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Abstract: We study several Fokker-Planck equations arising from a stochastic chemical kinetic system
modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations
describe the joint distribution of the mRNA and µRNA content in a cell. We provide theoretical and
numerical evidence that the robustness of the gene expression is increased in the presence of µRNA. At
the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal
density of the mRNA in the presence of µRNA. These results follow from explicit formulas for
solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative
insight into the role of each parameter in the model. As the increase of gene expression level comes
from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models
and its influence on our results.
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1. Introduction

This paper is concerned with a mathematical model for a gene regulatory network involved in the
regulation of DNA transcription. DNA transcription is part of the mechanism by which a sequence
of the nuclear DNA is translated into the corresponding protein. The transcription is initiated by
the binding of a transcription factor, which is usually another protein, onto the gene’s DNA-binding
domain. Once bound, the transcription factor promotes the transcription of the nuclear DNA into a
messenger RNA (further denoted by mRNA), which, once released, is translated into the corresponding
protein by the ribosomes. This process is subject to a high level of noise due to the large variability
of the conditions that prevail in the cell and the nucleus at the moment of the transcription. Yet, a
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rather stable amount of the final protein is needed for the good operation of the cell. The processes that
regulate noise levels and maintain cell homeostasis have been scrutinized for a long time. Recently,
micro RNAs (further referred to as µRNAs) have occupied the front of the scene. These are very
short RNAs which do not code for proteins. Many different sorts of µRNAs are involved in various
epigenetic processes. But one of their roles seems precisely the reduction of noise level in DNA
transcription. In this scenario, the µRNAs are synthesized together with the mRNAs. Then, some of
the synthesized µRNAs bind to the mRNAs and de-activate them. These µRNA-bound mRNA become
unavailable for protein synthesis. It has been proposed that this paradoxical mechanism which seems
to reduce the efficiency of DNA transcription may indeed have a role in noise regulation (see [1–3]
and the review [4]). The goal of the present contribution is to propose a mathematical model of the
µRNA-mRNA interaction and to use it to investigate the role of µRNAs as potential noise regulators.

Specifically, in this paper, we propose a stochastic chemical kinetic model for the mRNA and
µRNA content in a cell. The production of mRNAs by the transcription factor and their inactivation
through µRNA binding are taken into account. More precisely, our model is a simplified version of
the circuit used in [5, Figure 2A,A’]. We consider a ligand involved in the production of both an
mRNA and a µRNA, the µRNA having the possibility to bind to the mRNA and deactivate it. By
contrast to [5], we disregard the way the ligand is produced and consider that the ligand is such that
there is a constant production rate of both mRNA and µRNA. A second difference to [5] is that we
disregard the transcription step of the mRNA into proteins. While [5] proposes to model the µRNA as
acting on translation, we assume that the µRNA directly influences the number of mRNA available for
transcription. Therefore, we directly relate the gene expression level to the number of µRNA-free
mRNA also referred to as the number of unbound mRNA. In order to model the stochastic variability
in the production of the RNAs, a multiplicative noise is added to the production rate at all time. From
the resulting system of stochastic differential equations, we introduce the joint probability density for
mRNA and µRNA which solves a deterministic Fokker-Planck equation. The mathematical object of
interest is the stationary density solving the Fokker-Planck equation and more precisely the marginal
density of the mRNA. The coefficient of variation (also called cell-to-cell variation) of this mRNA
density, which is its standard deviation divided by its the expectation, is often considered as the
relevant criterion for measuring the robustness of gene expression (see for instance [5]).

Our main goal in this contribution is to provide theoretical and numerical evidence that the
robustness of the gene expression is increased in the presence of µRNA. At the theoretical level we
derive a number of analytical formulas either for particular subsets of parameters of the model or
under some time-scale separation hypotheses. From these formulas we can easily compute the cell to
cell variation numerically and verify the increased robustness of gene expression when binding with
µRNA happens in the model. For general sets of parameters, the solution cannot be computed
analytically. However we can prove well-posedness of the model and solve the PDE with a
specifically designed numerical scheme. From the approximate solution, we compute the coefficient
of variation and verify the hypothesis of increased gene expression.

Another classical approach to the study of noise in gene regulatory networks is through the chemical
master equation [6] which is solved numerically by means of Gillespies algorithm [7], see e.g., [5,
8]. Here, we use a stochastic chemical kinetic model through its associated Kolmogorov-Fokker-
Planck equation. Chemical kinetics is a good approximation of the chemical master equation when
the number of copies of each molecule is large. This is not the case in a cell where sometimes as
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few as a 100 copies of some molecules are available. Specifically, including a stochastic term in the
chemical kinetic approach is a way to retain some of the randomness of the process while keeping the
model complexity tractable. This ultimately leads to a Fokker-Planck model for the joint distribution of
mRNAs and µRNAs. In [9], a similar chemical kinetic model is introduced with a different modelling
of stochasticity. The effect of the noise is taken into account by adding some uncertainty in the (steady)
source term and the initial data. The authors are interested in looking at how this uncertainty propagates
to the mRNA content and in comparing this uncertainty between situations including µRNA production
or not. The uncertainty is modeled by random variables with given probability density functions.
Compared to [9], the Fokker-Planck approach has the advantage that the random perturbations do not
only affect the initial condition and the source term, but are present at all times and vary through time.
We believe that this is coherent with how stochasticity in a cell arises through time-varying ecological
or biological factors.

While Fokker-Planck equations are widely used models in mathematical biology [10], their use for
the study of gene regulatory network is, up to our knowledge, scarce (see e.g., [11]). Compared to
other approaches, the Fokker-Planck model enables us to derive analytical formulas for solutions in
certain cases. This is particularly handy for understanding the role of each parameter in the model,
calibrating them from real-world data and perform fast numerical computations. Nevertheless, in the
general case, the theoretical study and the numerical simulation of the model remains challenging
because of the unboundedness of the drift and diffusion coefficients. We believe that we give below all
the tools for handling these difficulties, and that our simple model provides a convincing mathematical
interpretation of the increase of gene expression in the presence of µRNAs.

The paper is organized as follows. In Section 2, we introduce the system of SDEs and the
corresponding Fokker-Planck models. In Section 3, we discuss the well-posedness of the
Fokker-Planck equations and derive analytical formulas for solutions under some simplifying
hypotheses. In Section 4, we use the analytical formulas for solutions to give mathematical and
numerical proofs of the decrease of cell-to-cell variation in the presence of µRNA. In Section 5, we
propose a numerical scheme for solving the main Fokker-Planck model and gather further evidence
confirming the hypothesis of increased gene expression from the simulations. Finally, in Section 6 we
discuss the particular choice of multiplicative noise (i.e., the diffusion coefficient in the Fokker-Planck
equation) in our model. In the appendix, we derive weighted Poincar inequalities for gamma and
inverse-gamma distributions which are useful in the analysis of Section 3. The code used for
numerical simulations in this paper is publicly available on GitLab [12].

2. Presentation of the models

In this section, we introduce three steady Fokker-Planck models whose solutions describe the
distribution of unbound mRNA and µRNA within a cell. The solutions to these equations can be
interpreted as the probability density functions associated with the steady states of stochastic chemical
kinetic systems describing the production and destruction of mRNA and µRNA. In Section 2.1 we
introduce the main model for which the consumption of RNAs is either due to external factors in the
cell (translation, etc.) or to binding between the two types of mRNA and µRNA. Then, for
comparison, in Section 2.2 we introduce the same model without binding between RNAs. Finally in
Section 2.3, we derive an approximate version of the first model, by considering that reactions
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involving µRNAs are infinitely faster than those involving mRNAs, which amplifies the binding
phenomenon and mathematically allows for the derivation of analytical formulas for solutions. The
latter will be made explicit in Section 3.

2.1. Dynamics of mRNA and µRNA with binding

We denote by rt the number of unbound mRNA and µt the number of unbound µRNA of a given
cell at time t. The kinetics of unbound mRNA and µRNA is then given by the following stochastic
differential equations 

drt = (cr − c rt µt − kr rt) dt +
√

2σr rt dB1
t ,

dµt = (cµ − c rt µt − kµ µt) dt +
√

2σµ µt dB2
t ,

(2.1)

with cr, cµ, kr, kµ, σr, σµ being some given positive constants and c being a given non-negative constant.
Let us detail the meaning of each term in the modeling. The first term of each equation models the
constant production of mRNA (resp. µRNA) by the ligand at a rate cr (resp. cµ). The second term
models the binding of the µRNA to the mRNA. Unbound mRNA and µRNA are consumed by this
process at the same rate. The rate increases with both the number of mRNA and µRNA. In the third
term, the parameters kr and kµ are the rates of consumption of the unbound mRNA or µRNA by various
decay mechanisms. The last term in both equations represents stochastic fluctuations in the production
and destruction mechanisms of each species. It relies on a white noise dBt/ dt where Bt = (B1

t , B
2
t )

is a two-dimensional standard Brownian motion. The intensity of the stochastic noise is quantified
by the parameters

√
2σr rt and

√
2σµ µt. Such a choice of multiplicative noise ensures that rt and µt

remain non-negative along the dynamics. The Brownian motions B1
t and B2

t are uncorrelated. The
study of correlated noises or the introduction of extrinsic noise sources would be interesting, but will
be discarded here.

In this paper we are interested in the invariant measure of Eq (2.1) rather than the time dynamics
described by the above SDEs. From the modelling point of view, we are considering a large number
of identical cells and we assume that mRNA and µRNA numbers evolve according to Eq (2.1). Then
we measure the distribution of both RNAs among the population, when it has reached a steady state
f ≡ f (r, µ). According to It’s formula, the steady state should satisfy the following steady Fokker-
Planck equation 

L f (r, µ) = 0 , (r, µ) ∈ Ω = (0,∞)2 ,∫
Ω

f (r, µ) dr dµ = 1 , f (r, µ) ≥ 0 .
(2.2)

where the Fokker-Planck operator is given by

L f (r, µ) := ∂r

[
∂r(σrr2 f ) − (cr − c r µ − kr r) f

]
+ ∂µ

[
∂µ(σµµ

2 f ) − (cµ − c r µ − kµ µ) f
]
. (2.3)

Since we do not model the protein production stage, we assume that the observed distribution of gene
expression level is proportional to the marginal distribution of mRNA, i.e..

ρ(r) =

∫ ∞

0
f (r, µ) dµ .
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By integration of Eq (2.2) in the µ variable, ρ satisfies the equation

∂r

[
∂r(σr r2 ρ) − ( cr − c r jµ(r) − kr r)ρ

]
= 0. (2.4)

The quantity jµ(r) is the conditional expectation of the number of µRNA within the population in the
presence of r molecules of mRNA and it is given by

jµ(r) =
1
ρ(r)

∫
µ f (r, µ) dµ . (2.5)

Before ending this paragraph, we note an alternate way to derive the Fokker-Planck Eq (2.2) from
the chemical master equation through the chemical Langevin equation. We refer the interested reader
to [13].

2.2. Dynamics of free mRNA without binding

In the case where there is no µRNA binding, namely when c = 0, the variables r and µ are
independent. Thus, the densitites of the invariant measures satisfying Eq (2.2) are of the form

f0(r, µ) = ρ0(r)λ(µ) ,

where λ(µ) is the density of the marginal distrubution of µRNA. From the modelling point of view, it
corresponds to the case where there is no feed-forward loop from µRNA. Therefore, only the dynamics
on mRNA, and thus ρ0, is of interest in our study. It satisfies the following steady Fokker-Planck
equation obtained directly from Eq (2.4),

∂r

[
σr∂r(r2ρ0) − (cr − kr r)ρ0

]
= 0 ,∫ ∞

0
ρ0(r) dr = 1 , ρ0(r) ≥ 0 .

(2.6)

It can be solved explicitly as we will discuss in Section 3.2.

2.3. Dynamics with binding and fast µRNA

The Fokker-Planck Eq (2.2) cannot be solved explicitly. However, one can make some additional
assumptions in order to get an explicit invariant measure providing some insight into the influence of
the binding mechanism with µRNA. This is the purpose of the model considered hereafter.

Let us assume the µRNA-mRNA binding rate, the µRNA decay and the noise on µRNA are large.
Since the sink term of the µRNA equation is large, it is also natural to assume that the µRNA content
is small. Mathematically, we assume the following scaling

c =
c̃
ε
, kµ =

k̃µ
ε
, σµ =

σ̃µ

ε
, µt = εµ̃t ,

for some small constant ε > 0. Then (rt, µ̃t) satisfies
drt = (cr − c̃ rt µ̃t − k̃r rt) dt +

√
2σr rt dB1

t ,

ε d µ̃t = (cµ − c̃ rt µ̃t − k̃µ µ̃t) dt +
√

2 ε σ̃µ µ̃t dB2
t ,
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whose corresponding steady Fokker-Planck equation for the invariant measure then writes, dropping
the tilde,

∂r

[
∂r(σrr2 fε) − (cr − c r µ − kr r) fε

]
+

1
ε
∂µ

[
∂µ(σµµ

2 fε) − (cµ − c r µ − kµ µ) fε
]

= 0.

In the limit case where ε→ 0, one may expect that at least formally, the density fε converges to a limit
density ffast satisfying

∂µ
[
∂µ(σµµ

2 ffast) − (cµ − c r µ − kµ µ) ffast

]
= 0 .

As r is only a parameter in the previous equation and since the first marginal of fε still satisfies Eq (2.4)
for all ε, one should have (formally)

ffast(r, µ) = ρfast(r)M(r, µ) ≥ 0 ,

∂µ
[
∂µ(σµµ

2M) − (cµ − c r µ − kµ µ)M
]

= 0 ,

∂r

[
∂r(σr r2 ρfast) − ( cr − c r jfast(r) − kr r)ρfast

]
= 0 ,∫ ∞

0
ρfast(r) dr = 1 ,

∫ ∞

0
M(r, µ) dµ = 1 ,

jfast(r) =

∫ ∞

0
µ M(r, µ) dµ .

(2.7)

3. Well-posedness of the models and analytical formulas for solutions

In this section, we show that the three previous models are well-posed. For the Fokker-Planck
Eqs (2.6) and (2.7), we explicitly compute the solutions. They involve inverse gamma distributions.

3.1. Gamma and inverse gamma distributions

The expressions of the gamma and inverse gamma probability densities are respectively

γα,β(x) = Cα,β xα−1 exp (−βx) , (3.1)

and

gα,β(y) =
Cα,β

y1+α
exp

(
−
β

y

)
, (3.2)

for x, y ∈ (0,∞). The normalization constant is given by Cα,β = βα/Γ(α) where Γ is the Gamma
function. Observe that by the change of variable y = 1/x one has

gα,β(y) dy = γα,β(x) dx

which justifies the terminology. Let us also recall that the first and second moments of the inverse
gamma distribution are ∫ ∞

0
y gα,β(y) dy =

β

α − 1
, if α > 1 , β > 0 , (3.3)
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0
y2 gα,β(y) dy =

β2

(α − 1)(α − 2)
, if α > 2 , β > 0 , (3.4)

Interestingly enough, we can show (see Appendix A.1 for details and additional results) that inverse
gamma distributions with finite first moment (α > 1) satisfy a (weighted) Poincar inequality. The proof
of the following proposition is done in Appendix A.1 among more general considerations.

Proposition 3.1. Let α > 1 and β > 0. Then, for any function v such that the integrals make sense, one
has ∫ ∞

0
|v(y) − 〈 v 〉gα,β |

2 gα,β(y) dy ≤
1

α − 1

∫ ∞

0
|v′(y)|2 gα,β(y) y2 dy , (3.5)

where for any probability density ν and any function u on (0,∞), the notation 〈 u 〉ν denotes
∫

uν.

3.2. Explicit mRNA distribution without binding

In the case of free mRNAs, a solution to Eq (2.6) can be computed explicitely and takes the form of
an inverse gamma distribution.

Lemma 3.2. The following inverse gamma distribution

ρ0(r) = g1+
kr
σr
, cr
σr

(r) = C1+
kr
σr
, cr
σr

1

r2+
kr
σr

exp
(
−

cr

σr r

)
(3.6)

is the only classical solution to Eq (2.6).

Proof. First observe that

∂r

[
σr∂r(r2ρ0) − (cr − kr r)ρ0

]
= ∂r

[
σr r2 g1+

kr
σr
, cr
σr
∂r

(
ρ0 g−1

1+
kr
σr
, cr
σr

)]
.

Therefore a solution of Eq (3.1) must be of the form

ρ0(r) = C1 g1+
kr
σr
, cr
σr

∫ r

1
σ−1

r r−2g−1
1+

kr
σr
, cr
σr

(r) dr + C2 g1+
kr
σr
, cr
σr
,

for some constants C1,C2. The first term decays like 1/r at infinity, thus the only probability density
ρ0 of this form is obtained for C1 = 0 and C2 = 1.

�

The Poincar inequality (3.5) tells us that the solution of Lemma 3.2 is also the only (variational)
solution in the appropriate weighted Sobolev space. Indeed, we may introduce the natural Hilbert space
associated with Eq (2.6),

Xα,β = {v : (0,∞)→ R , ‖v‖Xα,β < ∞}

with a squared norm given by

‖v‖2Xα,β =

∫ ∞

0

([(
v/gα,β

)
(y)

]2
+

[
(v/gα,β)′(y)

]2
y2

)
gα,β(y) dy .

Then the following uniqueness result holds.
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Lemma 3.3. The classical solution ρ0 = g1+
kr
σr
, cr
σr

is the only solution of Eq (2.6) in X1+
kr
σr
, cr
σr

.

Proof. If ρ0 and ρ̃0 are two solutions of Eq (2.6), a straightforward consequence of inequality (3.5) is
that ‖ρ0 − ρ̃0‖X

1+
kr
σr ,

cr
σr

= 0. This is obtained by integrating the difference between the equation on ρ0 and

ρ̃0 against (ρ0 − ρ̃0)g−1
1+

kr
σr
, cr
σr

. �

Another consequence of the Poincar inequality is that if we consider the time evolution associated
with Eq (2.6) then solutions converge exponentially fast towards the steady state ρ0. This justifies
our focus on the stationary equations. The transient regime is very short and equilibrium is reached
quickly. We can quantify the rate of convergence in terms of the parameters.

Proposition 3.4. Let ξ solve the Fokker-Planck equation

∂tξ(t, r) = ∂r

[
σr∂r(r2ξ(t, r)) − (cr − kr r)ξ(t, r)

]
,

starting from the probability density ξ(0, r, µ) = ξin(r, µ). Then for all t ≥ 0,∫ ∞

0
(ξ(t, r) − ρ0(r))2 g−1

1+
kr
σr
, cr
σr

(r) dr ≤ e−
kr
σr

t
∫ ∞

0
(ξin(r) − ρ0(r))2 g−1

1+
kr
σr
, cr
σr

(r) dr .

Proof. Observe that ξ − ρ0 solves the unsteady Fokker-Planck equation, so that by multiplying the
equation by (ξ − ρ0) g−1

1+
kr
σr
, cr
σr

and integrating in r one gets

d
dt

∫ ∞

0
(ξ(t, r) − ρ0(r))2 g−1

1+
kr
σr
, cr
σr

(r) dr +

∫ ∞

0

∣∣∣∣∣∣∣∂r

ξ(t, ·) − ρ0

g1+
kr
σr
, cr
σr

 (r)

∣∣∣∣∣∣∣
2

g1+
kr
σr
, cr
σr

(r) r2 dr = 0 .

Then by using the Poincar inequality Eq (3.5) and a Gronwall type argument, one gets the result. �

3.3. Explicit mRNA distribution in the presence of fast µRNA

Now we focus on the solution of Eq (2.7). The same arguments as those establishing Lemma 3.3
show that the only function M satisfying Eq (2.7) is the following inverse gamma distribution

M(r, µ) = g1+
kµ
σµ

+ c
σµ

r,
cµ
σµ

(µ) . (3.7)

Then an application of Eq (3.3) yields

jfast(r) =
cµ

kµ + cr
. (3.8)

It remains to find ρfast which is a probability density solving the Fokker-Planck equation

∂r

[
∂r(σr r2 ρfast) − ( cr −

cµ c r
kµ + cr

− kr r)ρfast

]
= 0 .

Arguing as in the proof of Lemma 3.2, one observe that integrability properties force ρfast to actually
solve

∂r(σr r2 ρfast) − ( cr −
cµ c r

kµ + cr
− kr r)ρfast = 0 .
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which yields

ρfast(r) = C
(
1 +

kµ
cr

) c cµ
σr kµ 1

r2+
kr
σr

exp
(
−

cr

σrr

)
(3.9)

where C ≡ C(cr, cµ, kr, kµ, σr, σµ, c) is a normalizing constant making ρfast a probability density
function.

3.4. Well-posedness of the main Fokker-Planck model

Now we are interested in the well-posedness of Eq (2.2), for which we cannot derive explicit
formulas anymore. Despite the convenient functional framework introduced in Section 3.2, classical
arguments from elliptic partial differential equation theory do not seem to be adaptable to the case
c > 0. The main obstruction comes from an incompatibility between the natural decay of functions in
the space Xα,β and the rapid growth of the term c r µ when |(r, µ)| → ∞.

However, thanks to the results of [14] focused specifically on Fokker-Planck equations, we are
able to prove well-posedness of the steady Fokker-Planck Eq (2.2). The method is based on finding
a Lyapunov function for the adjoint of the Fokker-Planck operator and relies on an integral identity
proved by the same authors in [15]. The interested reader may also find additional material and a
comprehensive exposition concerning the analysis of general Fokker-Planck equations for measures
in [16].

First of all let us specify the notion of solution. A weak solution to Eq (2.2) is an integrable function
f such that 

∫
Ω

f (r, µ)Lϕ(r, µ) = 0 , for all ϕ ∈ C∞c (Ω) ,∫
Ω

f (r, µ) = 1 , f (r, µ) ≥ 0 ,
(3.10)

where the adjoint operator is given by

Lϕ(r, µ) := σrr2∂2
rrϕ + (cr − c r µ − kr r)∂rϕ + σµµ

2∂2
µµϕ + (cµ − c r µ − kµ µ)∂µϕ . (3.11)

A reformulation and combination of [14, Theorem A and Proposition 2.1] provides the following
result.

Proposition 3.5 ( [14]). Assume that there is a smooth function U : Ω → [0,+∞), called Lyapunov
function with respect to L, such that

lim
(r,µ)→∂Ω

U(r, µ) = +∞ , (3.12)

and
lim

(r,µ)→∂Ω

LU(r, µ) = −∞ , (3.13)

where ∂Ω = ∂Ω∪ ({+∞}×R+)∪ (R+ × {+∞}). Then there is a unique f satisfying Eq (3.10). Moreover
f ∈ W1,∞

loc (Ω).
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Remark 3.6. The method of Lyapunov functions is a standard tool for proving well-posedness of many
problems in the theory of ordinary differential equations, dynamical systems... For diffusion processes
and Fokker-Planck equations its use dates back to Has’minskii [17]. We refer to [16, Chapter 2], [14]
and references therein for further comments on the topic. Let us stress however that Lyapunov functions
are not related (at least directly) to the Lyapunov (or entropy) method for evolution PDEs in which one
shows the monotony of a functional to quantify long-time behavior.

Remark 3.7. Thanks of the degeneracy of the diffusivities at r = 0 and µ = 0 and the Lyapunov
function condition, one doesn’t need supplementary boundary conditions in Eq (3.10) for the problem
to have a unique solution. This is different from standard elliptic theory where boundary conditions are
necessary to define a unique solution when the domain and the coefficients are bounded with uniformly
elliptic diffusivities. Further comments may be found in [14].

Lemma 3.8. Choose any two constants br >
c
kµ

and bµ > c
kr

. Then, the function U : Ω→ R defined by

U(r, µ) = brr − ln(brr) + bµµ − ln(bµµ)

is a Lyapunov function with respect to L (i.e., it is positive on Ω and it satisfies Eqs (3.12) and (3.13)).

Proof. First observe that condition (3.12) is clearly satisfied. Also, U is minimal at (b−1
r , b

−1
µ ) where it

takes the value 2 and thus it is positive on Ω. Finally a direct computation yields

LU(r, µ) = (σr + σµ + brcr + bµcµ + kr + kµ) −
cr

r
−

cµ
µ
− (brkr − c)r − (bµkµ − c)µ − crµ(br + bµ) ,

and Eq (3.13) follows. �

Now we state our well-posedness result for the Fokker-Planck Eq (3.10).

Proposition 3.9. There is a unique weak solution f to the steady Fokker-Planck Eq (2.2). Moreover, f
is indefinitely differentiable in Ω.

Proof. The existence and uniqueness of a solution f ∈ W1,∞
loc (Ω) is a combination of Proposition 3.5

and Lemma 3.8. From there in any smooth compact subdomain K ⊂⊂ Ω, we get from standard elliptic
theory [18] that f ∈ C∞(K), since the coefficents are smooth and the operator is uniformly elliptic. �

4. Noise reduction by binding : The case of fast µRNA

In this section we focus on the comparison between the explicit distributions given by Eqs (3.6)
and (3.9). We are providing theoretical and numerical evidence that the coefficient of variation (which
is a normalized standard deviation) of distribution (3.9) is less than that of distribution (3.6). This
quantity called cell to cell variation in the biological literature [5] characterizes the robustness of the
gene expression level (the lower the better). We start by performing a rescaling in order to extract the
dimensionless parameters which characterize the distributions.
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4.1. Dimensional analysis

In order to identify the parameters of importance in the models, we rescale the variables r and µ
around characteristic values r̄ and µ̄ chosen to be

r̄ =
cr

kr
and µ̄ =

cµ
kµ
. (4.1)

These choices are natural in the sense that they correspond to the steady states of the mRNA and
µRNA dynamics without binding nor stochastic effects, that is respectively drt = (cr − kr rt) dt and
dµt = (cµ − kµ µt) dt. When the noise term is added, it still corresponds to the expectation of the
invariant distribution, that is the first moment of ρ0 in the case of mRNA. We introduce f ad such that
for all (r, µ) ∈ Ω one has

1
r̄µ̄

f ad
(
r
r̄
,
µ

µ̄

)
= f (r, µ) .

After some computations one obtains that the Fokker-Planck Eqs (2.2) and (2.3) can be rewritten in
terms of f ad as

∂r

[
δ (1 − γ p r µ − r) f ad − ∂r(r2 f ad)

]
+ ∂µ

[
δκ(1 − γ r µ − µ) f ad − ν ∂µ(µ2 f ad)

]
= 0 , (4.2)

The marginal distributions ρ0 and ρfast are rescaled into dimensionless densities

ρδ0(r) = g1+δ,δ(r) = Cad
0

1
r2+δ

exp
(
−
δ

r

)
(4.3)

ρ
δ,γ,p
fast (r) = Cad

fast

(
1 +

1
γr

)γ p δ 1
r2+δ

exp
(
−
δ

r

)
(4.4)

where Cad
0 and Cad

fast are normalizing constants depending on the parameters of the model and δ, p and
γ are dimensionless parameters. The first parameter

δ =
kr

σr
, (4.5)

only depends on constants that are independent of the dynamics of µRNAs. The two other
dimensionless parameters appearing in the marginal distribution of mRNA in the presence of fast
µRNA are

p =
cµ
cr
, (4.6)

and
γ =

c r̄
kµ

=
c cr

kµ kr
. (4.7)

Let us give some insight into the biological meaning of these parameters. The parameter γ measures
the relative importance of the two mechanisms of destruction of µRNAs, namely the binding with
mRNAs versus the natural destruction/consumption. A large γ means that the binding effect is strong
and conversely. The parameter p compares the production rate of µRNAs with that of mRNAs. Large
values of p mean that there are much more µRNAs than mRNAs produced per unit of time.
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Finally, in the Fokker-Planck model (4.2), there are also two other parameters which are

κ =
kµ
kr
, (4.8)

and
ν =

σµ

σr
. (4.9)

The parameter κ compares consumption of µRNA versus that of mRNA by mechanisms which are
not the binding between the two RNAs. The parameter ν compares the amplitude of the noise in the
dynamics of µRNA versus that of the mRNA.

Remark 4.1. Observe that the approximation of fast µRNA leading to the model discussed in
Section 2.3 in its dimensionless form amounts to taking ν = κ = 1/ε and letting ε tend to 0.

4.2. Cell to cell variation (CV)

For any suitably integrable non-negative function ν, let us denote by

mk(ν) =

∫
yk ν(y) dy

its k-th moment. The coefficient of variation or cell to cell variation (CV) is defined by

CV(ν) =
Var(ν/m0(ν))1/2

Exp(ν/m0(ν))
=

(
m2(ν)m0(ν)

m1(ν)2 − 1
)1/2

(4.10)

where Exp(·) and Var(·) denote the expectation and variance. Let us state a first lemma concerning
some cases where the coefficient of variation can be computed exactly.

Lemma 4.2. Consider the dimensionless distributions defined in Eqs (4.3) and (4.4). Then one has
that

Exp(ρδ0) = 1 , Var(ρδ0) =
1

δ − 1
, CV(ρδ0) =

1
√
δ − 1

, (4.11)

where the variance and coefficient of variation are well-defined only for δ > 1. Then for any δ > 1, the
following limits holds

lim
γ→0

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀p > 0 ,

lim
p→0

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀γ > 0 ,

lim
γ→∞

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀p ∈ [0, 1) .

Proof. The formulas for the moments follow from Eqs (3.3) and (3.4). Then observe that for all r, one
has

lim
γ→0

ρ
δ,γ,p
fast (r) = lim

p→0
ρ
δ,γ,p
fast (r) = ρδ0(r)

and
lim
γ→+∞

ρ
δ,γ,p
fast (r) = g1+δ,(1−p)δ(r)

and one can then take limits in integrals by dominated convergence. �
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Let us give a biological interpretation of the previous lemma. When γ = 0 or p = 0, which
respectively corresponds to the cases where there is no binding between mRNA and µRNA or there is
no production of µRNA, the coefficient of variation is unchanged from the case of free mRNAs. The
last limit states that if the µRNA production is weaker than the mRNA production, then in the regime
where all µRNA is consumed by binding with mRNA, the coefficient of variation is also unchanged.

Outside of these asymptotic regimes, the theoretical result one would like to have is the following.

Conjecture 4.3. For any δ > 1, γ, p > 0 and one has CV(ρδ,γ,pfast ) ≤ CV(ρδ0).

At the moment, we are able to obtain the following uniform in γ and p bound

CV(ρδ,γ,pfast ) ≤ Cδ :=
( δ

δ − 1

)2 (
1 −

1
(δ − 1)2

)δ−2

− 1
 1

2

, (4.12)

which holds for all δ > 2, γ > 0 and p ≥ 0. The result is proved in Proposition A.6 in the Appendix.
Observe that Cδ ≥ CV(ρδ0) but asymptotically

Cδ ∼δ→∞ CV(ρδ0) =
1

√
δ − 1

,

so that Cδ is fairly close to CV(ρδ0) for large δ.
In the next section we provide numerical evidence that it should be possible to improve the right-

hand side of the bound (4.12) and prove Conjecture 4.3. Let us also mention that using integration
by parts formulas it is possible to establish a recurrence relation between moments. From there one
can infer the inequality of Conjecture 4.3 for subsets of parameters (γ, p). As the limitation to these
subsets is purely technical and do not have any particular biological interpretation we do not report
these results here.

4.3. Exploration of the parameter space

Now, we explore the space of parameters (δ, γ, p) in order to compare the cell to cell variation in the
case of fast µRNA and in the case of free mRNA.

In order to evaluate numerically the cell to cell variation we need to compute mk(ρ
δ,γ,p
fast ), for k =

0, 1, 2. Observe that after a change of variable these quantities can be rewritten (up to an explicit
multiplicative constant depending on parameters)

Ik =

∫ ∞

0
fk(s) sδ−2e−s ds ,

with fk(s) = s2−k(1 + s/(γδ))pγδ. For the numerical computation of these integrals, we use a Gauss-
Laguerre quadrature

Ik ≈

N∑
i=1

ωN
i fk(xN

i ) .

which is natural and efficient as we are dealing with functions integrated against a gamma distribution.
We refer to [19] and references therein for the definition of the coefficients ωN

i and quadrature points
xN

i . The truncation order N is chosen such that the numerical error between the approximation at order
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δ = 2 δ = 20

Figure 1. Exploration of the parameter space. Relative cell to cell variation
CV(ρδ,γ,pfast )/CV(ρδ0) for various parameters p, γ and δ. On the horizontal axis, left
means more production of mRNA and right means more production of µRNA; On the
vertical axis, top means more destruction of mRNA by binding and bottom means more
destruction/consumption of mRNA by other mechanisms

N and N+1 is inferior to the given precision 10−8 when p ≤ 1. For p ≥ 1, the function fk may take large
values and it is harder to get the same numerical precision. In the numerical results below the mean
error for the chosen sets of parameters with large values of p is around 10−4 and the maximal error
is 10−2. This is good enough to comment on qualitative behavior. The code used for these numerical
simulations is publicly available on GitLab [12].

We plot the relative cell to cell variation CV(ρδ,γ,pfast )/CV(ρδ0) with respect to γ and p for two different
values of δ. The results are displayed on Figure 1. Then, on Figure 2, we draw the explicit distributions
ρ
δ,γ,p
fast for various sets of parameters and compare it with ρδ0.

The numerical simulations of Figure 1 suggest that the bound (4.12) is non-optimal and
Conjecture 4.3 should be satisfied. Observe also that the asymptotics of Lemma 4.2 are illustrated.

From a modeling point of view, these simulations confirm that for any choice of parameter, the
presence of (fast) µRNA makes the cell to cell variation decrease compared to the case without µRNA.
Moreover, the qualitative behavior with respect to the parameters makes sense. Indeed we observe that
whenever enough µRNA is produced (p ≥ 1), the increase of the binding phenomenon (γ → ∞) makes
the cell to cell variation decay drastically.

5. Noise reduction by binding for the main Fokker-Planck model: numerical evidence

In this section, we compute the gene expression level of the main model described by Eq (2.2). In
this case, as there is no explicit formula for the solution, we will compute an approximation of it using
a discretization of the Fokker-Planck equation. In order to compute the solution in practice, we restrict
the domain to the bounded domain Ωb = [rmin, rmax] × [µmin, µmax]. Because of the truncation, we add
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Figure 2. Marginal distributions of mRNAs ρδ,γ,pfast for fast µRNAs compared to the free
mRNA distribution ρδ0 (black solid curve) for different parameters p and γ. Left: δ = 2,
p = 1.5 and γ varies. Right: δ = 2, γ = 1 and p varies.

zero-flux boundary conditions in order to keep a conservative equation. It leads to the problem



∂r

[
(cr − c r µ − kr r) f − ∂r(σrr2 f )

]
+ ∂µ

[
(cµ − c r µ − kµ µ) f − ∂µ(σµµ

2 f )
]

= 0 , in Ωb

∂r(σrr2 f ) − (cr − c r µ − kr r) f = 0 , if r = rmin or rmax ,

∂µ(σµµ
2 f ) − (cµ − c r µ − kµ µ) f = 0 , if µ = µmin or µmax ,∫

Ωb

f dr dµ = 1 .

(5.1)

5.1. Reformulation of the equation

In order for the numerical scheme to be more robust with respect to the size of the parameters, we
discretize the equation in dimensionless version according to Eq (4.2). It will also allow for
comparisons with numerical experiments of the previous sections.

As the coefficients in the advection and diffusion parts of Eq (4.2) grow rapidly in r, µ and
degenerate when r = 0 and µ = 0, the design of an efficient numerical solver for Eq (4.2) is not
straightforward. Moreover a desirable feature of the scheme would be a preservation of the
analytically known solution corresponding to γ = 0. Because of these considerations we will
discretize a reformulated version of the equation in which the underlying inverse gamma distributions
explicitly appear. It will allow for a better numerical approximation when r and µ are either close to 0
or large. The reformulation is the following

− ∂r

[
r2 h(1)(r, µ)∂r

(
f ad

h(1)(r, µ)

)]
− ∂µ

[
ν µ2 h(2)(r, µ)∂µ

(
f ad

h(2)(r, µ)

)]
= 0 , (5.2)
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with the associated no-flux boundary conditions and where the functions h(1) and h(2) are given by

h(1)(r, µ) = r−(1+pµγ)δ−2 exp
(
−
δ

r

)
, (5.3)

and
h(2)(r, µ) = µ−(1+rγ)δ κν−2 exp

(
−
δκ

νr

)
. (5.4)

5.2. Presentation of the numerical scheme

We use a discretization based on the reformulation (5.2). It is inspired by [20] and is fairly close to
the so-called Chang-Cooper scheme [21].

We use a finite-volume scheme. The rectangle Ωb is discretized with a structured regular mesh of
size ∆r and ∆µ in each respective direction. The centers of the control volumes are the points

(
ri, µ j

)
with ri = ∆r/2 + i∆r and µ j = ∆µ/2 + j∆µ for i ∈ {0, . . . ,Nr − 1} and j ∈ {0, . . . ,Nµ − 1}. We also
introduce the intermediate points ri+1/2 with i ∈ {−1, . . . ,Nr − 1} and µ j+1/2 with j ∈ {−1, . . . ,Nµ − 1}
defined with the same formula as before. The approximation of the solution on the cell (i, j) is denoted
by

fi j ≈
1

∆r∆µ

∫ ri+1/2

ri−1/2

∫ µ j+1/2

µ j−1/2

f ad(r, µ) dr dµ.

The scheme reads, for all i ∈ {0, . . . ,Nr − 1} and j ∈ {0, . . . ,Nµ − 1},
Fi+1/2, j − Fi−1/2, j + Gi, j+1/2 −Gi, j−1/2 = 0,

FNr−1/2, j = F−1/2, j = Gi,Nµ−1/2 = Gi,−1/2 = 0∑
i, j

fi j∆r∆µ = 1
(5.5)

where the fluxes are given by a centered discretization of the reformulation (5.2), namely

Fi+1/2, j = −
∆µ

∆r
r2

i+1/2

(
h(1)(ri+1/2, µ j)
h(1)(ri+1, µ j)

fi+1, j −
h(1)(ri+1/2, µ j)

h(1)(ri, µ j)
fi j

)
, (5.6)

and

Gi, j+1/2 = −ν
∆r
∆µ

µ2
j+1/2

(
h(2)(ri, µ j+1/2)
h(2)(ri, µ j+1)

fi, j+1 −
h(2)(ri, µ j+1/2)

h(2)(ri, µ j)
fi j

)
. (5.7)

One can show that the scheme (5.5) possesses a unique solution which is non-negative by following,
for instance, the arguments of [22, Proposition 3.1]. Moreover, by construction, the scheme is exact in
the case γ = 0.

Remark 5.1 (Choice of rmin, rmax, µmin, µmax). Clearly f decays faster at infinity than ρ0 since the
convection term coming from the binding phenomenon brings mass closer to the origin. Therefore an
appropriate choice for rmax and µmax, coming from the decay of the involved inverse gamma
distributions, should be (say) r−δmax ≤ 10−8 and µ−δκ/νmax ≤ 10−8 so that the error coming from the tails of
the distributions in the computation of moments is negligible. Similarly, near the origin the
distributions decay very quickly to 0 (as exp(−1/·)). Therefore µmin, rmin can be taken not too small
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without influencing the precision in the computation of moments of the solution. In practice, we chose
µmin = rmin = 0.06. Observe that even if nothing prevents the choice µmin = rmin = 0 on paper, one
experiences in practice a bad conditioning of the matrix which has to be inverted for solving the
scheme.

Remark 5.2 (Implementation). Observe that the matrix which has to be inverted in order to solve the
scheme is not a square matrix because of the mass constraint (which is necessary to ensure uniqueness
of the solution). In practice, in order to solve the corresponding linear system MF = B where F =

( fi j)i j and B = (0, . . . , 0, 1) ∈ RNrNµ+1 and M ∈ R(NrNµ+1)×NrNµ we use the pseudo-inverse yielding
F = (MtM)−1MtB. Finally the use of a sparse matrix routine greatly improves the computation time.
Our implementation was made using Matlab. The code is publicly available on GitLab [12].

5.3. Numerical results

In our test cases we use the following parameters: rmin = 0.06, rmax = 5, µmin = 0.05, µmax = 5,
δ = 8, Nr = 70, Nµ = 200, κ = 1, ν = 1.

On Figure 3 we compare the distribution functions f (r, µ) obtained for various sets of parameters
(p, γ). We also draw the corresponding marginal ρ(r) as well as ρ0 and ρfast. We observe that for small
values of p, ρfast is a good approximation of ρ. For larger values it tends to amplify the phenomenon of
variance reduction.

In order to confirm that the main Fokker-Planck model reduces the coefficient of variation as soon
as γ > 0 we draw on Figure 4 the coefficient of variation for each distribution ρ, ρfast relatively to that
of ρ0 for several values of p. We observe that indeed, the coefficient of variation is reduced. As in
the case of fast µRNA, the decay is more pronounced when the production of µRNA is higher than
that of mRNA, namely when p > 1. Interestingly enough, one also notices that the approximation ρfast

increases the reduction of CV when p > 1 and diminishes it when p < 1. A transition at the special
value p = 1 was already observed on Figure 1.

6. Comments on the choice of noise

In this section, we discuss the influence of the type of noise in the Fokker-Planck models. Let us go
back to the system of stochastic differential equations considered at the beginning and generalize it as
follows 

drt = (cr − c rt µt − kr rt) dt +
√

2σr D(rt) dB1
t ,

dµt = (cµ − c rt µt − kµ µt) dt +
√

2σµ D(µt) dB2
t ,

with D some given function. In the models of the previous sections we chose D(x) = x2. On the one
hand it is natural to impose that D(x) vanishes when x → 0 in order to preserve the non-negativity of
rt and µt. On the other hand it is clear that the growth at infinity influences the tail of the equilibrium
distribution which solves the corresponding Fokker-Planck equation. With a quadratic D we obtained
algebraically decaying distributions.

Nevertheless one may wonder if the decay of cell to cell variation due to µRNA would still be
observed if D is changed so that it involves distributions with faster decay at infinity. In order to
answer this question, we choose a simple enough function D so that we can still derive analytical
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γ = 0

γ = 1
p = 0.5

γ = 1
p = 1

γ = 1
p = 2

γ = 2
p = 2

Figure 3. Numerical results. Numerical solution of the main Fokker-Planck model for
various sets of parameters (γ, p). Left: Surface and contour plot of the distribution function
f (r, µ). The truncation at r = 2 and µ = 2 is only for visualization purposes. Right:
Corresponding marginal density ρ compared with ρfast and ρ0.
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p = 0.5 p = 2

p = 1

Figure 4. Numerical results. Relative coefficient of variation versus γ for various values of p.

formulas for distributions of mRNA without binding and mRNA in the presence of “fast” µRNA. Let
us assume that

D(r) = r .

6.1. Explicit formulas for distribution of mRNAs

In terms of modeling we may argue as in Section 2 and Section 3 in order to introduce the stationary
probability distribution of mRNA without binding ρ̃0 which solves

∂r
[
σr∂r(rρ̃0) − (cr − kr r)ρ̃0

]
= 0 .

It may still be solved analytically and one finds a gamma distribution

ρ̃0(r) = γ cr
σr
, kr
σr

(r) = C cr
σr
, kr
σr

r
cr
σr
−1e−

kr
σr

r (6.1)

instead of an inverse gamma distribution in the quadratic case. The normalization constant is given in
Section 3.1.
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In the case of fast µRNA, we may once again follow the method of Section 2 and Section 3 and
introduce ρ̃ f ast solving

∂r

[
∂r(σr r ρ̃ f ast) − ( cr − c r j̃fast(r) − kr r)ρ̃ f ast

]
= 0

where the conditional expectation of the number of µRNA within the population with r mRNA is given
by

j̃fast(r) =

∫ ∞

0
µ γ cµ

σµ
,

kµ+c r
σµ

(µ) dµ =
cµ

kµ + c r
.

A direct computation then yields

ρ̃ f ast(r) = C
(
1 + c

kµ
r
)− cµ

σr r
cr
σr
−1e−

kr
σr

r , (6.2)

with C ≡ C(cr, cµ, c, kr, kµ, σr, σµ) a normalizing constant.

Remark 6.1. Observe that the conditional expectation of the number of µRNA within the population
with r mRNA is unchanged, namely j̃fast(r) = jfast(r). More generally, the expectation of a univariate
process (Xt)t satisfying an SDE with linear drift dXt = (a + bXt) dt +

√
2σ(Xt) dBt does not depend on

the diffusion coefficient σ as its density g satisfy ∂tg(t, x) + ∂x((a + bx)g(t, x)) − ∂2
xx(σ(x)g(t, x)) = 0 ,

so that multiplying by x and integrating yields dE[Xt] = (a + bE[Xt]) dt on its expectation E[Xt]. The
argument also holds for multivariate processes.

6.2. Dimensional analysis

Once again we seek the parameters of importance among the many parameters of the model by a
dimensional analysis. The characteristic value of r remains r̄ = cr/kr as it is the expectation of ρ̃0.
After rescaling we find the new distribution

ρ̃
η
0(r) = γη,η(r) = Cη,η rη−1e−ηr , (6.3)

and

ρ̃ f astη,γ,p(r) = Cad
fast

rη−1

(1 + γr)pη e−ηr . (6.4)

where the parameters p and γ are given by Eqs (4.7) and (4.6) respectively and still quantify the
intensity of the binding and the respective production of µRNA versus mRNA. The new parameter η is
given by

η =
cr

σr
. (6.5)

In the context of a dimensional analysis, let us mention that it would be inaccurate to compare η and δ
as the σr (and σµ) do not represent the same quantity depending on the choice of D. For D(r) = r2 it
has the same dimension as kr so δ = kr/σr is the right dimensionless parameter. Here it has the same
dimension as cr, which justifies the introduction of η.
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η = 1 η = 8

Figure 5. Numerical computation of the cell to cell variation. Relative cell to cell variation
CV(ρ̃ f astη,γ,p)/CV(ρη0) for various parameters p, γ and η. On the horizontal axis, left
means more production of mRNA and right means more production of µRNA; On the
vertical axis, top means more destruction of mRNA by binding and bottom means more
destruction/consumption of mRNA by other mechanisms.

6.3. Numerical computation of the cell to cell variation

The expectation, variance and coefficient of variation of ρ̃0 are explicitly given by

Exp(ρ̃η0) = 1 , Var(ρ̃η0) =
1
η
, CV(ρ̃η0) =

1
√
η
, (6.6)

As there is no explicit formula for the coefficient of variation of ρ̃ f astη,γ,p we evaluate it numerically
as in Section 4.3. The results are displayed on Figure 5. We observe that unlike the case of a quadratic
diffusion coefficient the relative cell to cell variation, i.e., the cell to cell variation in the presence of
µRNA relative to cell to cell variations of the free case, is not unconditionally less than 1. For a large
enough production of µRNA, it eventually decays when the binding effect is very strong. However for
smaller production of µRNA or when the binding is weak, the effect is the opposite as the relative cell
to cell variation is greater than 1. This is not satisfactory from the modeling point of view.

In conclusion the choice of noise is important in this model. An unconditional cell to cell variation
decay in the presence of µRNA is observed for quadratic noise only. While other choices of noise may
still lead to similar qualitative results, the choice D(r) = r2 allowed us to derive explicit formulas for
the approximate density ρfast which, as numerical simulations show, is fairly close to the marginal ρ
corresponding to the solution of the main Fokker-Planck model.

7. Concluding remarks and perspectives

In this paper, we introduced a new model describing the joint probability density of the number of
mRNA and µRNA in a cell. It is based on a Fokker-Planck equation arising from a system of chemical
kinetic equations for the number of two RNAs. The purpose of this simple model was to provide a
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mathematical framework to investigate how robustness in gene expression in a cell is affected by the
presence of a regulatory feed-forward loop due to production of µRNAs which bind to and deactivate
mRNAs.

Thanks to the combined use of analytical formulas and numerical simulations, we showed that
robustness of gene expression is indeed affected by the presence of a feed-forward loop involving
µRNA production. However, whether the effect is regulatory or de-regulatory strongly depends on
the assumptions made on the type of noise affecting both mRNA and µRNAs production. In the case
of geometric noise (the diffusivity being quadratic in the solution itself), the effect is to reduce the
spread of the distribution as the reduction of the coefficient of variation shows. In the case of sub-
geometric noise (the diffusivity being only linear in the solution itself), the effect increases the spread
as shown by the increase of the coefficient of variation. We may attempt an explanation by comparing
the mRNA distribution in the absence of µRNA and in the limit of fast µRNA in the two cases. In
the quadratic diffusivity case, both distributions are fat-tailed (i.e., they decay polynomially with the
number of unbound mRNA molecules r, see Eqs (3.6) and (3.9)) but the rate of decay at infinity
is modified by the presence of µRNAs. On the other hand, in the linear diffusivity case, both decay
exponentially fast (see Eqs (6.1) and (6.2)) and the exponential rate of decay is the same with or without
µRNAs. We propose that this might be the reason of the difference: In the quadratic diffusivity case, the
change in polynomial decay allows to greatly reduce the standard deviation without affecting too much
the mean, which results in a reduction of the coefficient of variation. In the linear diffusivity case,
the exponential tail is not modified, which implies that the core of the distribution must be globally
translated towards the origin, which affects the mean and the standard deviation in a similar way and
does not systematically reduce the coefficient of variation. Which type of noise corresponds to the
actual data is unknown at this stage. While quadratic diffusivity seems a fairly reasonable assumption
(it is used in a number of contexts such as finance), it would require further experimental investigations
to be fully justified in the present context. This discussion shows that the effect of µRNA on noise
regulation of mRNA translation is subtle and not easily predictable.

Along the way we provided theoretical tools for the analysis of the Fokker Planck equation at play
and robust numerical methods for simulations. As the main biological hypothesis for the usefulness of
µRNA in the regulation of gene expression is based on their ability to reduce external noise, we also
discussed the particular choice of stochasticity in the model.

There are several perspectives to this work. A first one would be the calibration of the parameters
of the model from real-world data. This would allow to quantify more precisely the amount of cell-
to-cell variation reduction due to µRNA, thanks to the thorough numerical investigation done in this
contribution of the effects of the parameters of the model. Besides, another perspective would be an
improvement of inequality (4.12) to the conjecture (4.3). This would bring a definitive theoretical
answer to the hypothesis of increased gene expression level in the simplified model of “fast” µRNAs.
One may also look into establishing a similar inequality for the general model. Finally, the gene
regulatory network in a cell is considerably more complex than the simple, yet enlightening in our
opinion, dynamics proposed in this paper. A natural improvement would be the consideration of more
effects in the model, such as the production of the transcription factor, or the translation of mRNA into
proteins, among many others.
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Appendix

A. Complementary results

A.1. Poincar inequalities for gamma and inverse gamma distributions

In this section we give a elementary proof of the 1D version of the Brascamp and Lieb inequality
(see [23, Theorem 4.1], [24]), which is an extension of the Gaussian Poincar inequality in the case of
log-concave measures. This allows us to derive a weighted Poincar inequality for the gamma
distribution and deduce, by a change of variable, a similar functional inequality for the inverse gamma
distribution.

Proposition A.1. Let I ⊂ R be an open non-empty interval and V : I → R a function of class C2.
Assume that

(i) V is strictly convex;
(ii) e−V is a probability density on I;

(iii) V tends to +∞ at the extremities of I.

Then, for any suitably integrable function u, one has∫
I
|u(x) − 〈 u 〉e−V |

2 e−V(x) dx ≤
∫

I
|u′(x)|2 e−V(x) (V ′′(x))−1 dx , (A.1)

where for a density ν the notation 〈 u 〉ν denotes
∫

uν.

Proof. Without loss of generality, as one may replace u with u − 〈 u 〉e−V , we assume that 〈 u 〉e−V = 0.
We also assume that u is of class C1 and compactly supported in I and one can then extend a posteriori
the class of admissible function by a standard density argument. Then, using (ii) one has∫

I
|u(x)|2 e−V(x) dx =

1
2

"
I×I
|u(x) − u(y)|2 e−(V(x)+V(y)) dx dy

=
1
2

"
I×I

∣∣∣∣∣∫ y

x
u′(z) dz

∣∣∣∣∣2 e−(V(x)+V(y)) dx dy .
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Now using the Cauchy-Schwarz inequality and assumption (i) one has∫
I
|u(x)|2 e−V(x) dx ≤

1
2

"
I×I

(∫ y

x
|u′(z)|2(V ′′(z))−1 dz

) (∫ y

x
V ′′(z) dz

)
e−(V(x)+V(y)) dx dy .

Then take any point x0 ∈ I and define

U(x) =

∫ x

x0

|u′(z)|2 (V ′′(z))−1 dz ,

so that the inequality rewrites∫
I
|u(x)|2 e−V(x) dx ≤

1
2

"
I×I

(U(y) − U(x))
(
V ′(y) − V ′(x)

)
e−(V(x)+V(y)) dx dy .

Now just expand the right-hand side and use Fubini’s theorem on each term as well as assumptions (ii)
and (iii) to obtain ∫

I
|u(x)|2 e−V(x) dx ≤

∫
I
U(x) V ′(x) e−V(x) dx .

One concludes by integrating the right-hand side by parts and observing that boundary terms vanish
again by assumption (iii). �

Remark A.2. The proof is an adaptation of the original proof of the (flat) Poincar-Wirtinger inequality
by Poincar.

Observe that for I = R and V(x) = x2/2, one recovers the classical Gaussian Poincar inequality.

Remark A.3. The inequality is sharp. It is an equality for functions of the form u(x) = aV ′(x) + b,
with a, b ∈ R if V is such that V ′(x)e−V(x) tends to 0 at the boundaries, and only for constant functions
otherwise (i.e., a = 0 and b ∈ R).

From the Brascamp-Lieb inequality, we now infer Poincar inequalities for gamma and inverse
gamma distributions.

Proposition A.4. Let α > 1 and β > 0. Then, for any functions u, v such that the integrals make sense,
one has ∫ ∞

0
|u(x) − 〈 u 〉γα,β |

2 γα,β(x) dx ≤
1

α − 1

∫ ∞

0
|u′(x)|2 γα,β(x) x2 dx , (A.2)

and ∫ ∞

0
|v(y) − 〈 v 〉gα,β |

2 gα,β(y) dy ≤
1

α − 1

∫ ∞

0
|v′(y)|2 gα,β(y) y2 dy , (A.3)

where for a probability density ν the notation 〈 u 〉ν denotes
∫

uν.

Proof. The first inequality is an application of Eq (A.1) with V(x) = βx− (α−1) ln(x)− ln(Cα,β), where
Cα,β = βα/Γ(α). Then take v(y) = u(1/y) and make the change of variable y = 1/x in all the integrals
of Eq (A.2) to get the result. �
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Remark A.5. To the best of our knowledge the classical Bakry and Emery method does not seem to
apply to show directly the functional inequalities of Proposition A.4. Let us give some details. In order
to show a Poincar inequality of the type∫

I
|u(x) − 〈 u 〉e−V |

2 e−V(x) dx ≤
∫

I
|u′(x)|2 e−V(x) D(x) dx ,

for V as in Proposition A.1, it is sufficient that D and V satisfy the following curvature-dimension
inequality

R(x) :=
1
4

(D′(x))2 −
1
2

D′′(x)D(x) + D(x)2V ′′(x) +
1
2

D′(x)D(x)V ′(x) ≥ λ1 D(x) , (A.4)

for some positive constant λ1 > 0. We refer to [25, 26] for the general form of the latter Bakry-
Emery condition (for multidimensional anisotropic inhomogeneous diffusions) and to [27] or [28] for
the simpler expression in the case of isotropic inhomogeneous diffusion, as discussed here. In the
case of the inequalities (A.2) and (A.3), one has respectively D(x) = x2/(α − 1), V(x) = βx − (α −
1) ln(x)− ln(Cα,β) and D(y) = y2/(α−1), V(y) = β/y + (α+ 1) ln(y)− ln(Cα,β), which yields respectively
R(x) = β x3/(α − 1)2 and R(y) = β y/(α − 1)2. As claimed above, neither Eq (A.2) nor Eq (A.3) satisfy
the condition (A.4). One also observes that in both cases the curvature-dimension inequality fails
because of a degeneracy at one end of the interval.

Let us finally mention that there are in the literature other occurrences of Poincar and more
generally convex Sobolev inequalities for gamma distributions [29–32]. However, we found out that
the diffusion coefficient is always taken of the form D(x) = 4x/β. This weight, associated with the
gamma invariant measure, corresponds to the Laguerre diffusion
Lα,β f (x) = βx f ′′(βx) − (α − βx) f ′(βx). This operator differs from the adjoint of the one appearing in
our model given by Eq (2.6). In this case, one can check that the curvature-dimension condition of
Bakry and Emery is satisfied as soon as α ≥ 1/2.

A.2. An upper bound for the relative cell to cell variation

Proposition A.6. One has the bound

CV(ρδ,γ,pfast ) ≤ Cδ :=
( δ

δ − 1

)2 (
1 −

1
(δ − 1)2

)δ−2

− 1
 1

2

,

which holds for all δ > 2, γ > 0 and p ≥ 0.

Proof. The bound is a consequence of the Prkopa-Leindler inequality (see [23] and references therein)
which states that if f , g, h : Rd → [0,+∞) are three functions satisfying for some λ ∈ (0, 1) and for all
x, y,

h((1 − λ)x + λy) ≥ f (x)1−λ g(y)λ , (A.5)

then
‖h‖L1(Rd) ≥ ‖ f ‖1−λL1(Rd) ‖g‖

λ
L1(Rd) . (A.6)
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We use it with λ = 1/2, f (x) = (1 + x)γpδxδ−2e−δγx if x ≥ 0 and f (x) = 0 if x < 0, g(x) = x2 f (x) and
h(x) = (1 + C2

δ)
1/2x f (x). The condition (A.5) is then equivalent to

(1 + C2
δ)
−1/2 ≤


(
1 +

x+y
2

)
(1 + x)(1 + y)


γpδ

2 (y
x

) 1
2


(

y
x

) 1
2

+
(

x
y

) 1
2

2


δ−1

which is satisfied as the term between brackets is always greater than 1 and the function z 7→ z[(z +

z−1)/2]δ−1, z > 0 is bounded from below by (1 + C2
δ)
−1/2, where Cδ is given in Eq (4.12). Then with the

change of variable x′ = 1/(γx) in the integrals of Eq (A.6), one recovers Eq (4.12). �
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