a backdrop of constraint in deaD
provides valuable context for future GWAS searching for ge-
netic variants responsible for the growing problem of drug
resistant infections.

Discussion
The main advantages of genomegaMap for estimating dN=dS

ratios within species are 1) it is fast no matter how large the
sample size and 2) it accounts for recombination. These
advantages were achieved by extending the Wilson et al.
(2011) approximation to the distribution of allele frequencies
under parent-dependent mutation models, and assuming in-
dependence between codons. Simulations showed good per-
formance despite these approximations.

Among the benefits of the approach, haplotype informa-
tion is not required and missing data are easily handled, mak-
ing genomegaMap suitable for short-read exome and genome
sequencing data. The genomegaMap approach is to treat
dN=dS as a substitution parameter. In this light, it can be
seen as a general, likelihood-based method for estimating
substitution parameters within species under parent-
dependent mutation models.

The approach has several limitations. Sites are assumed
independent between codons but linked within codons.
Despite this, simulations showed good performance when
recombination was high and low. Thus, it was possible to
analyze 10,209 genomes from M. tuberculosis, an almost per-
fectly clonal organism. The effects of violating other assump-
tions including constant population size, no population
structure and random sampling were not investigated. The
importance of sampling cannot be overstated, with signa-
tures of selection entirely dependent on the selection pres-
sures experienced by the populations analyzed.

Perhaps the greatest limitation of genomegaMap is its use
of the dN=dS ratio to characterize natural selection. Within

species, dN=dS is expected to vary even in a constant envi-
ronment, with ratios closer to one expected for younger
variants not yet exposed to selection for so long
(McDonald and Kreitman 1991). Further, the form of positive
selection that best predicts a high dN=dS ratio is diversifying
selection, in which any amino acid is favored over the incum-
bent. Diversifying selection may be relatively limited, to arms
races, for example, between host and pathogen, or to hetero-
geneous environments, for example, immunologically diverse
hosts. The evolution of resistance to antibiotics since their
introduction in the 1940s may resemble such a Red Queen
scenario assuming fitness trade-offs, because exposure varies
from host-to-host.

Examples from rpoB and deaD showed that the signal of
elevated dN=dS stems mainly from the abundance of alter-
native amino acid alleles, relative to the number expected
under neutrality, and not from allele frequencies. Some of
these alternative alleles were detected at frequencies
<0.5%, demonstrating the value of extremely large sample
sizes. The sliding window model employed by genomegaMap
fit the data worse than an independent x model for most
coding sequences (CDSs), but smaller samples may benefit
from its smoothing effect.

Interpreting dN=dS within species has been criticized by
proponents of process-driven models. Models of dN=dS

within species are essentially descriptive. They formally treat
selection like mutational bias, where differences in nonsynon-
ymous and synonymous diversity arise purely from different
mutation rates. In contrast, process-driven models explicitly
parameterize selection coefficients separately from mutation
rates. When the model assumptions are valid, the inferred
selection coefficients are more interpretable than dN=dS. But
a major assumption is that selection at multiple sites interacts
simply, for example, by reducing effective population size.
When linkage disequilibrium is low, simulations may support
this (e.g., Wilson et al. 2011). When it is high, as in many
pathogen genomes, forces like clonal interference challenge
the validity of single-site selection models. In which case it
may be preferable to embrace the descriptive dN=dS ap-
proach rather than interpret the parameters of a misspecified
process-driven model. Power to detect forms of adaptation
that do not markedly elevate dN=dS is inevitably limited
(Kryazhimskiy and Plotkin 2008), but genuine signals of dN=
dS � 1 are usually of biological interest.

Despite its limitations, the relatively simple interpretation
of dN=dS ratios means the approach continues to hold a
strong appeal. For such applications, genomegaMap helps
accelerate the exploitation of big data for gaining new insights
into evolution within species.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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