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We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases
of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this
Kugel-Khomskii type model is exactly the density-density correlation function of S = 1 fermionic
magnons, which could be probed in resonant inelastic x-ray scattering (RIXS) experiments. We pre-
dict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments
and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular,
the RIXS response shows a characteristic momentum dependence directly related to the dispersion
of fermionic excitations. The Neutron scattering cross section displays a mixed response of fermionic
magnons as well as spin-orbital excitations. The latter has a vison gap and a bandwidth of broad
excitations, which is three times larger than the one of the spin-1/2 Kitaev model.

Phases of matter which remain disordered down to low-
est temperatures because of quantum fluctuations have
fascinated the condensed matter community for a long
time. One reason for this enduring interest is that they
can host long-range entangled ground states displaying
topological order [1]. Quantum spin liquids (QSLs) [2, 3]
are prominent examples of such phases that have not
been conclusively identified in experiment, in spite of the
availability of many candidate materials. In addition to
the absence of local order, the main reason for this long
ongoing search for a QSL is the unusual nature of its
excitations which carry only fractions of the usual quan-
tum numbers probed experimentally. For example, an
S = 1 spin flip excitation, diagnosed via the dynami-
cal structure factor (DSF) in inelastic neutron scattering
(INS), decays into multiple excitations, e.g. spinons and
visons [4] or Majorana fermions and fluxes [5], leading
only to a broad featureless continuum response. An ad-
ditional obstacle in this ongoing search is the fact that
quantum liquids are inherently strongly interacting which
makes it difficult to obtain rigorous theoretical predic-
tions that could be compared to experiments beyond one-
dimensional model cases.

An important conceptual development was the advent
of exactly soluble models with QSL phases. The most
prominent is the Kitaev honeycomb lattice model [6–
8], which has permitted the calculation of exact re-
sults for dynamical correlations in the thermodynamic
limit as probed in scattering experiments [5, 9, 10].
The fractionalized excitations of the Kitaev spin liquid
(KSL) are Majorana fermions in a plaquette flux back-
ground. The prediction that the Kitaev model could
be relevant to specific heavy-ion Mott insulators (the
Kitaev materials) [11] rapidly followed by their synthe-
sis [7, 12, 13] provided additional motivation to evaluate
dynamical response functions of a variety of scattering
experiments [5, 10, 14–24]. Unfortunately, most Kitaev
materials [7, 12, 13] show residual long range magnetic

order instead of a pristine KSL phase, an observation
well-explained by more complete models beyond the pure
Kitaev limit [25–27]. Nevertheless, the main features of
the INS response of the Kitaev candidate material α-
RuCl3 is arguably captured by the DSF of the Kitaev
model [28–32]. In spite of these recent developments, our
understanding – even of the basic phenomenology and
experimental signatures – of quantum liquids beyond the
pure Kitaev model remains limited.

Here, we provide exact results for the dynamical re-
sponse of a quantum spin-orbital liquid (QSOL) as found
in certain Kugel-Khomskii (KK) models [33–37]. We fo-
cus on systems with four degrees of freedom per site
which are either equivalent to j = 3/2 spin models or
KK models with doubly degenerate orbitals [38, 39].
Thereby, we uncover qualitative differences to QSLs of
the anisotropic j = 1/2 Kitaev type. In particular, we
show that in a QSOL a S = 1 spin flip can excite only one
type of excitation, e.g. two Majorana fermions without
additional fluxes, leading to a much cleaner signature of
fractionalization with a distinct momentum dependence
absent in the KSL.

We compute the dynamical correlation functions of the
SU(2)-symmetric Kitaev model

H = −
∑
〈lm〉γ

Jγ (T γl σl) · (T
γ
mσm) , (1)

which is a generalization of the spin anisotropic Kitaev
model [37]. Here, Jγ are bond-dependent exchange con-
stants, T and σ are orbital and spin operators satisfying[
Tαl , T

β
m

]
= 2iδlmε

αβγT γl ,
[
σαl , σ

β
m

]
= 2iδlmε

αβγσγl and[
Tαl , σ

β
m

]
= 0. The model is another rare example of an

exactly soluble one using a Majorana fermion represen-
tation of the spin-orbital operators [37, 40]. It displays
a QSOL ground state with an emergent Z2 gauge field
and fermionic excitations of the Majorana type related
to spin flips dubbed fermionic magnons [37].
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We find that the dynamical response of spin operators
is given by the the density-density correlation I(q, ω) of
fermionic excitations, which can be probed with reso-
nant inelastic x-ray scattering (RIXS) if H is regarded
as a j = 3/2 model [41]. The DSF of the model is a lin-
ear combination of the flux diagonal part I(q, ω) and a
correlation function among the operators σαT β exciting
both types of excitations.

The model - The SU(2)-symmetric Kitaev model has
a macroscopic set of conserved plaquette operators Ŵp

analogous to the ones in the spin-1/2 Kitaev model
[6, 37]. A key difference is that each Ŵp affects only
the orbital degrees of freedom of Eq. (1) and trivially
commutes with all spin operators. The ground state
of H is easily found in an enlarged Hilbert space de-
fined by a six-flavor Majorana representation of σ and
T: σαi = − i

2ε
αβγηβi η

γ
i and Tαi = − i

2ε
αβγθβi θ

γ
i [37, 40].

The physical states are eigenstates of the projector Di =
iηxi η

y
i η
z
i θ
x
i θ
y
i θ
z
i with eigenvalue +1. This constraint also

entails that σαi T
β
i = −iηαi θ

β
i and allows to represent Eq.

(1) like [37]

H =
∑
〈ij〉γ

∑
α

J〈ij〉γ û〈ij〉γ iη
α
i η

α
j , (2)

where û〈ij〉γ = iθγi θ
γ
j is a Z2 gauge operator defined along

the bond 〈ij〉γ with i on the even sublattice.
Note, Eq. (2) generalizes the fermionic representation

of the spin-1/2 Kitaev model [6] by the presence of three
Majorana flavors instead of one. Any eigenstate |ψ〉 of
H is then a direct product |ψ〉 = |Fψ〉 ⊗

∏
α

∣∣∣Mα
ψ

〉
≡

|Fψ〉 ⊗ |Mψ〉, where |Fψ〉 is the flux sector and
∣∣∣Mα

ψ

〉
is

a state for the ηα Majorana flavor of the “matter” sec-
tor. Lieb’s theorem [42] asserts that the global ground
state is found in the flux sector |F0〉 characterized by
Ŵp |F0〉 = |F0〉 for all plaquettes. In the language of Z2

gauge operators, |F0〉 is obtained after fixing u〈ij〉γ = 1
for all gauge fields. With a superposition of two Ma-
joranas of the same flavor α but on different sublat-
tices within a unit cell, the Hamiltonian in a fixed gauge
configuration can be written in terms of complex mat-
ter fermions. The translational symmetry of the ground
state allows us then to introduce the Fourier transforma-
tion of these complex fermions aα†q corresponding to the
matter excitations which diagonalize the Hamiltonian

H0 =
∑
q

∑
α

|µq|
(
2aα†q aαq − 1

)
(3)

where µq =
∑
γ Jγ exp (iq · nγ) with nx,y =

(
± 1

2 ,
√
3
2

)
and nz = 0. Depending on the ratio of the exchange
constants, the system describes gapped or gapless QSOLs
as the matter dispersions εq = 2 |µq| is gapless for |Jz| <
|Jx|+ |Jy| (and permutations) and gapped otherwise [6].

It is instructive to analyze the fractionalization pro-
cesses implied by Eq. (2). We recall that the spin frac-
tionalization in the standard Kitaev model can be rep-
resented by σ ∼ emε, where e and m are visons cor-
responding to the insertion of π-fluxes in two adjacent
plaquettes and ε is the Majorana fermion [3, 6, 9]. The
same kind of fractionalization occurs here but now for the
spin-orbital operators like σaT b ∼ emεa. In this case, the
e and m particles only affect the orbital sector and the
three ε particles correspond to the Majorana flavors ηα
for spins. As a qualitatively new feature of the QSOL,
the spin σa fractionalizes into two ε particles unrelated
to the formation of visons which we show in the follow-
ing translates into qualitatively distinct features in the
dynamical response.

Dynamical correlation functions - We treat the SU(2)-
symmetric Kitaev model as a model of j = 3/2 effective
moments realized in 4/5d1 Mott insulators, since this al-
lows us to associate the dynamical correlations to the
expected responses of both RIXS and INS [41]. Our goal
is to compute the DSF given by the Fourier transform of
the correlation function Sαβlm (t) =

〈
ψ0

∣∣jαl (t)jβm(0)
∣∣ψ0

〉
,

of the angular momentum operators [41]

jαl ≡ −
1

2
σαl − σαl T

(α)
l , (4)

where α = x, y, z, T (z)
l = T zl and T (x,y)

l = − 1
2T

z
l ±

√
3
2 T

x
l .

It turns out that the DSF is only a sum of two contribu-
tions because

〈
σαl (t)σβmT

γ
m(0)

〉
=
〈
σβl T

γ
l (t)σαm(0)

〉
= 0,

since the action of σαl T
(α)
l on |ψ0〉 involves the creation

of a pair of visons whereas σαl is flux-conserving. We
emphasize that the exact treatment discussed here con-
siders the effects of these fluxes on the QSOL dynamics,
which are not accounted for by standard mean-field treat-
ments such as in Ref. [41]. For comparison, the dynamics
within a mean-field theory is provided in the Supplemen-
tary Material [43].

First, we discuss the correlation function Iαβij (t) =〈
σαi (t)σβj (0)

〉
. The application of σβj on |ψ0〉 preserves

the gauge fluxes, thus allowing the evaluation of Iαβij (t) in
terms of ground state correlations of Majorana fermions
[39]. Additionally, since the Hamiltonian is diagonal in
the Majorana flavor index we find Iαβij (t) ∝ δαβ and the
SU(2) symmetry implies that Iααij (t) is isotropic for all
α = x, y, z. Hence, we only need to evaluate a single (we
omitted the zz-label)

Ilm (t) = −
∑
λ

ei(E0−Eλ)t 〈M0 |ηxl η
y
l |λ〉 〈λ| η

x
mη

y
m|M0〉

(5)

where the sum runs over all two-particle excitations of
|Mx

0 〉 and |M
y
0 〉. A convenient representation of Eq. (5)
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Figure 1: (Color online) Dynamic structure factor I (q, ω) as measured in RIXS and the normalized two-particle density of
states ρ(ω) =

∑
k δ(ω− εk − εk+K) for the cases (a+d) Jx = Jy = Jz, (b+e) Jx = Jy, Jz = 0.7Jx, and (c+f) Jx = Jy = 0.15Jz.

is given in terms of S = 1 fermionic magnons defined
by c†l = 1

2 (ηxl + iηyl ) [37]. After performing the Fourier
transform, the spin-spin correlation reads

I (q, ω) =
8π

N

∑
λ

∑
Rl,Rm

eiq·(Rm−Rl)δ [ω − (Eλ − E0)]

×
〈
M0

∣∣ncRl

∣∣λ〉 〈λ ∣∣ncRm

∣∣M0

〉
≡ 2π

N

∑
k

δ (ω − 2 (µk + µk+q))

×
∣∣∣1− e2i(θk+q−θk)

∣∣∣2 (6)

where ncRj
is the total number of c fermions at the Rl

unit cell and e−2iθk = µk/ |µk|. The first equation shows
that I (q, ω) is readily interpreted as the density-density
correlations of fermionic magnons. In contrast to the
KSLs, the real-space spin-spin correlations decay alge-
braically (exponentially) for gapless (gapped) fermionic
dispersion [37]. Remarkably, the splitting between spin
and orbital degrees of freedom allowed a simple, yet ex-
act, expression for the dynamics of a QSOL with longer
range correlations.

Second, we show how the correlation functions
Wαβ,δγ
lm (t) =

〈
σαi T

β
i (t)σδjT

γ
j (0)

〉
are mapped into a

quantum quench problem similar to the one discussed
for KSLs. Following the arguments of Ref. [9], Wαβ,δγ

lm =〈
σαl T

β
l (t)σδmT

γ
m(0)

〉
will be non-zero only if l = m or if

l and m are nearest neighbors. Fixing l(m) to the even
(odd) sublattice, Wαβ,δγ

lm (t) is obtained from〈
σ̂αl T

β
l (t)σ̂δmT

γ
m(0)

〉
= −i

〈
M0

∣∣∣ηαl e−i(H0+Vγ)tηδm

∣∣∣M0

〉
× eiE0tδαδδβγδr(m),r(l)+nγ , (7)

in which E0 is the ground state energy, r(l) is
the unit cell containing the site l, and Vγ =

−2Jγi
∑
α

[
ηαA,r(l)η

α
B,r(l)+nγ

]
≡
∑
α V

(α)
γ . This expres-

sion differs from the quantum quenches obtained in the
spin-1/2 Kitaev model [5, 14, 15, 17, 18] by the number
of flavors in H0, Vγ and |M0〉. Therefore, the non-zero
matrix elements have the form

Wαα
lm,γ(t) =Wαα

lm,γ(t)
∏
δ 6=α

Lδγ(t)δr(m),r(l)+nγ (8)

where

Wαα
lm,γ(t) = −ieiE0t

〈
Mα

0

∣∣∣∣ηαl e−i(H(α)
0 +V (α)

γ

)
t
ηαm

∣∣∣∣Mα
0

〉
,

Lδγ(t) =

〈
Mδ

0

∣∣∣∣e−i(H(δ)
0 +V (δ)

γ

)
t

∣∣∣∣Mδ
0

〉
. (9)

The matrix element inWαα
lm,γ(t) is the same of the Kitaev

model [5, 14, 17] but the multiple matter flavors result
in a new time-dependent phase Lδγ(t) which can be cal-
culated exactly via a Pfaffian formula from functional
integrals [14]. Finally, we exploit the SU(2) invariance of
the model implying thatWαα

lm,γ is flavor independent and
focus on α = z.

Overall, the DSF of the SU(2)-symmetric model is
given by

S(q, ω) =
3

4
I(q, ω) +

3

2
(Wz +Wx) (q, ω), (10)

whereWγ(q, ω) is the Fourier transform ofWlm,γ(t). No-
tice that correlations along the y-bonds do not contribute
to the DSF as predicted by the absence of the operators
T yl in Eq. (4). Physically, this reflects the absence of cou-
pling between the neutron spin and the σαl T

y
l operators

due to their evenness under time-reversal [41, 44].
Results - In the following, we show the qualitatively

different results of gapped and gapless QSOLs for three
representative cases of Majorana dispersion: (i) gap-
less and isotropic (Jα = 1), (ii) gapless and anisotropic
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Figure 2: The correlation function (Wz +Wx) (q, ω) (upper) and the DSF as measured in INS of the SU(2)-symmetric Kitaev
model for the cases (a+d) Jx = Jy = Jz, (b+e) Jx = Jy, Jz = 0.7Jx, and (c+f) Jx = Jy = 0.15Jz.

(Jz < Jx = Jy), and (iii) gapped (Jx = Jy � Jz). Let us
first discuss the density-density correlation of fermionic
magnons I (q, ω) from dynamical spin correlations pre-
sented in Eq. (6). Note, for our choice of orbital rep-
resentation it is directly measurable with RIXS at the
L3-edge [41]. The responses displayed in Fig. 1 strongly
depend upon the value of the transferred momenta q in
contrast to the DSF of the spin-1/2 Kitaev model whose
ultra short ranged spin correlations result in an almost
dispersionless response [5, 14, 17].

An analysis of I (q = K, ω) shows that they closely fol-
low the density of states ρ(ω) of two-fermion excitations
(lower panel), e.g. with intensity peaks related to the
van Hove singularities of the fermionic bands. In con-
trast to the gapped response of the spin-1/2 Kitaev model
even for gapless fermions, one would expect a verifiable
response of I (q, ω) for excitations below the vison gap
in gapless QSOLs because of the different flux selection
rules, especially when q ≈ Γ. However, the form fac-
tor of I (q, ω) vanishes at q = Γ which results in zero
intensity at this point. This feature can be explained
via the form factor at q = Γ which is proportional to
|〈λ |

∑
i σ

z
i |M0〉|2. Since |M0〉 must be a many-body sin-

glet of σ,
∑
i σ

z
i |M0〉 = 0 and the response is zero [41].

It is interesting to note that the dynamical spin re-
sponse I (q, ω) of the QSOL is similar to the RIXS
response of the spin-1/2 Kitaev model [20]. The
form factor in both cases is proportional to the term∣∣1− e2i(θk+q−θk)

∣∣2, which is a direct consequence of the
projective transformations of fermions under inversion
[20]. However, in the case of the spin-1/2 Kitaev
model, the form factor still arises from nearest neigh-
bor correlations, which generates an additional factor
(|µk| − |µk+q|)2. Therefore, the response of the QSOL
I (q, ω) has a stronger intensity at lower energies and a

more pronounced momentum dependence.
We now turn to the dynamical correlations of the spin-

orbital operators displayed in Fig. 2(a-c). The response
(Wz +Wx) (q, ω) is qualitatively similar to the DSF of
the spin-1/2 Kitaev model [5, 14, 17]. There is a flux
gap even in the gapless phase and only weak dependence
on the transferred momentum. However, there are two
important differences due to the additional Majorana fla-
vors: the flux gap is three times larger and the response
extends to energies beyond the Majorana fermion band
width (shifted by the gap). These higher-energy excita-
tions originate from the extra phases Lδγ(t) in Eq. (9) and
have a simple interpretation: the action of a spin-orbital
operator excites one flavor of Majorana fermions and a
pair of fluxes, the latter also shaking up the remaining
two flavor sectors without fermion excitations resulting
in the Loschmidt echo-like quench Lδγ(t).

Finally, the sum of the contributions, see Eq. (10),
is the DSF as measurable in INS shown in Fig.2(d-f).
The DSF displays mixed characteristics of the dynamics
of fermionic magnons and the correlation of spin-orbital
operators. Our exact results provide a concrete example
of how RIXS can complement studies of INS to disen-
tangle the different signatures of quantum number frac-
tionalization related to the spin and orbital degrees of
freedom in QSOLs. While RIXS measures the dispersion
of fermionic excitations but not the flux gap, INS cap-
tures both features but is unable to distinguish them by
itself.

Experimental connections - Ref. [37] proposed that a
decorated honeycomb lattice can give rise to the SU(2)-
symmetric Kitaev model but more promising seems to
be the connection with spin-orbital systems. The bond-
frustrated exchanges of Eq. (1) resembles those appear-
ing in KK models [38, 45] associated with Mott insulators
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that retain eg degeneracy [38, 45–48]. The synthesis of
4/5d1 Mott insulators with j = 3/2 magnetic moments
[41, 49–53] or graphene-based superlattices [44, 54, 55]
has increased the list of Kugel-Khomskii materials. Fi-
nally, new routes to materials that implement the Kitaev
model with higher spins have been proposed recently [56–
58] and the methods developed here might be useful to
uncover their dynamics.

Interestingly, Eq. (1) is expected to emerge in highly
anisotropic materials, e.g. coupled chains, because of the
inherent difference between spin and orbital operators.
While the spin transforms as ΘσΘ−1 = −σ under time-
reversal Θ the orbital operators T x and T z are time-
reversal invariant and ΘT yΘ−1 = −T y [41, 44]. This
symmetry property implies that σαT x,z must be a lin-
ear combination of dipoles and octupoles of an effective
j = 3/2 angular moment while σαT y are equivalent to
quadrupoles of j [41]. The interactions along one of the
bond directions is then of a different nature in solid-state
implementations of Eq. (1).

In general, the key ingredient of the model studied here
is the SU(2) symmetry of spins which is common among
several KK models with possible QSOL ground states
[41, 49–55]. Perturbations induced by Hund’s coupling
break this symmetry and will change the responses in re-
alistic settings. At this point, we recall that the most
prominent effect of similar perturbations to the isotropic
spin-1/2 Kitaev model was to add a nonzero spectral
weight in the neighborhood of the Γ and K points [59].
A similar result is expected for the SU(2) extension of
the model, but in this case the spectroscopic response at
these points is finite already in the unperturbed limit.
Overall, it would be desirable to study the quantitative
effects of integrability breaking perturbations for the dy-
namics of QSOLs, for example by generalizing the aug-
mented parton mean field theory developed for the spin
1/2 Kitaev model Ref. [32].

Conclusion - We provide the first exact results of dy-
namical correlations of a QSOL also giving an exam-
ple for algebraically decaying spin liquids. Our com-
putation of the dynamical spin- and orbital-correlations
of an SU(2)-symmetric extension of the Kitaev model
shows how spin-orbital fractionalization is manifest in
scattering experiments like INS and RIXS. For example,
it would be desirable to look for signatures of S = 1
fermionic magnons with a distinct energy and momen-
tum dependence in Kugel-Khomskii materials with SU(2)
symmetry.

In the future it would be desirable to extend the as
of yet short list of rigorous results for the dynamics
(and finite temperature properties [22–24]) of quantum
liquids to other exactly soluble systems, e.g. SU(2)-
symmetric Kitaev models on other tricoordinated lattices
[15, 18, 21], models with a spinon Fermi sea [37, 60], or
those on four-coordinated lattices with half-integer spin
per unit cell [33–36, 61] whose dynamical correlations are

also mapped to quantum quench problems.
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In this Supplementary Material, we develop a standard parton mean-field theory for the SU(2)-symmetric Kitaev
model

H = −
∑
γ

∑
〈ij〉γ

JγT
γ
i T

γ
j σi · σj (11)

that recovers the exact results for the dispersion of the fermionic magnons. We also uncover the dynamics of the
model within this approximation following the same methodology of Ref. [41]. The main purpose is to highlight the
differences with the exact solution presented in the main text.

Mean-field theory

We first rewrite Eq. (11) in terms of the Majorana fermions introduced in the main text as follows

H =
∑
γ

∑
〈ij〉γ

Jγ
(
iθγi θ

γ
j

) (
iηi · ηj

)
. (12)

From the knowledge of the exact solution, it is natural to define the following order parameters

uγij =
〈
iθγi θ

γ
j

〉
, tij =

〈
iηi · ηj

〉
. (13)

The order parameters display the same modulus throughout the whole lattice but must obey the relations uγji = −uγij
and tji = −tij . Let us then fix our attention to the case in which i is on the even sublattice (A) and j is on the odd
(B) one. The mean-field Hamiltonian is then given by

HMF =
∑
γ

∑
r

Jγu
γ
iAjB

(
iηr,A · ηr+nγ ,B

)
+
∑
γ

∑
r

JγtiAjB

(
iθγr,Aθ

γ
r+nγ ,B

)
−
∑
γ

∑
r

Jγu
γ
iAjB

tiAjB , (14)

where the nearest-neighbor vectors nγ are explicitly given by

nx =
1

2
x̂ +

√
3

2
ŷ,

ny = −1

2
x̂ +

√
3

2
ŷ,

nz = 0. (15)

Every Majorana flavor ζαi ∈ {θ
γ
i , η

γ
i } satisfy the anticommutation relation

{
ζαi , ζ

β
j

}
= 2δα,βδi,j . Such Majorana

operators can be related to operators defined in momentum space by the following Fourier transform

ζr,X =

√
2

N

∑
q∈BZ

e−iq·rζq,X , (16)
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Figure 3: Mean-field band structure along the high-symmetry lines of the Brillouin zone for three representative cases: (a) the
isotropic model Jx = Jy = Jz, (b) a gapless model with Jx = Jy and Jz = 0.7Jx and (c) a gapped case with Jx = Jy = 0.15Jz.
The full lines represent the dispersion of the η fermions. Dashed lines represent the flat bands of θz fermions, whereas dotted
lines correspond to flat bands for the θx or θy.

in which r labels the unit cells, X = A,B labels the sublattices, N is the total number of unit cells and the sum
runs over the first Brillouin zone of the honeycomb lattice. The normalization factor was chosen in such a way that
the original anticommutation relations are consistent with {ζq,X , ζq′,Y } = δq′,−qδX,Y . This algebra allows us to treat
ζq,X as a canonical fermion if we (i) constrain q to one half of the Brillouin zone and (ii) assign ζ†q,X = ζ−q,X . Under
these constraints, the general hopping Hamiltonian is given by

∑
〈ij〉γ

iζiζj = 2i
∑

q∈ 1
2BZ

(
e−iq·nγ ζ†q,Aζq,B − e

iq·nγ ζ†q,Bζq,A

)
, (17)

After replacing Eq. (17) on Eq. (14) and defining the spinor (ζq)
t

=
(
ζq,A ζq,B

)
, the mean-field Hamiltonian

becomes block-diagonal in flavors as follows

HMF =
∑

q∈ 1
2BZ

(
ηx†q ηy†q ηz†q θx†q θy†q θz†q

)

Hη 0 0 0 0 0
0 Hη 0 0 0 0
0 0 Hη 0 0 0
0 0 0 Hθx 0 0
0 0 0 0 Hθy 0
0 0 0 0 0 Hθz





ηxq
ηyq
ηzq
θxq
θyq
θzq

+ constant, (18)

in which

Hθγ = 2i

(
0 JγtiAjBe

−iq·nγ

−JγtiAjBeiq·nγ 0

)
,

Hη = 2i
∑
γ

(
0 Jγu

γ
iAjB

e−iq·nγ

−JγuγiAjBe
iq·nγ 0

)
. (19)

The constant term will be henceforth neglected because it will not affect the band structure and the mean-field
dynamics. Two important characteristics of the mean-field theory become apparent. First, there is no coupling
among the flavors, which allows us to write the ground state as the direct product

|G〉 = |Gηx〉 ⊗ |Gηy 〉 ⊗ |Gηz 〉 ⊗ |Gθx〉 ⊗ |Gθy 〉 ⊗ |Gθz 〉 , (20)

in which |Gζ〉 is the Fermi sea obtained from the mean-field eigenstates of Hζ . Second, the θγ fermions will present
flat bands with energy ±2 |JγtiAjB | and will be key to interpret the dynamical structure factor of the model.

We are now ready to find explicit expressions for the order parameters. In general, we will be concerned with
averages of the form

〈
iζr,Aζr+nγ ,B

〉
, which are explicitly given by〈

iζr,Aζr+nγ ,B

〉
=

2i

N

∑
q∈ 1

2BZ

〈
e−iq·nγ ζ†q,Aζq,B − e

iq·nγ ζ†q,Bζq,A

〉
(21)
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Without loss of generality, let us pick tiAjB > 0. The unitary matrix that diagonalizes Hθγ is

Uq,θγ =
1√
2

(
eiq·nγ/2 ie−iq·nγ/2

eiq·nγ/2 −ie−iq·nγ/2
)
, (22)

in which UθγHθγU
†
θγ = 2JγtiAjBdiag [{1,−1}]. The eigenstate operators are written like(

Θγ
q,+

Θγ
q,−

)
≡ Uq,θγ

(
θγq,A
θγq,B

)
, (23)

and we find

θγ†q Hθγθ
γ
q = 2JγtiAjB

(
Θγ†

q,+Θγ
q,+ −Θγ†

q,−Θγ
q,−

)
. (24)

Following Eq. (20), we know that uγiAjB =
〈
Gθγ

∣∣∣iθγr,Aθγr+nγ

∣∣∣Gθγ〉. The application of Eq. (23) on Eq. (21) then
implies that

uγiAjB = −1. (25)

It is important to point out that this value of uγiAjB is independent of the value of the coupling constants Jγ and leads
to a “hopping” Hamiltonian of the η fermions that is the same as the zero-flux ground state of the exact solution.

We are now ready to determine the order parameter tiAjB . For later reference, we define the functions fx(q), fy(q)
and φ(q)

fx(q) =
∑
γ

Jγ cos (q · nγ) ,

fy(q) =
∑
γ

Jγ sin (q · nγ) ,

|f(q)| =
√
f2x(q) + f2y (q),

eiφ(q) =
fx(q) + ify(q)

|f(q)|
. (26)

Notice that the spectrum of the three flavors of the η fermions is the same and given by εη,±(q) = ±2 |f(q)|, which
recovers the dispersion of the fermionic magnons of the exact solution. The unitary matrix that diagonalizes Hη is

Uη =
1√
2

(
eiφ(q)/2 −ie−iφ(q)/2
eiφ(q)/2 ie−iφ(q)/2

)
, (27)

in which the dependence with the coupling constants Jγ is implicit in the phase factors φ(q). The parameter tγiAjB is
then given by

tγiAjB = 3× 2i

N

∑
q∈ 1

2BZ

〈
e−iq·nγη†q,Aηq,B − e

iq·nγη†q,Bηq,A

〉
=

6

N

∑
q∈ 1

2BZ

cos [φ (q)− q · nγ ] . (28)

The value of tγiAjB varies with the coupling constants as indicated by the dependence with the phase φ (q). For the
isotropic model, tγiAjB is the same for all directions and a numerical calculation yields tiAjB ≈ 1.574. The evaluation
of tγiAjB allows us to locate the flat bands as indicated in Fig. 3 for the choices of Jγ used as representative examples
in the main text.

Dynamical Structure Factor at Mean-Field Level

The main goal of this supplementary material is to provide the dynamical structure factor of the SU(2)-symmetric
model within mean-field theory. We start from its expression in real space and time



10

Sαα
′

lm (t) =
〈
G
∣∣∣jαl (t)jα

′

m (0)
∣∣∣G〉 , (29)

in which jαl is written like

jαl = −1

2
σαl − σαl T

(βγ)
l (30)

with T (βγ)
l given in Ref. [41]. The correlators of the form σαl (t)σαmT

(βγ)
m (0) can be ignored in this mean field theory

because such operators are not flavor conserving and therefore vanish. Thus, Sαα
′

lm (t) is given by the sum of the
same matrix elements that were indicated in the main text. In particular, the spin-spin correlations Iαα

′

lm (t) =〈
G
∣∣∣σαl (t)σα

′

m (0)
∣∣∣G〉 within the Lehmann representation is given by

Iαα
′

lm (t) = −
∑
λ

ei(E0−Eλ)t
〈
G
∣∣∣ηβl ηγl ∣∣∣λ〉〈λ ∣∣∣ηβ′

mη
γ′

m

∣∣∣G〉 . (31)

Since we chose a mean-field decoupling that reproduces the exact ground state and dispersion of the η flavors, the
function Iαα

′

lm (t) computed within this approximation is the same as the exact solution. An expression to the form
factor of this dynamical response is discussed in the main text, as well as the responses calculated for the three
representative cases.

Let us now discuss the dynamical correlation of spin-orbital operators

Wαα′

lm (t) =

〈
G

∣∣∣∣σαl T (βγ)
l (t)σα

′

mT
(β′γ′)
m (0)

∣∣∣∣G〉
= −

∑
λ

ei(E0−Eλ)t
〈
G
∣∣∣ηαl θ(βγ)l

∣∣∣λ〉〈λ ∣∣∣∣ηα′

m θ
(β′γ′)
m

∣∣∣∣G〉 . (32)

From the conservation of the number of flavors, we know that only these three correlators should be evaluated

W zz
lm(t) = −

∑
λ

ei(E0−Eλ)t 〈G |ηzl θzl |λ〉 〈λ |ηzmθzm|G〉

W xx
lm (t) = −1

4

∑
λ

ei(E0−Eλ)t 〈G |ηxl θzl |λ〉 〈λ |ηxmθzm|G〉

− 3

4

∑
λ

ei(E0−Eλ)t 〈G |ηxl θxl |λ〉 〈λ |ηxmθxm|G〉

W yy
lm(t) = −1

4

∑
λ

ei(E0−Eλ)t 〈G |ηyl θ
z
l |λ〉 〈λ |ηymθzm|G〉

− 3

4

∑
λ

ei(E0−Eλ)t 〈G |ηyl θ
x
l |λ〉 〈λ |ηymθxm|G〉 . (33)

One qualitative similarity between mean-field and exact solutions of the Fourier transform of W zz
lm(t) is the presence

of a gapped response even when the spectrum of fermionic magnon is gapless. However, the explanation for these
gaps is very different. On the exact level, the gap is caused by the formation of two gauge fluxes and is determined
by the vison gap ∆F [5]. On the mean-field level, the excitations of the θγ fermions will either create a hole on the
negative energy flat band or a particle on the positive energy one leading to an energy gap of 2Jγ |tγ |.

The analytical formulas for the Fourier transform of Eq. (33) are
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Figure 4: The mean-field W (q, ω) and dynamical structure factor for (a-d) the isotropic model with Jx = Jy = Jz = 1.0, (b-e)
a gapless but anisotropic point Jx = Jy, Jz = 0.7Jx and (c-f) a gapped case with Jx = Jy = 0.15Jz.

W zz(q, ω) =
4π

N

∑
q1∈BZ

δ (ω − 2Jz |tz| − 2 |f(q1)|) [1 + cosφ(q1)] , (34)

W xx(q, ω) =
π

N

∑
q1∈BZ

δ (ω − 2Jx |tx| − 2 |f(q1)|) [1 + cosφ(q1)]

+
3π

N

∑
q1∈BZ

δ (ω − 2Jx |tx| − 2 |f(q1)|) [1 + cos [φ(q1)− (q1 + q) · nx]] (35)

W yy(q, ω) =
π

N

∑
q1∈BZ

δ (ω − 2Jy |ty| − 2 |f(q1)|) [1 + cosφ(q1)]

+
3π

N

∑
q1∈BZ

δ (ω − 2Jy |ty| − 2 |f(q1)|) [1 + cos [φ(q1)− (q1 + q) · nx]] . (36)

The responses at mean-field level follow closely the density of states translated by the flat-band gap 2Jγ |tγ |. The
cosine terms multiplying the density of states are related to correlations between sites in two different sublattices, and
account for a small dependence ofW xx andW yy on the transferred momentum q. We computed these expressions for
the three representative cases and presented their sum on Fig. 4, which allows a comparison with the corresponding
results presented in the main text. In the exact response, the maximal spectral weight occurs in the neighborhood
of the flux gap ∆F , which is generally incompatible with the flat-band gap 2Jγ |tγ |. The maximum of the spectral
weight within mean-field occurs near the maximum of the density of states of the fermionic magnons shifted by these
flat-band gaps. As a result, the dynamics evaluated within a mean-field approximation reproduces very poorly the
exact results and highlights the importance of the exact approach described in the main text.
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