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Abstract

Re-entrant circuits have been identified as potential
drivers of atrial fibrillation (AF). In this paper, we develop
a novel computational framework for finding the locations
of re-entrant circuits from high resolution fibre orientation
data. The technique follows a statistical approach whereby
we generate continuous fibre tracts across the tissue and
couple adjacent fibres stochastically if they are within a
given distance of each other. By varying the connection
distance, we identify which regions are most susceptible
to forming re-entrant circuits if muscle fibres are uncou-
pled, through the action of fibrosis or otherwise. Our re-
sults highlight the sleeves of the pulmonary veins, the pos-
terior left atrium and the left atrial appendage as the re-
gions most susceptible to re-entrant circuit formation. This
is consistent with known risk locations in clinical AF. If
the model can be personalised for individual patients un-
dergoing ablation, future versions may be able to suggest
suitable ablation targets.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia causing harmful complications such as stroke [1].
A full mechanistic understanding of AF is still lacking and,
as a result, treatment options have disappointing success
rates [2]. Transmural re-entrant circuits have been identi-
fied as a potential mechanism of AF capable of explaining
both focal and re-entrant activity [3, 4].

In this proof of concept paper, we introduce a novel
computational model of the atria for identifying potential
locations of re-entrant circuits. Continuous fibre tracts are
generated from sheep heart fibre orientation data forming
a realistic atrial topology [5].

Personalised heart models have been a growing focus
in computational cardiology. Many existing models fo-
cus on correlating patterns of fibrosis in the myocardium

to the emergence and maintenance of re-entrant drivers in
AF [6–8]. Other models focus explicitly on muscle fibre
orientation to assess the effect of fibre heterogeneity on
atrial electrical propagation patterns and potential re-entry
locations [5, 9, 10]. These models typically study the dy-
namics of spiral waves, which maintain AF, using reaction-
diffusion type equations where conduction velocities differ
along fibres as opposed to across fibres. However, fibres
are not explicitly decoupled – the tissue is a continuous
substrate through which electrical signals can propagate.

In this paper, our aim is to identify the locations where
decoupling neighbouring fibre tracts creates a substrate for
micro-anatomic re-entries which can initiate fibrillation.
Our approach is statistical – we generate many possible
fibre maps from the known fibre orientation data, identify
the potential locations where a re-entrant circuit may form,
and collate the results to find locations which are consis-
tently prone to the formation of re-entrant circuits. We do
not directly investigate the behaviour of spiral waves since
our focus is purely structural, avoiding the need to solve
the reaction diffusion equations typically used in cardiac
electrophysiology models. This allows the generation of
very large statistics not accessible using other methods.

2. Methods

The algorithm for identifying re-entrant circuits is in-
spired by percolation based physics models where car-
diomyocytes are coupled strongly along muscle fibres, but
weakly across fibres [11–14]. Re-entrant circuits can be
sustained if the path length of a circuit exceeds the refrac-
tory wavelength, calculated as the product of the effective
refractory period and the conduction velocity. The param-
eters used to calculate these values can be found in [12].
Using the sheep heart data, we generate the principal fibres
across the atria and couple adjacent fibres with a probabil-
ity dependent on their proximity. Having generated the fi-
bre maps, we identify closed loops of length longer than a
predefined refractory wavelength as potential locations for



re-entrant circuits.

2.1. Constructing fibre maps

A high-resolution (50µm × 50µm × 50µm voxels)
image-based map of atrial myofibre orientations for a
sheep heart was acquired [5]. The map takes the form of
a vector field, giving the predominant fibre directions rel-
ative to a fixed spatial co-ordinate system. For the sake
of computational simplicity, we coarse-grained the vector
field by taking the average fibre orientation within a cu-
bic block of voxels. We use a coarse graining of 6 cells
(300µm) to ensure both sufficiently high anatomical detail
and the computational feasibility necessary for large statis-
tics.

Figure 1. Illustration of the FACT algorithm on a simpli-
fied 2D grid. Each voxel has a linear scale of 300µm after
coarse graining. The red dot indicates the starting position,
and the red line is the fibre traced out by the algorithm.

Fibres were generated by adapting the Fibre Assign-
ment by Continuous Tracking (FACT) algorithm, which
performs linear interpolation in the direction of the fibre
orientation within each voxel of the vector field, see Fig. 1
[15]. The algorithm is well-established in neuroscience for
tracking neurons and is simple to implement [16].

Fibres were generated starting from the centre of every
non-empty coarse-grained voxel. This introduced a signif-
icant overdensity of fibres and density fluctuations depen-
dent on the orientation of fibres relative to the Cartesian
co-ordinate system. Although there is a natural variation
in fibre density across the atria, our dataset does not in-
clude this information.

The Spherical-deconvolution informed filtering of trac-
tograms (SIFT) algorithm was adapted to correct for the
overdensity of fibres and the co-ordinate system based den-
sity fluctuations [17]. SIFT was chosen for its relative
speed compared to alternative algorithms and for the lack
of assumptions required in its implementation.

The fibres generated using FACT and SIFT are not cou-

pled. To couple fibres, nodes were seeded at regular in-
tervals of approximately the voxel length along the fibres.
Nodes in separate fibres were then coupled according to
their proximity using a sigmoidal probability density func-
tion

Pcoupled(r) =
1

es(r−c) + 1
, (1)

where r is the distance between nodes in units of the voxel
spacing, s = 7 is the steepness of the transition, and c
is a characteristic distance for the connection probability.
This probability function is suitable since it is 1 for small
distances and approaches zero quickly for r > c. Results
are robust against changes in the steepness, s. A small
region of an example fibre map can be seen in Fig. 2.

Figure 2. Example result of the fibre generation pro-
cess. Points represent nodes; lines represent connections
between nodes. Fibres principally lie along the x-axis with
fewer connections in the y- and z- directions.

The overall level of coupling is controlled by changing
the characteristic distance. If c is too small, fibres are com-
pletely isolated and do not form a closed loop. If c is large,
fibres are strongly coupled and the closed loops formed
are shorter than the refractory wavelength required by a
re-entrant circuit. In a transition region fibres are coupled
sufficiently to allow conduction across the tissue, but the
closed loops that form have path length greater than the
refractory wavelength. These regions are identified as po-
tential locations for re-entrant circuits.

From the fibre map, circuits are identified by generat-
ing signals at the sinus node and letting the signal dif-
fuse across the network. By simulating stochastic uni-
directional conduction block, we identify locations where
the signal spreading from the sinus node forms a continu-
ously excited circuit with path length greater than the re-
fractory wavelength, see [13] for details.

The methods used here are probabilistic. No single fibre
map generated is an exact representation of the muscle fi-
bre coupling observed in a real heart. However, by averag-



Figure 3. Risk probability of re-entrant circuits across the atria for moderately decoupled tissue (a & b), and significantly
decoupled tissue (c & d), for two different views of the same model. The superior vena cava (SVC), right/left supe-
rior/inferior pulmonary veins (RSPV/LSPV/RIPV/LIPV) and the right/left atrial appendages (RAA/LAA) are indicated.
For moderately decoupled tissue, absolute risk is low – key risk regions correspond to the posterior left atrium (PLA,
region highlighted between RIPV and LIPV), RSPV and LAA. As tissue is decoupled further, the risk region covers a
significant fraction of the atrial tissue, specifically the left atrium and the RAA. A spherical convolution has been used for
visual clarity. Risk regions with probability less than 0.25 are shown in grey for contrast.

ing over many realisations, we can identify regions which
are consistently more at risk of decoupling and forming
re-entrant circuits.

3. Results

To assess whether the fibre maps generated are reason-
able, we compare the activation times for the networks
generated using our algorithm to a randomised fibre map
with isotropic connection probabilities (figure not shown).
The results are consistent with previous studies using the
sheep heart fibre map where the propagation of signals
from the sino-atrial node to the left atrium, simulated us-
ing the Fenton-Karma model, was faster using the real fibre
data than randomised isotropic data [5].

To identify locations in the atria susceptible to the for-
mation of re-entrant circuits, we generate 1000 randomised
instances of the fibre map from the fibre orientation data
for each parameter set. For each instance, we apply the
circuit location algorithm and note the positions of any cir-
cuits identified. We then collate the data from all 1000
realisations and plot a heatmap of the probability that a
given region in the atria is susceptible to the formation of
re-entrant circuits, see Fig. 3. This result is sensitive to
the choice of characteristic distance in Eq. (1). A charac-
teristic distance of c = 1 corresponds to 1 voxel spacing
in the fibre map. For c > 1.2, no re-entrant circuits are
found. As c is reduced, the left atrial appendage (LAA),
the posterior left atrium (PLA) and the pulmonary veins
(PVs), most notably the right superior PV, are identified
as the primary risk locations for re-entrant circuits. If c is
reduced further, the risk locations cover a large fraction of
the atrial surface, notably the left atrium and the RAA. The
reduction in the characteristic distance can be thought of as
decoupling neighbouring muscle fibres through the action

of diffuse, interstitial fibrosis, that accumulates with age,
or otherwise.

4. Discussion

This proof of concept work demonstrates that the re-
gions believed to play critical role in the emergence and
maintenance of focal drivers in AF (PVs, LAA and PLA)
can be identified as risk regions for the formation of re-
entrant circuits from fibre orientation data only. We do not
consider the emergence of focal drivers from cardiomy-
ocyte automaticity. Interestingly, the framework suggests
that the first regions which harbor re-entrant circuits cor-
relate to those targeted using various ablation strategies
which have success for AF [2]. However, as fibres decou-
ple further, the risk region covers a significant fraction of
the atrial tissue such that the electrical isolation of any one
region through ablation is unlikely to prevent fibrillation.
Equally, the risk region is so vast, especially in the left
atrium, that too many individual sources may exist for a
focal ablation strategy to be successful. This may partially
explain why persistent AF is in some cases untreatable us-
ing current ablation strategies. The model also shows a
greater density of risk regions in the left atrium which is
consistent with clinical observations that 70% of all focal
triggers in persistent AF are found in the left atrium [18].

4.1. Limitations of study & Future work

The work presented here is early stage and should be
treated as a proof of concept. The results are derived from
a single sheep atria fibre map, and as such the results may
not be representative of other hearts with unique fibre ori-
entations, or of human AF. Testing the methods on a range
of other fibre maps and validating the risk regions clini-



cally should be a key focus moving forward. Work is on-
going applying our methods to a human bi-atrial fibre map
acquired in [19].

A major limitation in the current work is the small
voxel size used to generate the fibre map. After coarse
graining, each voxel has a linear dimension of approxi-
mately 300µm. This is significantly smaller than the small-
est voxel size achievable in a cardiac MRI. Non-invasive
methods are unlikely to be able to generate fibre maps with
the resolution necessary for these techniques to have clin-
ical benefit. Adapting our model to work at lower fibre
orientation resolutions may bring us closer to a framework
which has predictive power relevant clinically.

Our approach assumes uniform decoupling of muscle fi-
bres throughout the atria, simulating the accumulation of
diffuse, interstitial fibrosis. However, patchy and compact
fibrosis are also known to aid the formation of re-entrant
circuits. To generate personalised models for individual
hearts, the method for generating fibre connections must
take account of realistic fibrosis patterns.

5. Conclusion

We have introduced a framework for identifying poten-
tial locations of re-entrant circuits from atrial fibre maps.
The technique successfully identifies the importance of the
PVs, PLA, and the LAA to AF, but also indicates that if
muscle fibres decouple sufficiently, re-entrant circuits can
form across a large portion of the atrial tissue, complicat-
ing prospective ablation strategies.
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