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Abstract

Uncertainty quantification (UQ) has recently become an important part of the design process of count-

less engineering applications. However, up to now in computational fluid dynamics (CFD) the errors

introduced by the turbulent viscosity models in Reynolds-Averaged Navier Stokes (RANS) models have

often been neglected in UQ studies. Although Direct Numerical Simulations (DNS) are physically cor-

rect, obtaining a large enough set of DNS data for UQ studies is currently computationally intractable.

UQ based only on RANS simulations or on DNS often leads to physical and statistical inaccuracies in

the output probability distribution functions (PDF). Therefore, three hybrid methods combining both

RANS simulations and DNS to perform non-intrusive UQ are suggested in this work. Low-fidelity RANS

simulations and high-fidelity DNS are combined to give an approximation of an output PDF using the

advantages of both data sets: the physical accuracy via the DNS and the statistical accuracy via the

RANS simulations. The hybrid methods are applied to the flow over 2D periodically arranged hills. It is

shown that the Gaussian CoKriging (GCK) method is the best hybrid method and that a non-intrusive

hybrid UQ approach combining both DNS and RANS simulations is possible, with both physically more

accurate and statistically better PDF.

Keywords: Uncertainty quantification, Non-intrusive hybrid methods, Gaussian CoKriging, Direct

Numerical Simulation, Reynolds-Averaged Navier-Stokes simulation

1. Introduction

Uncertainty is one of the key points to consider in the design process or in the modelisation of physical

systems. The uncertainty quantification process starts with a probability distribution function (PDF)

of an input parameter, e.g. the freestream velocity over an airfoil. The PDF of an output parameter,

e.g. the lift force of this airfoil, as a consequence of the uncertainty in the input parameter is of interest.

Such uncertainties can have a large effect on the design and performance assessment for a wide variety

of engineering applications, for example in turbine blade manufacturing (Thakur, Keane and Nair [1]),

in structural properties such as stiffness and damping (Abolfathi et al. [2]), or in operating parameters

such as fuel burn performance (Amaral et al. [3]).
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Therefore, much research effort is put in developing methods to predict or quantify the effects of such

uncertainties. In airfoil design, Loeven, Witteven and Bijl [4] showed for a NACA airfoil in transonic

flow that manufacturing tolerances of maximum camber (in interval [3.5%, 6.5%] with mean µ = 5%),

maximum camber location (in interval [29%, 51%] with mean µ = 40%) and maximum thickness (in

interval [8.5%, 15.5%] with mean µ = 12%) can cause a 10% variation in shock location. In the field

of turbomachinery, Schnell, Ashcroft and Hoehe [5] found that manufacturing errors effect compressor

efficiency within ±0.05%. In film cooling of gas turbine blades, Montomoli et al. [6] showed that heat

transfer of the cooling holes can be affected by as much as 10% due to the manufacturing variation of

filleted edges for a fillet radius to hole diameter ratio between 0 and 5 %. Panizza et al. [7] used it

to confirm that a new series of centrifugal stage compressor blades was little affected by manufacturing

uncertainty and therefore that the design was robust considering manufacturing variability. With the

purpose of reducing the computational cost of the UQ process, Chan and Elsheikh [8] introduced a ma-

chine learning approach for efficient uncertainty quantification (UQ) using multi-scale methods, applied

to elliptic problems.

The design process of such engineering applications is often governed by the use of very intricate

and complex mechanical simulation models. In the field of fluids those models are Computational Fluid

Dynamics (CFD) codes. The main interest in studying UQ using these models and in particular studying

the propagation of input uncertainty is to obtain an accurate computation at low computational cost.

However, since increasing accuracy generally leads to a considerable increase in computational cost, there

is a demand for efficient numerical methods to perform UQ.

The simplest method to conduct UQ is by performing a Monte Carlo sampling on the response surface

of a simulation model. As such the probability distribution of an output variable can be computed by

presenting the results in a histogram. However, this approach can quickly become too computationally

expensive, especially for high-fidelity computer simulations (Cunha Jr et al. [9]). In other words,

running a very large number of high-fidelity simulations is computationally intractable and running

fewer high-fidelity simulations would compensate the accuracy of the PDF. Another option to reduce the

computational cost is to build a surrogate model of the response surface. This surrogate model is then

sampled to get an approximation of the output probability distribution (O’Hagan [10]). Although this

approach allows for more data points at a lower computational cost, such simulations are less accurate

and therefore this approach would yield an less precise PDF. Since both above-mentioned approaches do

not lead to accurate output PDF, different methods need to be developed to approximate the high-fidelity

output PDF.

Specifically, an important distinction has to be made between different types of UQ methods, namely

the difference between intrusive and non-intrusive UQ. In intrusive UQ, the computational model itself

is adapted in different ways depending on the method before performing the uncertainty quantification

analysis, e.g. in Köppel, Kröker and Rohde [11]. Non-intrusive UQ is used in this work, meaning that

the computational model is used without any modification, but as a black box. The basic procedure of
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a non-intrusive UQ method is as follows. The first step is to describe the design space uncertainties in

a probabilistic framework. For example, model parameters are replaced with random variables (Loeven,

Witteven and Bijl [4], Ahlfeld and Montomoli [12]), or a domain region is defined as a random field (Dow

and Wang [13], Doostan, Geraci and Iaccarino [14]). In the second step, the model is run repeatedly

for random samples drawn from the input probability distributions. Note that the computational model

is run for all the samples and not adapted in any way to perform the UQ. The last step is to perform

a statistical analysis using the results of the simulations to determine the probability distributions of

the quantities of interest. A non-intrusive UQ method is valuable because in science or engineering

applications computational models are available which can not be modified and can only be run for

different input samples.

The previously depicted examples of uncertainty studies mostly fall under the field of the so-called

aleatory UQ. The errors from such uncertainties are known, can be quantified using statistical methods,

and can be studied for design exploration purposes. However, in addition to the field of aleatory UQ there

is also the field of epistemic UQ. The term epistemic refers to uncertainties generated due to insufficient

knowledge about the physical behaviour of a system. These kind of uncertainties have often been ignored

in uncertainty studies.

In computer simulations of fluid dynamics multiple levels of fidelity exist. Argyropoulos and Markatos

[15] highlight the recent advances (up to 2015) on the numerical modeling of turbulent flows specifically.

Direct Numerical Simulations (DNS) are high-fidelity simulations and are considered as the true solution

of a flow field. They are often used as a tool for turbulence model research, rather than a tool for design

(Moin and Manesh [16]). The computational cost of DNS increases extremely rapidly with Reynolds

number, which is a severe limitation for their application (Coleman and Sandberg [17]). On the other

hand, Reynolds-Averaged Navier-Stokes (RANS) simulations using turbulent viscosity models to describe

the Reynolds shear-stress term in the RANS equations are low-fidelity simulations, known to have errors

when solving for a flow field. Using dimensional analysis, the turbulent viscosity depends on the product

of a characteristic velocity and a characteristic length scale. This leads to several types of RANS

simulations depending on how the turbulent viscosity is calculated, namely zero-equation or algebraic

models (e.g. the mixing length hypothesis of Prandtl [18]), single-equation models (Spallart and Almaras

[19]) and two-equation models (e.g. the k-ω model as formulated by Wilcox [20]). Another modelling

approach for turbulent flows is Large Eddy Simulation (LES). Where the RANS simulations have closure

models for the entire spectrum of turbulent scales, LES fully resolve the large scales while modelling the

smaller sub-grid length scales (Sagaut [21]). It has to be noted that LES are not considered in this work.

In the last few years, mainly due to recent progress in artificial intelligence (AI), lots of studies have

been performed of RANS modelling making use of machine learning techniques. Duraisamy, Iaccarino

and Xiao [22] recently reviewed the topic of turbulence modelling in the age of data. Wang, Wu and

Xiao [23] and Wu, Xiao and Paterson [24] used a machine learning approach to reduce the uncertainties

introduced by the RANS models. Machine learning also has been used as a tool to model the sub-grid
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features in LES (Vollant, Balarac and Corre [25], Gamahara and Hattori [26]).

In the present work, the focus is on eddy viscosity models based on the Boussinesq hypothesis, like k-ε

(Launder and Sharma [27]), k-ω (Wilcox [20]) and k-ω SST models (Menter, Kuntz and Langtry [28]).

Approximating the effect of the Reynolds stresses on the mean flow field by prescribing a turbulent

viscosity model generally works well for simple flows (Pope [29]). However, there are usually significant

discrepancies for flows with strong adverse pressure gradients, flows close to separation, or flows where

the streamline curvature is large (Wang, Wu and Xiao [30], Raiesi, Piomelli and Pollard [31]). The

uncertainties in the flow introduced when using such RANS models are an example of the epistemic

uncertainties mentioned above.

In recent years, the interest in UQ in the field of computational fluid mechanics has been increasing

(Najm [32]). Knowing that significant errors exist in the RANS simulation models, UQ using purely

RANS simulations leads to inaccurate results. Additionally, UQ using purely DNS is computationally

intractable since running a large enough number of high-fidelity simulations for UQ is too expensive. Thus

both methods have limitations in providing an accurate approximation of the output PDF. However,

they also both have unique benefits that can be exploited when being combined. The high-fidelity

DNS are computationally expensive but are very accurate. On the other hand, the low-fidelity RANS

simulations are cheaper and therefore having access to a lot of data points allows for computations that

are statistically more accurate. Noting that UQ involving DNS has never been attempted, the novelty of

this work is the presentation of hybrid methods combining the data of both DNS and RANS simulations

to perform an UQ study. The main objective of this work is to find methods in the field of fluid mechanics

that combine all the pieces of information that are available from both RANS simulations and DNS, in

an effective way that improves accuracy in computations within reasonable computational cost. The idea

of hybrid or multi-fidelity modelling to perform UQ is also explored by Salehi et al. [33] on a transonic

RAE2822 airfoil. Although multi-fidelity methods are studied, two sets of RANS simulations are used

at two different mesh sizes as a low- and high-fidelity data set.

In this work three different hybrid methods for this hybrid framework are suggested. The methods

are applied on the 2D channel flow over periodically arranged hills, an example test case often used in

literature (Breuer et al. [34]) for reasons listed in Section 2.1. The Reynolds number, which is based

on the bulk velocity through the channel and the hill height, is situated in the turbulent regime and

equal to 5600. Geometric uncertainty is introduced in the shape of the hill by varying the hill steepness

and the distance between subsequent hills. A set of output quantities of interest is selected for the UQ

study, namely the height of the separation bubble at different streamwise locations and the streamwise

length of the separation bubble. These quantities are related with the caveats associated with the

RANS model, namely separation from a curved surface and reattachment. The propagation of the input

uncertainty towards uncertainty in the output parameters is of interest. The output PDF generated with

the different hybrid methods are compared using shape parameters (i.e. mean, standard deviation, range

and skewness). For the purpose of this study the geometrical variations have been amplified to test the
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hybrid methods; i.e. the variations are significantly larger than those to be encountered in the field of

e.g. manufacturing tolerances. This amplification is applied to be able to better quantify the differences

in these shape parameters.

2. Test Case, Numerical Modelling, Collocation Points, Quantities of Interest and CFD

Validation

The flow over periodically arranged hills is chosen as a test case for the the hybrid UQ methods.

The flow itself is studied extensively in literature, for example by Breuer et al. [34] or by Marquillie,

Laval and Dolganov [35]. Wu, Xiao, and Paterson [24] used the flow over 2D periodically arranged hills

as well as a test case for machine learning training. Gritskevich et al. [36] used the same test case for

the development and validation of turbulence models. From existing literature it is therefore concluded

that this flow case is well suited as a test case for the hybrid methods. The test case describes many

important flow features such as separation from a curved surface and reattachment on a flat plate. The

adverse pressure gradient due to the curved surface of the hill causes the flow to separate, creating a

separation bubble behind the first hill. Further downstream the flow reattaches before it reaches the

second hill. Also it is possible to compute the flow field at reasonable computational cost (Breuer et al.

[34]). Since reliable experimental and numerical data of this flow is available by Breuer et al. [34], the

exact same geometry is chosen to be able to validate the DNS model.

Since studying hybrid methods requires data of different levels of fidelity, high-fidelity DNS and low-

fidelity RANS simulations of the flow over the hills are performed. In the following section, the reference

test case is described as well as the numerical setup for both the DNS and RANS simulations. Next, the

collocation points for applying the UQ methods, the quantities of interest and the CFD validation are

delineated.

2.1. Test Case Description

The reference geometry of the test case is shown Figure 1. Variability in the hill geometry is introduced

using two parameters, α and γ. The hill steepness angle parameter, α, scales the width of the hill and

therefore its steepness as well. The hill streamwise separation parameter, γ, scales the separation between

the two subsequent hills. The reference case (α = 1, γ = 1) is the same as the Breuer test case. The flow

over the periodically arranged hills is studied in the neighbourhood of the reference case by varying the

hill geometry, namely by varying α and γ. The effect of changing α and γ is explained in more detail in

Section 2.3.

The mathematical definition of the coordinates of the hill geometry (xhill, yhill) is described in Eq.

1-3 (Mellen, Fröhlich and Rodi [37]). The coordinates of the first hill are described by Eq. 1. The second

hill is described by the same equation; the first hill is mirrored about the centre of the domain resulting
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Figure 1: Definition of the test case: the 2D periodically arranged hills. The uncertainty input variables are the hill
steepness angle (α) and the hill separation (γ).

in a symmetrical configuration.

yhill(xhill)

h
=

min(1; 1 + 0 · xhill + 2.420 · 10−4 · x2
hill − 7.588 · 10−5 · x3

hill), xhill|1∈ [0, 0.3214h]

0.8955 + 3.484 · 10−2 · xhill − 3.629 · 10−3 · x2
hill + 6.749 · 10−5 · x3

hill, xhill|2∈ [0.3215h, 0.5h]

0.9213 + 2.931 · 10−2 · xhill − 3.234 · 10−3 · x2
hill + 5.809 · 10−5 · x3

hill, xhill|3∈ [0.5h, 0.7143h]

1.445− 4.927 · 10−2 · xhill + 6.950 · 10−4 · x2
hill − 7.394 · 10−6 · x3

hill, xhill|4∈ [0.7144h, 1.071h]

0.6401 + 3.123 · 10−2 · xhill − 1.988 · 10−3 · x2
hill + 2.242 · 10−5 · x3

hill, xhill|5∈ [1.071h, 1.429h]

max(0; 2.0139− 7.180 · 10−2 · xhill + 5.875 · 10−4 · x2
hill + 9.553 · 10−7 · x3

hill), xhill|6∈ [1.429h, 1.929h]

(1)

The mathematical definition of how the parameters α and γ modify the hill geometry is given in Eq.

2. When (α = 1, γ = 1), the total length L
h = 9, which is the Breuer test case.

L

h
= 3.858α+ 5.142γ (2)

The parameter α varies the width of the hill by stretching the x-coordinates of each of the 6 sections

of the geometry, as given in Eq. 3 below. Therefore, the hill height becomes:

yhill
h

=
yhill(x

′
hill)

h
where xhill′ = [xhill|1, xhill|2, xhill|3, xhill|4, xhill|5, xhill|6] · α (3)

The first and second hill are connected by a flat floor in the middle such that the total length of the

domain satisfies Eq. 2.

It is important to understand why this test case is relevant for evaluating the newly suggested hybrid

UQ methods. First of all, as stated before, the test case is often studied in literature. Secondly, although

the flow over periodically arranged hills is very simple, CFD methods based on solving the RANS

equations still struggle with calculating the flow field accurately. More specifically, they mainly have

problems with predicting the length and the height of the separation bubble. This means that the

epistemic uncertainties stemming from the RANS model are visible when studying the flow around the
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reference case (α = 1, γ = 1). Thirdly, the shape of the curved surface, more specifically the steepness

of the hill, strongly affects the reattachment position. The steepness of the hill can be related to

the diverging angle in diffusers, which mainly determines the flow pattern in through it (Huminic and

Gabriela [38]). Therefore, variations in the hill geometry will cause uncertainty in output flow variables

because of uncertainty in the RANS closure model and thus varying the hill steepness and hill separation

is an effective way of introducing uncertainty in the flow test case.

2.2. Numerical modelling of the flow field

The low-fidelity RANS simulations and high-fidelity DNS simulations, are performed at a Reynolds

number (Re) of 5600, which is based on the bulk velocity through the channel (Ub) and the hill height (h).

The choice for this Reynolds number is firstly based on the availability of experimental and numerical

data to validate the models. Secondly, with the practical motivation of keeping the computational cost

of the DNS simulations reasonably low to collect a relevant amount of DNS points to set up a hybrid

framework. RANS simulations have been performed at similar Reynolds numbers, i.e. around Re ≈ 5600

(Choi, V.T. Nguyen and J. Nguyen [39]), and even as low as 2800 for the same flow as in the present study

(Xiao et al. [40]). At such Reynolds numbers, the range of turbulent scales is large enough for a RANS

approach to be relevant while a DNS approach is still manageable in terms of computational resources.

Similar flow features would still be expected at higher Reynolds numbers, namely a recirculation bubble

downstream of the hill separation point. The bulk velocity through the channel is calculated based on

the definition of the Reynolds number, namely Ub = µairRe/(hρair) = 2.9714 m/s where the air density

ρair = 1.225 kg/m3 and dynamic viscosity µair = 1.82 · 10−5 Pa · s. As characteristic length the hill

height h = 0.028m is used, as given in Almeida, Durao and Heitor [41]. Both the high-fidelity DNS and

the low-fidelity RANS simulations are discussed in Section 2.2.1 and Section 2.2.2 respectively. The 3D

unsteady DNS results are averaged over the span-wise direction and over a time period to generate the

mean 2D flow field. The RANS simulations are performed by directly using a 2D flow option.

2.2.1. Immersed boundary method Direct Numerical Simulation setup and validation with reference data

The DNS are performed on a computational domain with size Lx×Ly×Lz = 9.000h×3.036h×4.500h

, with h being the hill height. The coordinate system is orthonormal, with coordinate x in the stream-

wise direction, y in the vertical direction and z in the span-wise direction, as depicted in Figure 1. A

Cartesian mesh with 512 × 257 × 128 mesh nodes in the respective directions is employed. A stretched

mesh in the y-direction is used, which is slightly refined near the walls. The spatial resolution is as

good as the ones found in previous numerical studies for the same Reynolds number. More information

about the DNS grid can be found in Breuer et. al [34]. As boundary conditions, a periodic interface is

used in both the stream-wise and span-wise directions; a non-slip condition is used both at the top and

bottom wall of the channel. The initial condition for the streamwise velocity field u(y) as a function of

the y-direction is a parabolic Poiseuille profile given by Eq. 4, where H is the semi-channel height and
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U0 is the center-line velocity. Note that Eq. 4 is applied at the section of the channel in between the

hills using the origin at the semi-channel height.

u(y) = U0

(
1−

( y
H

)2
)

(4)

The following method is used to start the simulations. First, they are launched without any hill

geometry up to the point when a fully developed flow is obtained. The periodic boundary conditions

in stream-wise direction require a dynamically adjusted pressure gradient at each time step in order to

maintain a constant mass flow rate through the channel, i.e. the pressure gradient is adjusted implicitly

by the use of a forcing term in the Navier-Stokes equations (Quadrio, Frohnapfel and Hasegawa [42]).

The forcing term changes at every time step in such a way that the resultant flow rate is equal to a

prescribed flow rate, as given by Eq. 5. Note that the DNS are performed using normalised variables,

namely U0 = 1, ρair = 1 and H = 1. The reference massflow rate per unit span is non-dimensionalised

as well and is computed from the Poiseuille profile, as given in Eq. 5. The massflow rate is kept constant

for all DNS.

ṁ =
1

2H

(
ρairU0

∫ H

−H
1−

( y
H

)2

dy

)
=

2ρairU0

3
↔ ṁ =

2

3
(5)

After obtaining a fully developed channel flow, the hill geometry is introduced into the computational

domain. Note that the data are collected only after a transitional period, from the point when the flow

is fully developed again. A simulation time step ∆t = 0.0005H/Ub is used. For all the calculations,

turbulent statistical data have been collected over a time period T = 150H/Ub.

The DNS are performed using the Incompact3d high-order flow solver (Laizet and Lamballais [43]

and Laizet and Li [44]). More details about the DNS data set of the flow over periodic hills can be found

in Xiao et al. [45]. The hill geometry is modeled using a customised immersed boundary method based

on a direct forcing approach. A direct forcing approach adds a forcing function to the incompressible

Navier-Stokes equations. The forcing function is zero in the fluid domain but non-zero inside the body,

i.e. the hill geometry. By adding such a forcing function the zero-velocity boundary condition at the

wall of the hill is satisfied. The Incompact3d code is based on sixth-order compact schemes for the

spatial discretisation on the Cartesian mesh and a third-order Adams-Bashforth scheme for the time

advancement. Note that the convective terms of the incompressible Navier-Stokes equations are written

in skew-symmetric form. This reduces aliasing errors while remaining energy conserving for the type of

spatial discretisation considered here. To treat the incompressibility condition, a fractional step method

is used to solve a Poisson equation. For efficiency reasons, this equation is solved in spectral space

using appropriate 3D Fast-Fourier Transforms (FFT). In order to have a strict equivalence between the

finite-difference operators in physical space and the spectral operators, the concept of modified wave
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number is used, introduced by Lele [46]. This reduces the accuracy of the spectral operators to sixth-

order accuracy. Note that the divergence free condition, i.e. the incompressible continuity equation, is

ensured up to machine accuracy. Finally, the pressure mesh is staggered from the velocity mesh by half a

mesh-element to avoid spurious pressure oscillations. More details about the code, especially about the

original treatment of the pressure in spectral space, can be found in Laizet and Lamballais [43]. Because

of the size of the simulations, the parallel version of Incompact3d has been used for this numerical work.

Based on a highly scalable 2D decomposition library and a distributed FFT interface, it is possible to

use it on thousands of computational cores. More details about this efficient parallel strategy can be

found in Laizet and Li [44].

The immersed boundary method DNS model is validated using the numerical and experimental data,

given by Breuer et al. [34]. The reference data is available in the European Research Community On

Flow, Turbulence And Combustion (Ercoftac) database1. The profiles of both the horizontal velocity

and the turbulent kinetic energy at different span-wise locations are compared to the reference data of

Breuer. The comparison can be seen in Figure 2.

When comparing the horizontal velocity profiles in Figure 2, it can be seen that the immersed bound-

ary method DNS model is able to match the reference data. Especially the separation and reattachment

features are accurately described by the model. This makes the immersed boundary method DNS model

trustworthy for this study. The mismatch between the experimental and numerical turbulent kinetic en-

ergy profiles in Figure 2 should be noted. However, both the numerical data of Breuer et al. [34] and the

immersed boundary method DNS model deviate from the experimental data in the region between the

hills, which indicates that the numerical data is consistent. Moreover, the immersed boundary method

DNS turbulent kinetic energy profiles are in between the experimental results and the reference DNS of

Breuer. As an example at x/h = 2, the maximum difference between Breuer experimental and DNS data

is 10.4%, while the maximum difference between the experimental results and the immersed boundary

method DNS is only 6.3%. From this comparison it can be concluded that the immersed boundary

method DNS model is well suited as a high-fidelity model to describe the test case of the flow over 2D

periodically arranged hills.

2.2.2. Reynolds-Averaged Navier-Stokes Simulation setup and grid convergence study

The 2D RANS simulations are performed using Siemens Star-CCM+ software. The computational

domain, shown in Figure 2.2.1, is two-dimensionalised meaning the domain with size Lx×Ly = 9h×3.036h

remains. A two-dimensional mesh is constructed using an ‘Automatic 2D Mesh’ after applying the

‘Badge for 2D Meshing’ operation in Star-CCM+2. A polygonal mesh with non-dimensional base size

bmesh

h = 0.036 is selected based on a mesh independence study, which is illustrated in Figure 3.

1The Ercoftac data base can be accessed through this link: http://www.kbwiki.ercoftac.org/w/index.php/UFR_3-30_

Test_Case
2More information on 2D meshing in Star-CCM+ can be found here: http://mdx2.plm.automation.siemens.com/ko/

node/7426
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Figure 2: Validation of the immersed boundary method DNS model of the reference case (α = 1, γ = 1) by comparing
horizontal velocity profiles (top) and turbulent kinetic energy (bottom) profiles with experimental and numerical data.

Figure 3: Grid convergence study for RANS (k − ω SST) reference case (α = 1, γ = 1) for the entire fluid domain (left)
and for position x/h = 1 (right). Different non-dimensional base sizes of the RANS (0.36 to 0.0036) simulations are

compared with the DNS results.

This study is performed to be able to select the largest possible mesh size resulting in accurate data

which does not significantly vary from a very fine mesh. This reduces the computational cost of the
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simulations. The reference test case (α = 1, γ = 1) is run with non-dimensional base sizes varying from

0.36 to 0.0036. From Figure 3, it can be seen that the results are converged at a non-dimensional base

size of 0.036. The convergence can also be seen by looking at the quantities of interest, as described in

Section 2.4. In Table 1 the bubble height at x/h = 2 and x/h = 4 is shown as a function of the mesh

size.

Table 1: Grid convergence study for the bubble height at streamwise locations x/h = 2 and x/h = 4 for the RANS (k − ω
SST) reference case (α = 1, γ = 1).

Quantity of Interest \ Mesh base size 0.36 0.18 0.036 0.018 0.0036
Bubble height at x/h = 2 0.54 0.56 0.62 0.625 0.625
Bubble height at x/h = 4 0.4 0.41 0.47 0.475 0.475

A base mesh size of 0.036 results in 41800 mesh cells for the reference test case (α = 1, γ = 1). As

boundary conditions, a non-slip condition has been selected for the upper and lower wall of the domain.

For the inlet and outlet of the fluid domain, periodic boundary conditions have been selected with a

fully-developed interface. The average driving pressure gradient for the reference test case (α = 1, γ = 1)

in the RANS simulation is
dp

dx
= −3.45Pa/m.

To resolve the boundary layer of the hill 40 prism layers are applied with a prism layer stretching of

1.2. For the reference test case this results in wall y+ values between 1 and 1.025. The incompressible

RANS equations are solved using a turbulent, gas and segregated flow option. To select an appropriate

turbulence model for the test case, the horizontal velocity profiles of Star-CCM+ k − ε, k − ω SST,

Spalart-Allmaras models and the immersed boundary method DNS are compared. This comparison can

be seen in Figure 4. The k − ω Shear Stress Transport (SST) turbulence model is chosen because of

its suitability for separated flows (Menter, Kuntz and Langtry[28]). A periodic translational interface

with fully developed flow option is selected between the inlet and outlet of the channel. As for the DNS,

the horizontal velocity profile in the channel is initialised using a Poiseuille flow condition. Each of the

RANS simulations is run for 10000 iterations. This results in residuals below 4 · 10−10 for the continuity,

U and V momentum, turbulent kinetic energy and turbulent dissipation rate equation when evaluated

for the reference test case (α = 1, γ = 1).

2.3. Collocation points for UQ study

At a fixed Reynolds number, the two main parameters that influence the flow over the periodically

arranged hills are the steepness and the successive spacing of the hills. Hence, two parameters are

introduced to control the uncertainty of the geometry, namely α and γ as defined in Figure 1 and Eq.

2. The reference test case is defined by (α = 1, γ = 1). The parameter α changes the hill steepness.

Physically, this changes the adverse pressure gradient the flow experiences when flowing down the hill.

Therefore it is expected to influence the separation point. The parameter γ varies the spacing in between

subsequent hills and is therefore expected to influence the reattachment point. It also has to be noted

that the magnitude of the geometric variations in the test case is significantly larger than what would

be expected for e.g. machining uncertainty. In this case the variation in the geometry is amplified to
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Figure 4: Comparison of horizontal velocity profiles of Star-CCM+ k − ε, k − ω SST, Spalart-Allmaras turbulence models
and the immersed boundary method DNS for the reference case (α = 1, γ = 1).

determine if the methods are working. Note that engineering or scientific problems often have a lot more

than 2 varying parameters. The methods which are proposed in Section 3 apply to such problems as

well as to the test case which is described in this work. However, here only two parameters are selected

for simplicity.

It is assumed that a set of data points around the reference case for both DNS and RANS are given

and that this set cannot be modified. This is a situation which can be encountered in reality; for example

a set of simulations is available and there is no time nor money to run a new set. For this example the

number of DNS data points NDNS = 7 and the number of RANS data points NRANS = 30. The two

sets of collocation points are illustrated in Figure 5 as well as the corresponding geometric variation of

the hills for the DNS collocation points.

Figure 5: Collocation points of the DNS (x) and RANS simulations (o) (left). DNS grid points with geometrical variation
of α, γ (right).

Some remarks have to be made regarding the available data set. First of all, note that the two sets of

collocation points are nested meaning that the DNS points are a subset of the RANS points. Secondly,

the DNS collocation points are located in a T-shape such that no high-fidelity information is present in

the bottom left and bottom right corner of the (α− γ) domain. In these regions, the low-fidelity RANS
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collocation points are expected to assist significantly in determining the shape of the hybrid response

surface. This shows that the construction of the set of high- and low-fidelity collocation points in this

test case already indicates a useful application of the hybrid methods. Furthermore, it has to be noted

that the number of data points used in this study is relatively low compared to other studies; e.g. Garzon

and Darmofal [47] used 150 blade surface measurements in their probabilistic approach to quantify the

impact of geometric variability on compressor aerodynamic performance. However, since high-fidelity

data is computationally very expensive, such a situation can easily be encountered in an engineering

framework. The idea of the numerical methods that are proposed in Section 3 is exactly the same for a

small or a larger data set. For the purpose of this study a smaller number of simulations is chosen to

decrease the numerical cost. To conclude it is important to mention that the numerical methods are not

restricted for a specific number of simulations or a specific arrangement of collocation points. Finally,

this work focuses on presenting hybrid methods for uncertainty quantification using both high-fidelity

and low-fidelity data. It does not focus on the physical understanding of the flow over the periodically

arranged hills, e.g. the consequences of varying parameters α and γ.

2.4. Output Quantities of Interest

The hybrid UQ study is applied on a set of Quantities of Interest (QoI). The QoI are selected based

on the weaknesses of the RANS model, namely parameters describing separation and reattachment:

1. The height of the separation bubble (ybubble/h) at streamwise position x/h = 2. This streamwise

position is chosen because the flow is expected to be fully separated at x/h = 2 for all collocation

points.

2. The height of the separation bubble (ybubble/h) at streamwise position x/h = 4. This streamwise

position is chosen because the reattachment point of the DNS is expected to be at approximately

x/h = 4.

3. The streamwise length of the separation bubble (xbubble/h).

The height of the separation bubble at the different streamwise locations is calculated using the

following criterion: the region in the y-direction with a negative x-component of velocity is defined as

the separation bubble. Physically, the separation bubble height represents losses in the flow. Its presence

acts as an equivalent geometry for the flow through the channel.

The streamwise length of the separation bubble is calculated using a criterion related to the skin-

friction coefficient along the hill geometry. The distance in between the points where the skin-friction

coefficient falls below a threshold Cf < 10−3 is selected as the length of the separation bubble. This is

illustrated in Figure 6 for the DNS reference case (α = 1, γ = 1). Note that a smoothing filter is applied

on the skin-friction coefficient signal for illustrative purposes.
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Figure 6: Horizontal velocity contours and skin-friction coefficient (Cf ) along the hill wall for the DNS reference test case
(α = 1, γ = 1).

3. Hybrid Uncertainty Quantification Methods

Two sets of simulations of the flow over periodically arranged hills are now available. As shown in

Figure 5, a set of NDNS = 7 high-fidelity DNS and a set of NRANS = 30 low-fidelity RANS simulations

are given. With all this data available, the purpose of this study is to describe the flow over the hills

around the reference case (α = 1, γ = 1) as accurately as possible. It has to be noted that both data sets

model the same physical phenomenon. Therefore, the information of both data sets can be combined to

be able to give a better description of the flow rather than using one of the individual data sets. The

hybrid methods delineated in this section allow to combine all this information that is available. It has to

be noted that the hybrid methods are applicable to any test case in which a hybrid data set is available.

Therefore, the mathematics of the methods are delineated as generally as possible. The application of

the methods to the problem of the flow over the periodically arranged hills in particular is depicted in

Section 5.1.

Since the data of the simulations are only available at discrete collocation points, the hybrid methods

need to have the ability to interpolate between results. In other words, the methods create a response

surface using the data points. The response surface can be evaluated, at or in between the available data

points. Moreover, the hybrid methods are often derived from general interpolation methods for a single

data set. The interpolation is performed in the space of the random variables that are used to introduce

uncertainty in the geometry, i.e. in this work the (α − γ)-space. These methods have to be adapted to

be applied to a hybrid data set. Three such methods are described in this section to generate a hybrid

response surface. For every method, the general interpolation method is described first. Secondly, the

hybrid method is described. The three methods that are set out are the Inverse Weighted Distance

(IWD) method, the Polynomial Chaos Expansion using Regression (PCER) method and the Gaussian

CoKriging method (GCK).

Finally, the hybrid response surfaces are used to sample the output PDF to quantify the uncertainty

on one of the QoI as a result of the geometric input uncertainty. Section 3.4 describes the method to

compute the PDF for the IWD method and the GKC method. The PCER hybrid method directly results
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in a PDF, meaning that for this method Section 3.4 is not applicable.

3.1. Inverse Weighted Distance (IWD) method

The IWD method results in a response surface fIWD(ξ), where ξ = [ξ1, ξ2, ..., ξn] is a multivariate

variable dependent on n input variables. In the following sections, ξ = [α, γ]. The response surface

is sampled according to a specific input probability distribution function to generate the probability

distribution function of the output QoI.

3.1.1. General IWD method

The IWD method is a simple method developed by Shepard [48] for interpolation of irregularly-spaced

data of function f . The method is given in Eq. 6 and Eq.7 for a data set of N data points. For points

ξi where data is available, the response surface is equal to the function value of the data point itself,

namely f(ξi). For all other points ξ, the hybrid response surface fIWD(ξ) is generated by a weighted

average of given datapoints ξi with function values f(ξi).

fIWD(ξ) =


∑N

i=1 wi(ξ,ξi)fi(ξi)∑N
i=1 wi(ξ,ξi)

if d(ξ, ξi) 6= 0 for all i

fi(ξi) if d(ξ, ξi) = 0 for some i

(6)

wi(ξ, ξi) =
1

d(ξ, ξi)
p

(7)

The weights in the IWD method are a power p of the inverse distance between the data point ξi and

the point where the response surface is evaluated ξ. Note that in Eq. 6-7 the function d(ξ, ξi) denotes

the distance between points ξ and ξi. For the simplest IWD method, p = 1, such that the weights are

literally the inverse distance between ξi and ξ. Other values for the power p are also possible.

3.1.2. Hybrid IWD method

The general IWD method is adapted to be used in a hybrid framework in which a low-fidelity and

high-fidelity data set are available. This is given in Eq. 8 for a set of Nlf low-fidelity and Nhf high-

fidelity data points. For the IWD model, the function value of the high-fidelity data fhf (ξi) is used for

points where this data is available. For points where only low-fidelity data is available, the general IWD

method is applied to the difference between high and low-fidelity data points (i.e. fhf (ξi) − flf (ξ)) to

compute the addition to the low-fidelity data flf (ξ). The weights are based on distance as can be seen

in Eq. 7. Note that in its form Eq. 8 can only be used to compute fIWD(ξ) at the low-fidelity data

points. This form of the equation is used to explain the concept of hybrid IWD; the equation can easily

be adapted to predict data in between low-fidelity data points as well.

fIWW (ξ) =


flf (ξ) +

∑Nhf
i=1 wi(ξ,ξi)(fhf (ξi)−flf (ξ))∑Nhf

i=1 wi(ξ,ξi)
if d(ξ, ξi) 6= 0 for all i

fhf (ξi) if d(ξ, ξi) = 0 for some i

(8)
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3.2. Polynomial Chaos Expansion using Regression (PCER) method

The main idea of polynomial chaos is to build an expansion of an stochastic output function fPCER

using a polynomial basis and a set of coefficients (Ahlfeld, Belkouchi and Montomoli [49]). The output

probability distribution function is generated directly instead of first generating a hybrid response surface,

which is sampled afterwards. Different methods exist to calculate the coefficients of the polynomial chaos

expansion (PCE), namely a point collocation method or a spectral projection method (Palar, Tsuchiya

and Parks [50]). In this section, the point collocation method is described, in which the coefficients are

calculated using a weighted regression approach.

3.2.1. General PCER method

Polynomial Chaos is a method used to approximate a stochastic output model f(ξ) dependent on n

independent stochastic input random variables, namely ξ = [ξ1, ξ2, ..., ξn]. The input random variables

have event spaces Ω1,Ω2, ..,Ωn and probability distribution functions (PDFs) ρ1, ρ2, .., ρn. The stochastic

model output is expanded into a linear combination of multivariate orthogonal polynomials Ψk with

coefficients ck.

f(ξ) =

∞∑
k=1

ckΨk (ξ) ≈
Np∑
k=1

ckΨk (ξ) (9)

The number of linear combination termsNp for a polynomial expansion of orderm is usually truncated

to Np = (n+m)!
n!m! . The multivariate orthogonal polynomials Ψk are calculated as the product of univariate

orthogonal polynomials ψi
Iik

:

Ψk (ξ) =

d∏
i=1

ψiIik
(ξi) where k ∈ 1, 2 ... Np (10)

To achieve exponential convergence, the basis functions ψi
Iik

used in Eq. 10 are chosen to be orthogonal

polynomials corresponding to the PDF ρi of the input random variable ξi (Loeven, Witteven and Bijl [4]).

The definition of a polynomial orthogonal with respect to a probability distribution is based on the inner

product and is given in Eq. 11, where δij is the Kronecker delta (Palar, Tsuchiya and Parks [50]). Two

examples of orthogonal polynomials are the Hermite and Legendre functions, which are corresponding to

the normal and uniform probability distribution respectively (Hosder and Walters [51]). The orthogonal

polynomials of different order are computed using a recurrence relation.

< Ψi(ξ),Ψj(ξ) >=

∫
Ω

Ψi(ξ)Ψj(ξ)ρ(ξ)dξ = δij (11)

The order of univariate orthogonal polynomial ψi
Iik

in Eq. 10 that contributes to the multivariate

orthogonal polynomial Ψk is stored in the multi-index matrix elements Iik, having dimensions Np × n.

Note that the multi-index matrix of n random variables for a PCE of order m In,m contains the elements

Iik (where k ∈ [1, n] and i ∈ Np). The rows of the matrix represent the different combinations of how the
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degree of the polynomial chaos expansion m can be divided over the number of variables n. The following

simple example for n = 2 random variables and a degree of polynomial chaos expansion m = 2 shows

how this matrix can be interpreted. The number of terms in the expansion is equal to Np = (2+2)!
2!2! = 6.

I2
6 =

[
[0, 0], [1, 0] [0, 1] [2, 0] [1, 1] [0, 2]

]T
(12)

The coefficients ck in Eq. 9 of the polynomial chaos expansion can be computed in different ways.

In this section, a least-squares regression approach is chosen. Another approach could be to use nes-

ted optimal Gaussian sparse grids and apply Gaussian quadrature to obtain the coefficients (Ahlfeld,

Belkouchi and Montomoli [49]). To compute the coefficients using the regression approach, a set of Neval

arbitrary samples η = [η1, η2 ... ηNeval
] is taken for which the stochastic output model f is evaluated. The

number of evaluations Neval is equal to the number of simulations; for the low-fidelity data Neval = Nlf ,

for the high-fidelity data Neval = Nhf . These samples are inserted in Eq. 9. The coefficients ck are

found by solving the linear system of equations, given in Eq. 13. This approach is also called point-

collocation non-intrusive Polynomial Chaos and was successfully applied by Loeven, Witteven and Bijl

[4] to investigate geometric airfoil uncertainty.

[Ψ] [c] = [F ]
Ψ1 (η1) · · · ΨNp

(η1)
...

. . .
...

Ψ1 (ηNeval
) ΨNP

(ηNeval
)




c1
...

cNp

 =


f (η1)

...

f (ηNeval
)

 (13)

The regression approach requires the number of evaluations Neval to be larger or equal than the

number of coefficients Np to compute. An over-sampling ratio Neval/Np = 2 is advised by Palar,

Tsuchiya and Parks [50] and Hosder, Walters and Balch [52] to reduce the matrix condition number and

the likelihood of overfitting. The least-squares solution c of the system is given by Eq. 14.

c =
(
ΨTΨ

)−1
ΨTF (14)

Instead of solving the linear regression problem directly, the problem can also be transformed in

a weighted least-squares problem. The weighted least-squares solution gives the coefficients c for the

polynomial chaos expansion. The expression for c is given in Eq. 15.

c =
(
ΨTλΨ

)−1
ΨTλF (15)

The method to generate the weight matrix λ in Eq. 15, is illustrated in Figure 7. First a linear least-

square regression is generated to predict the trend of the DNS (Right figure, mesh 1). Subsequently, this

trend is translated to the mean of the RANS simulations (Right figure, mesh 2). This results in a plane,
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which is denoted by κ. The inverse distance 1/d(κ, ξi) of each RANS data point ξi to the translated

plane is chosen as the weight factor.

Figure 7: Illustration of the method to determine the weight factors for weighted least-squares regression. RANS linearly
interpolated response surface (left). DNS trend shifted to the mean value of RANS points (right). The distance of RANS

point xi to the shifted trend is indicated as di.

The reasoning for this modification of the method introduced by Palar, Tsuchiya and Parks [50]

is that this weighting mechanism assigns higher priority to the low-fidelity model data points if they

capture the trend of the high-fidelity model well and a lower weight if they fail to capture the trend of

the high-fidelity data points.

3.2.2. Hybrid PCER method

Where the general PCER method works on a single data set, the hybrid PCER model is constructed

using two data sets. A low-fidelity data set is used to generate a low-fidelity PCE (i.e. Pm,n in Eq.

16). This PCE is improved by using a correction PCE (i.e. Pm−r,n in Eq. 16) using both the high and

low-fidelty data set. This is given in Eq. 16. The operator Pm,n is a low-fidelity PCE of n variables

with an expansion order equal to m. Since less high-fidelity data points points are available compared to

low-fidelity data points, the order of the correction PCE will be lower than the order of the low-fidelity

PCE (i.e. the value of r in Eq. 16 depends on how many high-fidelity data points are available and is

used to indicate that the order of the correction PCE is lower than the order of the low-fidelity PCE).

fPCER (ξ) = Pm,n [flf (ξ)] + Pm−r,n [C (ξ)] (16)

The correction function C can be either an additive or multiplicative function of the low and high-

fidelity data points, as given in Eq. 17 or a combination of both (Ng and Eldred [53]). Note that in Eq.

16 an additive correction function is applied.

Cadditive (ξ) = fhf (ξ)− flf (ξ) , Cmultiplicative (ξ) =
fhf (ξ)

flf (ξ)
(17)
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The PCE operators of the low-fidelity model and the correction model are given in Eq. 18 and Eq.

19 respectively. The low-fidelity coefficients clf,i and the correction coefficients cC,i are determined in

the same way as the general PCER method using only the low-fidelity data set and both data sets

respectively.

Pm,n [flf (ξ)] =
∑

i∈Im,n

clf,iΨi (ξ) (18)

Pm−r,n [C (ξ)] =
∑

i∈Im−r,n

cC,iΨi (ξ) (19)

In this way, Eq. 16 is reformulated using both a low-fidelity and a correction PCE. The result is given

in Eq. 20. In this methodology only the lower-order expansion coefficients are corrected by high-fidelity

data. The higher-order coefficients of the expansion are calculated from the low-fidelity model only.

fPCER (ξ) =
∑

i∈Im,n\Im−r,n

clf,iΨi (ξ) +
∑

i∈Im−r,n

(clf,i + cC,i)Ψi (ξ) (20)

3.3. Gaussian CoKriging (GCK) method

The Kriging method, developed by D. G. Krige [54] in the field of geostatistics, is a general interpol-

ation method, applied to a single data set. The CoKriging method makes use of the ordinary Kriging

method and applies it to two data sets with different levels of fidelity, a low- and a high-fidelity data set.

A brief overview of both the Kriging and CoKriging method are given in Section 3.3.1 and Section 3.3.2

respectively.

3.3.1. Kriging

Whereas the IWD method only uses distance as a weight factor, the Kriging method also uses

correlation and regression in the interpolation process. The method is applied to a data set of N data

points ξi, where each data point depends on a set of n input variables (i.e. ξ = [ξ1, ξ2 ... ξn]). To predict

the function value in a new point ξN+1, the set of N data points is used as given in Eq. 21. Note that the

function value fKrig(ξN+1) is called the Kriging predictor. The Kriging surrogate model is constructed

by approximating the stochastic output model fKrig(ξN+1) by separating the model response in a mean

global trend µ and a local term Z, a stationary Gaussian process representing the fluctuations from this

mean trend (Forrester, Sobester and Keane [55]).

fKrig(ξN+1) = µ+ Z(ξN+1, ξi) ∀i ∈ [1, N ] (21)

Note that since Z(ξ) indicates the fluctuation from the mean trend µ, the expectation E[Z(ξ)] = 0 and

the covariance cov[Z(ξ), Z(ξi)] = σ2ψ(ξ, ξi). The fluctuating term Z(ξ) is approximated by an expansion

of basis functions, namely Z(ξ) =
N∑
i=1

biΨi. The function Ψi denotes the multi-variate correlation function
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between the point where the Kriging predictor is evaluated and the data points ξi. The general multi-

variate correlation function is the product of n individual univariate correlation functions, as given in

Eq. 22.

Ψ(ξ, ξi) =

n∏
k=1

ψ(ξk, ξki ) (22)

The correlation function describes the relationship between the data points in the domain (e.g. linear,

Gaussian, exponential correlation function, etc.). The choice of which correlation function to use is

governed by the underlying physical phenomenon which is modelled (Lophaven, Nielsen and Søndergaard

[56]). As an example the exponential correlation function is given in Eq. 23.

ψ(ξk, ξki ) = exp
(
−θk|ξk − ξki |

)
(23)

By looking at Eq. 22 and Eq. 23, it can be seen that the multivariate correlation function depends

on a set of n hyper-parameters θk. Substituting everything back into Eq. 21, the value of the Kriging

predictor fKrig(ξN+1) is found by performing a maximum likelihood estimate (MLE) of the hyper-

parameters θk and the mean trend µ. The MLE of the variable is indicated by (̂.), e.g. the MLE of µ is

indicated with µ̂.

fKrig(ξN+1) = µ̂+

N∑
i=1

biΨi(ξN+1, ξi) (24)

The constants of the expansion in Eq. 24 are given by b = Ψ−1(f − 1µ̂). Ψ denotes an n× n matrix

storing the correlations of the data set, f is an n × 1 matrix storing the function values of the data

points and 1 is a n× 1 unit vector. More information on the Kriging method can be found in Forrester,

Sobester and Keane [55].

3.3.2. CoKriging

As described in the previous section, the Kriging method builds an approximation of the output

model from a single data set. The CoKriging process uses two data sets to approximate an output

response function, namely a cheap or low-fidelity data set and an expensive or high-fidelity data set. The

low- and high-fidelity data is concatenated in one hybrid matrix, as given in Eq. 25. The independent

variables of the data points are concatenated in matrix X and the dependent variables are concatenated

in matrix Y .

X =

Xlf

Xhf

 and Y =

Ylf

Yhf

 (25)

It is assumed that cov
(
Yhf (ξi), Ylf (ξ)|Ylf (ξi)

)
= 0 ∀ξ 6= ξi. This means that in the points where

high-fidelity data is available, this data is assumed to be equal to the true value regardless of the low-

fidelity data. Just like in the Kriging model, the output model is approximated by the sum of a mean
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trend and a Gaussian process. In this case, the CoKriging predictor is denoted by fCoKrig(ξN+1) and the

high-fidelity Gaussian process Zhf consists of a scaled low-fidelity Gaussian process Zlf and a difference

Gaussian process Zδ, as given in Eq. 26.

Zhf (ξ) = ρZlf (ξ) + Zδ(ξ) (26)

The parameter Zδ in Eq. 26 refers to the difference between the high-fidelity data and scaled low-

fidelity data evaluated at the high-fidelity data points (the scaling factor is ρ). Note that this requires

the low- and high-fidelity set of collocation points to be nested.

Whereas Kriging has a covariance matrix, the CoKriging method has a matrix C composed of several

covariance matrices. Eq. 27 is given without a derivation; the detailed construction of the matrix C can

be found in Forrester, Sobester and Keane [55].

C =

 σ2
lfΨlf (Xlf ,Xlf ) ρσ2

lfΨlf (Xlf ,Xhf )

ρσ2
lfΨlf (Xhf ,Xlf ) ρ2σ2

lfΨlf (Xhf ,Xhf ) + σ2
dΨd(Xhf ,Xhf )

 (27)

Finally, the value of the CoKriging predictor fCoKrig(ξN+1) is found by performing a MLE on the

hyper-parameters in the covariance matrix (i.e. θ̂k), the mean (i.e. µ̂), the standard deviations (i.e. σ̂c

and σ̂d) and the scaling factor (i.e. ρ̂). This is given in Eq. 28. The variable c in Eq. 28 is given by Eq.

29.

fCoKrig(ξN+1) = µ̂+ cTC−1(Y − 1µ̂) (28)

c =

 ρ̂σ̂2
lfψlf

(
Xlf , ξN+1

)
ρ̂σ̂2

lfψlf
(
Xhf , ξN+1

)
+ σ̂2

dψd
(
Xhf , ξN+1

)
 (29)

More information on the CoKriging method can be found in Forrester, Sobester and Keane [55].

3.4. Generation of output PDF

In general, the PDF describing the uncertainty of an output variable as a consequence of uncertainty

of an input variable is generated by running a large number of model simulations (i.e. a Monte Carlo

sampling) and subsequently by generating a histogram of the output values.

However, in this work the available data set only contains a small number of data points, namely Nlf

and Nhf . Running a large set of simulations is generally computationally too expensive, especially for the

high-fidelity model. Therefore the output model is sampled in only a few data points (namely Nlf = 30

and Nhf = 7) and subsequently these data points are linearly interpolated in ξ-space to form a response

surface (i.e. a surrogate model). It has to be noted that the methods above are applicable for any generic

problem and the most appropriate type of interpolation is dependent on the physics problem. In this

work, not knowing the physics of the problem beforehand, linear interpolation is chosen for simplicity.

A Monte Carlo simulation of the response surfaces is performed using 105 samples to generate the PDF.
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Similar number of Monte Carlo function evaluations are used by Klaus and Eichstädt [57] in a Monte-

Carlo based uncertainty propagation study with hierarchical models and by Bartel, Stoudt and Possolo

[58]. The output of the Monte Carlo simulation is visualised in a normalised histogram.

The PDFs of the interpolated low- and high-fidelity surrogate model are generated by only using the

data points that are available from the simulations. Since the IWD-method and the GCK method also

result in a hybrid output model, they are also evaluated in the grid points of the low-fidelity model. These

evaluations are also linearly interpolated and the Monte Carlo sampling is also applied to this response

surface to generate the hybrid PDF of the output variable. Finally, the PCER-method is designed to

directly results in a PDF.

4. DNS and RANS results

4.1. Comparison of the contours of streamwise velocity

The horizontal velocity contours for both the DNS and RANS simulations of the reference test case

(α = 1, γ = 1) are shown in graphs (1a) and (1b) of Figure 8. The DNS and RANS simulations for the

case (α = 0.8, γ = 1) are shown in graphs (2a) and (2b). One of the main differences between the DNS

and the RANS k − ω SST results is the location of the reattachment point. For the reference test case

(α = 1, γ = 1), the reattachment point for the DNS is at x/h = 4.148 and for the RANS simulation at

x/h = 7.684, a difference of 85%.

For the test case (α = 0.8, γ = 1.0), the DNS reattachment location is x/h = 4.769, unlike for the

RANS simulations, it is x/h = 7.291. Therefore it is expected that the QoI described in Section 2.4,

i.e. the length of the circulation bubble and the height of the separation bubble at different streamwise

locations will be significantly different for the DNS and RANS k − ω SST results.

It is concluded that significant differences can be seen in the results of the RANS model compared

to the DNS. Doing UQ using the RANS results alone will therefore result in inaccurate outcomes. This

issue can be resolved by using both RANS simulations and DNS in a hybrid framework for UQ, which

is the purpose of this work.

4.2. Comparison of the quantities of interest

The results for the quantities of interest for both the DNS and RANS simulations are summarized in

Table 2 for the reference test case (α = 1, γ = 1).

Table 2: Comparison of the quantities of interest for the DNS and RANS simulations of the reference test case
(α = 1, γ = 1). Note that all the quantities of interest are non-dimensionalised with the hill height h.

Quantity of Interest DNS RANS

Height of the bubble at x/h = 2 0.53 0.62

Height of the bubble at x/h = 4 0.14 0.47

Bubble length 3.73 7.45
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Figure 8: Comparison of horizontal velocity contours of DNS (1a) and RANS (1b) simulation of the reference test case
α = 1, γ = 1 and of DNS (2a) and RANS (2b) simulation of the test case with α = 0.8, γ = 1.

The correlation coefficient R2 and the mean absolute relative error (|M |rel) are two measures to

relate the results of the DNS and RANS simulations (Palar, Tsuchiya and Parks [50]). The definition of

these quantities is given in Eq. 30 and Eq. 31 respectively. The function values of the data points are

indicated with f
[data set]
i ; the mean of all function values of the data set is indicated with µ[data set]. Two

comments have to be made with respect to the data sets. Firstly, it is assumed that the high-fidelity

DNS and low-fidelity RANS data sets are nested. Secondly, the values that are used for the low-fidelity

data set are only those where the high-fidelity data points are available (i.e. Nhf = 7). The values of R2
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and |M |rel are calculated for all QoI listed in section 2.4. The results are summarised in Table 3.

R2 =

[
Nhf∑
i=1

(
f

[DNS]
i − µ[DNS]

)(
f

[RANS]
i − µ[RANS]

)]2

Nhf∑
i=1

(
f

[DNS]
i − µ[DNS]

)2Nhf∑
i=1

(
f

[RANS]
i − µ[RANS]

)2
(30)

|M |rel =
1

Nhf

Nhf∑
i=1

∣∣∣f [DNS]
i − f [RANS]

i

∣∣∣
µ[DNS]

(31)

Table 3: Correlation (R2) and mean absolute relative error (|M |rel) of DNS and RANS simulations for quantities of
interest describing the separation bubble.

Quantity of Interest R2 |M |rel
Height of the bubble at x/h = 2 0.7039 0.1629

Height of the bubble at x/h = 4 0.0399 2.1384

Bubble length 0.7047 1.2948

In Table 3, the very low correlation and relatively large |M |rel for the height of the separation bubble

at x/h = 4 are noticed. The RANS model is not able to describe this QoI accurately. The high-fidelity

DNS model reattaches generally around this streamwise position, unlike the low-fidelity RANS model as

can be seen in Figure 8. For the height of the separation bubble at x/h = 2, the correlation between RANS

and DNS is relatively large, as for the length of the separation bubble. The large correlation coefficient

combined with a rather large |M |rel for the length of the separation bubble forms an opportunity for

the hybrid method. The proper trend of the RANS simulations (indicated by the correlation coefficient)

will be corrected by the accuracy of the high-fidelity DNS.

4.3. Comparison of the probability distributions of the quantities of interest

The PDFs of the linearly interpolated DNS and RANS models are given for the list of QoI in the left

two columns of Figure 12. They illustrate the difference between the DNS and RANS models and show

the effect of turbulence models.

By generating a PDF from the linearly interpolated DNS response surface, the true DNS distribution

can only be approximated. To obtain the true high-fidelity DNS distribution, an immense amount of

DNS would have to be run, which is computationally intractable. This also means that the CPU gain of

the hybrid methods cannot be approximated.

The PDF of the DNS response surface contains physically more accurate information since it only

uses high-fidelity simulations which are closer to the real physics than the low-fidelity RANS simulations.

However, since significantly more low-fidelity RANS points are available, i.e. in this case 30 instead of

7, one can see that statistically the RANS PDF will be better. Moreover, the low-fidelity simulations

RANS are available over a larger domain in the (α− γ)-space compared to the high-fidelity DNS. Both

data sets have specific advantage; computationally expensive data is physically more accurate, a lot of
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computationally cheap data over a wider range has a statistical advantage. The goal of the hybrid PDF

is to merge the advantages of both types of data sets. The advantage of the DNS -the physical accuracy-

and the advantage of the RANS simulations -the stochastical accuracy- will be combined in the hybrid

UQ approach, described in Section 5.4.

5. Hybrid modelling combining DNS and RANS

The application of the hybrid methods of Section 3 is described in this section. The test case of

the flow over periodically arranged hills has 2 random variables, namely α and γ. A set of NDNS = 7

high-fidelity DNS and NRANS = 30 low-fidelity RANS simulations is used to test the methods. It has

to be stressed that the number of high-fidelity and low-fidelity simulations is only chosen to maintain

a reasonable computational cost for this work. The main point of this work is to combine both DNS

and RANS simulations in a hybrid framework for UQ to improve the PDF with both physical and

statistical accuracy. Also it has to be noted that the pure DNS PDF cannot be computed since it is

computationally too expansive. Therefore comparing the hybrid PDF with the pure DNS PDF is also

not possible. Moreover, it is also expected that different hybrid methods presented in Section 3 will

result in different PDF, since these different methods use different characteristics of the data set. As

already stated in Section 3, the IWD method only uses distance as weight factor in the interpolation

process unlike the GCK method that uses distance, correlation and regression.

5.1. Application of the hybrid methods to the test case

The hybrid methods that are described in Section 3 are applied to the test case of the flow over

the periodically arranged hills. The random variables introducing uncertainty in the geometry are ξ =

[ξ1, ξ2] = [α, γ]. The low-fidelity simulations are the RANS simulations (Nlf = NRANS = 30) and the

high-fidelity simulations are the DNS (Nhf = NDNS = 7). For the IWD-method, the value of the power

p in Eq. 7 is selected to be equal to 1, to not assume anything about the curvature of the model in

between the available data points.

Both input random variables α and γ are assumed to be normally distributed. To generate the

hybrid PDFs, a distribution of the input variables α and γ has to be assumed to execute the Monte

Carlo sampling process. In this example both input variables α and γ are normally distributed with

mean µinput and standard deviation σinput (namely N (µinput, σ
2
input)), as given in Eq. 32. Note that the

normal distributions are truncated at the lower and upper bound of each variable, namely α ∈ [0.8, 1.2]

and γ ∈ [0.5, 1.0].

α ∼ N (1, 0.252)
∣∣∣
x∈[0.8,1.2]

and γ ∼ N (0.75, 0.32)
∣∣∣
x∈[0.5,1.0]

(32)

Having normally distributed input random variables means that the Hermite polynomials are used as

orthogonal basis functions for the PCE. Using the number of low-fidelity simulations (NRANS = 30) and

the number of high-fidelity simulations (NDNS = 7), the order of the PCE can be determined, bearing
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in mind the over-sampling ratio of 2 (Palar, Tsuchiya and Parks [50] and Hosder, Walters and Balch

[52]). A summary is given in Table 4. An additive correction PCE is applied as given in Eq. 17. The

low-fidelity coefficients clf are computed using Eq. 15, with vector F being the low-fidelity function

values flf = fRANS . The correction coefficients cC are also computed using Eq. 15, but with vector F

being the difference between the low- and high-fidelity function values fhf − flf = fDNS − fRANS . To

compute the difference fhf − flf , first a linearly-interpolated response surface of the high-fidelity data

points is generated, which subsequently is sampled at the low-fidelity data points.

Table 4: Summary of the variables for the PCER method.

Description Variable Value Variable Value

Number of simulations NDNS 7 NRANS 30

Order of the PCE mDNS 1 mDNS 4

Number of random variables n 2 n 2

Number of terms in the PCE Np 3 Np 15

Over-sampling ratio
Neval
Np

=
NDNS

Np
2.33

Neval
Np

=
NRANS

Np
2

For the GCK-method, the CoKriging process is executed using the DACE Matlab toolbox for Kriging.

A 0-th order (i.e. polynomial of 0th order) regression function and a Gaussian correlation function are

selected. When finding the MLE of the mean, the standard deviation and the hyper-parameters, the lower

and upper bound for the genetic algorithm optimization toolbox are set to 10−10 and 10 respectively.

5.2. Computational times

The computational time for each DNS was of the order of 24 hours, using 1,024 cores on the UK

Supercomputing Facility ARCHER3. The computational time for the RANS simulations was of the

order of a couple hours on a powerful workstation. Moreover, the computational time for the hybrid

methods was of the order of minutes. This directly proves the applicability of the hybrid methods for

uncertainty quantification, where the high-fidelity simulations are computationally expensive, often an

order of magnitude higher than their lower-fidelity counterparts.

5.3. Response surfaces

The hybrid response surfaces of the list of QoI generated with the IWD-method and the GCK-

method are shown in Figure 9-11. For the PCER-method, the probability distribution is computed

directly, without the use of a response surface.

It can be seen that the hybrid surfaces go through the DNS data points and that the surface in

between is governed by the RANS data points. Further away from the DNS data points the hybrid

surface tends towards the RANS surface, because no high-fidelity data are available. In the regions

where the high-fidelity data is not available, i.e. the bottom left and right corner of the (α, γ)-domain,

the low-fidelity data helps to generate the hybrid response surface. It has to be noted that the response

3More information on the ARCHER facility can be found here: www.archer.ac.uk
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Figure 9: Hybrid response surface for the bubble height at x/h = 2 compared to the RANS response surface: Inverse
Weighted Distance method (left) and Gaussian CoKriging method (right).

Figure 10: Hybrid response surface for the bubble height at x/h = 4 compared to the RANS response surface: Inverse
Weighted Distance method (left) and Gaussian CoKriging method (right).

Figure 11: Hybrid response surface for the bubble length compared to the RANS response surface: Inverse Weighted
Distance method (left) and Gaussian CoKriging method (right).

surface of linearly interpolated DNS points would not be available outside the domain of the data points,

except with extrapolation. In this region the hybrid methods provide a direct advantage by enabling the

approximation of the response surface in a wider range.
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5.4. Probability distributions

The PDFs of the list of QoI generated with the different hybrid methods of Section 3 are shown in

the right 3 columns of Figure 12.

Figure 12: PDF of the output QoI using DNS and RANS results only (left two columns); PDF of the output QoI using
the hybrid methods of Section 3: Inverse Weighted Distance (IWD), Polynomial Chaos Expansion with Regression

(PCER), Gaussian CoKriging (GCK). The input variables are normally distributed.

The PDFs using purely DNS or purely RANS simulations are already described in Section 4.3. These

PDFs are compared to the hybrid PDFs.

Firstly, the conceptual difference between the DNS and RANS model becomes really apparent when

comparing the respective mean values for different QoI. These are indicated with red dots in Figure 13.

The hybrid methods correct the wrongly predicted RANS mean value towards the mean value of the

DNS. Secondly, when comparing the range of the different PDF it can be seen that for the three QoI,

the IWD- and GCK-method capture the range of the DNS PDF better compared to the PCER method.

Note that the standard deviation of the different distributions is also given in Figure 13 (the green dots

indicate µ±σ). The shape of the PDF and more specifically its deviation from the horizontal symmetry,

is given by the skewness parameter. The Fisher-Pearson coefficient of skewness of a data set is given in

Eq. 33 where E indicates the expectation of a stochastic variable (Doane and Seward [59]).

β =
m3

(m2)3/2
where m3 = E(x− µ)3 and m2 = E(x− µ)2 (33)

The skewness values for the different PDF are also given in Figure 13. For the well-correlated QoI

(height of the bubble at x/h = 2 and bubble length) the GCK-method predicts a similar skewness. For

the bubble height at x/h = 2 it is even the only method doing so when looking at the sign and magnitude

of β in Figure 13. For the bubble height at x/h = 4 the skewness predicted by the three methods deviates
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Figure 13: Comparison of the range, mean, standard deviation (std) and skewness (β) of the PDF of DNS, RANS,
Gaussian CoKriging (GCK), Inverse Weighted Distance (IWD) and Polynomial Chaos Expansion with Regression

(PCER).

considerably from the skewness of the DNS PDF. In general, when comparing the different PDF by visual

inspection, one can see the following features. The shape of the PDF of the IWD-method is very similar

to the shape of the RANS only PDF, while the shape of the GCK-method PDF is more similar to the

DNS only PDF.

Since the pure DNS PDF can never be obtained exactly because of the intractable computational

cost, it can only be approximated. The PDF resulting from only using the DNS data points will not

give a good approximation because too few data points are available. On the other hand, the PDF

resulting from only using the RANS data points will also not be a good approximation because of the

RANS model error. Therefore, by using a hybrid data set to compute the output PDF will result in an

improvement of the approximation. From the above analysis it can be seen that for the test case of the

flow over periodically arranged hills, the GCK-method is the best method.

5.5. Influence of CoKriging correlation model

The influence of the correlation model of the CoKriging method is studied by running the example

test case with an exponential correlation model instead of the Gaussian correlation model. The output

PDFs can be seen in Figure 14. They are compared to the PDF of the GCK method in the 5th column of

Figure 12. From Figure 14 it can be seen that the Exponential CoKriging (ECK) method also tends more

towards the PDF of the pure DNS model. This is similar to the PDF of the GCK method. This means

that the favourable property of capturing the pure DNS PDF is conserved by varying the correlation

model. However, the GCK method still captures the pure DNS shape better.

5.6. Influence of input probability distribution

The example test case is also run for a uniform input distribution instead of the previously used

normal distribution. The output PDF can be seen in Figure 15.

The PDF are compared to the PDF in the 5th column of Figure 12. The output PDF of the uniform

distribution are generally more flat, which resembles the shape of the uniform distribution itself. This is
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Figure 14: PDF of the output QoI using DNS and RANS results only (left two columns); PDF of the output QoI using
the hybrid Exponential CoKriging (ECK). The input variables are normally distributed.

Figure 15: PDF of the output QoI using DNS and RANS results only (left two columns); PDF of the output QoI using the
hybrid methods of Section 3: Inverse Weighted Distance (IWD), Polynomial Chaos Expansion with Regression (PCER),
Gaussian CoKriging (GCK). The influence of the input distribution is studied by selecting a uniform input distribution.

really apparent in the PCER-method, which uses the orthogonal polynomials corresponding to specific

input distribution (i.e. the uniform distribution) to generate the PCE.

30



6. Conclusions

In this work, the possibility of using non-intrusive multi-fidelity methods combining both RANS

simulations and DNS for uncertainty quantification (UQ) is examined. The methods are applied on a flow

over 2D periodically arranged hills with uncertainty introduced in the hill steepness angle and subsequent

hill separation. As the RANS model is known to struggle with separation from curved surfaces and with

reattachment, the test case is well-suited to perform an example multi-fidelity UQ study. Three different

multi-fidelity methods are tested, namely an inverse weighted-distance method, a polynomial chaos

expansion method using weighted regression, and a Gaussian CoKriging method. The main objective of

all these hybrid methods is to combine both low-fidelity RANS simulations and high-fidelity DNS in a

multi-fidelity framework to be able to make more accurate computations when performing UQ. When

analyzing the application of the methods to the flow test case, the three methods all correct the mean of

the probability distribution function (PDF) obtained using purely RANS simulations towards the mean

of the PDF using purely DNS. However, the CoKriging method and in particular the Gaussian CoKriging

method is found to perform better when other shape parameters of the PDF such as range and skewness

are compared. Therefore the Gaussian CoKriging method is considered as the best multi-fidelity method

compared to the other methods suggested in this study. It has to be noted that for poorly correlated

quantities of interest, UQ using the multi-fidelity approaches is challenging. One of the main advantages

of the hybrid methods is that they allow for a more efficient framework for UQ when data sets with

different levels of fidelity are available. Instead of having to run high-fidelity data over the entire range

of the domain, the computational cost can be reduced by making use of the low-fidelity data points.

Further research into the effects of different correlation models of the CoKriging method or the effect of

different input probability distributions on the multi-fidelity PDFs is encouraged. It is also recommended

to study which properties of the low- and high-fidelity data will result in a high-quality multi-fidelity

model. The effectiveness of the different hybrid methods will be discussed in a future study.
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