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A B S T R A C T   

The analysis of equipment degradation has traditionally developed in two main directions. One approach, of 
great interest for control system design, has been to consider that degradation causes fundamental changes to the 
behaviour of a system. Another approach, used in optimal maintenance planning and production scheduling, 
considers degradation as a separate process that affects performance but does not necessarily change the 
behaviour. This article provides a review of mathematical models of degradation that will facilitate the inte
gration of degradation modelling into control and optimisation schemes. To this end, a new unified classification 
is proposed. It takes into account the influence of degradation on the behaviour of the system, as well as the 
factors influencing degradation. Understanding these mutual influences will enable improved optimization, 
design and operation of control systems. The flexibility of the proposed classification is demonstrated in an 
industrial application to a multi-product batch scheduling process.   

1. Introduction 

The modelling of degradation is well established for maintenance 
planning (Chen & Patton, 1999) with the resulting models being used to 
aid decisions related to restoring the performance of a system. In this 
context, system refers to a “combination of interacting elements organ
ised to achieve one or more stated purposes” (BSI, 2015c), while 
degradation is a “detrimental change in physical condition, with time, 
use, or external cause” (BSI, 2017). However, models of degradation for 
use in control and optimisation applications must also capture the 
relationship between the way in which a system is operated and how its 
component parts degrade. A model for degradation therefore should be 
embedded within a model for the behaviour of the system. Behaviour 
refers to the dynamic relationships between variables of the system 
together with characteristic quantities such as efficiency of a machine or 
length of a batch. Frank, Garcia, and Koppen-Seliger (2000) indicates 
that models of behaviour used for control which do not consider 
degradation can be oversimplified and give only a partial description of 
a system. 

Modelling of degradation within a control system requires both a 
description of how degradation affects the ability of the system to 

perform its function, and how degradation is influenced by the way the 
system is operated. Influencing factors include physical variables such as 
temperature and humidity, and also modes of operation such as the 
order of recipes in a batch process. Degradation might ultimately lead to 
a fault “characterised by the inability to perform a required function” 
(BSI, 2010). Previous work has focused on model-based fault-detection 
and diagnosis, and degradation modelling for reliability analysis and 
prognostics (Gorjian, Ma, Mittinty, Yarlagadda, & Sun, 2010; Isermann, 
2005; Shahraki, Yadav, & Liao, 2017). Isermann (1984) provided a 
survey of methods for fault detection classified according to the system 
variables which are affected by degradation. However, modelling of the 
degradation itself was not discussed. 

Degradation is often influenced by how the system is operated, with 
certain operating points likely to accelerate degradation. Hence it may 
be desirable to manipulate the operating set points in order to manage 
degradation and to reduce the risk of an unplanned stoppage in advance 
of a scheduled maintenance overhaul. The system would thus benefit 
from analysis of the impact of degradation. 

The purpose of this paper is to show how models of degradation may 
be integrated into control systems. A summary of existing models of 
degradation, which have primarily been used in diagnostics and 
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prognostics applications, is given. We provide a survey showing how 
models of degradation can be used in control and optimization. In 
particular, we propose a new classification according to the impact of 
degradation on the system, and the dependence of degradation on 
influencing factors. 

This paper expands on the existing state of the art in degradation 
modelling with the following contributions:  

• A new review of models of degradation in control and optimisation is 
provided;  

• The models of degradation are classified anew from the perspective 
of how degradation is modelled in relation to the model of a system;  

• Control systems taking account of degradation are classified from the 
perspective of how degradation is considered in a system;  

• Recommendations regarding the use of models of degradation to 
improve control and optimisation systems are provided. 

The rest of the paper is structured as follows. Section 2 defines and 
explains concepts related to degradation and to control systems. Sub
sequently, the new classification is introduced in Section 3 and 
described in Section 4. Section 5 presents models of degradation from 
the literature according to the new classification. Section 6 discusses 
how control systems can operate effectively in the presence of degra
dation, and how degradation models can help with this. An example of 
an industrial control application for a system with degradation is 
described in Section 7. The paper ends with a discussion and suggestions 
for further research. 

2. Background and context 

Section 2 provides explanations and definitions for the concepts to be 
discussed in the paper. The first sub-section defines terms and concepts 
related to degradation, including the concept of a degradation path 
model that underpins many degradation models. This section also 
classifies and summarizes existing models of degradation. The second 
sub-section defines terms and concepts relevant to the behaviour of a 
control system and gives an overview of the models that are commonly 
used to describe such behaviour. The terminology used in this section is 
gathered in the Glossary of Terms in Appendix A. 

2.1. Definitions and concepts related to degradation 

2.1.1. Introduction to degradation 
Figure 1 shows an illustration of how degradation may progress over 

time. Throughout the paper, t refers to time and d refers to degradation. 
During the first stage, for time t < t0, the value of degradation is too 
small to significantly influence the system. The system is therefore 
considered to be in up state. The black circle denotes the moment when 
the system enters a degraded state. When the degradation, d, is higher 

than a predefined threshold d1, a failure occurs, marked with an asterisk. 
The last stage, when time t > t1 and degradation d > d1, represents faulty 
operation where the system is no longer able to perform one or more 
required functions. 

BSI (2017) introduces the term failure mechanism, describing “phys
ical, chemical or other processes which may lead or have led to failure”. 
These failure mechanisms belong to a more general group of influencing 
factors, where an influencing factor is an “observable qualitative or 
measurable quantitative item that affects a system property”. BSI (2016) 
categorises influencing factors according to their sources, such as the 
environment or operating personnel. The relationship between the 
influencing factors and the detrimental changes in the system properties 
is not explicitly described in the standards. For such relationships, the 
scientific literature suggests a variety of models depending on the type of 
influencing factor, the degradation processes and also on the applica
tion. This article presents a review and classification of those models of 
degradation that are useful for applications in control and optimisation. 

2.1.2. Degradation path model 
Meeker and Escobar (1998) describe the concept of a degradation 

path model. They analyzed degradation d as a function of time and dis
cerned three functional forms of degradation path (Hong, Meeker, & 
Escobar, 2011; Meeker & Escobar, 1998). The degradation path in 
Figure 1 has a concave form characterized with parameter C and an 
upper boundary value df:  

• Concave: d(t) = df (1 − exp( − Ct)). 

However degradation may take other functional forms characterized 
with parameter C and an initial value di:  

• Linear: d(t) = di + Ct,
• Convex: d(t) = diexp(Ct),

In the linear and convex models, degradation starts at time t = 0 with 
a value di. This allows situations to be modelled where the system is 
initially already in a degraded state. Such situations may be caused by 
deficiencies in the manufacturing, storage or installation of an element 
in the system or may occur after maintenance activities where only 
partial performance has been restored 

Degradation path models have been widely used to represent various 
types of degradation. Reviews of these approaches were conducted by 
Haghighi, Nooraee, and Rad (2010) and Xu, Hong, and Jin (2016). 
Hong, Meeker, and Escobar (2011) summarised a number of methods of 
modelling degradation primarily for reliability assessment and mainte
nance planning purposes. Shahraki et al. (2017) indicated that degra
dation path models may be insufficient because of the rigidity of the 
functional form. 

The characterisation from Meeker and Escobar (1998) assumes that 
degradation is a strictly increasing function of time. However, Gerts
bakh and Kordonskiy (1969) suggested that it is not mandatory to model 
degradation as a monotone function of time, because some systems 
might undergo a ‘burn-in’ period which improves the initial properties 
of a system. 

2.1.3. Existing models of degradation 
The standard BSI (2015) divides models of degradation into five 

groups:  

• Physics-based models,  
• Statistical models,  
• Heuristic models,  
• Data-driven models,  
• Hybrid models. 

These are often aggregated into three groups: 

Fig. 1. Evolution of degradation in relation to the behaviour of a system  
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• Physical models,  
• Data-driven models,  
• Knowledge-based models. 

Physical, data-driven, and knowledge-based models of degradation 
are widely used for prognostic applications, including condition moni
toring and maintenance planning as indicated by Jardine, Lin, and 
Banjevic (2006), Heng, Zhang, Tan, and Mathew (2009), Peng, Dong, 
and Zuo (2010), Gorjian et al. (2010), Sikorska, Hodkiewicz, and Ma 
(2011), Le (2015), Shahraki et al. (2017), and Lei et al. (2018). Simi
larly, van Noortwijk (2009), Si, Wang, Hu, and Zhou (2011), Si, Wang, 
Chen, Hu, and Zhou (2013), and Zhang, Si, Hu, and Lei (2018) all pre
sented reviews of applications of selected types of models of degradation 
for prognostic purposes, whereas Nguyen, Fouladirad, and Grall (2018) 
conducted a survey on selection of models of degradation using condi
tion monitoring data. Furthermore, Zhang, Si, Hu, and Kong (2015) 
presented a review of data-driven methods used for estimation of 
degradation for prognostics. 

A summary of existing reviews of models of degradation is in Table 1. 

2.2. Definitions and concepts related to control systems 

2.2.1. Introduction to control systems 
A control system “responds to input signals from the process, its 

associated equipment, other programmable systems and/or an operator 
and generates output signals causing the process and its associated 
equipment to operate in the desired manner” (BSI, 2016). Sontag (1990) 
defines the effects of the inputs on the outputs of a system as its inpu
t-output behaviour. To analyse the behaviour in terms of the relationships 
between the inputs and the outputs, mathematical models are used, 
defined as “a set of equations that represents the system” (Ogata, 1997). 
Such equations include dynamic state-space equations and algebraic 
relationships. Other characteristic quantities such as duration of a batch 
reaction may also be included. Mathematical models that capture the 
behaviour of a system are called behavioural models (Willems, 2007). 

The definitions related to behaviour of a system and mathematical 
models of the behaviour used in this paper are gathered below:  

• Input-output behaviour of a system is a response of a system “to input 
signals from the process, its associated equipment, other program
mable systems and/or an operator” (BSI, 2016), i.e. “the effect that 
inputs have on the outputs” (Sontag, 1990),  

• Inputs are “signals that can be manipulated” (Ljung, 1999),  
• Outputs are “observable signals that are of interest” (Ljung, 1999),  
• Behavioural models are mathematical models of the input-output 

behaviour of a system (Willems, 2007). 

The behaviour of a system can be described using the system vari
ables listed in Table 2. This approach mirrors Isermann (1984) who first 
used this classification for process fault detection. 

2.2.2. Models for behaviour of control systems 
The dynamic behaviour of a system in up-state can be described as a 

set of nonlinear time-variant equations: 

ẋ(t) = f (t, x(t), u(t)) (1a) 

Table 1 
Existing reviews of models of degradation  

Authors Classification Applications 

Isermann 
(1984) 

Based on measurable signals 
Based on nonmeasurable state 
variables 
Based on nonmeasurable 
parameters 
Based on nonmeasurable 
characteristic quantities 

Fault diagnosis 

Jardine et al. 
(2006) 

Time-domain 
Frequency domain  
Time-frequency domain 

Value type 
Data analysis combining event 
data and condition monitoring 
data 

Diagnostics and prognostics 

van Noortwijk 
(2009) 

Gamma process based Maintenance 

Heng et al. 
(2009) 

Physics-based 
Data-driven 
Integrated 

Rotating machinery 
prognostics 

Peng et al. 
(2010) 

Physical 
Knowledge-based 
Data-driven 
Combination 

Condition-based 
maintenance 

Gorjian et al. 
(2010) 

General degradation path 
Random process models 
Mixture model 
Time series 
Stress strength inference 
Cumulative damage 
Markov models 
Wiener models 
Gamma models 

Reliability analysis 

Sikorska et al. 
(2011) 

Knowledge-based models 
Life expectancy models 
Artificial neural networks 
Physical models 

Diagnostics and prognostics 

Si et al. (2011) Statistical data-driven Prognostics 
Qin (2012) Physical 

Data-driven 
Based on deviations from the 
expected behaviour 

Condition monitoring 

Liao and Köttig 
(2014) 

Experience-based 
Data-driven 
Physical 
Hybrid 

Prognostics 

Le (2015) Experience-based 
Evolutionary and trending 
Physical 
Stochastic 

Prognostics 

BSI (2015) Physical 
Data driven 
Knowledge based 

Condition monitoring 

Shahraki et al. 
(2017) 

Data-driven Physics-based Reliability analysis, 
maintenance planning, 
prognostics 

Alaswad and 
Xiang (2017) 

Discrete 
Proportional hazard models 
Continuous 

Maintenance 

Zhang et al. 
(2018) 

Wiener process based Prognostics 

Lei et al. (2018) Depending on a single health 
indicator 
Depending on a health indicator 
and time 
Depending on a health indicator 
and a stage sequence 
Depending on multiple health 
indicators 
Hybrid 

Prognostics 

Li et al. (2020) Physical 
Data-driven 

Reliability analysis 

Kang et al. 
(2020) 

Single mechanism 
Multi-mechanism 
Multi-performance 

Maintenance  

Table 2 
Variables for describing the behaviour of a system (following 
Isermann (1984))  

Input and output variables u and y in Eq. (1) 

State variables x in Eq. (1) 
Parameters, such a matrices A, B, C, D in Eq. (2) 
Characteristic quantities that are functions of x and u  
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y(t) = g(x(t), u(t)) (1b)  

with boundary conditions x(t0) = x0 where t ∈ [t0, ∞] is time, x ∈ Rn is a 
vector of n state variables, u ∈ Rm is a vector of m control variables. The 
outputs of the system are denoted with y ∈ Rk. The functions f : R+ ×Rn 

×Rm→Rn and g : Rn × Rm→Rk are nonlinear functions describing the 
dynamics of the system (Khalil, 2014). 

Equations (1) include linear systems of form: 

ẋ(t) = A(t)x(t) + B(t)u(t) (2a)  

y(t) = C(t)x(t) + D(t)u(t) (2b)  

where A(t) : R+→Rn×n, B(t) : R+→Rn×m, C(t) : R+→Rp×n, D(t) : R+→ 
Rp×m are matrices with functions of time as coefficients (Khalil, 2014). 

2.2.3. Characteristic quantities 
Characteristic quantities are related to items of equipment within a 

system. For instance, a compressor map describes the relationships be
tween pressure ratio, mass flow rate and speed of a compressor, while a 
valve characteristic relates valve position to the flow rate through the 
valve. 

With appropriate assignment of u, x, and y, characteristic quantities 
are modelled by a time-invariant version of Eq. (1b): 

y = g(x, u) (3) 

For instance, a compressor map can be modelled as P2 = P1Ψ(m,ω),

where P2 and P1 are the discharge and suction pressures, and Ψ is a non- 
linear function of mass flow rate m and speed ω. Here, P2 would be an 
output y, m would be a state variable x, and ω an input u. P1 might be a 
state variable or an input depending on how the system is operated. 

Characteristic quantities do not have to be system variables and may 
instead be performance indicators. An example is compressor efficiency 
η = η(m,ω), where η is an output y, and is a nonlinear function of the 
state and input variables on the right hand side. As a further example, 
the performance of a multi-purpose batch production can be defined as 
the processing time of all of the batches (an output, y) as a function of 
the sequence of recipes (an input, u). 

3. Classification of models of degradation based on behaviour of 
a system and the influencing factors 

In addition to introducing the various terms and concepts used in 
modelling of degradation, Section 2 also defined the behaviour of a 
system from a control perspective. The focus of this article is on models 
which combine both the influence of degradation on a system, and the 
influencing factors that affect the degradation of that system. This sec
tion now presents a new classification of models of behaviour of systems 
where degradation is present. It also characterizes the models of 
degradation taking influencing factors into account. 

3.1. Classification based on detectability of degradation 

We propose a classification of models of behaviour based on the 
following criteria:  

• Degradation-dependent models of behaviour if degradation may be 
detected from the behaviour of a system,  

• Degradation-independent models of behaviour if degradation does 
not affect the behaviour of a system. 

The mathematical formulation of such models is presented in the 
upper section of Table 3. 

A model of behaviour is said to be degradation-dependent when it is 
possible to monitor and quantify the degradation (usually by means of 
measurements of the input and output of the system). An example of a 
degradation-dependent model would be fouling of a heat exchanger, 
which is detectable from deviations in exit temperature. A degradation- 
dependent model augments Eqs. (1a) and (1b) by including the degra
dation explicitly in a model for degraded system variables xD, uD and yD. 

Conversely, a model of behaviour is considered to be degradation- 
independent, when the degradation does not influence the relationships 
between the model inputs and outputs. For example, the development of 
a leak in a heat exchanger may be modelled using a degradation inde
pendent model of behaviour. This is because it is not possible to detect or 
quantify the severity of developing cracks leading up to the leak other 
than by specialist equipment, typically not considered part of a control 
system. The formulation of a degradation-independent model is iden
tical to Eq. (1). The behaviour of the system is indistinguishable from the 
system in up state, and the effect of degradation is not detectable in the 
system variables. Degradation-independent models of behaviour will be 
analysed in Sections 5.3 and 5.4 and their impact on control discussed in 
Section 6. 

3.2. Classification based on influencing factors 

Factors that influence degradation may be considered as inputs to the 
model of degradation:  

• Factor-based models of degradation depend on influencing factors,  
• Factor-free models of degradation are independent of any factors. 

Influencing factors include the way in which the system is operated 
described with the variables in Table 2, and external factors v such as 
ambient temperature or humidity. Factor-free models of degradation 
typically depend only on time. These formulations are presented in the 
lower half of Table 3. 

A model of degradation gives an expression for a value of a degra
dation function h(d) for use in Eqs. (1b) and (2b) as shown in the lower 
row of Table 3. In the table, d is the degradation, and h(d) is a function of 
the degradation that reflects the effect of degradation on a system 
variable. 

3.2.1. Factor-free models of degradation 
In a factor-free model of degradation, the degradation d is assumed 

independent of any influencing factors. The degradation does not take 
into account either factors from outside the system, or the system vari
ables x, u and y. Degradation can however evolve with time, i.e. d = d(t),
as time itself is not considered an influencing factor. McPherson (2013) 
presented an overview of general time-dependent models of 
degradation. 

In a system described by a factor-free model of degradation with a 
degradation-dependent model of behaviour, the factor-free degradation 
can affect the parameters and variables, as shown in Table 3. However, 
the structure of the model for behaviour remains the same. For instance, 
the linear system described by Eq. (2) will remain linear with respect to 
x, u, and y. If d varies with time, the parameters of the system will also 

Table 3 
Mathematical models for systems with degradation  

Models of behaviour 
Degradation-dependent Degradation-independent 

ẋD(t) = f(t,xD(t),uD(t),h(d)) ẋ(t) = f(t,x(t),u(t))
yD(t) = g(t,xD(t),uD(t),h(d)) y(t) = g(t,x(t),u(t))

Models of degradation 
Factor-free Factor-based 

h(d) = h(d(t)) h(d) = h(d(t,v,x(t),u(t),y(t)))
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vary with time. 

3.2.2. Factor-based models of degradation 
Factor-based models of degradation provide a description of degra

dation in the form h(d) = h(d(t, v(t), x(t), u(t), y(t))), where v(t) repre
sents variables that influence the degradation but which are not 
included as system variables, for instance environmental humidity or 
temperature. 

Factor-based degradation might affect not only the values of the 
parameters and system variables, but also the structure of a degradation- 
dependent model of behaviour. For instance, it might introduce 
nonlinearity to a linear model or change the structure of Eq. (1). 

3.3. Summary 

Degradation affecting the system, and which affects the inputs or the 
outputs of the system, requires a degradation-dependent model of 
behaviour of the form shown in the upper left side of Table 3. A 
degradation-independent model is appropriate when the degradation 
does not affect the system. 

Both the degradation-dependent and degradation-independent 
models of behaviour must be linked with a description of the degrada
tion. This description can be factor-free or factor based, as shown in the 
lower row of Table 3. Either of the models of behaviour can be combined 
with either of the models for the influencing factors, thus there are four 
possible combinations of model structure. In particular, a degradation- 
dependent model of behaviour with a factor-based model of degrada
tion has the potential to describe the effect of degradation on the system, 
and also the effect of the system on the degradation. 

4. Models of degradation 

Section 3.2 introduced a classification of models of degradation ac
cording to whether or not a model of degradation includes influencing 
factors in its formulation. Additionally, models of degradation may be 
further grouped according to:  

• How the variables in a system can be influenced:  
• Additive models of degradation,  
• Multiplicative models of degradation.  

• Which parts of a control system can be influenced:  
• Models of input degradation,  
• Models of output degradation. 

4.1. Additive and multiplicative models of degradation 

The effects of degradation on the system variables listed in Table 3 
can be considered as additive or multiplicative (Isermann, 2006). 

4.1.1. Additive models of degradation 
In an additive model of degradation, the degraded value of a generic 

system variable V from Table 3 is offset relative to the equivalent value 
in up state. If the degradation of V is additive, it is modelled as 

VD = V + h(d) (4)  

where VD denotes the degraded value, V is the value in up state without 
degradation, d is from the model of degradation and h(d) is a function of 
the degradation that reflects the effect of degradation on V. Therefore, 
the degradation function would represent a deviation between the 
degraded value of a variable, VD, and its counterpart in up state, h(d) =

VD − V. 
A data-driven estimate of degradation would attempt to fit a model 

for degradation to measurements of VD. Conversely, if VD is not 
measurable, it would be possible to use a model of d to estimate VD. 

4.1.2. Multiplicative models of degradation 
In a multiplicative model of degradation, the degraded value of a 

system variable is scaled according to a degradation function h(d) as 
VD = h(d)V. In particular, h(d) = (1 − d) yields: 

VD = (1 − d)V (5)  

which can be rearranged to a form called the relative model of degra
dation 

d =
V − VD

V
(6) 

Equation (6) is widely used for degradation monitoring (Hameed, 
Hong, Cho, Ahn, & Song, 2009; Loboda, Yepifanov, & Feldshteyn, 
2007). As with the additive case, Eq. (5) allows VD to be estimated on the 
basis of a model for d, or conversely Eq. (6) allows estimation of d from 
measurements VD if they are available. 

Additive and multiplicative models can be also used together: 

VD = h1(d)V + h2(d) (7)  

with h1(d) representing a multiplicative degradation function, and h2(d) 
representing additive degradation function. 

4.1.3. Uses of additive and multiplicative models 
Additive and multiplicative models of degradation are used in fault- 

tolerant control systems that can accommodate failures in a component. 
In particular, they are used to describe the behaviour of a degraded 
actuator (Isermann, 2006; Noura, Theilliol, Ponsart, & Chamseddine, 
2009). In that case, variable V is typically a characteristic quantity of a 
system, for instance, the flow through a valve calculated from valve 
position. Polycarpou and Helmicki (1995) indicated also that h(d) might 
have various functional forms, such as polynomial or rational. 

4.2. Input and output models of degradation 

Gertsbakh and Kordonskiy (1969), Isermann (2006), Nikulin, Lim
nios, Balakrishnan, Kahle, & Huber-Carol (2010), and Patton, Frank, and 
Clark (2013) indicated that the effects of degradation can cause changes 
in the output of a system. At the same time, a control system usually 
comprises multiple subsystems which interact with each other. Typi
cally, the output of the actuator is considered input to a system. From the 
perspective of the system, degradation of an actuator is perceived as 

Fig. 2. Degradation-dependent control system showing input and output degradation  
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degradation affecting the input of a system. Noura et al. (2009), Chen 
and Patton (1999) and Blanke, Kinnaert, Lunze, and Staroswiecki (2015) 
also indicated that degradation in a control system can be classified 
according to which element is affected by degradation. A classification 
of models of degradation using the inputs and outputs of a control aims 
to facilitate the integration of degradation modelling in control 
applications. 

Figure 2 presents a block diagram representing a control system. The 
dashed blue box shows the parts of the system that would be described 
by a model of output degradation. The dotted green box represents a 
situation with input degradation. 

Degradation that influences the outputs of the degradation- 
dependent model of behaviour will be considered separately from 
degradation influencing the inputs. 

4.2.1. Output degradation 
Degradation may be modelled as a change in the output such that the 

output in degraded state yD is a function of degradation: 

ẋ(t) = f (t, x(t), u(t)) (8a)  

yD(t) = g(x(t), u(t), h(d)) (8b) 

In the static case when ẋ = 0, the output Y is an algebraic function of 
the inputs U, where U and Y are static values of the input and output 
variables. 

Models of output degradation are useful for subsystems that describe 
actuators. For instance, they can model compressor fouling that affects 
compressor efficiency or heat exchanger fouling that affects the heat 
transfer coefficient. 

4.2.2. Input degradation 
Degradation may alternatively be modelled as a change in the input. 

For multiplicative degradation the degraded input is uD = h(d)u(t),
where u(t) is the input in up state without significant degradation. 
Hence: 

ẋD(t) = f (t, xD(t), h(d)u(t)) (9a)  

yD(t) = g(xD(t), h(d)u(t)) (9b)  

where xD and yD are the degraded state and input variables. 
As an example, an input degradation approach is useful when 

considering the effect of a degraded actuator in a control loop. Noura 
et al. (2009) provided an interpretation of additive and multiplicative 
faults of an actuator, assuming uD = h(d)u (Table 4). 

4.2.3. Uses of models of input and output degradation 
The input to the controlled system is the output of an actuator such as 

a valve, compressor or heat exchanger. Hence uD = YD. The degraded 

Table 5 
Applications of factor-free models of output degradation  

Model of degradation Application 

Fixed value model Gas turbine (Kurz & Brun, 2001; Meher-Homji, Chaker, & 
Motiwalla, 2001; Tsoutsanis, Meskin, Benammar, & 
Khorasani, 2015; Goebel, Subbu, & Frederick), 
compressor fouling (Aker & Saravanamuttoo, 1989),  
(Milosavljevic et al., 2016), pneumatic actuator  
(Beganovic & Söffker, 2017; Graves, Turcio, & Yoneyama, 
2018) 

Time-dependent - 
deterministic 

Compressor fouling (Cicciotti, 2015; Tarabrin et al., 
1996), CSTR (Lao et al., 2013), micro gas turbine  
(Zaccaria, Ferrari, & Kyprianidis, 2019) 

Time-dependent - 
stochastic 

Gas turbine (Li & Nilkitsaranont, 2009), control valve  
(McGhee, Galloway, Catterson, Brown, & Harrison, 2014)  

Table 4 
Interpretation of additive and multiplicative faults on behaviour of an actuator 
(Noura et al., 2009)   

No additive faults Additive faults 

No multiplicative faults h(d) = 1  Healthy actuator Bias 
Multiplicative faults h(d) ∈ (0, 1) Partial loss of effectiveness 
Multiplicative faults h(d) = 0  Failure Blockage  

Table 6 
Applications of factor-free models of input degradation  

Model of degradation Application examples 

Fixed value model - two cases: 
up state or fully degraded 

A fourth order dynamic system (Veillette, 1995), 
aircraft (Maki et al., 2004; Zhao & Jiang, 1998) 

Fixed value model - several 
cases 

A second order system (González-Contreras, 
Theilliol, & Sauter, 2007), three tank system  
(Theilliol et al., 2008; Theilliol et al., 2002), space 
vehicle (Gao et al., 2011), aircraft (Chamseddine, 
Theilliol, Zhang, Join, & Rabbath, 2015; Chen, 
Liu, & Fu, 2016; Jiang & Zhang, 2006; Li, Shi, & 
Yao, 2017; Shi, Wang, Wang, Wang, & Tomovic, 
2017; Yang, Zhang, Jiang, & Liu, 2014; Ye & Yang, 
2006; Yu, Fu, & Zhang, 2018; Y. Zhang, Jiang, & 
Theilliol, 2008; Y.M. Zhang & Jiang, 2001), a 
third order system (Chen, Niu, & Zou, 2013; Liu, 
Niu, Zou, & Karimi, 2015; Wang & Yao, 2010), 
heat exchanger (Ballé et al., 1998), TE benchmark 
(Yin et al., 2014), pulp mill (Zumoffen & 
Basualdo, 2008), CSTR (Mhaskar et al., 2006; 
Prakash et al., 2005), (Mhaskar, Liu, & 
Christofides, 2012), hydrothermal process  
(Boussaid et al., 2011), a wheeled robot (Ji et al., 
2003) 

Time-dependent model - fixed 
time and value 

A third order system (Tao, Joshi, & Ma, 2001), 
aircraft (Wu, Zhang, & Zhou, 2000), tank level 
control (Li et al., 2019; Zhang & Qin, 2009), 
hydrogen production (Du, Mhaskar, Zhu, & 
Flores-Cerrillo, 2014), Shell control problem  
(Kettunen, Zhang, & Jämsä-Jounela, 2008) 

Time-dependent model - fixed 
time 

A third order system (Tao, Joshi, & Ma, 2001), 
ball-beam system (Zhang et al., 2010), valve 
leakages (Arıcı & Kara, 2018), electrical systems  
(Kaviarasan et al., 2016), aircraft (Jiang & 
Chowdhury, 2005; Liu & Crespo, 2012), CSTR  
(Wang et al., 2007; Yu et al., 2005), burner (Baldi 
et al., 2017), planetary lander (Boskovic, Jackson, 
Mehra, & Nguyen, 2009), robotic arm (Jiang et al., 
2006) 

Time-dependent - stochastic 
time 

Aircraft (Tian, Yue, & Peng, 2010; Zhang & Jiang, 
1999), second oder system (Gu et al., 2012), DC 
motor (Langeron, Grall, Barros, 2013), control 
valve (Mo & Xie, 2016) 

Stochastic - Markov process A first order system (Mahmoud et al., 2002), 
inverted pendulum (Wei et al., 2017), vehicle 
suspension system (Shen et al., 2014), landing 
vehicle (Huang et al., 2014)  

Table 7 
Applications of factor-based models of input degradation  

Model of 
degradation 

Factors Application 

Performance loss - 
heuristic 

Control effort u(k) Second order system (Vieira 
et al., 2015) 

Performance loss - 
Wiener process 

Changes of control effort u 
(k) - discrete 

Tank level control (Nguyen, 
Dieulle, & Grall, 2014a, 2014b, 
2014c, 2015) 

Performance loss - 
gamma process 

Changes of control effort u 
(k) - continuous 

DC motor (Langeron, Grall, 
Barros, 2013), maintenance  
(Langeron et al., 2016), drilling 
unit (Langeron et al., 2015; 
2017) 

Performance loss - 
physical 

Discharge current, state- 
of-charge (SOC), and 
operating temperature 

Battery charging (Allam, Onori, 
Marelli, & Taborelli, 2015; Zou, 
Hu, Wei, Wik, & Egardt, 2018)  
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output of the actuator, YD, is typically modelled by a polynomial func
tion of the input U with parameters ki: 

YD = h1(d)
∑n

i=0
kiνi(U) + h2(d) (10)  

where h1 is a multiplicative degradation function, and h2 is an additive 
degradation function (Isermann, 2006). The behaviour of the actuator is 
usually described with the algebraic Eq. (8b) because the dynamics of 
the states x of the actuator are usually much faster than the dynamics of 
the states of the controlled system (Aldhaheri & Khalil, 1996). 

5. Models with degradation in control systems 

This section of the paper discusses the approaches to degradation 
modelling from Table 3 and highlights prior work in each area that is 
related to their application in control systems. Figure 3 expands the 
classification indicated in Table 3 in the form of a hierarchical tree. The 
first level of the tree captures the four categories from Table 3. Subse
quent layers present internal classifications within each category. 

5.1. Degradation-dependent models of behaviour with factor-free models 
of degradation 

As discussed by Chen and Patton (1999), factor-free models of 
degradation do not attempt to describe the mechanism of degradation. 
Rather, they assume the degradation is fixed, time-dependent or sto
chastic. Factor-free models of degradation have been combined with 
degradation-dependent models of behaviour to understand the behav
iour of a control system in the presence of degradation of components 
within it. The approaches can be classified as models of output degra
dation and models of input degradation, as defined in Section 4.2. 

5.1.1. Factor-free output degradation 
Degradation-dependent models of behaviour with factor-free models 

of output degradation describe how the outputs or characteristic quan
tities of a system or sub-system change with degradation (i.e. y in Eq. 
(2a) or Eq. (4)). These models are primarily used in complex processes 
where the output of a degradation-dependent system constitutes an 
input to another system. Table 5 presents selected applications of such 
models. 

5.1.1.1. Fixed values of output degradation. Models with fixed values of 

degradation treat the degradation function h(d) as constant with n 
possible values, i.e. h(d) ∈ {h1, h2,⋯, hn} Using models of output 
degradation with n fixed values effectively yields n outputs yi, i = 1,…,

n, corresponding to separate values of hi. Each output can be considered 
separately, as the transitions from hi to hj, i, j = 1…, n, i ∕= j are not 
defined. Examples can be found in works by Tsoutsanis, Meskin, 
Benammar, and Khorasani (2015), Meher-Homji, Chaker, and Motiwalla 
(2001), Aker and Saravanamuttoo (1989), and Kurz and Brun (2001) in 
which the performance of gas turbines was calculated for several values 
of fouling-induced degradation. They detected fouling from the behav
iour by analysing changes of compressor characteristics when the 
degradation was constant. Furthermore, Kurz and Brun (2001) used the 
results to demonstrate the impact of an optimal cleaning schedule on the 
overall performance. 

Behaviour and degradation cannot be analysed independently in a 
system described by a degradation-dependent model of behaviour. The 
controlled system has a different behaviour in the degraded state than in 
up state. As such, the control algorithm or the optimisation function 
must be adapted. Such an integrated analysis was done by Milosavljevic 
et al. (2016), who incorporated a factor-free model of degradation of a 
static compressor map with a degradation-dependent model of behav
iour of a compressor to simulate optimal load-sharing among three 
compressors. 

5.1.1.2. Time dependent and stochastic models of output degradation. 
Time-dependent models of degradation h(d) take into account transi
tional behaviour as degradation moves between several values. Time- 
dependent models of h(d) were used by Tarabrin, Schurovsky, Bodrov, 
and Stalder (1996) and Cicciotti (2015) for analysis of compressor ef
ficiency and pressure ratio in degraded state. The degradation h(d) was 
modelled as an exponential function of time with constant parameters. 
In particular, the time-dependent approach to modelling of fouling has 
been applied by Escher (1995), who modelled h(d) as a nonlinear time 
trend to capture turbomachinery degradation. Li and Nilkitsaranont 
(2009), Loboda et al. (2007), and Loboda, Yepifanov, and Feldshteyn 
(2009) modelled degradation in turbomachinery using time trends. Lao, 
Ellis, and Christofides (2013) used a logistic function to approximate a 
degraded behaviour of a heater in continuous stirred tank reactors 
(CSTRs). 

The h(d) term may also be modelled as stochastic, with degradation 
moving between random values at random times. McGhee et al. (2014) 
modelled degradation of a valve using a stochastic model to capture 
sticking valve behaviour: 

Fig. 3. A hierarchical tree with classification of models of degradation relative to the control systems  
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yD(t+ 1) = y(0) − δy(t) (11)  

where yD denotes a decreasing area of the pipe inside the valve in 
relation to the initial area y(0) and the random variable δ comes from a 
uniform distribution. 

Time-dependent and stochastic output degradation implies that the 
output changes during the operation of the system. Therefore the control 
algorithm has to handle the transitions. Recent reviews of stochastic 
models that can be used for degradation modelling were presented by Si 
et al. (2011) and Zhang et al. (2015). 

5.1.2. Factor-free input degradation. Degradation-dependent models of 
behaviour with factor-free models of input degradation assume that the 
degradation may be detected from the behaviour of a system. The system 
can be typically identified as being in up state, degraded state, or fault 
state. Table 6 presents selected applications of factor-free models of 
input degradation. 

Input degradation means that the inputs to a system change due to 
degradation. In models of behaviour of form Eq. (1), input degradation 
may be detected from the value of u which becomes uD. Typically, uD 
captures the multiplicative nature of input degradation, where uD =

h(d)u. In particular, the input degradation represents how an output of a 
degraded actuator enters the system after leaving the dashed blue box in 
Fig. 2. 

5.1.2.1. Fixed values of input degradation. As mentioned in Section 
5.1.1.1, in the simplest models, the degradation function h(d) takes fixed 
values, h(d) ∈ {h1,h2,…,hn}. In consequence, there are n different input 
cases uD ∈ {u1, u2,…, un} where typically ui = hiu. Fan, Liu, and Kwong 
(2017) observed that fixed values of h(d) could emulate degradation 
processes which result in stuck actuators. Veillette (1995), Maki, Jiang, 
and Hagino (2004), and Zhao and Jiang (1998) considered an input to a 
system from an actuator that was either:  

• In up state with h(d) = 1, and thus uD = u,
• Failed with h(d) = 0 and uD = 0. 

González-Contreras, Theilliol, and Sauter (2007) assumed that the 
performance of a degraded actuator changed from 100% to 90%, from 
h(d) = 1 to h(d) = 0.9. Ballé, Fischer, Füssel, Nelles, and Isermann 
(1998), Theilliol, Noura, and Ponsart (2002), Gao, Jiang, Qi, and Xu 
(2011), Chamseddine, Theilliol, Zhang, Join, and Rabbath (2015), 
Graves, Turcio, and Yoneyama (2018), Chen, Liu, and Fu (2016), Li, Shi, 
and Yao (2017), and Theilliol, Join, and Zhang (2008) have modelled 
several values of degradation function, between 100% and 0% of per
formance. Liu, Niu, Zou, and Karimi (2015) used a fixed value model of 
degradation to design a controller for a third-order dynamic system with 
uncertain parameters. In all cases, degradation-dependent models of 
behaviour with uD = h(d)u were considered. 

Wang and Yao (2010) considered multi-actuator systems. Some ac
tuators could only be in up state h(d) = 1 or faulty with h(d) = 0,whereas 

other actuators could operate with partial performance 0 < h(d) < 1. 
Similarly, Ji, Zhang, Biswas, and Sarkar (2003) designed a controller for a 
wheeled robot with several degraded actuators. Yin, Luo, and Ding 
(2014) showed that fixed values of input degradation extend to a more 
general class of inputs than stuck actuators by considering two levels of 
feed ratio as degradation of the Tennessee Eastman benchmark process. 

In linear models of the form of Eq. (2), modifying the input u is 
equivalent to modifying the matrix B (Mahmoud, Jiang, & Zhang, 
2002). Zhang and Jiang (2001), Jiang and Zhang (2006), Zhang, Jiang, 
and Theilliol (2008), and Shi, Wang, Wang, Wang, and Tomovic (2017) 
defined values for the matrices B of the linear system (2a) in degraded 
states. Additive models of degradation with fixed matrices from Eq. (2a) 
were used by Prakash, Narasimhan, and Patwardhan (2005). 

A degradation-dependent model of behaviour is required when the 
presence of degradation can be detected from the behaviour of the 
system. In some cases, degradation may be detectable and also quanti
fiable. Yang, Zhang, Jiang, and Liu (2014) and Ye and Yang (2006) have 
used an adaptive identification procedure to estimate the value of h(d) in 
aircraft applications. Boussaid, Aubrun, Abdelkrim, and Ben Gayed 
(2011) and Yu, Fu, and Zhang (2018) also assumed constant values of 
degradation, and estimated the values using online observers. 

Similarly to the models of output degradation described in Section 
5.1.1, if input degradation is modelled with fixed values hi, it is possible 
to analyse the inputs separately for each i. 

5.1.2.2. Time-dependent models of input degradation. Tao, Joshi, and 
Ma (2001) proposed a model of an actuator subsystem that degrades 
after a predefined time t0. The degradation function h(d) is therefore 
piecewise constant 

h(d(t)) =
{

h0, t < t0
h1, t ≥ t0

(12)  

In consequence, if multiplicative degradation is considered 

uD =

{
h0u, t < t0
h1u, t ≥ t0

(13)  

Time-dependent models of form Eqs. (12) are an extension of the models 
described in Section 5.1.2.1. If degradation of an actuator can be 
described with such a model of degradation, then the system must be 
able to handle a stepwise change in the input signal uD. Wu, Zhang, and 
Zhou (2000) used such an approach to model the degraded control 
surfaces of an aircraft system, whereas Zhang and Qin (2009) and Li, 
Ding, Luo, Peng, and Yang (2019) approximated degradation of pumps 
in a three tank system using this approach. 

Other approaches proposed by Tao et al. (2001) modelled the 
degradation of the actuator as additive changes of the actuator output u: 

uD(t) = u(t) − h(d(t)) (14a)  

h(d(t)) = ũ + d̃(t) + δ̃(t) (14b) 

Fig. 4. Feedback control loop with a degradation-independent system  
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where ũ is an unknown constant, and δ̃(t) is bounded, but unknown. 
Furthermore, d̃(t) =

∑

j
d̃jfj(t), where d̃j are constant parameters and fj(t) 

are predefined functions. For instance, if u(t) is the flow through a valve 
as in Arıcı and Kara (2018), then Eq. (14) provides a model such that the 
degraded flow rate uD can vary according to d̃(t), and can also be 
influenced by an unknown but bounded function δ̃(t). Additive 
time-dependent models of form Eq. (14) also represent continuous 
degradation that would influence the behaviour regardless of the input 
u. 

The model (14) is not application specific. Such models were used for 
degradation of hydraulic actuators (Tao et al., 2001; Zhang, Xu, Guo, & 
Chu, 2010), continuous stirred tank reactor (CSTR) degradation (Wang, 
Zhou, & Gao, 2007), valve leakages (Arıcı & Kara, 2018), electrical 
systems degradation (Kaviarasan, Sakthivel, & Kwon, 2016), degraded 
aircraft system (Jiang & Chowdhury, 2005; Liu & Crespo, 2012), and 
burner degradation (Baldi, Le Quang, Holub, & Endel, 2017). Yu, Chang, 
and Yu (2005) simulated two kinds of degradation in a CSTR system: a 
fixed value model of degradation of a pump, and a time-dependent 
model of degradation representing a loss of inlet temperature. In all 
cases the degradation influenced the input signal uD = h(d)u. Jiang, 
Staroswiecki, and Cocquempot (2006) used additive models of degra
dation for design of a control system for a robotic arm. 

5.1.2.3 Stochastic models of input degradation Stochastic models as
sume that the value of the degradation function h(d) changes only at 
certain time instants and is constant in between. The timings of the 
changes are not known in advance. Such an approach was applied by 
Zhang and Jiang (1999) and Tian, Yue, and Peng (2010) who assumed 
the constant value between the instants of change was: 

h(d) = 1 − θ (15)  

where θ had a normal distribution with positive mean and fixed vari
ance. Gu, Liu, Peng, and Tian (2012) proposed a model that merged the 
random loss of performance of an actuator with its saturation, effec
tively combining the simple approach based on constant values with 
stochastic estimation and a nonlinear degradation function. A stochastic 
approach was also used by Mahmoud et al. (2002), Wei, Qiu, and Karimi 
(2017), and Shen, Park, and Wu (2014) who defined degradation as a 
Markov process such that the degradation at time t depended on the 
value at t − 1. A Markovian model of degradation was also used by 
Huang, Shi, and Zhang (2014) who included time-dependency in the 
stochastic model, i.e. the random changes of h(d) depended on time, as 
well as on the previous value of h(d). Mo and Xie (2016) modelled 
degradation d as a stochastic loss of effectiveness of a control valve and 
included it in the dynamic behaviour using uD = (1 − d)u. 

Stochastic models of degradation introduce both the transitional 
elements of time-dependent models of degradation and the uncertainty. 
Therefore, despite their relative simplicity, if the degradation is 
described by such a model, the controller must take the stochastic nature 
of degradation into account (Gu et al., 2012). 

5.2. Degradation-dependent models of behaviour with factor-based 
models of degradation 

Factor-based models of degradation of the form h(d) = h(d(t, v(t),
x(t), u(t), y(t))) take into account that control actions may have a direct 
impact on the degradation of the system (Singpurwalla & Wilson, 1998). 
Degradation-dependent models of behaviour with factor-based models 
of degradation consider further that such degradation is detectable from 
the behaviour of the system as shown in the Eq. (1) for ẋD(t) and yD(t), 
and hence that the behaviour is itself influenced by use and operation. 

5.2.1. Factor-based models of output degradation 
Factor-based models of output degradation are often analysed using 

a physics-of-failure approach (Modarres, Amiri, & Jackson, 2017) and 

are case-specific. The main focus is on the degradation processes, such 
as:  

• Erosion (Li, Wang, Tomovic, & Zhang, 2018),  
• Wear (Cao & Dai, 2015),  
• Corrosion and pitting (Chookah, Nuhi, & Modarres, 2011),  
• Fouling (Brahim, Augustin, & Bohnet, 2003). 

Suri and Onori (2016) described battery ageing with a physical 
model relating influencing factors such as state-of-charge, battery tem
perature, and power level to degradation. They analysed the influence of 
degradation of the battery in a vehicle simulation. Ahmad, Kano, 
Hasebe, Kitada, and Murata (2014) described degradation of a ladle in a 
steel making process as a function of repeated usage. They used the 
model of degradation for feedforward control of temperature during the 
process. 

5.2.2. Factor-based models of input degradation 
In the simplest case of a factor-based model of input degradation, the 

degradation function h(d) depends directly on an input, u: 

h(d) = h(d(u)) (16)  

For instance u might be the control effort. Such a model was proposed by 
Vieira, Galvão, and Yoneyama (2015) who described the degradation 
function as a first order discrete-time dynamic relationship 

h(d(k + 1)) = h(d(k)) + α|u(k)| (17)  

in which α > 0. They observed that the relationship assumes the 
degradation will remain constant if there is no change in u(t). This is not 
the always the case, however. As an example, Meher-Homji, Chaker, and 
Motiwalla (2001) demonstrated that the degradation processes in 
turbomachinery would continue even after shut down of the piece of 
equipment. 

5.2.2.1 Control effort as an influencing factor Vieira et al. (2015) 
included the degradation function with influencing factors in the model 
of behaviour of the form of Eqs. (2). They proposed to switch between 
the matrices of a model of a system with an actuator in up state and in 
degraded state: 

B(h(d)) =
{

Bnom if h(d) < hlim

h(d)Bnom if h(d) ≥ hlim (18)  

where Bnom is the nominal value in up state, h(d) is the solution of Eq. 
(17), and hlim is a predefined limit. 

A similar approach to designing control systems taking account of 
degradation was considered by Langeron, Grall, Barros, 2013 who used 
stochastic processes to model the degradation function h(d) and relate it 
with the behaviour of a system. They divided the behaviour into three 
phases, depending on the value of degradation d as in Fig. 1, i.e. d ≤ d0, 
d ∈ (d0, d1), and d ≥ d1. Langeron, Fouladirad, and Grall (2016); Lan
geron, Grall, and Barros (2015, 2017) used shock models to find the 
values of the degradation function h(d) related to degradation of a 
pump, and devised a predictive controller that took degradation into 
account. The shocks were defined as changes of the input u, i.e. the 
control action was considered a factor influencing degradation. 

Both Vieira et al. (2015) and Langeron et al. (2016) used 
optimisation-based control to compensate for degradation. Therefore 
the feedback control problem became an optimisation problem with the 
degradation function included in the objective function (Langeron et al., 
2016; Langeron et al., 2015; 2017) or in the constraints (Vieira et al., 
2015). 

5.2.2.2 External influencing factors 
Singpurwalla and Wilson (1998) considered both usage and external 

factors as influencing factors in a model of input degradation. Using this 
approach, Nguyen (2015) modelled h(d) as 
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h(d) = h0 − Wnd − Wom (19)  

where Wnd and Wom denote a loss of effectiveness due to natural 
degradation and operating condition, called operating mode, respec
tively. Wnd and Wom are modelled as shock deterioration models 

Wnd(t) =
∑N(t)

j=0
ΔWnd

j (20)  

and 

Wom(t) =
∑M(t)

j=0
ΔWom

j (21)  

where N(t) is the number of shocks due to external factors and M(t) 
refers to the number of changes of the control action that happened 
during a certain time period t. The values ΔWnd

j and ΔWon
j denote the 

change in degradation after the j-th shock (change) and “are indepen
dently and identically distributed” (Nguyen, Dieulle, & Grall, 2015). 
Nguyen, Dieulle, and Grall (2014a, 2014b, 2014c) applied the model 
from Eq. (19) to a tank system to describe degraded performance of a 
pump subject to random shocks. Every time a shock occurred, i.e. with 
every change of h(d) according to Eq. (19), the performance of an 
actuator decreased by a quantity w(t) following a uniform distribution 
on a fixed interval [0, δ]. Nguyen et al. (2015) modelled the performance 
of an actuator as changes of the matrix B from Eq. (2a): 

B(t) = Bnom − w(t) (22)  

Thus 

uD = (Bnom − w)u (23) 

In contrast to Langeron et al. (2016); Langeron et al. (2015, 2017) 
and Vieira et al. (2015), Nguyen, Dieulle, and Grall (2014a, 2014b, 
2014c) analysed the influence of degradation of a pump on a system 
with a PID controller, without explicitly including the degradation 
function in the controller design. 

Table 7 presents selected applications with factor-based input 
degradation. An overview of models of degradation that can be used to 
approximate the degradation function depending on the influencing 
factors was provided by Singpurwalla (1995) and Bagdonavičius and 
Nikulin (2001). A more recent review of such approaches was done by 
van Noortwijk (2009) and Bagdonavičius and Nikulin (2009). 

5.3. Degradation-independent models of behaviour with factor-free 
models of degradation 

Models of degradation that are independent from influencing factors 
and where degradation is not detectable in the behaviour have been of 
little use for control purposes. However, they are widely used in reli
ability engineering for prognostics and maintenance planning (Mann, 
Singpurwalla, & Schafer, 1974; Rausand & Høyland, 2004). Reliability is 
defined as an “ability of an item to perform a required function under 
given conditions for a given time interval” (BSI, 2010). It is described 
with a reliability function that captures the probability that the item will 
not fail in the time interval [0, t ] (Mann, Singpurwalla, & Schafer, 
1974). The moment when an item fails at t2 shows when degradation has 
reached a failure threshold in Fig. 1. Therefore the reliability function R 
(t) measures the probability that the degradation will not reach a failure 
threshold in the given interval [0, t ]. As such, it provides another way 
of describing the degradation function h(d), i.e. h(d) = R(t). Alterna
tively, a failure (hazard) rate is used instead of R(t) 

z(t) = − Ṙ(t) (24)  

which represents the probability that the item will fail in the interval 
[ t, t + Δt ] if it has survived until the time t (Mann, Singpurwalla, & 

Schafer, 1974). 
Factor-free reliability-based models of degradation can be found in 

industrial databases, such as ‘OREDA Offshore & Onshore Reliability 
Data’ (SINTEF, 2002) for oil and gas applications, and ‘Military Hand
book: Reliability Prediction of Electronic Equipment: MIL-HDBK-217F’ 
(United States of America: Department of Defense, 1986) for electronics. 
As an example, Kopnov (1999) modelled crack growth as a set of fixed 
values, stochastically changing at random times. The probability of 
transitions was predefined (hence factor-free) and the cost of failure due 
to crack growth was included in the cost of operation. The behaviour of 
the system was not affected, because typically the effects of a crack are 
not observable in the behaviour until a component breaks. 

Figure 4 shows an interpretation of a controller with a degradation- 
independent system. Degradation is assumed to be measured separately 
from the output y, and the input u does not depend on the degradation. 
The optional feedback loop sends the information about the degradation 
back to the controller. The controller adapts its output taking into ac
count both the error between the setpoint and the feedback signal, and 
the current degradation. The adaptation might consist of changing the 
parameters of the controller as in a gain-scheduling controller, or might 
require a recalculation of the control output if model predictive control 
is used. The degradation and the system in Fig. 4 are considered sepa
rately from the controller point of view. 

5.4. Degradation-independent models of behaviour with factor-based 
models of degradation 

A factor-based model of degradation is useful when degradation is 
not detectable from the behaviour of the system. Degradation- 
independent models of behaviour with factor-based models of degra
dation can be divided into three groups: 

• Physical models of degradation that is measurable before its influ
ence is visible in the behaviour of the system. This could for example 
be during the early stages of Fig. 1 where t < t0,  

• Reliability-based models of degradation that are focused on the end 
of the degradation period i.e. when the system has failed (t > t1 in 
Fig. 1),  

• Heuristic models of degradation that are based on knowledge and 
assumptions about the degradation and the system, applicable for 
t > 0. 

5.4.1. Factor-based physical models of degradation 
Factor-based physical models are used to describe degradation that 

either is not advanced enough to be detectable in the behaviour of the 
system, or else actually does not change the behaviour. The degradation 
may be measurable or diagnosable in itself, perhaps with specialist 
equipment. An example would be development of a crack in a turbine 
blade that does not change the behaviour of the turbine until the blade 
fails. 

According to Modarres et al. (2017) a physics-of-failure approach 
uses knowledge of physical and chemical properties of materials, load 
profile, environmental conditions, failure mechanisms and accelerated 
test data to build models of degradation and time to failure. The physical 
nature of the models indicates that the models of degradation will be 
case-specific. 

Some physical phenomena are common enough to justify the use of a 
set of predefined models. Xu et al. (2016) presented an overview of 
general degradation path models, which are application independent. 
Application-specific models were described by Martin, Strutt, and Kin
kead (1983), who focused on mechanical degradation, whereas Collins, 
Potirniche, and Daniewicz (2015) presented material-specific models of 
metal degradation, with the underlying influencing factors explained by 
Fisher (2015). Comprehensive reviews of the physical models of 
degradation with influencing factors were given by Escobar and Meeker 

M. Zagorowska et al.                                                                                                                                                                                                                           



Annual Reviews in Control 50 (2020) 150–173

160

(2006), Nelson (2009), and recently by Pang, Si, Hu, Zhang, and Pei 
(2020). A brief summary is presented in Table 8. The models given in 
Table 8 show how the degradation d depends on the influencing factors. 
The value of d represents the degradation itself, whereas h(d) is used if 
degradation d is not measurable. 

The degradation d in the physical relationships from Table 8 assumes 
the influencing factors are constant. The evolution of the influencing 
factors over time is also of importance and should be taken into account. 
For that purpose, cumulative damage indicators (or exposure functions) 
are considered (Xu et al., 2016) and the degradation function has the 
form: 

h(d(t)) = f (D(v(t), β), b) + ε (25)  

where v(t) are influencing factors, β, b are constant parameters of the 
model, and ε represents measurement noise. The function D(v(t), β) 
denotes the cumulative degradation up to time t (Nelson, 2009), 
sometimes called the additive accumulation of damages (Bagdonavičius & 
Nikulin, 2001), i.e. 

D(v(t), β) =
∫t

0

d(v(τ), β)dτ (26)  

Palmgren-Miner’s rule is an example of such an indicator, used for metal 
fatigue modelling and applied by Ray, Wu, Carpino, and Lorenzo 
(1994b). Palmgren-Miner’s rule assumes that D(v(t), β) is a linear 
function of influencing factors (Nelson, 2009). Table 9 summarises the 
physical models used for control purposes. 

A variant of model predictive control can be used with the objective 
function including the degradation function. Ray, Dai, Wu, Carpino, and 
Lorenzo (1994); Ray, Wu, Carpino, and Lorenzo (1994a); Ray, Wu, 
Carpino, and Lorenzo (1994b) introduced the term damage mitigating 

control to emphasise that a degradation function is explicitly included in 
the objective function. This concept will be further described in Section 
6.2.2. Another example is control of pasteurisation temperature (Pour, 
Puig, & Ocampo-Martinez, 2017, 2018). By including the degradation of 
the pump in the objective function, Pour, Puig, & Ocampo-Martinez 
(2017, 2018) were able to mitigate the degradation, at the same time 
satisfying constraints on energy consumption. 

5.4.2. Factor-based reliability-oriented models of degradation 
The two main approaches to factor-based models of degradation 

based on reliability analysis are:  

• Parametric models, where the reliability function is often based on 
one of the physical relationships gathered in Table 8,  

• Non-parametric models (or semi-parametric), usually in form of 
proportional hazard models. 

Reliability-oriented models of degradation have not been widely 
used in control frameworks. Escobet, Quevedo, Puig, and Nejjari (2002) 
suggested a generic approach to control taking degradation into account 
called health-aware control that will be described in more detail in Sec
tion 6.2.2. Since then, several authors have used proportional hazard 
models in control applications, as listed in Table 10. In most cases, the 
control effort u(t) was considered to be a factor influencing degradation. 
This approach was analysed in aircraft applications to allocate the 
control effort among several actuators with varying reliability functions 
(Khelassi, Theilliol, & Weber, 2010; Theilliol, Weber, Chamseddine, & 
Zhang, 2015; Weber, Boussaid, Khelassi, Theilliol, & Aubrun, 2012). 
Similarly, Guenab, Weber, Theilliol, and Zhang (2011) applied 
reliability-based control to a heating system with degrading pumps. 
Salazar, Weber, Nejjari, Sarrate, and Theilliol (2017) and Pour, Puig, 

Fig. 5. The topology of the multi-product batch process (adapted from Wu et al. (2019)). The dashed green box indicates the two reactors used in this work  

Fig. 6. Batch-to-batch evolution of fouling-related measurement. RG stands for recipe group consisting of several recipes which have similar physical properties  
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and Cembrano (2019) controlled a drinking water network based on the 
reliability of the pumps to improve the reliability of the whole system. 

Table 10 summarises the applications of reliability-oriented models 
of degradation for control purposes. All entries in this table used a 
degradation-independent model of behaviour, as the reliability does not 
influence the behaviour of a system. The controllers are designed as 
model predictive control or adaptive optimal control (Chamseddine, 
Theilliol, Sadeghzadeh, Zhang, & Weber, 2014). 

5.4.3. Factor-based heuristic models 
Physical and reliability-based models of degradation are not always 

available. As indicated by Meeker and Escobar (1998), the unavail
ability of a model of degradation might be due to lack of information 
about the degradation itself. However, available knowledge about the 
process and the influencing factors can be applied to build heuristic 
models of degradation. Even though the heuristic models do not have 
any physical interpretation, they provide a knowledge-based description 
of degradation. Therefore the models are application-specific. 

Heuristic approaches can be used for control purposes. Thus, 
optimisation-oriented approaches are of use as they combine objective 
functions and constraints related to the behaviour and the degradation. 
For instance, Verheyleweghen, Gjøby, and Jäschke (2018) presented a 
hierarchical framework for model-based control of a subsea compressor 
station including degradation as a constraint and ensuring stable oper
ation of the station. Pereira, Harrop Galvao, and Yoneyama (2010) 

designed a predictive controller that took into account limits on the 
degradation of pumps. Table 11 presents further control applications of 
heuristic models of degradation that do not have any underlying phys
ical or reliability-oriented interpretation. 

5.5. Summarising comment 

The models of degradation presented in Section 5 are summarised in 
Table 12. The structure of the table reflects the hierarchical tree of the 
new classification, introduced in Fig. 3 in Section 3. Table 12 presents 
the differences between various combinations of the models of behav
iour and the models of degradation in terms of their advantages and 
disadvantages. For instance, it is indicated in the table that factor-free 
models of degradation are usually easy to use, at the expense of the 
limited information that they provide about degradation. Conversely, 
factor-based models, whilst complex, provide more information about 
degradation. 

Similarly, degradation-dependent models of behaviour enable anal
ysis of the system subject to degradation. Nevertheless, the control al
gorithms must take into account that models of degradation can affect 
the functional form of degradation-dependent models. For instance, a 
factor-based model of degradation can introduce nonlinearity to a linear 
degradation-dependent system. 

Fig. 7. Fouling evolution for two sequences of recipes (R1, R2, R3): reactor U2 (top) and reactor U3 (bottom)  

Table 8 
Factor-based models of degradation as presented by Nelson (2009) and Escobar and Meeker (2006)  

Name Formula Factors Applications 

Arrhenius life 
relationship 

d = Aexp(− BT) with constants A, B  Temperature T Electrical insulation, semiconductor devices, 
batteries, plastics, lubricants 

Inverse power 
relationship 

d =
A
Vγ with constants A, γ  V - voltage, temperature range (Coffin-Manson r-ship), 

load (Palmgren), velocity (Taylor) 
Electrical insulation, bearings, lamps, metal 
fatigue 

Exponential 
relationship 

d = exp(γ0 − γ1V) with constants γ0, γ1  V Dielectrics 

Exponential-power 
relationship 

d = exp(γ0 − γ1xγ2 ) with constants γ0, γ1, γ2  x - voltage, temperature Electrical components 

Polynomial 
relationship 

d =
∑K

i=0γixi with constants K, γi  x Metal fatigue 

Elastic-plastic 
relationship 

d = AN− a + BN− b with constants A, B, a, b  N - number of cycles Metal fatigue 

Eyring relationship d =
A
T

exp(− BT) with constants A, B  T - temperature Chemical degradation 

Log-linear relationship log d =
∑K

i=0γixi with constants K, γi  xi Insulating tape, batteries 

Generalised Eyring 
relationship 

d =
A
T

exp(− BT)exp(V(C − DT)) with 

constants A, B, C, D  

T - temperature, V - voltage Capacitors  
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6. Control applications taking account of degradation 

Section 2 introduced the definitions of degradation-related terms 
from BSI (2017). This section reviews how models of degradation have 
been used in control schemes in order to tolerate or mitigate degradation 
and prevent failures. 

6.1. The layers of industrial control automation 

According to ANSI/ISA-95 standard (ANSI/ISA, 2010), industrial 
automation systems are structured in four layers:  

• Regulatory control, maintaining a variable at a set point,  
• Supervisory control, providing set-points to the regulatory control 

taking limitations of the variables into account,  

• Optimisation, recalculating the operating point of the system taking 
economic objectives into account,  

• Scheduling, focusing on the operation on the highest level, e.g. on 
the entire process plant. 

The term control is interpreted broadly in this section to include any 
of these layers. 

Table 13 summarises published work concerning control of degrad
ing systems categorised according to the ANSI/ISA-95 layers. The col
umn headings reflect the models of behaviour introduced in Fig. 3, 
either a degradation-dependent model of behaviour, or degradation- 
independent. The rows indicate whether the model of degradation was 
factor-based or factor-free. 

The examples listed in the table show that degradation-dependent 
models of behaviour dominate in regulatory control applications and 
to some extent in supervisory control applications. This is because the 
regulatory and supervisory control operate at similar timescales as the 
system and thus the knowledge about the behaviour is necessary to 
ensure correct operation of the system. 

Degradation-independent models of behaviour find many uses in the 
scheduling and optimisation layers for improving the performance of a 
system given the correct operation is already ensured by regulatory and 
supervisor control layers. A degradation-independent model of behav
iour can be sufficient at these higher levels even if the real system does 
have degradation-dependent behaviour. This is because scheduling and 
optimisation operate at different timescales than the behaviour of a 
system. From their perspective, the degraded state of a system is masked 
by regulatory and supervisory control. 

Table 13 shows that factor-based models of degradation have tended 
to be used mainly with degradation-independent models of behaviour, 
and mainly at the higher levels of automation. Factor-based models of 
degradation are useful for these levels of automation because their 
timescales are close to the timescale of factor-based degradation. 
Moreover, if the factors influencing degradation are known, the sched
uling and optimisation layers can improve the performance of the sys
tem by explicitly attempting to mitigate degradation. For instance, 
Wiebe, Cecílio, and Misener (2018) proposed a data-driven optimisation 
framework that mitigates degradation of equipment by planning main
tenance activities in chemical processes. 

6.2. Control approaches for degrading systems 

A question arises how the degradation should be taken into account 
within a control system to preserve the overall performance. The rela
tionship between the influencing factors and degradation also raises a 
possibility of mitigating the detrimental changes by adjusting the 
operating conditions. Thus, there are two main groups of control ap
proaches for degrading systems:  

• Control systems aware of the degradation,  
• Control systems mitigating the degradation. 

6.2.1. Control systems aware of degradation 
According to BSI (2017), a fault means that a system is unable to 

perform the required function. Ensuring the correct operation of a sys
tem in the presence of faults is a task of fault-tolerant control (Isermann, 
2006). However, the literature on fault-tolerant control usually assumes 
a relaxed definition of a fault. Isermann and Ballé (1997) defined a fault 
as “an unpermitted deviation of at least one characteristic property or 
parameter of the system from the acceptable/usual/standard condition”. 
Moreover, a fault “may develop abruptly (stepwise) or incipiently 
(driftwise)” (Isermann, 2006). This relaxed definition of a fault is similar 
to the definition of a degraded state from BSI (2017) provided in 
Table A.14. Therefore, the term fault-tolerant control includes the control 
of systems in a degraded state as well as when the system is unable to 

Table 9 
Applications of degradation-independent models with factor-based physical 
models of degradation  

Degradation type Model Applications 

Fatigue (crack 
propagation) 

Differential equations - 
Palmgren-Miner’s 
relationship (Inverse 
power relationship  
(Nelson, 2009)), 
Difference equations  
(Patankar & Ray, 2000) 

Aircraft (Caplin, Ray, & Joshi, 
2001; Ray & Caplin, 2000), 
rocket engine (Ray, Dai, Wu, 
Carpino, & Lorenzo, 1994; Ray, 
Wu, Carpino, & Lorenzo, 1994a, 
1994b), power plant  
(Ferrari-Trecate et al., 2002; 
Gallestey, Stothert, Antoine, & 
Morton, 2002; Kallappa et al., 
1997; Kallappa & Ray, 2000), 
utility boiler (Li, Chen, Marquez, 
& Gooden, 2005; Li, Marquez, 
Chen, & Gooden, 2006), gas 
turbine engine (Tangirala et al., 
1998), mass-beam system  
(Tangirala, Caplin, Keller, & 
Ray, 1999; Zhang, Ray, & 
Patankar, 2000; Zhang, Ray, & 
Phoha, 2000), actuator cylinder 
(Chen, Chen, & Yang, 2014), 
wind turbines (Beganovic & 
Söffker, 2016; Sanchez, Escobet, 
Puig, & Odgaard, 2017), bearing 
lifetime (Gökdere, Bogdanov, 
Chiu, Keller, & Vian, 2006), 
pasteurisation plant (Pour, Puig, 
& Ocampo-Martinez, 2017, 
2018) 

Thinning of a wall Geometric damage 
indicator 

Rocket engine (Dai & Ray, 1996) 

Thermal 
degradation 

Arrhenius relationship Winding insulation (Gökdere, 
Bogdanov, Chiu, Keller, & Vian, 
2006; Gökdere, Chiu, Keller, & 
Vian, 2005), electromechanic 
actuator (Brown et al., 2009), 
batteries (Hatzell, Sharma, & 
Fathy, 2012) 

Thermal 
degradation 

Polynomial relationship Synchronous motor  
Samaranayake and Longo 
(2018) 

Wear model Stochastic differential 
equations 

General machine wear (Rishel, 
1991), (Lefebvre & Gaspo, 
1996), metallic structures in 
mechanical systems (Ray, 
1999), race car tire degradation 
(Heilmeier, Graf, & Lienkamp 
2018) 

Surface film 
forming 

Partial differential 
equations 

Electric cars battery charging  
(Moura, Stein, & Fathy, 2013; 
Yin & Choe, 2020) 

Electrochemical 
losses 

Partial differential 
equations 

Systems of batteries (Cao, Lee, 
Subramanian, & Zavala, 2020) 

Wear model Stochastic differential 
equations 

Cutting tool degradation (Hao, 
Liu, Gebraeel, & Shi, 2017)  
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function. 
The field of fault-tolerant control has been extensively researched by 

Blanke, Izadi-Zamanabadi, Bøgh, and Lunau (1997), Isermann (2006), 
Zhang and Jiang (2008), Muenchhof, Beck, and Isermann (2009), 
Hwang, Kim, Kim, and Seah (2010), and Jiang and Yu (2012). The text 
book by Mhaskar, Liu, and Christofides (2012) presents methods and 
applications of fault-tolerant control. 

Control systems aware of degradation should compensate for the 
degraded behaviour of the controlled system. They therefore require 
knowledge about the degradation process and its influence on the sys
tem. For instance, Milosavljevic et al. (2016) and Cortinovis et al. (2016) 
designed model-based optimising control for a compressor station, 
taking into account that the behaviour of a compressor might be 
different than expected. Milosavljevic et al. (2016) simulated a 
load-sharing problem assuming that the characteristics of each 
compressor differed from the model. This is equivalent to considering 
multiple cases of output degradation, as discussed in Section 5.1.1.1. 
Cortinovis et al. (2016), on the other hand, assumed that the charac
teristics of a compressor change with time. For optimisation, they 
approximated the characteristics with a polynomial and identified the 
parameters of the polynomial online. As the characteristics were con
stant in a given time period, and there was no interaction from period to 
period, their approach is also equivalent to considering multiple cases of 
output degradation in each time period. 

Factor-based models may also be included in degradation-aware 
control. For instance, Ahmad et al. (2014) used a 
degradation-dependent model of behaviour with a factor-based model of 
degradation in a control system of the temperature in a steel-making 
process. They did not mitigate the degradation, but were able to 
improve the performance of a feed forward controller due to improved 
accuracy of the model of behaviour. 

6.2.2. Control systems mitigating degradation 
Mitigation of degradation is usually considered a part of mainte

nance engineering. On the other hand, some control frameworks 
attempt to mitigate degradation. They make use of a factor-based model 
of degradation in the controller, or use the model to predict degradation 
for decision support in the optimisation layer of the automation 
hierarchy. 

Usually, a form of optimal control is used for degradation mitigation, 
typically a linear-quadratic controller or a model-predictive controller. 
These approaches allow straightforward addition of models of degra
dation, either as constraints or directly in the objective function. 

Such control approaches were explicitly proposed by Ray, Wu, Car
pino, and Lorenzo (1994a) and Ray, Wu, Carpino, and Lorenzo (1994b) 

as life-extending control or damage mitigating control. Using a factor-based 
model of degradation, they designed a control algorithm to keep 
degradation below a threshold. Later, a patent by Fuller, 2005 gave a 
generic approach to life-extending control using model-predictive con
trol with constraints on degradation, with estimates of degradation 
obtained from a factor-based model of degradation. 

Applications of life-extending control can be found in Kallappa, 
Holmes, and Ray (1997), who designed a control system for a power 
plant with a structural degradation model as a state variable. They used 
a model predictive controller and included the degradation both in the 
objective function and in the constraints. Tangirala, Caplin, Keller, and 
Ray (1999) also used model predictive control to limit degradation in a 
gas turbine by including degradation in the constraints. 

Degradation mitigation has also been applied in aircraft applications 
by Dai and Ray (1996), Ray and Caplin (2000), Ray, Caplin, and Joshi 
(2000), and Ray et al. (1994). They all used factor-based models of crack 
propagation with degradation-independent models of the behaviour of 
an aircraft to design a model-based controller which would ensure 
correct operation of the degraded system. Tangirala, Holmes, Ray, and 
Carpino (1998) demonstrated a control system aimed at mitigation of 
crack development in aircraft, and demonstrated its effectiveness on a 
laboratory test structure. 

Other applications listed in Table 13 include Pereira, Harrop Galvao, 
and Yoneyama (2010), Vieira et al. (2015), Grosso, Ocampo-Martinez, 
and Puig (2016) who each used a degradation-independent model of 
behaviour and included a factor-based model of degradation in the 
constraints for a model predictive controller. Salazar, Sarrate, Nejjari, 
Weber, and Theilliol (2017), Sanchez, Escobet, Puig, and Odgaard 
(2017), and Pour et al. (2019) also used model predictive control, and 
included models of degradation in the objective function. Rosewater, 
Copp, Nguyen, Byrne, and Santoso (2019) provided a review on how 
factor-based models of degradation might be included in the objective of 
optimal control of batteries. 

Escobet, Quevedo, Puig, and Nejjari (2002) investigated a concept 
similar to life-extending control, with the main focus shifted towards 
predictive health monitoring and decision making. They used models of 
degradation to predict the health of the system. The predicted value was 
then used to choose between either reconfiguration of a controller, or 
performing maintenance. This example shows how degradation 
modelling contributes to decision support for the optimisation and 
scheduling layers of the automation hierarchy. 

Langeron, Grall, and Barros (2012) developed an extended 
fault-tolerant control framework for a DC motor including a model of 
degradation in the design of a PID controller. The developed controller 
was tested in simulation using a degradation-dependent model of 

Table 10 
Applications of factor-based reliability-oriented models of degradation  

Model of degradation Factors Application 

PHM with exponential distribution and failure rate  
zi = di(t, li)

Actuator loads li Reconfigurable control (Guenab, Theilliol, Weber, Zhang, & Sauter, 2006)  
of a heating system (Guenab et al., 2011), aircraft applications (i = 1) (Khelassi,  
Theilliol, & Weber, 2010; Weber, Boussaid, Khelassi, Theilliol, & Aubrun, 2012)  

PHM with exponential distribution and failure  
rate zi = di(t,ui)

Actuator loads ui Drinking water network (Pour et al., 2019; Salazar et al., 2017) 

PHM with exponential distribution and failure rate  
zi = di(f(ui)) with f(ui) = |ui| or f(ui) = u2

i  

Actuator loads ui Control allocation for Unmanned Aerial Vehicle (UAV) (Chamseddine, Theilliol,  
Sadeghzadeh, Zhang, & Weber, 2014; Theilliol, Weber, Chamseddine, & Zhang, 
2015),  
Drinking water network (Salazar et al., 2017) 

PHM with exponential distribution and failure rate  
zi = di(βi, u2

i ) with constant βi  

Actuator loads ui Control allocation for F-16 aircraft (Khelassi, Theilliol, Weber, & Ponsart, 2011) 

PHM with Weibull distribution and scale parameter  

zi =
z0

i
exp(Ui)

with Ui the root-mean-square of ui and 

constant zi0  

Actuator loads ui Control allocation for aircraft application (Khelassi, Jiang, Theilliol, Weber, & 
Zhang, 2011) 

PHM with Weibull distribution and failure  
rate zi = d(yi(t))

Aggregated performance 
indicators yi 

Load allocation in an export compressor station (Nystad, 2008)  
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behaviour. Langeron, Grall, Barros, 2013 used a probabilistic descrip
tion of health of a system and included a factor-based model of degra
dation in the objective function of a linear-quadratic controller. This 
approach was applied by Langeron et al. (2016) to a generic control 
system, and by Langeron (2015) and Langeron, Grall, and Barros (2017) 
who designed an LQR control system for a drilling system. The appli
cation included a model of actuator degradation in an LQR objective 
function. 

Further applications presented by Pour, Puig, and Ocampo-Martinez 
(2018) and Verheyleweghen, Gjøby, and Jäschke (2018) described hi
erarchical control systems that mitigated degradation. Both applications 
were based on model-predictive control and used factor-based models of 
degradation of a pump and a compressor, respectively. Pour et al. (2018) 
included a model of degradation directly in the objective function, 
whereas Verheyleweghen, Gjøby, and Jäschke (2018) added a constraint 
on the value obtained from the model of degradation. The model of 
degradation used by Pour et al. (2018) was derived from Palmgren-
Miner’s relationship, and thus represents a physical model of degrada
tion. The model of degradation from Verheyleweghen, Gjøby, and 
Jäschke (2018) was for accumulated damage based on a heuristic 
analysis. 

Controllers that mitigate degradation make use of factor-based 
models of degradation, particularly degradation of actuators. The pur
pose of the controllers is to adjust the influencing factors in order to 
manage degradation. The adjustment might be done by feedback control 
in the lower layers of the automation hierarchy, and can be done 
manually if the design is for a decision support system. 

7. Illustrative example 

This section gives an industrial example showing how a factor-based 
model of degradation and an understanding of degradation-dependent 
behaviour can be used operationally to influence degradation through 
scheduling formulations. 

The topology of the batch process has been described by Wu et al. 
(2019) and is shown in Fig. 5. Multi-product polymer batch production 
uses two parallel reactors for a variety of recipes. Such reactors are 
equipped with recirculation loops, in which pumps and heat exchangers 
are employed to cool the reactors during the polymerization (Stage 2, 
denoted with a dashed green box in Fig. 5). In this example, degradation 
is related to fouling as polymer residues are accumulated in the inner 
surface of the equipment such as reactors, pipes, and heat exchangers. 
Some recipes cause worse fouling than others. 

Fouling has an impact on the pressure drop over the heat exchangers 
and on the duration of a batch. However, the recipe also affects both 
pressure and duration, so degradation due to fouling has to be inferred. 
Wu et al. (2019) proposed a model of degradation that can be used for 
scheduling taking degradation into account. In the following, their 
approach is put into the context of the new classifications proposed in 
this article. 

7.1. Degradation-dependent model of behaviour for batch production 

An important variable describing the behaviour of batch operations 
is the duration of a batch. In Wu et al. (2019) this has been modelled as a 
degradation-dependent model using a static model of behaviour: 

TBk = f (hk, rk) (27)  

where TB is the duration of a batch, hk = hk(dk) is a degradation function 
related to fouling, r is the recipe and k is the batch number. 

7.2. Factor-based models of degradation for batch production 

It is not possible to directly measure the degradation function hk. Its 
value has to be inferred from measurements of the pressure drop over Ta
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the heat exchangers giving an estimate ̂hk of the underlying degradation: 

ĥk =
yk − Drk

Crk

(28)  

The pressure drop measurement yk is influenced by the recipe because 
some polymers are more viscous than others. The model parameters Crk 

and Drk therefore depend on the recipe rk used at the k-th batch. They 
were estimated from historical data from a BASF production facility 
from calibration campaigns (Wu et al., 2019) and then used for new 
campaigns. Figure 6 shows four campaigns in which ̂hk has been inferred 
from the pressure measurements using Eq. (28). 

The evolution of the underlying degradation may vary according to 
the sequencing of the recipes. A factor-based degradation model was 
used to reflect this dependence: 

ĥk+1 = Ark ĥk + Brk (29)  

The parameters Ark and Brk in the model (each having one value per 
recipe) were determined over several campaigns from historical mea
surements of the pressure drop via the estimates ĥk from Eq. (28) shown 
in Fig. 6. 

7.3. Degradation-aware operation 

Wu et al. (2019) integrated the models from Section 7.2 in mathe
matical formulations of a scheduling application. The static model of 
behaviour (27) was linear: 

TBrk
= Drk ĥk + Erk (30)  

with values for recipe-dependent parameters Drk and Erk determined 
from historical data within BASF. In Wu et al. (2019), the overall aim 
was an optimized schedule of recipes and batches assigned to the various 
available reactors with respect to minimization of makespan taking the 
degradation into account. Wu et al. (2019) defined the makespan as 
MS = maxi∈I(Tei), and Tei is the end time of Batch i conducted in one of 
the reactors. Makespan is a measure of short-term production capacity. 
The recipes and the degradation affect the end times of all batches 
through the model of behaviour from Eqs. (29) and (30), and therefore 
make a difference to the makespan. The details of the formulation were 
described by Wu et al. (2019). The interest for the current article is that 
the sequencing of recipes affects the degradation due to fouling in two 
reactors U2 and U3 in Stage 2 in Fig. 5 and finally affects the overall 
production capacity. 

Figure 7 shows the timing and sequencing of batches in two reactors 
as well as the degradation function of all batches, in which the results 
are generated according to the process models. The symbols of a circle, 
up arrow, and right arrow in Fig. 7 denote the end time Tei of each batch 
on horizontal axis, the degradation function of each batch on vertical 
axis and the recipe type using different shapes. Two curves connect the 
batch symbols and indicate the sequences of recipes in both reactors U2 
(dashed orange and solid blue) and U3 (dash-dotted brown and dotted 
blue). 

Figure 7 compares the underlying degradation due to fouling and the 
timing resulting from alternative sequences. Sequence 1 is the optimal 
solution generated from the proposed optimization and results in a 
shorter makespan, which is illustrated by the end times of the last 
batches highlighted by the symbol of a red cycle. Hence the optimal 
sequence gives better equipment utilization by considering degradation 

Table 12 
Synopsis of advantages and disadvatages of the combinations of models of degradation and models of behaviour from Fig. 3  

Models of 
behaviour 

Models of degradation Advantages Disadvantages 

Degradation- 
dependent 

Factor-free - input 
degradation 

Enables analysis of behaviour of a system if degradation of 
only the input is known 
Does not change the functional form of the model of 
behaviour, although can introduce time-dependency 

Does not consider that degradation can be affected by influencing 
factors 
Can be oversimplified 

Factor-free - output 
degradation 

Enables analysis of systems with multiple subsystems 
Does not change the functional form of the model of 
behaviour 
Does not require knowledge about the underlying 
dynamics, only the output 

Does not consider that degradation can be affected by influencing 
factors 

Factor-based - input 
degradation 

Provides information about degradation and the behaviour 
of a system 
Takes into account that degradation is affected by 
influencing factors 

Can change the functional form of the model of behaviour 
Requires knowledge about influencing factors  

Factor-based - output 
degradation 

Enables analysis of systems with multiple subsystems 
Provides information about degradation and the behaviour 
of a system 
Requires only knowledge about outputs, not the 
underlying dynamic behaviour 

Can change the functional form of the model of behaviour 
Requires knowledge about influencing factors 

Degradation- 
independent 

Factor-free - 
reliability-oriented 

Is general and well-understood in reliability and 
maintenance engineering 

Requires knowledge about past degradation 
Does not provide information about behaviour of a system 

Factor-based - physical Provides accurate models of degradation 
Provides information about degradation as a function of 
influencing factors 

Is complex 
Requires detailed knowledge about degradationAssumes that the 
behaviour of a system is not affected by degradation 

Factor-based - 
reliability-oriented 

Captures uncertain nature of degradation 
Provides information about degradation as a function of 
influencing factors 
Is well-understood in reliability and maintenance 
engineering 

Requires knowledge about past degradation 
Assumes that the behaviour of a system is not affected by degradation  

Factor-based - 
heuristic 

Is tailored to the application 
Provides information about degradation as a function of 
influencing factors 

Requires knowledge about degradation 
Does not have any interpretation 
Is application-specific 
Assumes that the behaviour of a system is not affected by degradation  
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in the scheduling. 
This industrial example shows how modelling of factor-based 

degradation and degradation-dependent behaviour can be used opera
tionally to influence degradation and to improve batch production 
potentially through degradation-aware scheduling. 

8. Discussion and conclusions 

8.1. Synopsis 

This paper has presented a perspective on degradation modelling for 
control applications with an emphasis on the links between degradation 
of components and the behaviour of a system. To this end, it gives an in- 

depth discussion of models of behaviour of the system and models of 
degradation. The models of behaviour have been classified as 
degradation-dependent or degradation-independent, to reflect whether 
the degradation affects the behaviour. The models of degradation have 
been classified as factor-free or factor-based, to capture how influencing 
factors affect degradation (Fig. 3). 

The survey examines control applications where degradation 
modelling has been used. Table 13 groups the findings according to the 
proposed classification. Section 6 of the paper highlighted the following 
points:  

• Degradation-dependent models of behaviour dominate in regulatory 
and supervisory control because such control needs accurate 

Table 13 
Uses of models of degradation and their influence on the models of behaviour, grouped according to the automation hierarchy from ANSI/ISA (2010)   

Degradation-dependent models of behaviour Degradation-independent models of behaviour 

Scheduling - factor-based 
models of degradation 

Battery Energy Storage Systems (Cao et al., 2020) Wind turbines (Beganovic & Söffker, 2016; Sanchez, Escobet, Puig, & 
Odgaard, 2017; Verheyleweghen, Gjøby, & Jäschke, 2018; 
Verheyleweghen & Jäschke, 2017), compressor station (Nystad, 2008), 
benchmark problem with three units (Hao et al., 2017; Hao, Yang, Ma, & 
Zhao, 2017), chemical plants (Wiebe et al., 2018) 

Scheduling - factor-free 
models of degradation 

Crack propagation (Beganovic & Söffker, 2017; Zhou, Serban, & Gebraeel, 
2011) 

Oil and gas (SINTEF, 2002), electronics (United States of America: 
Department of Defense, 1986) 

Optimisation - factor-based 
models of degradation 

Drilling unit (Langeron et al., 2015), (Langeron et al., 2017) Turbomachinery (Dai & Ray, 1996; Ray, Dai, Wu, Carpino, & Lorenzo, 
1994; Ray, Wu, Carpino, & Lorenzo, 1994a, 1994b), windings, bearings 
and cylinders (Chen et al., 2014; Ray, 1999), mass-beam system (Zhang, 
Ray, & Patankar, 2000; Zhang, Ray, & Phoha, 2000), pasteurisation plant 
(Pour, Puig, & Ocampo-Martinez, 2017, 2018), tank level (Pereira, 
Harrop Galvao, & Yoneyama, 2010), water network (Grosso, 
Ocampo-Martinez, & Puig, 2012, 2016; Salazar, Sarrate, Nejjari, Weber, 
& Theilliol, 2017; Salazar, Weber, Nejjari, Sarrate, & Theilliol, 2017), 
batteries (Fang et al., 2017) 

Optimisation - factor-free 
models of degradation 

Control valve (McGhee, Galloway, Catterson, Brown, & Harrison, 2014), 
turbomachinery (Aker & Saravanamuttoo, 1989; Cicciotti, 2015; Kurz & 
Brun, 2001; Li & Nilkitsaranont, 2009; Meher-Homji, Chaker, & 
Motiwalla, 2001; Tarabrin, Schurovsky, Bodrov, & Stalder, 1996; 
Tsoutsanis, Meskin, Benammar, & Khorasani, 2015), TE benchmark (Yin 
et al., 2014), pulp mill (Zumoffen & Basualdo, 2008) 

Power plant (Ferrari-Trecate et al., 2002; Gallestey et al., 2002; Kallappa 
et al., 1997; Kallappa & Ray, 2000) 

Supervisory control - 
factor-based models of 
degradation 

General dynamic system (Vieira et al., 2015), tank system (Nguyen, 
Dieulle, & Grall, 2014a, 2014b, 2014c, 2015), battery charging (Allam, 
Onori, Marelli, & Taborelli, 2015; Rosewater, Copp, Nguyen, Byrne, & 
Santoso, 2019; Suri & Onori, 2016; Yin & Choe, 2020) 

Turbomachinery (Tangirala, Caplin, Keller, & Ray, 1999), batteries  
(Hatzell, Sharma, & Fathy, 2012; Moura, Stein, & Fathy, 2013; 
Rosewater, Copp, Nguyen, Byrne, & Santoso, 2019), mass-beam system  
(Tangirala et al., 1998), electromechanical system (Gökdere, Bogdanov, 
Chiu, Keller, & Vian, 2006; Gökdere, Chiu, Keller, & Vian, 2005), aircraft 
(Brown et al., 2009; Caplin, Ray, & Joshi, 2001; Ray & Caplin, 2000), 
general machine wear (Lefebvre & Gaspo, 1996; Rishel, 1991), heating 
system (Guenab et al., 2006; Guenab et al., 2011) 

Supervisory control - 
factor-free models of 
degradation 

CSTR (Mhaskar, 2006; Mhaskar, Liu, & Christofides, 2012; Prakash, 
Narasimhan, & Patwardhan, 2005), vehicles (Boskovic et al., 2009), 
hydrothermal process (Boussaid et al., 2011), electrical systems  
(Langeron, Grall, & Barros, 2013; Samaranayake & Longo, 2015, 2018), 
burner (Baldi et al., 2017), Shell control problem (Kettunen et al., 2008), 
hydrogen production (Du et al., 2014), heat exchanger (Ballé et al., 1998) 

Utility boiler (Baldi et al., 2017; Li et al., 2005; Li et al., 2006) 

Regulatory control - factor- 
based models of 
degradation 

Steel making process (Ahmad et al., 2014) Aircraft (Khelassi, Jiang, Theilliol, Weber, & Zhang, 2011; Khelassi, 
Theilliol, & Weber, 2010; Khelassi, Theilliol, Weber, & Ponsart, 2011; 
Weber, Boussaid, Khelassi, Theilliol, & Aubrun, 2012) 

Regulatory control - factor- 
free models of 
degradation 

General dynamic system (Chen, Niu, & Zou, 2013; González-Contreras, 
Theilliol, & Sauter, 2007; Gu, Liu, Peng, & Tian, 2012; Mahmoud, Jiang, 
& Zhang, 2002; Tao, Joshi, & Ma, 2001; Veillette, 1995; Wang & Yao, 
2010), aircraft (Chamseddine, Theilliol, Zhang, Join, & Rabbath, 2015; 
Chen, Liu, & Fu, 2016; Graves, Turcio, & Yoneyama, 2018; B. Jiang & 
Chowdhury, 2005; J. Jiang & Zhang, 2006; Li, Shi, & Yao, 2017; Maki, 
Jiang, & Hagino, 2004; Shi, Wang, Wang, Wang, & Tomovic, 2017; Tian, 
Yue, & Peng, 2010; Wu, Zhang, & Zhou, 2000; Yang, Zhang, Jiang, & Liu, 
2014; Ye & Yang, 2006; Yu, Fu, & Zhang, 2018; Y. Zhang & Jiang, 1999; Y. 
Zhang, Jiang, & Theilliol, 2008; Y.M. Zhang & Jiang, 2001; Zhao & Jiang, 
1998), three tank system (Li et al., 2019; Theilliol et al., 2008; Theilliol 
et al., 2002; Zhang & Qin, 2009), vehicles (Gao et al., 2011; Huang et al., 
2014; Shen et al., 2014), ball-beam system (Zhang et al., 2010), control 
valve (Arıcı & Kara, 2018; Mo & Xie, 2016), electrical systems  
(Kaviarasan et al., 2016), inverted pendulum (Wei et al., 2017), CSTR  
(Wang et al., 2007)   
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knowledge of the behaviour over short timescales. However, the 
models of degradation are often factor-free, for instance degradation 
is assumed constant.  

• Factor-based models of degradation are used in scheduling and 
optimisation, because the scheduling and optimisation layers make 
adjustments to the factors to mitigate degradation.  

• Degradation-independent models of behaviour are the most widely 
used in scheduling and optimisation. The assumption is that degra
dation does not change behaviour because any degradation that does 
appear is compensated for by the regulatory and supervisory control. 

Section 6 also discussed and gave examples of two main approaches 
to control of degrading systems:  

• Control systems aware of degradation that compensate for the 
degraded behaviour of the controlled system. These systems include 
fault-tolerant control. 

• Control systems mitigating the degradation that manage the degra
dation, also known as life-extending control. 

8.2. Gaps and open questions 

8.2.1. Regulatory control 
A notable gap in the literature concerns the use of factor-based 

models of degradation at the regulatory control layer. A regulatory 
control system needs accurate knowledge of the behaviour of a system 
over short timescales, and this is why there is a preference for 
degradation-dependent models of behaviour. However, the level of 
degradation is mainly being estimated from factor-free models of 
degradation, whereas in practice degradation may depend on the way in 
which the system is operated, and also on external factors. An obser
vation arising from the survey in this paper is that factor-based models of 
degradation have potential for developing a new class of regulatory 
control algorithms. 

It is interesting to speculate why factor-based models of degradation 
have not been much used in the design or testing of control algorithms at 
the regulatory layer despite their obvious potential. Possible blocks to 
progress may be that factor-based models of degradation are case- 
specific, and that the models are formulated in such a way that they 
do not link easily into a control theory framework. Ideally a model of a 
degraded component would drop easily into the mathematical repre
sentation of a control system, much as Hammerstein or Wiener models 
can be used for representing generic nonlinearity in actuators. The input 
and output modelling approach in Section 4.2 is relevant to this. There 
may be a promising research direction in specifying some generic 
functional forms for Eqns. (8) and (9) whose parameters can be identi
fied from data. 

8.2.2. Optimisation and scheduling 
It seems necessary to examine the assumption that a degradation- 

independent model of behaviour is sufficient in the scheduling and 
optimisation layers. Such schemes are often verified using simulations as 
a proxy for the real system. The work surveyed in this paper highlighted 
examples of scheduling and optimisation schemes being validated in a 
simulation that used a degradation-independent model of behaviour, 
even when the real system is known to have degradation-dependent 
behaviour. There seems to be scope for improved simulation environ
ments that would be based on more realistic degradation-dependent 
models of behaviour. Using degradation-dependent models would 
therefore lead to an improved integration of control and scheduling, in a 
partial fulfilment of the gaps indicated by Baldea and Harjunkoski 
(2014). 

8.2.3. Model validation 
A control scheme in any layer of the automation hierarchy may 

incorporate models of degradation and models of behaviour. Also, 

simulations are often used by researchers to test and demonstrate their 
ideas. The simulation has to use an accurate representation of the real 
system. Validation of the models involves real data, ideally recorded 
during field operation. Validation is certainly present in some of the 
surveyed literature, and the models in Section 7 were validated against 
plant data. However, there remains an open research question about a 
systematic way to validate models of degradation and degradation- 
dependent models of behaviour. 

There is a challenge in obtaining representative data that may be 
used to generate degradation models. Degradation typically happens 
slowly in relation to the dynamics of the system. Collection of data in a 
systematic and consistent way over many periods of operation can be a 
significant issue, especially for academic researchers as highlighted by 
Jardine et al. (2006). A potential way forward, given the current in
terest in industrial data analytics, would be for organisations to share 
relevant data, perhaps even making it public in the form of benchmark 
data sets. 

8.3. Future research directions and conclusion 

This survey paper has given a new perspective on degradation 
modelling for control applications. It has grouped the literature ac
cording to the proposed classification and also has reviewed control 
applications where degradation modelling has been used. 

The paper has the aim to facilitate the choice of models of degra
dation and models of behaviour for integration in control systems at all 
layers from regulatory control to scheduling. The structured analysis 
emerging from the survey may be useful for integration of degradation 
modelling into applications where degradation has not yet been of a 
main focus. Furthermore, the findings of the survey may be used for 
improving existing approaches to control of degraded equipment, for 
instance by encouraging the use of factor-based models of degradation 
in the regulatory control layer. 

In particular, the fields of degradation-aware control and 
degradation-mitigating control can benefit from the current survey. 
These approaches have the potential to explore the mutual influences 
between degradation and the behaviour of the system by including the 
models of degradation in design of an optimal control structure. The 
inclusion of models of degradation in control systems would improve the 
overall performance of a system, as has been demonstrated in the 
illustrative example. 

More broadly, the survey provides a step in the direction of fusion of 
industrial condition monitoring and automatic control systems. Infor
mation obtained from the condition monitoring system can be used to 
improve and validate models of degradation. Then the models of 
degradation can be integrated into the next generation of control and 
optimisation systems. 
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Appendix A. Glossary of terms 

A glossary of terms relevant to this review is presented in Table A1 
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Table A1 
Glossary of terms related to industrial control systems and their degradation  

Term Explanation 

Actuator Functional unit that generates the manipulated variable, required to drive the final controlling element, from the output variable of 
the controlling element (BSI, 2016c) 

Advanced process control (APC) and 
optimisation (APC-O) 

APC: control strategy to cope with processes characterised by large time delays, non-minimum phase, non-linearity, loop instability 
and multi-variable coupling. APC enhances basic process control by addressing particular performance or economic opportunities in 
the process. Optimisation: decision-making strategy to meet the business objective under a weighted set of conditions and concerns. 
APC-O: Collection of advanced process control and optimisation strategies (BSI, 2015) 

Ageing failure Failure whose probability of occurrence increases with the passage of calendar time  
(BSI, 2012) 

Basic Process Control System System which responds to input signals from the process, its associated equipment, other programmable systems and or operators and 
generates output signals causing the process and its associated equipment to operate in the desired manner BSI (2016) 

Behaviour of a system Response of a system to input signals from the process, its associated equipment, other programmable systems and/or operator 
(following BSI (2016)) 

Behavioural model of a system Mathematical models of the input/output behaviour of a system (Willems, 2007), including differential and algebraic equations, as 
well as other characteristic quantities (see: Characteristics) 

Characteristics (of equipment) Distinguishing attributes, qualities and properties of equipment and its subsystems which, by their presence and the relative 
magnitudes of their effects, define the configuration, performance, behaviour and capabilities of the equipment (BSI, 2016) 

Condition(s) Characteristics and parameters of the actual state of an item (BSI, 2010) 
Condition monitoring Activity, performed either manually or automatically, intended to measure at predetermined intervals the characteristics and 

parameters of the actual state of an item (BSI, 2010) 
Degradation Detrimental change in physical condition, with time, use, or external cause (BSI, 2017) 
Degradation (of performance) Undesired departure in the operational performance of any device, equipment or system from its intended performance (BSI, 2012) 
Degraded state State of reduced ability to perform as required, but with acceptable reduced performance BSI (2017) 
Dependability Ability to perform as and when required (BSI, 2012) 
Diagnostics Examination of symptoms and syndromes 
Environment All external conditions influencing a system at any given moment (BSI, 2018) 
Equipment Machine or group of machines including all machine or process control components (BSI, 2012) 
Failure Termination of the ability of an item to perform a required function (BSI, 2010) 
Failure criteria Pre-defined conditions to be accepted as conclusive evidence of failure (BSI, 2010) 
Failure mechanism Physical, chemical or other processes which may lead or have led to failure (BSI, 2010) 
Fault State of an item characterised by inability to perform a required function, excluding the inability during preventive maintenance or 

other planned actions, or due to lack of external resources (BSI, 2010) 
Functionality Extent to which the system provides functions to perform tasks required by the system mission (BSI, 2016) 
Induced environment Conditions external to a system generated as a result of the operation of the system (BSI, 2018) 
Influencing factor Observable qualitative or measurable quantitative item that affects a system property (BSI, 2016) 
Item Part, component, device, subsystem, functional unit, equipment or system that can be individually described and considered (BSI, 

2010) 
Loss (of function or performance) Temporary degradation (BSI, 2016) 
Maintenance Combination of all technical, administrative and managerial actions during the life cycle of an item intended to retain it in, or restore 

it to, a state in which it can perform the required function (BSI, 2017) 
Measurement Process of experimentally obtaining one or more quantity values that can reasonably be attributed to a quantity (BSI, 2016) 
Model Mathematical or physical representation of a system or a process, based with sufficient precision upon known laws, identification or 

specified suppositions (BSI, 2016) 
Natural environment Conditions generated by the forces of nature and the effects of which are experienced by a system when it is at rest as well as when it is 

in operation (BSI, 2018) 
Operating conditions Physical loads and environmental conditions experienced by the item during a given period (BSI, 2017) 
Parameter Variable representing some significant measurable system characteristic (BSI, 2012) 
Performance Precision and speed with which the system executes its tasks under defined conditions  

(BSI, 2016); behaviour, characteristics and efficiency of a technological process, running in a machine derived by measurement and 
calculation of one or more parameters, for example, power, flow, efficiency or speed, which singly or together provide the necessary 
information (BSI, 2012) 

Physical properties See Characteristics 
Prognostic Analysis of the symptoms of faults to predict future condition and residual life within design parameters (BSI, 2012) 
Reliability Ability of an item to perform a required function under given conditions for a given time interval 
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