
SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 1

Approximate Logic Synthesis: A Survey
Ilaria Scarabottolo, Member, IEEE, Giovanni Ansaloni, Member, IEEE, George A. Constantinides, Senior

Member, IEEE, Laura Pozzi, Member, IEEE, and Sherief Reda, Senior Member, IEEE

Abstract—Approximate computing is an emerging paradigm
that, by relaxing the requirement for full accuracy, offers benefits
in terms of design area and power consumption. This paradigm
is particularly attractive in applications where the underlying
computation has inherent resilience to small errors. Such ap-
plications are abundant in many domains, including machine
learning, computer vision and signal processing. In circuit design,
a major challenge is the capability to synthesize approximate
circuits automatically, without manually relying on the expertise
of designers. In this work, we review methods devised to
synthesize approximate circuits given their exact functionality
and an approximability threshold. We summarize strategies for
evaluating the error that circuit simplification can induce on
the output, which guide synthesis techniques in choosing the
circuit transformations that lead to the largest benefit for a given
amount of induced error. We then review circuit simplification
methods that operate at gate or Boolean level, including those
that leverage classical Boolean synthesis techniques to realize the
approximations. We also summarize strategies that take high-
level descriptions such as C or behavioral Verilog and synthesize
approximate circuits from these descriptions.

Index Terms—Approximation, Circuit, Logic Synthesis

I. INTRODUCTION

Given an intended functionality, established methodolo-
gies for hardware design focus on achieving good trade-
offs between performance metrics (e.g. latency, throughput)
and cost (energy and resource requirements). Hence, higher-
performance circuits can only be obtained by increasing their
size or power budget, while the relationship between inputs
and output values is kept invariant. Approximate Logic Syn-
thesis (ALS) expands the scope of this process by adding a
further dimension to the design space of possible solutions:
that of the tolerated implementation inaccuracy, as illustrated
in Figure 1b.

Approximate hardware components realized with ALS can,
at the same time, offer remarkable gains in area and efficiency
and significant performance increases with respect to their
exact counterparts, in exchange for small losses in output
quality. ALS is hence the embodiment, at the hardware design
level, of Approximate Computing (AC). The AC paradigm
investigates the benefit of judicious Quality-of-Result (QoR)
degradations in different levels of the hardware/software stack,
spanning from software solutions, through the design of digital
architectures, to circuit design, as illustrated in Figure 1a.
This survey covers the approximate circuit design techniques;
readers interested in AC methodologies and solutions in a
broader context can refer to the recent surveys by Liu et

Ilaria Scarabottolo, Giovanni Ansaloni and Laura Pozzi are with the Faculty
of Informatics, USI Lugano, Switzerland. George Constantinides is with
Imperial College London, UK. Sherief Reda is with Brown University, USA.
Contact Author: sherief reda@brown.edu.

inaccuracy

area

latency

Functional
simplification

Approximate circuits

Voltage
overscaling

Approximate software

Approximate architecture

a) b)

Netlist transformation

Boolean rewriting

Approximate HLS

Fig. 1: (a) Approximate Computing (AC) techniques taxon-
omy, where areas discussed in this paper are highlighted. (b)
Inaccuracy represents a new dimension for circuit synthesis.

al. [29] Han et al. [14] and Xu et al. [61]. Approximate circuit
synthesis is particularly attractive since approximate circuits
are employed as basic blocks for realizing application-specific
accelerators, which are a highly relevant component of modern
Systems-on-Chips [18].

Approximate circuit synthesis has the ability to automate
the process of discovering approximate implementations given
an exact circuit description. For example, we provide in
Figure 2 an illustration of the ability of approximate synthesis
techniques to generate a large number of approximate variants
of an 8-point Fast Fourier Transform (FFT) circuit, where
each point reports the results of one approximate design.
For Figure 2, we use the open-source tool ABACUS [38]
together with the FreePDK 45 nm library [52]. We use four
test waveforms to evaluate the amplitude spectrum of both the
original circuit and the approximate variants, and we report
the mean square error (MSE) relative to the original spectrum
in percentage. The results in the Figure show the potential
of automated approximate logic synthesis: we can achieve
large reductions of area savings with negligible reduction in
QoR. For instance, we can save 22% of the design area at
the expense of 0.12% reduction in accuracy. The FFT circuit
is part of the Benchmarks for Approximate Circuit Synthesis
(BACS) that we release in conjunction with this paper.1

1BACS benchmark set: https://github.com/scale-lab/BACS.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 2

0 0.05 0.1 0.15 0.2

MSE (%)

0.75

0.8

0.85

0.9

0.95

1
A

re
a

 r
a

ti
o

 (
%

)

Fig. 2: Approximate design variants of an 8-point FFT circuit
generated using the ABACUS tool. Each point represents the
error and design area of an approximate circuit compared to
the original design. MSE stands for Mean Square Error.

We survey synthesis strategies for automatically deriv-
ing approximate circuits from a description of their (exact)
functionality and from a notion of the allowed degree of
inexactness. The first works in circuit approximation were
the result of manual design, i.e., approximate adders [65],
[70], multipliers [10], [15], [22], [40] or dividers [16], [42]
were created to design single inexact implementations of
arithmetic units. Other works [20], [21] present algorithms
that allow to automatically explore the energy-quality trade-
off, but again limit the analysis to adders and multipliers only.
Unlike these specific hand-crafted or circuit-specific designs,
ALS aims instead at deriving approximate solutions for any
circuit without a priori knowledge of its functionality.

The large family of approximate circuit design techniques
can be divided into the two subcategories of Figure 1a:
overscaling and functional. Overscaling aims at lowering a
circuit supply voltage without reducing the corresponding
operational frequency, thus reducing its static and dynamic
energy while inducing timing errors. However, these timing
errors may result in uncontrollably large computational errors,
limiting the usability of these solutions [61] without redesign
techniques, such as the ones proposed in [48], or careful
considerations on the statistical distribution of the inputs [36].

In functional approximation – which is the focus of this
survey – the function implemented by a circuit and/or the
corresponding gate-level netlist is simplified, with the purpose
of trading accuracy for performance.

This transformation of a generic Boolean function f into
its approximate counterpart f̃ can be performed in different
ways. We have identified three main categories for such
approaches, illustrated in Figure 3: Netlist transformation,
Boolean rewriting and Approximate high-level synthesis.

In Netlist transformation (Figure 3.a), the Boolean func-
tion f is already mapped into a netlist, i.e., a list of electrical
components connected together to form a circuit. For the same
Boolean function, there exist several possibilities for netlist

in ... i0 o1 o0

0 0 ... 0
0 0 ... 1

...
1 1 ... 0
1 1 ... 1

0 1
1 1

...
1 0
0 1

in ... i0 o1 o0

0 0 ... 0
0 0 ... 1

...
1 1 ... 0
1 1 ... 1

0 0
0 1

...
1 0
1 1

sec IV

int fun(a,b) {
...
o1 = a + b;
o2 = a * b;
...

return o1 + o2 }

sec V

sec III
(a)

(b)

(c)

int fun(a,b) {
...
o1 = a || b;
o2 = a * b;
...

return o1 + o2 }

Fig. 3: Possible functional simplification approaches are illus-
trated: a generic Boolean function f is transformed in f̃ , either
acting on a synthesised netlist, for instance, at gate-level, or
on its truth table. Finally, the circuit at behavioural level can
be simplified by approximate high-level synthesis.

mapping. Many approaches belonging to this category, which
will be described in detail in Section III, start from a gate-level
netlist, whose components are Boolean gates implementing
simple functions such as logical AND, OR and NOT. These
methods transform such netlists by removing some nodes, or
by substituting some wires with others, hence reducing the
circuit size and power consumption.

Boolean rewriting approaches act on the function truth
table, which represents a higher level of abstraction: no choice
of employed electrical components has been made yet, only
the list of possible inputs of f and the corresponding outputs is
available. Therefore, this description is independent from the
technology selected to map the function to a specific circuit.
Methods belonging to this category, detailed in Section IV,
modify the values of such outputs for a subset of the inputs,
as illustrated in Figure 3.b: on the right column, some values
in bold have been flipped w.r.t. the original truth table.

Finally, Approximate high-level synthesis focuses on the
highest level of abstraction for ALS, where the function is
described at behavioural level, such as in RTL Verilog or
C language. An example fragment of such code is depicted
in Figure 3.c, where a portion of C code shows how output
values are computed from the function inputs by providing a
mathematical expression, instead of listing all possible input
combinations. These functions can be approximated as in the
example, where the sum is transformed into a logical OR.
Methods for approximate high-level synthesis are surveyed in
Section V.

Regardless of the Approximate Logic Synthesis technique
employed for simplification, the result is an approximate

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 3

ALS
method

error
modeling 1

2
46 2

23
3

QoR
evaluation

approximate design

exact design

Fig. 4: A phase of error modeling can precede Approximate
Logic Synthesis, with the aim of decorating a circuit (or a
Boolean specification) with a notion of error, and hence guid-
ing subsequent logic-simplification decisions. Then, a phase
of QoR evaluation occurs to verify whether output quality
constraints are satisfied in the synthesised approximate circuit.

version of the original f that will compute erroneous values
for a subset of its inputs. If this error is limited, and can be
tolerated by the application of interest, the original function
can be replaced by its approximate version.

Section II of this paper is dedicated to error models and
quantification for approximate circuits, since precise error
estimation is a cornerstone in Approximate Computing. To
appreciate the different phases in which error estimation is
needed, Figure 4 illustrates a typical Approximate Logic
Synthesis flow, where the ALS core method is preceded and
followed by two distinct error quantification phases: error
modeling and QoR evaluation.

Before applying a given approximation to our exact design,
it can be useful to estimate how much that transformation will
impact on the final result. Therefore, an error modeling phase
can be present, with the aim of annotating a circuit (or a
Boolean) specification with a notion of error, as depicted in the
top row of Figure 4. This step provides an estimate – which
can be more or less accurate, depending on the approach – of
the potential error introduced by a given circuit simplification,
which in turn can guide ALS methods in identifying the least
error-prone transformation – or set of transformations.

Then, a phase of QoR evaluation occurs once the circuit
logic has been modified and simplified by an ALS algorithm
– as shown in Figure 4 – to verify whether output quality
constraints are satisfied in the synthesized approximate circuit.

Note that not all ALS methods reviewed in Sections III,
IV and V rely on both error modeling and QoR evaluation
phases. Section II provides examples and describes methods
that undergo one, both, or no such phases.

The organization of this paper is as follows: Section II,
along with a formal definition of the most commonly em-
ployed error metrics, further extends the description of the
error quantification phases, and summarizes notable works
on accurate error modeling. Sections III, IV and V describe
the strategies for approximate hardware synthesis depicted in
Figure 3. In particular, Section V discusses methods that derive
approximate hardware components directly from high-level
source code. Finally, Section VI compares the performance
of different works previously presented, providing insights on

their efficiency and their characteristics in addressing ALS
problems.

II. METHODS FOR ERROR ESTIMATION

As introduced in Section I, key to ALS is the evaluation
of the error induced by a simplification, which can be for
instance the removal of a gate, or the modification of a value
in a truth table. Hence, as shown in Figure 4, ALS methods
can be preceded by an error modeling phase and followed by
a QoR evaluation phase. These two phases are not necessarily
present in all ALS methods.

For example, Vasicek et al. [54] employ a genetic program-
ming technique that does not need the guide of a priori error
modeling, since it automatically evolves towards lower-error
circuits, while other works, such as Scarabottolo et al. [44],
compute a tight bound on maximum error in the first phase,
and then the resulting simplified circuits do not need to be re-
evaluated as they are already guaranteed to not overtake such
bound.

In Section II-A we review the error metrics that can be of
interest when designing approximate circuits, and in Section
II-B we review the state of the art in methods used for error
modeling.

A. Error Metrics

When performing error profiling, a first step is to appropri-
ately encode the bits at the output according to the intended
representation (e.g., as signed or unsigned numbers). Hence, a
difference d between an exact and approximate implemented
Boolean functions (f and f̃ , respectively) can be computed
between two outputs for the same inputs:

d(f(x), f̃(x)) = ||f(x)− f̃(x)||

Then, an input-independent distance D must be derived
from all values of d according to a metric. Alternative choices
for such metric are influenced by several factors: the nature
of the application in which the approximate hardware will be
employed, its criticality, etc. For example, Ma et al. [30] and
Venkataramani et al. [57] employ the Hamming Distance as
a measure of d, defined as the number of bits flips in f̃ w.r.t.
the original f .

We will now define the most common, widespread metrics
for D employed in the field. Referring again to the Hamming
distance, one could be interested in the maximum or average
Hamming distance over the inputs of f .

When, as done in [5], [43], [44], [45], the focus is on
controlling the Maximum Error (i.e., worst case distance), that
occurs when a circuit is approximated, D is defined as:

max
x∈X

(d(f(x), f̃(x)))

expressing the maximum value of the difference between f
and f̃ , being X the set of all possible circuit inputs and x a
generic input.

Several Approximate Logic Synthesis techniques [19], [26],
[27], [45], [56], [60], [64] monitor average case distance (mean

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 4

absolute error) induced on the output, instead of focusing on
potential outliers, expressed as

Ex{d(f(x), f̃(x))}
where the expectation is taken over the input data. If inputs
are uniformly distributed, the expression above becomes

1

|X|
∑
x∈X

d(f(x), f̃(x))

, where |X| denotes the input set cardinality (i.e. the number of
possible inputs). A related metric is the Mean Squared Error,
in which distance terms are squared:

1

|X|
∑
x∈X

(d(f(x), f̃(x)))2

Distances are instead normalised by the (exact) output
values size ||f || when considering the Average Relative Error
Magnitude as an error metric:

1

|X|
∑
x∈X

d(f(x), f̃(x))

||f(x)||

Moreover, it is usually of interest to know how often errors
occur in approximate circuits, regardless of their magnitude.
The Error Rate is a common metric that captures this phe-
nomenon. For a generic circuit, given W = {x ∈ X|f(x) 6=
f̃(x)} the set of inputs for which the approximate function
computes an erroneous output, the Error rate is defined as:

|W |
|X|

It is of course possible for a given Approximate Logic
Synthesis approach to consider more than one error metric.
Indeed, in [5], [31], [39], [58], [49], [57], [51] both maximum
error and average error are taken into account.

Some works introduce further metrics for error estimation
that also take into account the structure of the circuit being
simplified, in addition to its functionality. Notably, Zhang et
al. [69] adopt the notion of Approximate Efficiency, defined
as the ratio between the gain (in terms of Energy-Delay
Product, EDP) deriving from the simplification of a node and
the corresponding induced error: ∆EDP/D. The underlying
assumption is that, if two nodes generate the same error in
the final output when pruned from the original circuit, the one
leading to higher benefits should be pruned first.

More abstract QoR metrics are usually employed by Ap-
proximate High Level Synthesis (AHLS) frameworks, focus
of Section V. AHLS designs employ inexact arithmetic cir-
cuits as building blocks to realize approximate accelerators.
Approximation-induced errors are therefore usually expressed
by domain-specific indicators, retrieved a-posteriori in the
QoR evaluation phase via simulation over a suite of repre-
sentative inputs. Signal-to-Noise Ratio (SNR) is evaluated for
signal processing designs [25] [24], while Structural Similarity
(SSIM, [67]) is used in image processing ones [34]. Further-
more, classification accuracy assesses QoR in [20] [38]. In [2],
all three of these metrics are considered, in accordance with
the domain of each of the considered benchmarks.

B. Methods for Error Modeling and for QoR Evaluation

For all metrics introduced above, a precise computation of
the error caused by a circuit modification requires exhaustive
evaluation of all possible input combinations. This number
grows exponentially with the input precision, and hence such
computation cannot scale to large circuits. SAT-solver based
techniques were proposed [58] in order to help accelerating
exhaustive evaluations; however, exhaustiveness necessarily
becomes intractable at some point, as the circuit size increases.
Hence, the need arises for methods to efficiently calculate
error estimates (in the case of average errors and error rates)
and error bounds (for maximum errors). In the following, we
review the body of work for such methods.

Average error estimation. A widespread strategy to es-
timate average errors is to simulate a circuit for a subset
of its inputs, randomly chosen through Monte Carlo selec-
tion [58], resulting in an unbiased statistical estimate of D.
Nonetheless, even a Monte Carlo implementation can become
computationally intractable for large circuits if carried out in
a straightforward way, because it necessitates distinct evalua-
tions, at each simplification step, for all candidate approximate
transformations.

Su et al. [53] devise a technique that effectively lowers
the computational effort entailed. Their strategy, illustrated in
Figure 5, aims at estimating the error introduced by a set of
candidate approximate transformations (ATs) without having
to resort to Monte Carlo simulation for each of them. They
propose a two-step method that computes a three-dimensional
0-1 change propagation matrix (CPM), then performs batch
error estimation for all candidate transformations in a single
Monte Carlo run. CPM has size M ×N ×O, where M is the
number of Monte Carlo random input patterns, N the number
of nodes in the netlist being simplified and O the cardinality
of its output. An entry in CPM [i, n, o] is 1 if and only if a
change on the node n propagates to the output o under the
i-th pattern. The CPM is computed in a reverse topological
traverse of the the netlist, starting from the primary outputs,
then recursively calculating the entries for each node fanin.

The same CPM can then be employed to evaluate, within
a single Monte Carlo pass, the error rate and the average
error magnitude derived from all candidate transformations.
The batch calculation simply computes the desired error metric
for each AT individually, but thanks to the CPM, there is no
need to re-run Monte Carlo simulation at each step, since
information on the error propagation towards the output is
retained in the matrix and the desired metric is computed
cumulatively.

Once a transformation is selected, a new matrix CPM is
calculated, and the methodology iteratively proceeds by eval-
uating candidate transformations on the newly-derived inexact
circuit with respect to the exact counterpart, until an average
error / error rate constraint is violated. The computational
complexity of this strategy is O(MOT), where T is the size of
the set of possible approximate transformations ATs, compared
to O(MNT) for a naı̈ve Monte Carlo alternative. Note that
the number of outputs O of a circuit is usually much smaller
than the number of nodes N .

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 5

current
approx
circuit

AT

0	1	0	0	
1	1	0	1	
....

1	0	1	1

3D CPM

netlist
traversal

Monte Carlo
simulation ERs

AEM AT

AT
selection

approximate
circuit
update

Fig. 5: Block scheme of the batch error estimation technique
in [53], where at each iteration a set of candidate Approx-
imate Tranformations (AT) is evaluated through the Change
Propagation Matrix (CPM) to obtain the corresponding Error
Rate (ER) and Average Error Magnitude (AEM).

[…] […]

[…]
[…]
[…]

11 12

1314

not yet known

known

Fig. 6: The four steps in the Partition and Propagate method-
ology., from [43]: 1) partitioning, 2) derivation of the propaga-
tion matrices, 3) computation of the weights across partitions
and 4) subgraph simulations.

Bounding maximum errors. Monte Carlo-based ap-
proaches are not employable when maximum error thresholds
must be provided, as they can not account for outliers. To
compute error guarantees, Schlachter et al. [45] introduced an
algorithm which assigns to each node in a circuit the sum
of the significance of all its reachable outputs (where the
significance of the output bit i is equal to 2i). This strategy is
overly conservative, as it assumes that a node simplification
can affect all reachable outputs simultaneously for at least one
input combination (all ones becoming zeros, and vice-versa).
In fact, masking effects very often reduce the magnitude of
perturbations caused by inexact transformations, preventing all
outputs to assume erroneous values at the same time.

Tighter maximum-error bounds are derived in a recent work
by Scarabottolo et al. [43]. The goal of their Partition and
Propagate (P&P) methodology is to fully label a circuit, i.e.
to assign weights to each node corresponding to a bound on
the maximum difference from the exact output if such node
is removed and its output set to a constant value. The weight

of a node i is hence

w(i) ≥ max
x∈X
|f(x)− f̃i(x)|

where f̃i is the circuit functionality when gate i is removed.
As illustrated in Figure 6, weights are computed by P&P in

four steps:
1) Partitioning: The combinational part of the circuit, repre-

sented as a direct acyclic graph, is divided in subgraphs,
so that each subgraph has less than Is inputs (where Is
is much lower than the number of primary inputs of the
graph).

2) Derivation of propagation matrices: Since the input size
of subgraphs Is is small, it is computationally feasible, for
all combinations of inputs, to express the weights of the
subgraph inputs as a function of those of its outputs. P&P
does so by observing the sub-graphs truth tables, deriving
their propagation matrices M . The relation between a
subgraph input weights vector win and output weights
vector wout is then

win = Mwout

3) Propagation: Weights are then propagated across sub-
graphs considering them in reverse topological order.
If the children nodes of a subgraph output belong to
different subgraphs, the subgraph output node weight
wout is conservatively set as the sum of the win elements
pertaining to the successor subgraphs.

4) Subgraph simulations: Finally, the weights of nodes in-
side subgraphs are retrieved using exhaustive simulation
separately for each subgraph. Again, this is feasible since
the number of subgraph inputs is limited.

The computational complexity of P&P is O(N + S + E),
where N is the number of circuit nodes, S the number of
subgraphs and E the number of edges traversing distinct
subgraphs.

III. ALS: STRUCTURAL NETLIST TRANSFORMATIONS

Among methods that implement structural netlist trans-
formation, we review five different works, which we group
according to their adopted strategy:

A. Greedy Heuristics for Netlist Pruning;
B. Greedy Heuristics for Netlist Manipulation;
C. Stochastic Netlist Transformation; and
D. Exhaustive Exploration for Netlist Pruning.

A. Greedy Heuristics for Netlist Pruning

Shin et al. [49] employ a greedy strategy for generic circuit
simplification, applied to adders used in image compression
and decompression. In their methodology, a set of multiple
stuck-at-faults (SAFs) is identified, and these SAFs are in-
jected in the original circuit by assigning a static 0 or a static
1 to each signal of a selected SA0 or SA1 fault.

Two procedures for circuit simplifications are then applied:
1) Backward simplification: this operation traverses the cir-

cuit from the SAF node towards the primary inputs, marks

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 6

all nodes whose fanout is now empty as deletable, and
eliminates marked nodes;

2) Forward simplification: performs the same operation in
the forward direction, traversing the SAF fanouts towards
the primary outputs. In this second step, however, the type
of SAF (0 or 1) coupled with the logic functionality is
exploited for further reducing the logic stemming from
the given node.

A greedy heuristic is employed to iteratively choose the SAF
that maximizes a given figure of merit (e.g., area reduction),
simplify the circuit forward and backward, and repeat the
process until the error constraint is violated. A parallel fault
simulator with a set of test vectors is used to evaluate the error
on the final output at each SAF simplification.

GLP by Schlachter et al. [45] presents another greedy
iterative algorithm for circuit simplification. The proposed
framework, depicted in Figure 7, is simple but effective. The
exact circuit is represented as a direct acyclic graph and nodes
are pruned according to two main criteria: the node signifi-
cance, which represents the impact of that node on the final
output, and the node activity or toggle count. According to the
application characteristics, nodes can be pruned starting from
those with lower significance, lower activity, or a combination
of the two: the significance-activity product (SAP). Node
activity is obtained through gate-level hardware simulation,
while significance is computed in a reverse topological graph
traversal, as mentioned in Section II-B, starting from the
primary outputs arithmetic bit-significance, then assigning to
each node i the significance σi:

σi =
∑

σdesc(i),

where desc(i) are all direct descendants of node i.
After nodes have been ranked according to the desired

metric, the GLP framework iteratively removes a node from
the original circuit, setting its output to a constant; it then
resynthesizes the circuit, simulates it with a Monte Carlo
process to verify that the error constraints on error rate and
mean relative error have not been violated, and recomputes
SAP for node ranking. When the error threshold is reached,
the algorithm stops.

Computing node activity can take a considerable amount
of time (15 to 20 minutes for a 32-bit adder with 5 million
input combinations). However, it allows the selection between
a wider range of performance-accuracy trade-offs for the same
amount of tolerated error. Therefore, significance-only node
ranking is preferred for a first, fast design, while SAP ranking
can be employed for fine tuning.

B. Greedy Heuristics for Netlist Manipulation

Venkataramani et al. [56] propose another greedy strat-
egy called SASIMI (Substitute-And-SIMplIfy). In SASIMI,
functional approximation is performed by identifying pairs
of signals that assume the same value with high probability,
and substitute one with the other. The authors call TS (target
signal) the signal to be replaced, and the one employed at its

remove one gate
from the circuit

simulate the
obtained circuit

error threshold
reached?

YES

Approximate circuit

NO

124816

1

3

4

4

12

16

1528

Fig. 7: GLP [45] framework. Gates are removed from a generic
circuit starting from the least significant, until the allowed error
threshold is reached.

place SS (substitute signal). SS can be a constant value (a
logic 1 or a logic 0), or another signal of the original circuit.

The key idea of the paper is illustrated in Figure 8, where
TS is substituted by SS. When the target signal is replaced, the
gates belonging exclusively to its generating cone of logic are
removed from the circuit. Moreover, the logic in TS fanout can
potentially be reduced, as well as that belonging to TS fanin
and to other signals’ fanin. Therefore, both direct pruning and
indirect downsizing are considered in the choice of TS.

Clearly, the error induced by a potential substitution must
be considered in the choice of TS and SS. This error can
be estimated by analyzing the difference signal, expressed
as XOR of TS and SS, and its probability PDIFF , which
indicates the probability of TS being different from SS. Since
a signal’s complement is a possible candidate for substitution
too, the preferred signal is the one with smallest probability
product PDIFF (1− PDIFF).

However, the difference probability does not necessarily
reflect the error that will be introduced to the final circuit
output, hence this has to be evaluated separately, through a
Monte Carlo process that estimates the error rate and average
absolute error magnitude on a subset of all possible circuit
inputs, which are assumed to be uniformly distributed. The
algorithm takes as input the original circuit and a target error,
then iteratively performs the selection of the best candidate sig-
nal pair, the substitution and consequent circuit simplification,
followed by QoR evaluation. Once the target error constraint
is reached, the iterative algorithm stops.

The authors couple the ALS algorithm described above with
an adaptation for quality configurable circuits, where the gates
in TS’s cone of logic are not eliminated, and an additional
circuit is employed to monitor the difference between TS and
SS. Based on the desired quality, the discrepancy between
these two signals can either be ignored or recovered. Although
quality monitoring and error recovery introduce a substantial
overhead, the experiments show that this method leads to
significant energy savings (although lower than those obtained
in the approximate mode).

C. Stochastic Netlist Transformation
Liu et al. [27] argue that the assumption of uniform distri-

bution of input data is seldom correct. Therefore, they propose

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 7

TS

SS

pr
im

ar
y

in
pu

ts

pr
im

ar
y

ou
tp

ut
s

original circuit

pr
im

ar
y

in
pu

ts

pr
im

ar
y

ou
tp

ut
s

approximate circuit

SS

pruned
gates

down-sized gates

Fig. 8: SASIMI [56] illustration of signal substitution: when
TS is replaced by SS, gates belonging exclusively to TS fanin
cone are deleted, while those shared with other signals are
downsized.

SCALS: Statistically Certified Approximate Logic Synthesis,
an iterative framework which presents some radical differences
with respect to those described in the previous subsections.
First of all, the authors of SCALS apply statistical hypothesis
testing to estimate the errors obtained on the circuit outputs
after an approximate transformation, to guarantee that the
population behaviour is indeed a faithful representation of the
actual data distribution.

Secondly, their algorithm presents two nested iterative
loops, as depicted in Figure 9: the original circuit is im-
mediately mapped to the desired technology, in order to
work directly on what will be the actual implementation. The
mapped netlist is then partitioned into sub-netlists, which will
be independently optimised, in parallel, through the inner loop
on the right of Figure 9.

The resulting optimised sub-netlists are then recombined,
and the resulting netlist error is evaluated through statistical
hypothesis testing. Such sequence of operations represents a
single trial, and the process continues until the desired error
constraint is reached. Therefore, they are able to provide a
confidence level for the analyzed error metrics, namely error
rate and average relative error magnitude.

It is interesting to understand how the sub-netlists op-
timisation (the inner loop) works: SCALS considers a set
of logic transformations T = E ∪ A, where E =
{BALANCE, REWRITE, REFACTOR} represents exact transfor-
mations, and A = {REDUCE, FLIP, ADD} approximate ones.
At each iteration, a transformation i is selected from T with
probability pi.

While exact transformations do not modify the circuit func-
tionality, but may optimize its implementation, approximate
transformations do alter it. REDUCE and FLIP randomly pick a
logic gate from the netlist, the first removes one of its fanins,
whereas the second inverts its output. An ADD transformation
instead inserts a two-input logic gate to the circuit, connecting
it to existing signals at random.

For each logic transformation, the approximate sub-netlist
is mapped to the desired technology to assess its quality.
Statistical inference techniques are used to estimate the errors
introduced in this phase, since hypothesis testing for each
transformation would be computationally infeasible. If the
quality improves, the sub-netlists are updated and the process
starts over until a fixed point is reached.

In SCALS, the transformation space is explored stochas-
tically, which means considering possible transformations at

original
circuit

mapped
netlist

optimised
sub-netlists

optimised
netlist

hypothesis
testing

pick logic
transformation

randomly

evaluate
quality

update
sub-netlist

one
trial

mapped
sub-netlists

Fig. 9: The nested-loops approach of SCALS [27]. For each
trial, all mapped sub-netlists are optimised in parallel through
iterative random selection of possible transformations. Once
the optimised sub-netlists are recomposed, the error of the
circuit is assessed through hypothesis testing.

random, instead of employing fixed heuristics, so as to maxi-
mize the number of design points tackled.

In a similar direction, Vasicek and Sekanina propose
EvoApprox, a genetic algorithm to mutate the circuit into
approximate versions by swapping gates with wire connections
[54]. Circuits are represented as direct acyclic graphs, whose
nodes can be Boolean gates or more complex components
according to the technology library chosen. The nodes are
contained in a two-dimensions grid, the chromosome, which
is randomly modified to explore new design points. This
mutation evolves using a fitness function, which leads to
better approximation over runtime. After computing area and
error of the initial population, the algorithm iteratively selects
the best-scored circuit, generates λ offspring from the parent
through mutation, and evaluates the new population. The
authors develop three versions of the genetic algorithm:
• Resource-oriented method: the error is minimized under

the assumption that only a fraction of the components
(gates) needed to implement the accurate circuit is avail-
able;

• Error-oriented method: the area is minimized while keep-
ing the error between a user-specified range;

• Multi-objective: this algorithm version allows to optimize
the error and other circuit parameters, such as area, power
consumption and delay.

To evaluate the error obtained at each mutation, full-
simulation is employed for small circuits, while for larger
circuits the authors resort to more complex techniques such
as SAT or BDD-based evaluation.

D. Exhaustive Exploration for Netlist Pruning

As opposed to other works surveyed in this section, Circuit
Carving by Scarabottolo et al. [44], does not employ iterative
approximations towards inexact logic synthesis. It instead
resorts to exhaustive exploration of all possible nodes subsets
that can be removed from the exact circuit, among which the
most convenient will be chosen. The best candidate sub-circuit

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 8

is the largest one (in terms of number of gates) that does not
overcome the identified error threshold.

The key idea of this approach is to consider the effect
of multiple pruning choices combined, eliminating the risk
of getting stuck in local minima. However, the efficiency of
the algorithm strongly relies on accurate estimation of node
significance, either through exhaustive simulation (if the circuit
size allows it), or by exploiting the circuit regularity to derive
node significance through induction.

Once all nodes are labelled with their significance, a binary
tree search algorithm explores all possible subsets, called cuts,
and estimates the error induced on the output by the removal
of the whole cut. Figure 10a illustrates an example of a cut,
enclosed in the dashed blue line. Each node in the graph is
labelled with its significance. The cut significance is defined
as the sum of all its output nodes significance: in the example,
σC1

= σn4
+ σn2

= 8 + 4 = 12.
Figure 10b shows how the binary tree search algorithm

works: each level in the exploration tree represents the in-
clusion (or exclusion) of a given node in the cut. For a graph
with N nodes, 2N branches represent all possible nodes subsets
that can be considered as best candidates for approximation.
The red highlighted path corresponds to cut C1 of Figure
10a: indeed, 1-branch is taken for node n2 and n4 only. The
algorithm identifies the largest cut whose significance does not
overcome the pre-defined error threshold T.

Since the worst-case complexity of the exploration is expo-
nential in the number of nodes, three criteria are employed to
bound it and strongly reduce the average complexity:

1) Validity: if the cut significance overcomes the available
error threshold T, the cut is not valid and the exploration
stops;

2) Closure: a cut is defined closed when, for all its nodes,
if all children of a node n belong to the cut, n is also
in the cut. The same holds for parents: if all parents of a
node n are in the cut, n is in the cut as well. This means
that there is no larger cut containing the current one with
the same significance. Only closed cuts are considered as
possible solution: if a branch represents a non-closed cut,
it is abandoned.

3) Residual gain: if, at some level in the exploration, the
sum of the nodes still to be considered plus the nodes
already included in the cut is less than the size of the best
candidate already found, the algorithm avoids exploring
any further, since there could not be any additional
advantage in exploring lower levels.

These criteria for bounding exploration prove to be effective
in reducing by orders of magnitude the number of points
explored. However, for large designs, the complexity is still
too high to be treated in a reasonable amount of time. Even
when the exploration is stopped after having reached a time
limit, this method performs better than GLP by Schlachter et
al., to which it is compared, in terms of energy, delay and area
reduction of the approximate designs for the same tolerated
error. The advantage in performance over the chosen greedy
algorithm is explained by two factors: first, the exhaustive
exploration leads to optimal solutions that are often overlooked
by greedy strategies; moreover, the error estimation of single

1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 1 1 0

1 0

1 0 1 0

i0

n5n6

n2 n1

n4

O0

i1i2

O1O2O3

i3

n3

n1

n2

n3

n4

n5

(a) (b)

C1

24 18

4 2

2

2 3

8

Fig. 10: (a) An example of cut for Circuit Carving [44],
with significance given by its output nodes, and (b) the
corresponding path in the binary tree search, where the 1-
branch is taken for node n2 and n4 only.

gates is much more accurate, hence guiding the exploration
towards better candidates for Approximate Logic Synthesis.

IV. ALS: LOGIC REWRITING BASED METHODS

We categorize ALS using Boolean rewriting as a general
approach in which the logic of the circuit is first captured
in a formal Boolean representation that is manipulated to
yield an approximate Boolean representation; this is, in turn,
synthesized to a gate-based netlist. We review four different
techniques for this general approach:

A. logic rewriting by Boolean optimization;
B. logic rewriting by Boolean matrix factorization;
C. logic rewriting by binary decision diagrams; and
D. logic rewriting by and-inverter graphs.

A. Logic Rewriting by Boolean Optimization

In this approach, the approximations are captured into
Boolean expressions that are used to relax the Boolean min-
imization of the original circuit, leading to an approximate
circuit of smaller size [31], [57], [60]. One of the earliest
works to employ this approach is SALSA [57]. In SALSA
a QoR circuit is first constructed by comparing the outputs
of the original circuit and the approximate circuit using a
comparator, as illustrated in Figure 11. Depending on the error
metric, the QoR circuit can compute the arithmetic difference
or the Hamming distance (HD) between the outputs of the
original and approximate circuits. If the error metric is the
arithmetic difference and the outputs of the original circuit
and the approximate circuit are denoted by f(i1, . . . , in) and
f̃(i1, . . . , in) respectively, then the QoR circuit is given by

QoR = 1 if and only if |f(i1, . . . , in)− f̃(i1, . . . , in)| ≤ B,

where B is the maximum error bound and QoR is a binary
output. Any acceptable approximate circuit, f̃ , will have a
tautology output for the QoR circuit; however, an excessive
approximation in f̃ will lead to some input combinations that
cause QoR = 0. Thus, one is free to simplify the logic of f̃
as long as the output of the QoR circuit stays as a tautology.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 9

inputs

accurate
outputs

approximate
outputs

i1, . . . , in 1/0

original circuit

approximate circuit
QoR

~

Fig. 11: In SALSA a QoR circuit is constructed to compare the
outputs of exact and approximate circuits [57]. Observability
don’t cares of the approximate circuit are used to minimize
the approximate circuit logic.

To simplify the logic of the approximate circuit, SALSA
computes the observability don’t cares for each one of the
outputs of the approximate circuit with respect to the primary
outputs of the QoR circuit. For each output of the approximate
circuit, these don’t cares are the set of primary input combina-
tions for which the outputs of the QoR circuit are insensitive
to the output of the approximate circuit. This set of don’t cares
can be then used to minimize the approximate circuit using
standard logic synthesis techniques [46].

For example, consider f to be a circuit with three in-
puts {i1, i2, i3} that computes two outputs: f1(i1, i2, i3) and
f2(i1, i2, i3), and a QoR circuit that computes the HD between
the outputs of the circuits and its approximate counterpart.
The QoR circuit outputs a 1 as long as the HD between the
original and approximate circuit is less than or equal to one.
The observability don’t care set for the approximate output
f̃1 is equal to the input combinations that lead to f2 = 1 and
f̃2 = 1 or f2 = 0 and f̃2 = 0, which can be expressed in
terms of the primary inputs as

(f2(i1, i2, i3) ∧ f̃2(i1, i2, i3)) ∨ (f2(i1, i2, i3) ∧ f̃2(i1, i2, i3)).

This set of don’t cares can be used to minimize the entire
logic of f̃1 using standard don’t care logic minimization
techniques [46]. SALSA has been extended in ASLAN [39]
to handle sequential circuits, where errors arise over multiple
sequential cycles. ASLAN uses a circuit block exploration
method to identify the impact of approximating the combi-
national blocks, and then uses a gradient-descent approach to
find good approximations for the entire circuit.

In contrast to SALSA’s global minimization approach, Wu
and Qian [60] propose a local minimization approach to
simplify a circuit by substituting the Boolean expressions of
the internal circuit nodes with approximated expressions that
require less logic. For instance, consider an internal circuit
node that computes the logic (a ∨ b) ∧ (c ∨ d), which can
be re-written in an approximate way by dropping one literal,
leading to four possible choices: a ∧ (c ∨ d), b ∧ (c ∨ d),
(a ∨ b) ∧ c, or (a ∨ b) ∧ d. Each of these possibilities has
different impact on error and circuit complexity, as measured
by design area. Since a circuit can have million of internal
expressions, each with a number of possible ways to re-
write approximately, a procedure is needed to identify the
best expressions to apply the simplifications, together with

the particular form of simplification that leads to minimal area.
Each expression is given both a value, defined as the reduction
in area it realizes when simplified, and a weight, defined as the
introduced error, then a knapsack formulation is constructed
and solved to identify the best set of nodes to approximate
in order to maximize value (i.e., total area reduction) under
weight constraints (i.e., maximum error).

B. Logic Rewriting Using Boolean Matrix Factorization.

BLASYS introduces a new formal method in approximate
logic synthesis [17], [19], [30]. In BLASYS the operation of
a circuit is captured by a matrix that represents the output
side of the circuit’s truth table, such that for a n-input, m-
output circuit, the matrix size is N × p, where N = 2n. To
create an approximate circuit from a given circuit, Boolean
matrix factorization is used, where an input matrix M of
dimensions N × p is factored into two matrices: an N × d
matrix, B, and an d × p matrix, C, where 1 ≤ d < p
such that |M − BC|2 is minimized; i.e., M ≈ BC [32].
In Boolean Matrix Factorization (BMF), multiplications are
performed using logical AND operations and additions are
performed using logical OR operations. One can interpret the
columns of B as factors or bases that are linearly combined
using C. For example, consider a circuit with n = 3 inputs
and p = 4 outputs and the truth table M given in Equation
(IV-B)2:

M =

0 0 0 1
1 1 1 0
0 1 0 1
1 1 0 0
0 1 0 1
1 1 0 0
0 0 0 1
1 0 0 0

Then for the case of d = 2, M can be factored as given in
Equation (1):

M ≈

0 0
1 0
0 1
1 0
0 1
1 0
0 0
1 0

(

1 1 0 0
0 1 0 1

)
=

0 0 0 0
1 1 0 0
0 1 0 1
1 1 0 0
0 1 0 1
1 1 0 0
0 0 0 0
1 1 0 0

leading to errors in the approximation, which is equal to 4
as measured by the Hamming Distance (HD) to the original
matrix, or a relative HD error of 4/32 = 12.5%. The factor-
ization degree, d, controls the amount of approximation in the
factored representation, with the general trend that reducing d
increases the amount of approximation.

After the matrix representing the circuit is factored, a
new approximate circuit is created by synthesizing (1) the
circuit representing the matrix B, which is referred to as
the compressor circuit, and (2) the circuit representing the
matrix C, which is referred to as the decompressor circuit,
wherein C operates on the outputs of B by ORing them. Since
the compressor has fewer outputs than the original circuit, it

2The order of the rows in M corresponds to inputs 000, 001, . . . , 111.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 10

0
10
20
30
40
50
60
70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
es

ig
n

ar
ea

 (u
m

2)

Hamming	 distance	 (%)

D
es

ig
n

ar
ea

 (µ
m

2)

Hamming distance (%)

Fig. 12: Trade-off between design area and QoR as measured
by HD for x2 circuit. Original design point is in red; approx-
imate designs in blue. Approximate designs are obtained by
adjusting the factorization degree in BLASYS from 6 down
to 1.

circuit

QoR and
power eval

truth
table BMF

synthesis
approximate

designs

partition

Fig. 13: BLASYS flow [30]. An input circuit is first partitioned
into subcircuits with a reasonable number of inputs for each
subcircuit. The truth table of every subcircuit is then evaluated
followed by Boolean Matrix Factorization (BMF). The results
from BMF is then synthesized to create an approximate
subcircuit. The QoR and physical metrics (e.g. power or area)
of the entire circuit are then evaluated. This process is iterated
multiple times to yield approximate circuits with various QoR-
power trade-offs.

typically leads to a synthesized circuit with less design area
and power consumption. Figure 12 gives an example of the
trade-off between QoR and design area where BLASYS is
used to synthesize approximate versions for circuit x2 from
the LGSynth91 benchmark set [63]. x2 has 10 primary inputs
and 7 primary outputs; thus, one can vary the factorization
degree, d, from d = 6 down to d = 1. By changing d,
BLASYS enables a graceful trade-off between QoR and design
area. For example, for x2 we can reduce design area by 36%
at the expense of introducing 2.79% bit flips in the truth table.

Since the construction of the matrix that represents the truth
table is limited by the number of primary inputs of the circuit,
BLASYS incorporates a hypergraph partitioning method that
breaks down a large circuit into a number of subcircuits as
illustrated in Figure 13, such that BMF can be applied to
each subcircuit to yield an approximate subcircuit. The original
subcircuit is substituted by its approximate subcircuit and then
the QoR and design area or power are evaluated for the entire
circuit. BLASYS uses a design space exploration method to
identify the best subcircuits to approximate together with the
factorization degree for each subcircuit.

(a) original BDD (b) approximate BDD (c) approximate BDD

i3

1

2

3 4

5 6

i1

i2

i3

i4 i4

1 01 01 0

i1 i1

i2 i2

i3 i3

i4 i4 i4 i4

Fig. 14: Examples of approximate Boolean re-writing using
BDDs.

C. Logic Rewriting Using Binary Decision Diagrams.

Reduced Order Binary Decision Diagrams (BDDs for short)
are a canonical representation for Boolean circuits [4]. In a
BDD, internal nodes represent the primary inputs and edges
represent a possible assignment for a primary input, i.e. 1
or 0. A BDD has two terminal nodes corresponding to the
two possible circuit outputs (0 and 1), and a path from the
root of the BDD to a terminal represents the output that will
result from an assignment to the primary inputs along the
path. Figure 14a gives an example BDD for a circuit with
four inputs, i1, i2, i3 and i4 and a single output. Based on
this BDD, an assignment for nodes 1, 3 and 5 corresponding
to i1 = 0, i3 = 1, and i4 = 0 will result in a circuit output of
1 (irrespective of the value of i2). The number of nodes in a
BDD, i.e., its size, is sensitive to the order of variables in the
BDD. Minimizing the size of the BDD reduces the size of the
circuit synthesized from the BDD [62].

The general idea of BDD-based approximate synthesis
approaches is to first represent an input circuit as a BDD,
and then transform it to produce an approximate BDD with
reduced size. The approximate BDD is accepted and synthe-
sized to a circuit as long as the error between the original
BDD and approximate BDD does not exceed a given error
bound [13], [51]. One possible transformation is to replace a
node with one of its children, i.e., co-factors. For example, the
BDD in Figure 14b is obtained from the BDD in Figure 14a
by replacing node 3 with one of its children (node 5). Another
possible transformation is rounding, where a child of a node is
either replaced by the terminal 1 or the terminal 0. Since each
internal node has two children, the lighter child, i.e., the child
with fewer number of assignments that lead to the terminal 1,
is chosen. For example, the approximate BDD in Figure 14c
is obtained from the BDD in Figure 14a by replacing one of
the children of node 2 by the terminal 0.

The aforementioned approach does not guarantee minimum
BDD size for a target error bound. It is possible to devise
a method to identify the minimum BDD for a given error
bound, where the output of this function differs in at most

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 11

e possible input combinations from the original circuit [13].
To identify this function a new BDD, g, is constructed such
that it enumerates every possible function whose output differs
in at most e bits compared to the original circuit. That is, g
represents every potential circuit approximation with at most
e output flips. For example, consider a single-output circuit,
f(i1, i2), with two primary inputs, (i1, i2), then it has four
output possibilities for each one of the possible four input
combinations {i1i2 = 00, i1i2 = 01, i1i2 = 10, i1i2 = 11}. A
new BDD g(b1, b2, b3, b4, i1, i2) is constructed with four addi-
tional variables {b1, . . . , b4} that are created to indicate which
input combinations will have an output bit flip; i.e., if bj = 1
for j ∈ {1, . . . , 4} then g(b1, b2, b3, b4, i1, i2) 6= f(i1, i2);
otherwise, g(b1, b2, b3, b4, i1, i2) = f(i1, i2). In the BDD of
g, a partial path that assigns values for b1, b2, b3, b4 will lead
to 0 if the output function of the approximate circuit has
more than e bit flips; otherwise, it will lead to a subgraph
BDD, whose variables are the two original circuit inputs.
This subgraph BDD represents the logic of the approximate
circuit corresponding to a particular set of output bit flips, as
determined by the assignment of {b1, . . . , b4} in the partial
path. If the paths of this subgraph BDD are enumerated and
compared to the original BDD, we will find that no more than
e paths lead to different outcomes.

D. Logic Rewriting Using And-Inverter-Graphs (AIGs).

An AIG is a graph representation for circuits where nodes
correspond to two-input AND gates and edges can be either
inverted or not inverted [33]. For example, Figure 15 shows
circuits represented in AIGs where dashed edges represent
inverted signals, and where i1, i2 and i3 represent the primary
input signals and f the primary output signal. AIGs provide a
scalable graph representation for circuit synthesis; however,
unlike BDDs they are not canonical. Using AIGs as the
Boolean representation, Chandrasekharan et al. [5] propose an
algorithm for approximate AIG re-writing that guarantees the
bounds of approximation errors introduced in the approximate
circuit. First, the critical path(s) are identified in the AIG,
where the critical path(s) are the paths from the primary inputs
to the primary outputs with the largest number of nodes. For
example, in Figure 15a, the path {1, 3, 4, 5} is the critical
path. After identifying the critical path(s) in the AIG, cut
enumeration on the selected paths is used to identify potential
cuts. In Figure 15a, nodes {1, 3} represent a cut of size 2.
A cut can be replaced by an approximation for it; a simple
approximation replaces the root of the cut, e.g., node 3, with
a constant 0 that is then propagated to simplify the AIG. For
example, if node 3 is replaced by a constant 0 in Figure 15a
then the approximate AIG in Figure 15b is obtained. A SAT
solver is then employed to compare the original AIG and
the approximate AIGs to check wether the error constraint
is violated, hence guaranteeing the error bound.

V. APPROXIMATE HIGH-LEVEL SYNTHESIS

All of the aforementioned ALS techniques operate on
either the gate-based netlist or on a Boolean representation

i1i2i3

(a) Original AIG (b) Approximate AIG

1

i1i2i3

2

3

4

5

6

2

6

5

~

Fig. 15: Approximating AIG-based representations. Dashed
edges represent inverted signals. Approximate AIG is obtained
by replacing node 3 in the original AIG with the constant 0
and simplifying the AIG accordingly.

of the circuit. In contrast, the goal of Approximate High-
Level Synthesis (AHLS) is to integrate inexact operators as
building blocks, in order to efficiently implement designs
described in high-level languages such as behavioral Verilog
or C language. Similarly to ALS techniques, input to AHLS
flows is the original design description, which is analyzed and
modified by the HLS tool to produce a candidate approximate
design as outcome, as illustrated in Figure 16. The QoR of
the candidate approximate design is evaluated with input test
benches, with either simulation or analytical techniques. If the
approximate design passes the QoR minimum requirement,
then the design physical metrics, e.g., power, timing and
design area, are estimated to yield an approximate design
variant. Since many approximate design candidates can be
generated by the approximate HLS tool, a Pareto-optimal set
of approximate designs is identified to provide the best trade-
off between QoR and a physical metrics (e.g., power).

One of the first techniques for HLS is ABACUS [38]. In
ABACUS the behavioral or RTL Verilog description is first
parsed to build its Abstract Syntax Tree (AST), as illustrated
in Figure 17. A number of transformation operators are then
applied to the AST to create approximate variants of the AST,
which are then written back to Verilog and simulated for error
evaluation, and synthesized for area and power evaluation.
These operators include the following transformations.

1) Bit-width simplifications: This transformation reduces the
bit width of signals by truncating them and removing
some of the least significant bits. This transformation
automatically leads to a reduction in the underlying logic
resources that operate on these signals.

2) Variable to constant substitutions: Given the simulation
results of the original circuit using the test benches,
ABACUS analyzes the relative change in each signal, and
if a signal has a relatively small range of values, then it
is replaced by a constant that is equal to the mean value
of the range. This substitution enables the logic synthesis
tool to simplify the underlying logic.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 12

original design

testbenchesapproximate design

approximate designs
original design

Pareto frontier

approximate arithmetic
library

AHLS tool

QoR estimation

physical estimation
(e.g., power)

Po
w

er

Accuracy

Fig. 16: General flow of AHLS methods.

3) Approximate arithmetic transformations: This transfor-
mation replaces an exact arithmetic operator (such as ∗
or +) by an approximate operator using the available
approximate designs, such as DRUM [15], [16] and
EvoApproxLib [35].

4) Expression transformations: For this transformation,
ABACUS analyzes the arithmetic expressions in the
design and replaces them by approximate versions;
for example, a Verilog assignment statement such as
assign z = a*b+c*d is replaced by assign z =
a*(b+d), where the value of signal c is approximated
by the value of signal a and in the process saving one
multiplier.

5) Loop transformations: In ABACUS, all Verilog loop are
unrolled and the statements in the unrolled loop are then
approximated using the aforementioned transformations.

An attractive feature of ABACUS is that it applies the

AST modified AST
approximate

transformationsexact
design

approximate
design

module

assign assign

t op + z op ✱

x y t z

module

assign assign

t z

yx

op +

Fig. 17: ABACUS approximation flow. An input design is
parsed and captured in Abstract Syntax Tree (AST) form. The
AST is then manipulated to generate approximate ASTs that
are written back to Verilog and synthesized into approximate
circuits.

transformation operators in a random fashion and then selects
and retains the approximate designs that have the optimal
trade-off between accuracy and power consumption. This
selection and optimization are achieved using an evolution-
ary approach based on the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [9]. ABACUS also prioritizes approxi-
mations on the critical path to create positive slack that can be
exploited to reduce the voltage while keeping the frequency
intact [37]. The reduction in voltage leads to additional power
savings beyond those provided by the approximate logic.

Focusing on approximate arithmetic transformations, a few
works (e.g., [25], [34], [68]) propose a more detailed anal-
ysis for this transformation in order to choose a Pareto-
optimal approximate operator from within a large library of
approximate arithmetic operators [35]. For example, consider a
statement such as assign z=a+b, where the exact adder is
replaced by an approximate adder from a library of a large
number of approximate adders offering optimal accuracy-
energy trade-off for addition. To choose the best approximate
adder, different approximate adders are substituted in the
circuit and the impact of their errors is propagated to the
circuit’s outputs, and the final QoR and power consumption
are evaluated. If the QoR meets a global error bound and
the approximate designs offer a new Pareto point in terms of
power-QoR trade-off, then the approximate design is accepted.
To determine the best precisions, Constantinides et al. [6]
formulate an integer linear program (ILP) to identify the best
precision approximation for each arithmetic operator, such that
the total energy is minimized subject to an upper bound on
the output error variance. Their approach only considers bit-
width simplifications as an avenue towards approximation. It
is generalized by Li et al. [25], which also consider inexact
implementations of adders and multipliers. In [25] the solution
of the ILP formulation determines the best approximation for
each arithmetic operator.

Raising the level of abstraction even further, Lee and Gerst-
lauer [24] propose an AHLS method that is capable of creating
approximate designs from C-based descriptions of hardware
systems. The main idea is to focus on applying approximations
to loops since they are critical to the overall latency of
digital systems. Rather than taking the ABACUS approach,
where loops are unrolled and the resulting statements are
approximated individually, the loop structure is kept intact.
Instead, the iterations of a loop are split into a number of
classes based on impact of each iteration on accuracy. For
example, a loop with N iterations can be transformed into
two: a high-accuracy loop with N1 iterations, and a low-
accuracy loop with N2 iterations, such that N = N1 + N2.
More aggressive approximations are then applied to the low-
accuracy loop. For example, the low-accuracy loop can use low
precision by using smaller bit widths for the variables, whereas
the high-accuracy loop can use the fixed-point precision of
the original loop. To analyze the iterations of a loop, the
input C code is first compiled to an intermediate represen-
tation (IR) using LLVM [23]. Using test benches, the IR is
then profiled to evaluate the data statistics, mobility, latency
and energy of every operation in the design. The profiling
considers approximate substitutions for each IR statement and

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 13

propagates the error to evaluate the QoR. This QoR estimation
is done on a per iteration basis in order to classify each
iteration based on its impact on accuracy. The iterations are
then grouped together into classes based on their accuracy.
For low-accuracy loops, the degree of approximation to the
variables or arithmetic operations are chosen to minimize the
latency or energy subject to QoR constraints.

Rolda et al. et al. [41] also propose a method for approx-
imating loop nests, considering the case of linear equation
solvers. They observe that, when using iterative methods,
accuracy can be increased by either running more iterations
or by performing each computation more precisely. They
showcase that a combination of both strategies results in the
best trade-offs between resources and accuracy.

VI. COMPARATIVE EVALUATION OF ALS METHODS

As described in Sections III and IV, ALS methods proposed
in literature have widely different characteristics. Most promi-
nently, a number of works (described in Section III) introduce
transformation strategies performed on graphs representing
gate-level netlists of the circuit to be approximated, while
others (covered in Section IV) perform the automatic rewriting
of Boolean functions to be realized in hardware. In this section
we conduct an empirical comparison of a number of available
tools in the public domain, and provide a number of insightful
results.

For the purpose of our experiments we construct a new
open-source Benchmark set for Approximate Logic Synthesis
(BACS).3 Each benchmark is available in Verilog, and comes
with a test bench, a QoR python script, and a sample approxi-
mate design. The characteristics of these benchmarks are given
in Table I where we provide the total design area using the 45
nm FreePDK library [52] and using the Yosys-ABC synthesis
framework [59]. We use these benchmarks in our experiments.
The final quality of the synthesized and mapped netlists is a
function of Yosys-ABC optimality.

In our first round of experiment, we focus on induced Mean
Absolute Errors (MAEs) as a QoR metric to evaluate the
impact of using ALS techniques when creating approximate
arithmetic circuits. Area is instead employed as a cost metric.
We consider an 8-bit unsigned multiplier and a 16-bit unsigned
multiplier that are part of our BACS benchmark set. We apply
three surveyed techniques to generate approximate variants
for the multiplier: BLASYS [19] (which is a logic rewriting
method),4 EvoApprox [35] and GLP [45] (which, instead,
perform structural netlist transformation). We also create base-
line approximate multipliers (Truncated) by truncating the
least significant bits of the operands before multiplication, as
suggested in [3]. In Figure 18 and 19, we plot the relative area
and mean absolute error (%) of the 8-bit and 16-bit multipliers
in comparison to the accurate multipliers. We also plot the
Pareto frontier for the designs with optimal trade-off between
design area and MAE. The plot leads to the following insights:
• For the 8-bit multiplier, results show that BLASYS and

EvoApprox produce comparable results with approximate

3BACS is available at https://github.com/scale-lab/BACS.
4BLASYS is available at https://github.com/scale-lab/BLASYS.

designs from both techniques appearing on the Pareto
frontier. The two techniques provide excellent approxi-
mate multipliers; for example, one implementation cuts
the multiplier’s area by half at the expense of only 0.32%
mean absolute error (expressed as a percentage of the
maximum circuit output).

• For the 16-bit multiplier, BLASYS shows better results
as it is able to dominate the Pareto frontier. This better
results show that BLASYS has better scability since it is
able to partition the circuit for larger designs and then
re-write the logic for each partition. GLP is dominated
except for small values of MAE when it tends to produce
reasonable results.

• BLASYS (and EvoApprox for 8-bit multiplier) dominate
the manual approximate multipliers generated by truncat-
ing the least significant bits of the operands by a large
margin. For instance, for an error threshold of 0.2%,
EvoApprox offers a design with 45% area reduction com-
pared to 18% area reduction for the truncated multiplier
with the same error margin. This result shows that ALS
techniques can produce better results than manual alter-
natives, while being labour-intensive and more flexible.

0 0.05 0.1 0.15 0.2 0.25 0.3

MAE (%)

0.5

0.6

0.7

0.8

0.9

1

A
re

a
 r

a
ti
o

BLASYS

EvoApprox

Truncated

GLP

Pareto frontier

Fig. 18: Approximate design variants of an 8-bit unsigned
multiplier. Approximate designs were created with BLASYS,
EvoApprox, GLP and manually by truncating the least signif-
icant bits.

0 0.005 0.01 0.015 0.02 0.025 0.03

MAE (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
re

a
 r

a
ti
o

BLASYS

EvoApprox

Truncated

GLP

Pareto frontier

Fig. 19: Approximate design variants of a 16-bit unsigned
multiplier. Approximate designs were created with BLASYS,
EvoApprox, GLP and manually by truncating the least signif-
icant bits.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 14

TABLE I: Characteristics of Benchmarks for Approximate Logic Synthesis (BACS).

Benchmark I/O Gates Area QoR Origin desc.
(µm2) Metric

abs diff 16/9 70 194 MAE absolute difference
adder32 64/33 176 512 MAE 32-bit adder
buttfly 32/34 168 464 MAE simple butterfly structure
classifier 64/2 18788 56062 ER [38] SVM classifier
mac 12/8 101 268 MAE combinational unit of a MAC circuit
fft 258/256 7184 23574 MSE [38] sequential 8-bit FFT circuit (sequential)
mult8 16/16 331 936 MAE 8-bit unsigned multiplier
mult16 32/32 1461 4214 MAE 16-bit unsigned multiplier
x2 10/7 29 65 HD [12] simple logic circuit

10
0

10
1

Max error (%)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
ra

tio

abs_diff

GLP
CC

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Max error (%)

0.5

0.6

0.7

0.8

0.9

1.0
A

re
a

ra
tio

adder32

GLP
CC
BLASYS

10
3

10
2

Max error (%)

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
ra

tio

buttfly

GLP
CC
BLASYS

10
0

10
1

Max error (%)

0.2

0.4

0.6

0.8

A
re

a
ra

tio

mac

GLP
CC
BLASYS

10
7

10
6

10
5

10
4

10
3

Max error (%)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
ra

tio

mult16

GLP
CC
BLASYS

10
2

10
1

Max error (%)

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
ra

tio

mult8

GLP
CC
BLASYS

Fig. 20: Comparison of area reduction in approximate circuits for GLP [45], CC [44] and BLASYS [19]. The maximum
absolute error (max error) is expressed as a percentage of the maximum circuit output.

A second comparison is provided in Figure 20, here the
focus was set on containing the worst case error using ALS
methods. We considered two structural transformation tech-
niques, Circuit Carving (CC) [44] and Gate-Level Pruning
(GLP) [45], and one technique based on logic rewriting
(BLASYS [19]) over a subset of the BACS benchmark set.
When set to control maximum error, ALS methods are nec-
essarily more conservative than for average errors. However,
only CC guarantees that the error at the output of an inexact
circuit is indeed an upper threshold on the actual one, while
the other two provide a soft bound based on Monte Carlo
simulations on a subset of the circuit inputs, which they
employ to assess the QoR at different approximation steps.
Figure 20 reports the area ratio obtained by different con-
straints on such maximum error. All techniques provide good
to excellent approximations, especially when considering the
stricter error constraint. Their results are comparable for small
error values, while for larger errors CC tends to dominate GLP,

and BLASYS dominates both, except for the 8-bit absolute
difference, which it was unable to process. For example,
BLASYS halves the area with an error of 0.1% for the 32-bit
adder (top row, central), while for the 4-bit multiply-add both
CC and BLASYS reduce the original area to less than 30%
with a 14% maximum error (bottom row, left). BLASYS again
proves to be very effective in exploring the design space and
scale to large circuits, while CC suffers from its exponential
worst-case complexity, though it generally provides better
approximations than GLP. Indeed, on larger error values, it has
to stop before terminating exploration, and this leads to worse
approximations. However, we note that in most real-world
scenarios too large error values would not be meaningful, thus
we can conclude that CC is a valid methodology when strict
maximum error guarantees are required.

In our third comparison we contrast approximate logic
rewriting methods with approximate HLS methods. We con-
sider a combinational version of the 8-point FFT benchmark

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 15

0 0.05 0.1 0.15 0.2

MSE (%)

0.7

0.75

0.8

0.85

0.9

0.95

1
A

re
a
 r

a
ti
o

BLASYS

ABACUS

Pareto frontier

Fig. 21: Approximate design variants of an 8-point FFT circuit
created using ABACUS and BLASYS.

written in Verilog RTL. We contrast ABACUS [38], which is
an example of approximate HLS tools, against BLASYS [19]
which relies on approximate logic rewriting.5 For BLASYS,
the circuit is first compiled to Boolean representation using
Yosys. Figure 21 provides the error in MSE (%) versus area
ratio compared to the accurate design for designs from both
techniques. The results from ABACUS show two clusters
of points with a big distance in between them with respect
to MSE. For the first cluster with low MSE, BLASYS is
able to achieve better results with smoother trade-off be-
tween accuracy and area as it incrementally approximates
each partition in the design. However, this fine granularity
comes at an expense: BLASYS is unable to make the drastic
approximations required to reach the second cluster within
reasonable runtime. For the provided results, the runtime of
BLASYS was 22× the runtime of ABACUS. ABACUS is
much faster than BLASYS because ABACUS performs its
approximations on the abstract syntax tree, which has a size
that is proportional to the RTL design text description. Thus,
approximate HLS methods offers much better scalability in
comparison to logic rewriting methods.

We summarize our insights from all experiments.
1) Structural transformation ALS methods require a synthe-

sized circuit netlist as an input before any approximate
transformation are applied. This requirement might in
principle limit their effectiveness since the synthesized
netlist can limit the set of reachable approximate netlists,
if an incomplete set of transformation rules is used, as for
example in gate-elimination-only methodologies. On the
other hand, logic re-writing approaches do not assume
a synthesized circuit, and the approximation is either
conducted before or in conjunction with the synthesis
process. Thus, logic re-writing can potentially lead to
a larger design space exploration since synthesis is part
of the process. However, due to the heuristic nature of
the synthesis process, logic re-writing may, for large
circuits, be unable to construct a good circuit structure.
The overall conclusion must therefore be that for large
circuits, structural approaches are beneficial when the

5ABACUS is available at https://github.com/scale-lab/ABACUS.

structure of an exact circuit is a good approximation to
the optimal structure of an approximation.

2) To achieve scalable results, it is important that approx-
imate logic rewriting techniques either (1) rely on un-
derlying scalable circuit data structures such as AIGs, or
(2) use partitioning techniques to break-down the circuit
into manageable subcircuits where logic re-writing can
be applied on each subcircuit independently.

3) Automated ALS can provide approximate designs that
dominate manually created ones, that exploit the knowl-
edge of the underlying circuit structure.

4) Some ALS techniques can be adapted to a number of
different error metrics (such as, for example, BLASYS)
and others are instead built specifically for one given
metric (such as for example CC, which is guaranteed
to never exceed a maximum error, but cannot be easily
adapted to average error).

5) When compared to approximate HLS, structural and
rewriting methods often offer finer-grain control of the
approximation because these methods operate at the gate
or Boolean level. Thus, it is possible to create approxi-
mate circuits variants that have incremental nature with
fine grain trade-off between QoR and design metrics such
as area and power. Approximate HLS techniques operate
at a higher level so their approximations tend to produce
coarser results in terms of QoR and power trade-off. For
the same reason, approximate HLS approaches are more
scalable since they can produce in one approximation step
what might take many steps in structural and re-writing
ALS methods. An additional advantage for HLS methods
over other methods is that their approximate designs are
easier to interpret by human designers.

VII. CONCLUSIONS AND OPEN CHALLENGES IN ALS

Approximate Logic Synthesis leads to resource-efficient
hardware implementations that meet QoR requirements.
Hence, it is extremely appealing in the current post-Moore era,
where further exponential gains from advances in transistor
technology cannot be taken for granted, and where applications
are data-rich with high degree of error tolerance. Table II pro-
vides a taxonomy summary of the majority of papers reviewed
in this survey. Despite the large improvements in state-of-the-
art ALS in recent years, a number of hurdles still have to be
confronted for ALS to become mainstream in hardware design,
both regarding automation in low-level design of approximate
components and methodologies for approximate high-level
synthesis. We discuss the main challenges for ALS in the
remainder of this section.

A. Synthesis of Approximate Circuits

Scalability. This aspect is still an issue for approximate de-
sign automation methodologies: as an example, ALS methods
that rely on BDD and BMF for Boolean representation cannot
handle large circuits, and as result need circuit partitioning
methods to break down the circuit into manageable subcircuits
[30]. However, this partitioning often reduces the optimality
of results attained from these methods.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 16

TABLE II: Summary of ALS works.

Reference Synthesis Method Error modeling / QoR evaluation QoR Metric

Su et al. [53] Venkataramani et al. [56]
Monte Carlo + error rate /

change propagation matrix average error
Zhang et al. [69] Greedy gates pruning signal values probability approximate efficiency

Venkatesan et al. [58] Equivalent untimed circuit
SAT / error rate /

BDDs / average error /
Monte Carlo maximum error

Scarabottolo et al. [43] Schlachter et al. [45]
partitioning +

maximum error
propagation matrices

Liu et al. [27] & Vasicek et al. [54] Netlist transformation: stochastic Markov chain Monte Carlo
error rate /

average error

Schlachter et al. [45] Netlist pruning: greedy heuristics Monte Carlo
error rate /

average error

Venkataramani et al. [56] Netlist manipulation: greedy heuristics Monte Carlo
error rate /

average error

Shin et al. [49] Netlist pruning: greedy heuristics
Monte Carlo / error rate /

Threshold testing maximum error
Scarabottolo et al. [44] Netlist pruning: exhaustive exploration simulation maximum error

Venkataramani et al. [31], [57] Boolean rewriting: symbolic rewriting symbolic maximum error
Hashemi et al. [17], [19] Boolean rewriting: BMF Monte Carlo average error
Soeken et al. [51], Frohilich et al. [13] Boolean rewriting: BDDs BDDs maximum error
Chandrasekharan et al. [5] Boolean rewriting: AIGs SAT maximum error

Nepal et al. [38] High-level synthesis: Behavioral / RTL Verilog Monte Carlo SNR
Li et al. [25], Constantinides et al. [6] High-level synthesis: precision exploration analytic error variance
Zervakis et al. [68], Mrazek et al. [34] High-level synthesis: arithmetic exploration simulation average error
Lee et al. [24] High-level synthesis: C analytic SNR

Rolda et al. et al. [41] High-level Synthesis: C simulation
average error /
maximum error

Runtime accuracy-configurable hardware. An open re-
search question regards the generation of designs having an
approximate degrees which is not fixed at design time, but
instead variable according to external (e.g., battery level) and
internal (e.g., output confidence) factors. In such context, ALS
could provide implementations for both the high-precision
and high-efficiency operating modes, as well as the required
logic to switch between either of the two. Nonetheless, while
accuracy-configurable adders [47] and multipliers [1] have
been proposed, their design is still manually done. Auto-
mated approaches, able to explore the benefits of accuracy
configuration, in light of the overhead (energy- and area-
wise) implied by the logic governing the transitions between
different approximate settings, are instead currently lacking.

B. Approximate High Level Synthesis

Arithmetic Library. The synthesis of approximate opera-
tors is clearly a key first requirement for the wide adoption
of ALS techniques. Except for very few works on adders [28]
and multipliers [66], most of existing research on approximate
arithmetic have focused on integer arithmetic disregarding
floating point operators. Building robust AHLS tools require
extensive libraries of approximate floating-point as well as
fixed-point arithmetic components that need to be developed.

As covered in Section V, works in AHLS do study the
composition of multiple approximate operators to realise ap-
proximate accelerators [25], [34], [38], [68]. Still, by picking
the proper building blocks among the ones available in a
library, such strategies cast accelerator design as a selection
problem. Solutions are therefore restricted only to integrating
the available library elements. More flexible approaches have

indeed been proposed, but they only focus on signal width
optimizations [8], [7], without considering the opportunities
for logic simplification offered by ALS. These are instead
leveraged by the strategies in [2] and [20], which employ
interval arithmetic to estimate the impact, as seen at the
output of a hardware module, of approximating its constituent
operators. This stance allows the assessment of the operations
approximability in advance of time-consuming synthesis and
simulations. Nonetheless, these methodologies are only limited
to combinatorial designs (a limited support for sequential ones
is provided in [2]), and do not provide an explicit link between
circuit-level QoR metrics (e.g.: average and maximum error)
and application level ones (SNR, SSIM).

Cross-layer approximate design. Another little-explored
aspect related to AHLS is that simplifications can be driven
by algorithmic considerations [50] as well as ALS-based
ones. Interaction between the two levels (i.e., algorithmic and
AHLS) has mainly been explored in an ad-hoc fashions, such
as the design of linear equation solvers in [41] or that of
classification engines in [11], while more general cross-layer
approaches are still in their infancy [38].

Key towards the maturity of AHLS will be the development
of strategies to quickly link error and QoR metrics across
abstraction levels. On one side, such effort encompasses the
development of tools dedicated to the early evaluation, from
a high-level viewpoint, of approximation choices. Available
frameworks are currently hampered by a narrow application
scope, such has approximate neural networks [55]. On the
other hand, methodologies should be envisioned that estimate
the QoR impact of a simplifying transformation, the limiting
or entirely avoiding post-hoc simulations. Such stance is far
from trivial, since metrics of interest are usually related to a

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 17

considered scope: application-wide QoR being best expressed
with metrics such as as classification accuracy or signal-to-
noise ratio, while at the operator levels error rates or average
errors are usually more appropriate.

REFERENCES

[1] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram. Dual-quality 4:
2 compressors for utilizing in dynamic accuracy configurable multipliers.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(4):1352–1361, Jan. 2017.

[2] G. Ansaloni, I. Scarabottolo, and L. Pozzi. Judiciously spreading
approximation among arithmetic components with top-down inexact
hardware design. In Applied Reconfigurable Computing, pages 14–29.
Springer International Publishing, Mar. 2020.

[3] B. Barrois, O. Sentieys, and D. Menard. The hidden cost of functional
approximation against careful data sizing—a case study. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibi-
tion, pages 181–186, Mar. 2017.

[4] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 100(8):677–691, 1986.

[5] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler.
Approximation-aware rewriting of aigs for error tolerant applications. In
Proceedings of the International Conference on Computer Aided Design,
page 83, Nov. 2016.

[6] G. Constantinides, P. Cheung, and W. Luk. Optimum wordlength
allocation. In IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), pages 219–228, 2002.

[7] G. Constantinides, A. Kinsman, and N. Nicolici. Numerical data
representations for FPGA-based scientific computing. IEEE Design and
Test of Computers, 28(4):8–17, May 2011.

[8] G. A. Constantinides, P. Cheung, and W. Luk. The multiple wordlength
paradigm. In Proc. IEEE Symposium on FPGAs for Custom Computing
Machines, pages 51–60, 2001.

[9] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective Optimization:
NSGA-II. In International Conference on Parallel Problem Solving from
Nature, pages 849–858, 2000.

[10] T. Drane, T. Rose, and G. A. Constantinides. On the systematic
creation of faithfully rounded truncated multipliers and arrays. IEEE
Transactions on Computers, 63(10):2513–2525, October 2014.

[11] L. Ferretti, G. Ansaloni, L. Pozzi, A. Aminifar, D. Atienza, L. Cammoun,
and P. Ryvlin. Tailoring SVM inference for resource-efficient ECG-
based epilepsy monitors. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pages 1–4, Mar. 2019.

[12] P. Fišer and J. Schmidt. A comprehensive set of logic synthesis and
optimization examples. In Proc. of 12th Int. Workshop on Boolean
Problems (IWSBP), pages 151–158, 2016.

[13] S. Fröhlich, D. Große, and R. Drechsler. Error Bounded Exact BDD
Minimization in Approximate Computing. In International Symposium
on Multi-Level Logic, pages 254–259, 2017.

[14] J. Han and M. Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In IEEE European Test Symposium
(ETS), pages 1–6, May 2013.

[15] S. Hashemi, R. I. Bahar, and S. Reda. DRUM: A Dynamic Range
Unbiased Multiplier for Approximate Applications. In IEEE/ACM
International Conference on Computer-Aided Design, pages 418–425,
2015.

[16] S. Hashemi, R. I. Bahar, and S. Reda. A low-power dynamic divider for
approximate applications. In IEEE/ACM Design Automation Conference,
number 105, 2016.

[17] S. Hashemi and S. Reda. Generalized Matrix Factorization Techniques
for Approximate Logic Synthesis. In ACM/IEEE Design Automation
and Test in Europe, pages 1289–1292, 2019.

[18] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda. Approximate
computing for biometric security systems: A case study on iris scanning.
In 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 319–324, March 2018.

[19] S. Hashemi, H. Tann, and S. Reda. BLASYS: Approximate logic
synthesis using boolean matrix factorization. In Proceedings of the 55th
Design Automation Conference, pages 55:1–55:6, June 2018.

[20] J. Huang, J. Lach, and G. Robins. A methodology for energy-quality
tradeoff using imprecise hardware. In Proceedings of the 49th Design
Automation Conference, pages 504–509. IEEE, June 2012.

[21] A. B. Kahng and S. Kang. Accuracy-configurable adder for approximate
arithmetic designs. In DAC Design Automation Conference 2012, pages
820–825, 2012.

[22] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power
with an underdesigned multiplier architecture. In Proceedings of the
24th International Conference on VLSI Design, pages 346–351, Jan.
2011.

[23] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In ACM roceedings of the
international symposium on Code generation and optimization:, pages
75–84, 2004.

[24] S. Lee, L. K. John, and A. Gerstlauer. High-level synthesis of approxi-
mate hardware under joint precision and voltage scaling. In IEEE/ACM
Design Automation Conference, pages 187–192, 2017.

[25] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu. Joint precision optimization
and high level synthesis for approximate computing. In IEEE/ACM
Design Automation Conference, number 104, pages 1–6, 2015.

[26] A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Synthesizing
parsimonious inexact circuits through probabilistic design techniques.
ACM Transactions on Embedded Computing Systems (TECS), 12(2s):93,
May 2013.

[27] G. Liu and Z. Zhang. Statistically certified approximate logic synthe-
sis. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 344–351, Nov. 2017.

[28] W. Liu, L. Chen, C. Wang, M. O?Neill, and F. Lombardi. Design
and analysis of inexact floating-point adders. IEEE Transactions on
Computers, 65(1):308–314, Mar. 2015.

[29] W. Liu, F. Lombardi, and M. Shulte. A retrospective and prospective
view of approximate computing [point of view. Proceedings of the IEEE,
108(3):394–399, 2020.

[30] J. Ma, S. Hashemi, and S. Reda. Approximate Logic Synthesis Using
BLASYS. In Workshop on Open-Source EDA Technology, number 5,
2019.

[31] J. Miao, A. Gerstlauer, and M. Orshansky. Approximate logic synthesis
under general error magnitude and frequency constraints. In Proceedings
of the International Conference on Computer Aided Design, pages 779–
786, Nov. 2013.

[32] P. Miettinen and J. Vreeken. Model order selection for boolean matrix
factorization. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 51–59,
2011.

[33] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG
rewriting a fresh look at combinational logic synthesis. In IEEE/ACM
Design Automation Confereence, pages 532–535, 2006.

[34] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique.
autoAx: An Automatic Design Space Exploration and Circuit Build-
ing Methodology utilizing Libraries of Approximate Components. In
IEEE/ACM Design Automation Conference, volume 123, pages 1–6,
2019.

[35] V. Mrazek, Z. Vasicek, and L. Sekanina. Evoapproxlib: Extended library
of approximate arithmetic circuits. In Workshop on Open-Source EDA
Technology, number 10, pages 1–4, 2019.

[36] K. E. Murray, A. Suardi, V. Betz, and G. Constantinides. Calcu-
lated Risks: Quantifying Timing Error Probability with Extended Static
Timing Analysis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(4):719–732, Mar. 2018.

[37] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda. Automated
High-Level Generation of Low-Power Approximate Computing Circuits.
IEEE Trans. Emerging Topics Computing, 7(1):18–30, 2016.

[38] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. ABACUS: A Technique for
Automated Behavioral Synthesis of Approximate Computing Circuits.
In IEEE/ACM Design, Automation and Test in Europe, pages 1–6, 2014.

[39] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan.
Aslan: Synthesis of approximate sequential circuits. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition,
pages 1–6, Mar. 2014.

[40] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel.
Architectural-space exploration of approximate multipliers. In Proceed-
ings of the International Conference on Computer Aided Design, pages
1–8, Nov. 2016.

[41] A. Roldao-Lopes, A. Shahzad, G. A. Constantinides, and E. C. Kerrigan.
More flops or more precision? accuracy parameterizable linear equation
solvers for model predictive control. In Proceedings of the 17th
IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 209–216. IEEE, Apr. 2009.

[42] H. Saadat, H. Javaid, and S. Parameswaran. Approximate integer and
floating-point dividers with near-zero error bias. In Proceedings of the

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 18

56th Annual Design Automation Conference 2019, pages 161:1–161:6.
ACM, June 2019.

[43] I. Scarabottolo, G. Ansaloni, G. Constantinides, and L. Pozzi. Partition
and Propagate: an error derivation algorithm for the design of approxi-
mate circuits. In Proceedings of the 56th Design Automation Conference,
pages 1–6, June 2019.

[44] I. Scarabottolo, G. Ansaloni, and L. Pozzi. Circuit Carving: A method-
ology for the design of approximate hardware. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition,
pages 545–550, Mar. 2018.

[45] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. Design and applica-
tions of approximate circuits by gate-level pruning. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 25(5):1694–1702, Feb.
2017.

[46] E. Sentovich and K. Singh. A system for sequential circuit synthesis.
Technical report, EECS, UCB, 1992.

[47] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low latency
generic accuracy configurable adder. In Proceedings of the 52nd Design
Automation Conference, pages 1–6, July 2015.

[48] K. Shi, D. Boland, E. Stott, S. Bayliss, and G. A. Constantinides. Data-
path synthesis for overclocking: Online arithmetic for latency-accuracy
trade-offs. In Proceedings of the Design Automation Conference 2014.
ACM, 2014.

[49] D. Shin and S. K. Gupta. A new circuit simplification method for error
tolerant applications. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, pages 1–6, Mar. 2011.

[50] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation.
In SIGSOFT symposium and European conference on Foundations of
software engineering, pages 124–134, Sept. 2011.

[51] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler. BDD
minimization for approximate computing. In Proceedings of the Asia
and South Pacific Design Automation Conference, pages 474–479, Jan.
2016.

[52] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, et al. FreePDK:
An open-source variation-aware design kit. In 2007 IEEE international
conference on Microelectronic Systems Education (MSE’07), pages 173–
174, June 2007.

[53] S. Su, Y. Wu, and W. Qian. Efficient batch statistical error estimation
for iterative multi-level approximate logic synthesis. In Proceedings of
the 55th Design Automation Conference, pages 54:1–54:6, June 2018.

[54] Z. Vasicek and L. Sekanina. Evolutionary approach to approximate
digital circuits design. IEEE Transactions on Evolutionary Computation,
19(3):432–444, July 2015.

[55] F. Vaverka, V. Mrazek, Z. Vasicek, and L. Sekanina. TFApprox: Towards
a Fast Emulation of DNN Approximate Hardware Accelerators on GPU.
In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Mar. 2020.

[56] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-and-simplify:
A unified design paradigm for approximate and quality configurable
circuits. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 1367–1372, Mar. 2013.

[57] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. SALSA: systematic logic synthesis of approximate circuits. In
Proceedings of the 49th Design Automation Conference, pages 796–801,
June 2012.

[58] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO:
Modeling and analysis of circuits for approximate computing. In
Proceedings of the International Conference on Computer Aided Design,
pages 667–673, Nov. 2011.

[59] C. Wolf. Yosys open synthesis suite, 2016.
[60] Y. Wu and W. Qian. An efficient method for multi-level approx-

imate logic synthesis under error rate constraint. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
June 2016.

[61] Q. Xu, T. Mytkowicz, and N. Kim. Approximate computing: A survey.
IEEE Design and Test, 33(1):8–22, Jan. 2016.

[62] C. Yang, M. Ciesielski, and V. Singhal. Bds: A bdd-based logic
optimization system. In ACM/IEEE Design Automation Conference,
pages 866–876, 2000.

[63] S. Yang. Logic synthesis and optimization benchmarks user guide. In
Technical Report Microelectronics Center of North Carolina,, 1991.

[64] Y. Yao, S. Huang, C. Wang, Y. Wu, and W. Qian. Approximate disjoint
bi-decomposition and its application to approximate logic synthesis.
In 2017 IEEE International Conference on Computer Design (ICCD),
pages 517–524, Nov. 2017.

[65] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On reconfiguration-
oriented approximate adder design and its application. In Proceedings of
the International Conference on Computer Aided Design, pages 48–54,
Nov. 2013.

[66] P. Yin, C. Wang, W. Liu, and F. Lombardi. Design and performance
evaluation of approximate floating-point multipliers. In IEEE Computer
Society Annual Symposium on VLSI, pages 296–301, July 2016.

[67] A. C. B. Z. Wang, H. R. Sheikh, and E. Simoncelli. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

[68] G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. Multi-Level
Approximate Accelerator Synthesis Under Voltage Island Constraints.
IEEE Transactions on Circuits and Systems Part II: Express Briefs,
66(4):607–611, 2019.

[69] Z. Zhang, Y. He, J. He, X. Yi, Q. Li, and B. Zhang. Optimal slope
ranking: An approximate computing approach for circuit pruning. In
2018 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4, May 2018.

[70] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong. Design of
low-power high-speed truncation-error-tolerant adder and its application
in digital signal processing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 18(8):1225–1229, 2010.

Ilaria Scarabottolo received her B.Sc. degree in
Mathematical Engineering and her M.Sc. degree
in Computer Engineering at Politecnico di Milano,
Italy, in 2013 and 2016. In parallel, she has ob-
tained a second M.Sc degree at École Centrale
Paris, France, in 2014. Since 2016, she has been a
PhD student at the Università della Svizzera Italiana
(USI), Lugano, Switzerland, Faculty of Informat-
ics. In 2019, she was awarded the Swiss National
Foundation grant DOC-Mobility, thanks to which
she spent six months as visiting student at Imperial

College London. Her research interests include approximate logic synthesis
for error-tolerant applications, embedded systems and low-power hardware
design.

Giovanni Ansaloni Giovanni Ansaloni is currently
a post-doctoral researcher at the Faculty of Infor-
matics of Università della Svizzera Italiana (USI-
Lugano, Switzerland). From 2011 to 2015, he was
a researcher at EPFL (Lausanne, Switzerland). He
received the M.Sc. degree in Electronic Engineer-
ing from University of Ferrara (Italy) in 2003, the
MAS degree from the ALaRI institute (Switzerland)
in 2005 and the Ph.D. Degree from USI-Lugano
in 2011. His research efforts cover different areas
related to hardware/software co-design, including

high-level synthesis, domain-specific architectures, and low-power signal
processing.

George Constantinides received the PhD degree
from Imperial College London in 2001. Since 2002,
he has been with the faculty at Imperial College
London, where he is currently Professor of Digital
Computation and Head of the Circuits and Sys-
tems research group. He was General Chair of the
ACM/SIGDA International Symposium on Field-
programmable Gate Arrays in 2015. He serves on
several program committees and has published over
200 research papers in peer-refereed journals and
international conferences. Prof. Constantinides is a

Senior Member of the IEEE and a Fellow of the British Computer Society.

SCARABOTTOLO et al.: APPROXIMATE LOGIC SYNTHESIS: A SURVEY 19

Laura Pozzi Laura Pozzi received the Ph.D. de-
gree in computer engineering from Politecnico di
Milano, Milan, Italy, in 2000. She is currently a
Professor with the Faculty of Informatics, Univer-
sità della Svizzera Italiana, Lugano, Switzerland.
She was a Post-Doctoral Researcher with EPFL,
Lausanne, Switzerland; a Research Engineer with
STMicroelectronics, San Diego; and an Industrial
Visitor with University of California at Berkeley. Her
current research interests include automating em-
bedded processor customization, high performance

compiler techniques, innovative reconfigurable fabrics, high-level synthesis
design space exploration, and approximate computing. Prof. Pozzi has served
as an Associate Editor for the IEEE Transactions on Computer-Aided Design
and the IEEE Design and Test, and is or has been in the Technical Program
Committee of several international conferences in the areas of compilers and
architectures for embedded systems.

Sherief Reda Sherief Reda received the Ph.D. de-
gree in Computer Science and Engineering from
the University of California, San Diego in 2006.
He is currently a Full Professor with the School of
Engineering, Brown University, Providence, RI. His
research interests include energy-efficient comput-
ing, thermal-power sensing and management, low-
power design techniques, and design automation. He
has over 120 publications in peer-reviewed confer-
ences and journals with several of them receiving
best paper nominations and awards. He serves as an

associate editor for IEEE Transactions on Computer-Aided Design. He is a
senior member of IEEE.

