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A new transformation between stationary point
vortex equilibria in the unbounded plane is presented.
Given a point vortex equilibrium involving only
vortices with negative circulation normalized to
−1 and vortices with positive circulations that are
either integers, or half-integers, the transformation
produces a new equilibrium with a free complex
parameter that appears as an integration constant.
When iterated the transformation can produce
infinite hierarchies of equilibria, or finite sequences
that terminate after a finite number of iterations,
each iteration generating equilibria with increasing
numbers of point vortices and free parameters. In
particular, starting from an isolated point vortex
as a seed equilibrium, we recover two known
infinite hierarchies of equilibria corresponding to the
Adler–Moser polynomials and a class of polynomials
found, using very different methods, by Loutsenko
[J. Phys. A: Math. Gen. 37, (2004)]. For the latter
polynomials the existence of such a transformation
appears to be new. The new transformation therefore
unifies a wide range of disparate results in the
literature on point vortex equilibria.

1. Introduction
The laws of vorticity and vortex motion were formulated
by Helmholtz [1] more than a century and a half ago.
Point vortices are weak solutions of the two-dimensional
Euler equation, which governs the unsteady flow of an
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incompressible and inviscid fluid [2,3]. They provide a rich class of exact solutions to the Euler
equation and, although they were discovered during the age of “classical mathematics” [4],
substantial research interest has been devoted to them over the past several decades [3,5]. A
historical survey of point vortex dynamics with a derivation of the equations of motion of
singularities is given in [6]. Each point vortex corresponds to a singular Dirac delta vorticity
distribution; its circulation remains constant under evolution according to the Helmholtz laws
of vortex motion or Kelvin’s circulation theorem [2].

Relative equilibria are special configurations of point vortices in which the vortices are
stationary relative to each other [7] (the term “relative equilibrium” is given slightly different
meanings in the literature, some of which are different from ours). Relative equilibria may be
classified into three basic types: (i) rotating equilibria, where the configuration of vortices is
rigidly rotating, (ii) translating equilibria, where the vortex configuration is in steady translation
without change of form, and (iii) stationary equilibria, where no vortices move. In this paper we
will focus exclusively on stationary equilibria.

The study of point vortex equilibria has implications for a wide variety of experimental studies.
The patterns formed by magnetic disks in an external rotating magnetic field [8,9], vortices
in rotating superfluid helium [10], vortices in Bose-Einstein condensates [11] and magnetised
electron columns in Malmberg-Penning traps [12,13] are some examples of such experiments.
Geophysical applications have motivated the experimental study of the formation of few-vortex
equilibrium systems in rotating fluids, including monopoles, dipoles, tripoles and dipole pairs;
for a recent review and discussion see [14]. Vortex crystals have been observed to emerge from
a two-dimensional turbulent flow in experiments on magnetised electron columns [15] and in
numerical studies of forced turbulence [16].

Vortex statics is the study of point vortex equilibria – sometimes called ‘vortex crystals’
[4,7]. A recent review, with a focus on Aref’s contributions to the subject, lists several open
problems [17]. In this article we focus our attention on the connections between planar
equilibrium configurations and certain areas of mathematical physics, specifically systems of
polynomials whose roots display the same patterns as that of vortex equilibria. Such connections
have been the subject of many studies [18,19]. In this paper, however, we work at the level of
rational functions – the aforementioned polynomials arise as their numerators and denominators
– and use local expansions of these rational functions to study equilibria.

While a single vortex of any circulation is in stationary equilibrium, no stationary equilibria
exist for two vortices. They are either translating or rotating equilibria, depending on whether the
vortex circulations sum to zero or not. For three vortices, all stationary equilibria are necessarily
colinear, and a general formula exists for the vortex positions [5]. For a given set of vortex
circulations, it is known that there are exactly two stationary equilibria of four vortices, and
a general formula exists that gives the vortex positions as functions of these circulations [20].
Surprising connections exist to various known polynomial systems for M > 4 vortices (but with
restrictions on the values of M ) and we focus on some of these connections in this paper [18,19].

Burchnall and Chaundy studied the conditions under which, given P (z) and Q(z) which
are two polynomials in a complex variable z, both the rational functions P 2

/Q2 and Q2
/P 2

can be integrated to give another rational function [21]. They showed that this is equivalent
to seeking polynomial solutions of the bilinear differential equation1 P ′′Q − 2P ′Q′

+ PQ′′
= 0,

where primes denote derivatives. They also showed how to construct such polynomials and
obtained a Wronskian representation [21] using commutative-operator theory; also see [22]. The
procedure for constructing these polynomials can be iterated to produce an infinite sequence
of polynomials. The same polynomials arose in a completely different context, the study of
rational solutions of the KdV equation [23], where they were constructed by Adler and Moser [24]
using iterated Darboux–Crum transformations of a Schrödinger operator [25]. The Adler–Moser
polynomials have been generalised to the case of the rational antiderivative of P 2/m

/Q2 and

1Burchnall and Chaundy [21] considered a more general problem, that of integrating Pm
/Q2 andQm

/P 2 wherem is some
positive integer, and found the differential equation P ′′Q −mP ′Q′ + PQ′′ = 0. We restrict ourselves to the casem = 2.
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Q2m
/P 2 by Loutsenko [26], who has shown that the bilinear differential equation stated above

generalises in this case to P ′′Q − 2mP ′Q′
+m2PQ′′

= 0 for m = 1/2 and m = 2. However an
analogous construction of the Loutsenko polynomials through the Darboux–Crum process, such
as exists for the Adler–Moser polynomials, has so far not been found. The new transformation
given here throws light on such matters.

A system of M ≥ 4 point vortices is generally not integrable [27], but the equilibrium
configurations of point vortices can be the same as configurations of other systems such as a
two-dimensional Coulomb gas. Consider for integer n, a system of M+ =n(n + 1)/2 vortices with
circulations +1 and M− =n(n − 1)/2 vortices with circulations −1. We define the polynomials P
and Q with degrees M+ and M− through the vortex positions i.e. the vortices are located at the
roots of P and Q. It can then be shown that P and Q satisfy the bilinear differential equation
P ′′Q − 2P ′Q′

+ PQ′′
= 0, which is called Tkachenko’s equation in the context of vortex dynamics [7,

28]. Bartman [29] made the connection that the Adler–Moser polynomials provide polynomial
solutions to Tkachenko’s equation, and hence vortex equilibrium solutions for vortices of the
same circulation but mixed sign. Bartman [29] also briefly discussed the case of vortex circulations
1 and −2, essentially the same vortex circulations corresponding to Loutsenko’s polynomials;
although not many details are provided, differential equations for the polynomials are written
down. Campbell & Kadtke [30] found a subset of the Adler–Moser polynomials by generalising
Tkachenko’s method, see also [31].

For a given number of point vortices and using ideas from algebraic geometry, O’Neil [20,32]
has calculated the number of stationary and translating equilibria for generic vortex circulations.
Applying some methods used in the Newtonian four-body problem, a count of the number
of rotating four-vortex equilibria can also be made, although the count is incomplete [33]. An
infinite number of vortex equilibria, depending continuously on some parameter, can only exist
for special values of the vortex circulations. Examples of such equilibria with a small number
of vortices are provided in [32]. The Adler–Moser polynomials and the polynomials found by
Loutsenko [26] also fall into this category, since at every stage in the iteration there is an additional
complex-valued parameter so that the nth polynomial in these hierarchies depends on n distinct
complex-valued parameters.

As mentioned above, one method of describing relative equilibria uses generating
polynomials, which are defined so that the point vortices are at their roots [34]. In the case of
equilibria with more than one species of vortex i.e. with multiple values of vortex circulations,
multiple polynomials are defined [18,19,29,30]. By using the conditions required for a point vortex
equilibrium, differential equations are derived for these polynomials which are then used to study
the equilibria and establish connections to various polynomial systems. For an alternate approach
to point vortex equilibria that is based on matrix methods see [35,36].

The subject of relative equilibria may be approached in two general ways [7]: (i) the vortex
circulations are specified and we ask for the vortex positions such that they are in equilibrium,
or (ii) the vortex positions are given and the corresponding circulations need to be found so that
they are in equilibrium. Most of the literature surveyed above falls into category (i). An example
of (ii) is that of three vortices situated at the vertices of an equilateral triangle, then it is known
that they are always in rotating or translating equilibrium, regardless of the vortex circulations.
From a physical point of view it is more natural to be given the vortex circulations with the
vortex positions to be worked out; this is a harder problem from the mathematical point of view.
In this paper we present a transformation that takes a given equilibrium with given positions
and circulations into a new equilibrium with new positions and circulations, both of which are
determined by the transformation.

The idea that a given point vortex equilibrium can be related to a different equilibrium with
a different number of point vortices is not necessarily new. For example, it forms the basis for
numerical methods that have been used in the past to obtain a rotating M + 1 vortex equilibrium
by “growing” a vortex at co-rotating points of an M vortex equilibrium [37]. Our approach here
is different in spirit, however, and involves an explicit and direct transformation to a different
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equilibrium in contrast to this continuation process of gradually growing additional vortices in
an existing equilibrium.

This paper is organised as follows. We give a mathematical introduction to point vortices and
relative equilibria in §2, and introduce the new transformation between stationary equilibria in §3.
We discuss some of its properties in §4 and obtain conditions for it to yield non-trivial equilibria.
In §5 we discuss various examples and, in particular, show that the Adler–Moser and Loutsenko
hierarchies can be obtained from the transformation with the same simple seed, a single stationary
vortex with different circulations. We end with a discussion of future directions, including the
relationship between the present work and other work by the authors where a class of hybrid
equilibria of the two-dimensional incompressible Euler equation have been found comprising a
combination of Stuart-type vorticity with superposed point vortices [38].

2. Mathematical formulation
Consider a two-dimensional, incompressible and inviscid homogeneous fluid. Let (x, y) denote
the Cartesian coordinates of a planar cross-section of the flow, V (x, y) the velocity field with
components V = (u, v), p(x, y) the pressure and ρ0 the constant density of the fluid. The motion
of the fluid is governed by the Euler equation [2]

∂V

∂t
+ (V ⋅ ∇)V = −

∇p

ρ0
, (2.1)

where here ∇ = (∂/∂x, ∂/∂y) is the two-dimensional gradient operator. Since the flow is
incompressible with ∇ ⋅V = 0, we can define a streamfunction ψ(x, y) via the equations

u =
∂ψ

∂y
and v = −

∂ψ

∂x
, (2.2)

and, since the flow is two-dimensional, the vorticity ω =∇ ×V has a single non-zero component

ζ(x, y) =
∂v

∂x
−
∂u

∂y
, (2.3)

which is related to the streamfunction through the Poisson equation

∇
2ψ = −ζ. (2.4)

For the planar flows that we are considering, it is advantageous to work in a complex z = x + iy

plane. Point vortices are defined as solutions of (2.4) corresponding to the Dirac-delta vorticity [5]

ζ =
M

∑
j=1

Γjδ(z − zj), (2.5)

where here the complex numbers zj = xj + iyj are the locations and the real numbers Γj are the
circulations of the M point vortices. Since by (2.5) the flow is irrotational everywhere except at M
points in the plane, away from these points there exists a (multivalued) velocity potential ϕ such
that V =∇ϕ. Using the incompressibility condition ∇ ⋅V = 0, we see that ϕ solves the Laplace
equation ∇2ϕ = 0. Together with (2.4) and (2.5) this implies the existence of the complex potential

f(z) =ϕ + iψ =
1

2πi

M

∑
j=1

Γj log(z − zj). (2.6)

The fluid velocity field ξ(z) = u − iv is simply given by the derivative2 of the complex potential,
ξ(z) = f ′(z). The velocity field due to the point vortices is [5]

ξ(z) =
dz

dt
=

1

2πi

M

∑
j=1

Γj

z − zj
, (2.7)

2Throughout this paper, primes denote derivatives with respect to the complex variable z.
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where the overbar denotes complex conjugation. The locations of the point vortices are in general
time-dependent and they move about under the influence of each other according to [6]

dzk
dt

=
1

2πi

M

∑
j=1
j≠k

Γj

zk − zj
for k = 1,2, . . . ,M. (2.8)

The expression (2.8) is the non-self-induced velocity field at the location of a point vortex i.e. the
finite part of the fluid velocity induced by all the other point vortices at this point vortex location.

With xk and Γkyk as canonical conjugate variables, the system (2.8) is the canonical
Hamiltonian system associated with the Hamiltonian

H=−
1

2π

M

∑
j,k=1
j<k

ΓkΓj log ∣zk − zj ∣. (2.9)

This Hamiltonian system is integrable for M ≤ 3, due to the existence of three further integrals of
motion: the linear impulse X + iY =∑j Γjzj and the angular impulse I =∑j Γj ∣zj ∣

2. However, for
M ≥ 4 it is generally chaotic [3,27]. Relative equilibria can be obtained as extrema of H subject to
the constraints that X ,Y,I are constant [7].

In a relative equilibrium the inter-vortex distances remain constant, so that the shape and size
of the configuration remains fixed. The velocity field in this case takes the form [7]

dzk
dt

= iΩzk +U, (2.10)

where the angular velocityΩ is a real parameter and the linear velocity U is a complex parameter.
This paper is focused on studying stationary configurations of point vortices for which Ω =U = 0.
In this case (2.8) reduces to the M conditions on the vortex positions,

M

∑
j=1
j≠k

Γj

zk − zj
= 0 for k = 1,2, . . . ,M. (2.11)

The algebraic equations (2.11) can be viewed as M conditions on the M unknowns z1, . . . , zM ,
for given values of the circulations Γ1, . . . , ΓM . We note that under the operations of scaling all
the vortex circulations and scaling plus shifting all the vortex positions, a stationary equilibrium
remains stationary.

3. The transformation
In this section we suppose that we are given a point vortex equilibrium with locations z1, . . . , zM
and circulations Γ1, . . . , ΓM which satisfy the constraint

Γk = −1,
1

2
,1,

3

2
,2, . . . , k = 1, . . . ,M, (3.1)

i.e., each Γk is either −1 or a positive integer or half-integer. We can then define a rational function
h′(z) via the complex potential f(z) as

h′(z) =A[exp(2πi f(z))]2 =A
M

∏
j=1

(z − zj)
2Γj , (3.2)

where A is a nonzero constant. The velocity field ξ(z) in (2.7) is given in terms of h(z) by

ξ(z) =
1

4πi
(logh′(z))

′

=
1

4πi

h′′(z)

h′(z)
. (3.3)

Changing the value of A is equivalent to adding a constant to the complex potential and so does
not affect the velocity field. The algebraic conditions (2.11) are equivalent to ξ(z) having a Laurent
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series

ξ(z) =
1

2πi

Γk
z − zk

+O(z − zk), (3.4)

with vanishing constant term near each of its singularities.
We now show that the rational function ĥ′(z) defined, in terms of a rational function h′(z)

associated with a given equilibrium within the class just described, by the transformation

h′(z)↦ ĥ′(z) = Â [
h′(z)

(h(z))2
]

α

, (3.5)

also corresponds to a stationary point vortex equilibrium. Here Â is a nonzero constant, α is a
nonzero real number, and h(z) is any primitive of h′(z). Equivalently, if the velocity field (3.3)
corresponds to some stationary point vortex configuration, we claim that the velocity field

ξ̂(z) =
1

4πi
(log ĥ′(z))

′

=
α

4πi
[
h′′(z)

h′(z)
−
2h′(z)

h(z)
] (3.6)

corresponds to another, distinct stationary point vortex configuration. Necessary and sufficient
conditions for this to be case are (i) h(z) is rational, and (ii) the only singularities of ξ̂(z) are
simple poles at which the constant term in the Laurent series vanishes.

Observe that, assuming (i) holds, the singularities of ξ̂(z) are precisely the zeros and poles of
ĥ′(z). Looking at (3.5) or (3.6), we see that the possible singularities of ξ̂(z) are either (a) zeros of
h′(z), (b) poles of h′(z), or (c) zeros of h(z). The poles of h(z) and h′′(z) coincide with the poles
of h′(z), and so do not need to be checked separately.

(a) Proof that h(z) is rational
We begin by showing (i), which is equivalent to h′(z) having zero residue at each of its poles.
Clearly all poles of h′(z) are at point vortex locations zk with negative circulations Γk = −1, due
to the restriction (3.1) on the allowable vortex circulations. Near such a zk, we rewrite

h′(z) =A(z − zk)
2ΓkHk(z), (3.7)

where we have defined the functions

Hk(z) =
M

∏
j=1
j≠k

(z − zj)
2Γj for k = 1,2, . . . ,M. (3.8)

Since the vortex positions are non-overlapping, Hk(zk) is finite and non-zero. The series
representation for h′(z) near zk is

h′(z) =A(Hk(zk)(z − zk)
2Γk +H ′

k(zk)(z − zk)
2Γk+1 +

H ′′

k (zk)

2
(z − zk)

2Γk+2 +⋯) . (3.9)

In particular, since 2Γk + 1 = −1, h′(z) will have zero residue at zk if and only if the coefficient
H ′

k(zk) vanishes. Combining (3.8) and (2.11) yields

H ′

k(zk)

Hk(zk)
= (logHk(z))

′
∣

z=zk

=
M

∑
j=1
j≠k

Γj

zk − zj
= 0, (3.10)

and hence H ′

k(zk) = 0 as desired. Similar arguments show that allowing for Γk = −1/2 in (3.1)
would always lead to non-rational h(z). Allowing for larger negative circulations, say Γk = −

3
2 ,

would require the corresponding coefficient H ′′

k (zk) to vanish, which is not true in general. On
the other hand it can happen in specific examples, for instance the trivial example of a single point
vortex.
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(b) The singularities of ̂ξ(z) are stationary point vortices
Now we show (ii), which requires us to analyse the poles of the transformed velocity field (3.6).
We will take the cases (a), (b), (c) introduced above in turn.

First, let zk be a zero of h′(z) which is not also a zero of h(z), so that the second term h′(z)/h(z)

in (3.6) vanishes at zk. Since the first term in (3.6) is proportional to the original velocity field (3.3),
we have

ξ̂(z) =
α

4πi

h′′(z)

h′(z)
+O(z − zk) =αξ(z) +O(z − zk).

Thus we have a stationary vortex of circulation αΓk at zk. Next, let zk be a pole of h′(z). By our
assumption (3.1) we must have Γk = −1, and therefore zk is a second order pole of h′(z) and a first
order pole of h(z). Looking at (3.5), we see that ĥ′(z) is therefore analytic at zk, and that point is
not a singularity of ξ̂(z). Alternatively, this can be checked by expanding (3.6) directly.

Now suppose that ẑj is a zero of h(z), and further assume that it is a simple zero. Then, for
some constants a0, a1, . . . with a0 ≠ 0, we have

h(z) = a0(z − ẑj) + a1(z − ẑj)
2
+ a2(z − ẑj)

3
+⋯, (3.11a)

h′(z) = a0 + 2a1(z − ẑj) + 3a2(z − ẑj)
2
+⋯, (3.11b)

h′′(z) = 2a1 + 6a2(z − ẑj) + ⋯. (3.11c)

Substituting (3.11) into (3.6) we find the transformed velocity field near ẑj to be

ξ̂(z) = −
1

2πi

α

z − ẑj
+O(z − ẑj), (3.12)

which is of the desired form for a stationary vortex of circulation −α at ẑj .
Finally, suppose that ẑj is a multiple root of h(z). Then ẑj must also be a root of h′(z), and

so ẑj = zk for some k = 1, . . . ,M . Moreover, since zk is a root of h′(z) with multiplicity 2Γk by
construction, it must be a root of h(z) with multiplicity 2Γk + 1. Thus we can write

h(z) = (z − zk)
2Γk+1Gk(z) (3.13a)

for some rational function Gk(z) with Gk(zk) ≠ 0. Differentiating (3.13a) yields

h′(z) = (z − zk)
2Γk((2Γk + 1)Gk(z) + (z − zk)G

′

k(z)), (3.13b)

and hence that Gk(z) is related to the function Hk(z) defined in (3.8) via

(2Γk + 1)Gk(z) + (z − zk)G
′

k(z) =Hk(z). (3.13c)

Differentiating (3.13b) once more to calculate h′′(z) and expanding near zk, a calculation similar
to the one in the previous paragraph shows that

ξ̂(z) =
α

4πi
[−

2(Γk + 1)

z − zk
−

2Γk
2Γk + 1

G′k(zk)

Gk(zk)
+O(z − zk)] . (3.14)

Differentiating (3.13c) and substituting z = zk, we find

(2Γk + 2)G′k(zk) =H
′

k(zk) = 0, (3.15)

where the last equality follows from (2.11) exactly as in (3.10). In particular, since Γk ≠ −1, we
deduce that G′k(zk) = 0. Thus (3.14) is of the desired form for a stationary point vortex at zk with
circulation −α(Γk + 1).

(c) Collapse configurations
While in the above we have focused on a single fixed primitive h(z) of h′(z), it is instructive to
consider the whole family of primitives h(z) +C where C is a complex integration constant. For
generic values ofC, the rational function h(z) +C has only simple roots, depending continuously



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

on C and corresponding to stationary point vortices of circulation −α as shown by (3.12). Clearly,
the only possible multiple roots are points zk where

C = −h(zk) and h′(zk) = 0. (3.16)

In this case, the arguments in §3(b) show that this root has multiplicity 2Γk + 1 and corresponds
to a point vortex with circulation −α(Γk + 1) as shown in (3.14). In the limit as C→−h(zk), then,
2Γk + 1 “movable” vortices of circulation −α and a single “fixed” vortex of circulation αΓk collapse
to form a new vortex of circulation −α(2Γk + 1) + αΓk = −α(Γk + 1). See §5(a) and figures 1 and 2
for simple examples of these collapse scenarios. Note that the poles of h(z) +C coincide with the
poles of h′(z) and are therefore independent of C.

Of course the values of the constant C where h(z) +C has multiple roots can also be found by
setting the discriminant of its numerator equal to zero, yielding a polynomial equation in C. By
contrast, the roots zk of h′(z) are the known locations of the positive strength point vortices in
the given equilibrium (3.2), and so calculating C from (3.16) is trivial. Moreover, it clarifies that
there is exactly one collapse scenario for each of these positive vortices.

4. Iterated transformations
Under certain circumstances, starting from some seed equilibrium h ′0(z), the transformation (3.5)
can be repeated to produce a sequence of equilibria defined by

h′n+1(z) =An+1 [
h′n(z)

(hn(z))2
]

αn

n ≥ 0, (4.1)

where the αn are real constants. As long as the vortex strengths in h′n(z) satisfy the constraints
(3.1), h′n+1(z) represents a new point-vortex equilibrium.

Here, as in (3.5), hn(z) is any primitive of h′n(z), but we can consider the family of primitives
hn(z) +Cn where the Cn (n ≥ 0) are complex integration constants. The comments in §3(c) about
collapse configurations are still applicable and hold for each n. That is, the non-generic values of
the constant Cn are given by Cn = −hn(zk), where zk is a root of h′n(z). Note that the roots of
h′n(z) and hence the non-generic values of Cn depend on C0, . . . ,Cn−1. Thus the set of collapse
configurations becomes larger (and richer) as n increases. We do not explore this aspect of collapse
configurations in detail; see figures 3–6 for a few select examples.

(a) Convention for the constants An and Cn

Suppose that h′n(z) has a rational primitive N(z)/D(z) where N(z) and D(z) are polynomials.
Polynomial long division gives

N(z)

D(z)
=P (z) +

R(z)

D(z)
,

where P (z) and R(z) are polynomials and the degree of R(z) is strictly less than that of D(z).
We then define

hn(z) =P (z) − P (0) +
R(z)

D(z)
. (4.2)

This amounts to setting the constant term in this representation equal to zero. That constant term
can then be added back in explicitly, and we will call it Cn. We can then rewrite (4.1) as

h′n+1(z) =An+1 [
h′n(z)

(hn(z) +Cn)2
]

αn

n ≥ 0. (4.3)

It only remains to fix An+1 which, we recall from (3.3), has no physical meaning since it is simply
an additive constant in the complex potential. We therefore choose An+1 so that the numerator
and denominator of the rational function h′n+1(z) are both monic polynomials in z. Moreover
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we always begin with a seed equilibrium h′0(z) which has monic numerator and denominator
polynomials.

(b) The special case αn = 1
To study the role of the parameter αn in the transformation (4.1), we now look at the general
theory in the case when αn = 1 for n ≥ 0. We show that while this choice of αn produces a new
equilibrium at the first stage (n = 0), no new equilibria are produced in subsequent stages (n ≥ 1) of
the transformation. Up to a reparametrisation of the integration constants, the family of equilibria
produced for each n ≥ 1 is exactly the same as the family at the previous stage. We call such a
transformation trivial, if it produces an equilibrium with the same number and circulations of
vortices as at the previous stage, but with reparametrised constants.

Let h ′0(z) represent a point vortex equilibrium that is transformed by (4.3) and α0 = 1 into

h ′1(z) =A1 (
1

h0(z) +C0
)

′

Ô⇒ h1(z) =
A1

h0(z) +C0
+C1, (4.4)

where C0 and A1, C1 are constants chosen according to the convention described in §4(a). We
have used a slightly different form of the transformation (4.3) in (4.4), but it is easy to check
that they are the same upto a multiplicative constant, which is absorbed into An. From §3 we
know that if all the negative vortex circulations in h ′0(z) are −1 (in other words h ′0(z) has only
second order poles), then h0(z) is a rational function with generically simple zeros, and hence
h ′1(z) is a new point vortex equilibrium. Further from (4.4) we see that these conditions on h ′0(z)
and h0(z) are sufficient to ensure that h ′1(z) and h1(z) also satisfy the same conditions. Hence
we can consider the sequence of n transformations from h ′0(z) to h ′n(z), choosing αn = 1 at each
stage, and each stage being a point vortex equilibrium. Now we see from (4.4) that h1(z) is a
Möbius transformation of h0(z), and since αn = 1 at each stage, hn(z) is a Möbius transformation
of hn−1(z). We can express hn(z) in terms of h0(z) in the form of a finite continued fraction:

hn(z) =Cn +
An

Cn−1 +
An−1

⋱ +
A1

C0 + h0(z)

, (4.5)

where A0,A1, . . . ,An and C0,C1, . . . ,Cn are constants. The function hn(z) is a Möbius
transformation of h0(z),

hn(z) =
Enh0(z) + Fn

Ênh0(z) + F̂n
, (4.6)

for some constants En, Ên, Fn and F̂n which can be expressed in terms of the constants A’s and
C’s. Taking a derivative of (4.6), we find that the form of the equilibrium after n transformations
is

h ′n(z) = (
EnF̂n − FnÊn

Ê2
n

)(
h ′0(z)

(h0(z) + F̂n/Ên)2
) . (4.7)

Thus h ′n(z) is a trivial transformation of h ′1(z) if αn = 1 for all n.

5. Classes of equilibria generated by the transformation
In this section, we look at examples of stationary equilibria produced via the transformation
(3.5). First, in §5(a), we consider single-stage transformations in which a given point vortex
equilibrium (the seed) is transformed into a new point vortex equilibrium by (3.5). For our
examples we choose seed equilibria from among the O’Neil equilibria [32] discussed in the
context of stationary equilibria of point vortices with non-identical circulations. We have seen
in §4(b) that if we consider the iterated transformation (4.1) with αn = 1 for all n, then a new
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αn = −1 αn=
⎧⎪⎪
⎨
⎪⎪⎩

−2 for n even
−1/2 for n odd

αn=
⎧⎪⎪
⎨
⎪⎪⎩

−1/2 for n even
−2 for n odd

Γ = 1 Adler–Moser Logarithms Logarithms

Γ = 1/2 Terminating Loutsenko (i ≤ 0) Not point vortices

Γ = 2
Special case of
Adler–Moser

Special case of
Loutsenko (i ≤ 0)

Loutsenko (i ≥ 0)

Table 1. The behaviour of the transformation (4.3) with the seed equilibrium h ′0(z) = z
2Γ for different choices of Γ and

αn. In different cases we obtain either an entire known hierarchy or else a special case of the hierarchy where some of

the free constants have been fixed. The entries marked “terminating” are finite length iterated equilibria, which end when

the transformation yields logarithms. In other cases, we obtain logarithms from 1/z terms in the seed, or rational functions

in
√
z which do not correspond to point vortices.

equilibrium is only produced in the first stage and the subsequent transformations are all trivial.
By making various other choices for αn, we show that non-trivial hierarchies of equilibria can
be produced from the same simple seed equilibrium h ′0(z) = z

2Γ , for different values of the
seed circulation Γ (see table 1). In this way, we can reproduce known hierarchies of stationary
equilibria: the Adler–Moser polynomials [24] are discussed in §5(b) and the two heirarchies of
Loutsenko polynomials [26] are discussed in §5(c). We can also produce hierarchies that terminate
after a finite number of stages; see §5(d).

The constants An and Cn in all the cases below, including the single-stage and terminating
cases, are set according to the conventions described in §4(a). The values of the constants Cn
corresponding to the special ‘collapse configurations’ may be found directly using the method in
§3(c). To illustrate this method we provide complete details of the collapse configurations for the
single-stage transformations in §5(a). The corresponding constants for the examples in §§5(b)–(d)
are obtained in a completely analogous manner and are recorded in table 3.

(a) Single-stage transformations
In our first examples, we look at three- and four-vortex equilibria that are transformed by (3.5)
into equilibria with higher numbers of vortices.

(i) From three to eleven vortices

Consider then three vortices with circulations Γ1 = 3, Γ2 = 3/2, Γ3 = −1 located at z1 = −2, z2 = 1,
z3 = 0 respectively [32]; as shown in figure 1(I). The function h′(z) constructed from (3.2) is

h′(z) =
(z + 2)6(z − 1)3

z2
, (5.1)

where we have set A = 1. Since the vortex circulations satisfy the constraint (3.1), h(z) is also a
rational function. Indeed a simple calculation shows

h(z) =
z8

8
+
9z7

7
+
9z6

2
+ 3z5 − 18z4 − 36z3 + 24z2 + 144z +

64

z
. (5.2)

The transformation (3.5) produces a new equilibrium as shown in figure 1(T), with

ĥ′(z) =
(z + 2)6(z − 1)3

(z9 + 72
7 z

8 + 36z7 + 24z6 − 144z5 − 288z4 + 192z3 + 1152z2 + 8Cz + 512)2
, (5.3)

where C is a constant and we have chosen α = 1, Â = −1/64. Comparing (5.3) with (3.2) we
see that, for generic choices of the integration constant C, (5.3) corresponds to an equilibrium
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(I) (T)

(M1)

(M2)

Figure 1. New stationary equilibria produced from known stationary equilibria via the transformation (3.5). Positive

vortices are represented by blue diamonds ( ∎), negative vortices by black disks ( ), and the size of the markers

represents the vortex circulation. The three-vortex equilibrium (I) given by (5.1) is transformed into an eleven-vortex

equilibrium (T) given by (5.3). In fact, there is a family of transformed equilibria parameterized by an integration constant

C which is set equal to 0 in (T). For two special valuesCcol
1 = 1152/7,Ccol

2 = −10467/56 ofC, some of the negative point

vortices collapse onto the positive point vortices. The left of (M1) shows the approach to a collapsed configuration as C is

varied from 0 to Ccol
1 : open disks mark vortex locations at C = 0, filled disks mark vortex locations as we approach Ccol

1 ,

and every set of corresponding points on the solid curves marks an intermediate equilibrium configuration. The limiting

four-vortex configuration is shown to the right; see (5.4) for the explicit vortex locations, which agree with the formulas

in the literature [20]. Panel (M2) similarly shows the quite different collapse as C approaches Ccol
2 , this time leading to a

seven-vortex equilibrium.

of eleven vortices: two vortices with circulations Γ1 = 3 and Γ2 = 3/2 located at z1 = −2 and
z2 = 1 respectively, and nine vortices with circulations −1 each, located at the roots of the ninth
degree polynomial in the denominator of (5.3). The locations of the negative vortices depend
continuously on the complex parameter C, and several examples are shown in figure 1.

It is worth repeating here that the complex potential f̂(z) and velocity field ξ̂(z) are obtained
from any of the ĥ′(z) by the simple formulas 4πi f̂(z) = log ĥ′(z) and 4πi ξ̂(z) = (log ĥ′(z))′.

Collapse configurations. From the discussion in §3(c), we see that there are exactly two special
valuesCcol

1 ,Ccol
2 ofC for which the number and circulations of the point vortices changes: one for

each of the positive vortices at z1 = −2, z2 = 1. Indeed, since the zeros of h′(z) are precisely z1 and
z2, these are the only possible locations for the multiple roots of h(z) +C. The special values of
C are therefore Ccol

1 = −h(z1) and Ccol
2 = −h(z2). While Ccol

1 and Ccol
2 can also be found by setting

the discriminant of the denominator polynomial in (5.3) equal to zero, the method given above is
clearly simpler to use.

First consider Ccol
1 = −h(z1) = 1152/7. As C→Ccol

1 , 2Γ1 + 1 = 7 of the vortices with circulation
−1 collapse onto the vortex at z1, creating a new vortex of circulation −(Γ1 + 1) = −4 there when
C =Ccol

1 . The corresponding rational function ĥ′(z) is

ĥ′(z) =
(z − 1)3

(z + 2)8(z2 − 26
7 z + 4)2

, (5.4)

with one vortex of circulation Γ2 at z2, one vortex of circulation −4 at z1, and two vortices of
circulation −1 each, located at z = (13 ± 3

√
3i)/7; see figure 1(M1). After a simple shifting and
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(I) (T) (M1)

(M2) (M3)

Figure 2. New stationary equilibria produced from known stationary equilibria [32] just as in figure 1 but starting from the

four-vortex equilibrium (I). The four-vortex equilibrium (I) in (5.6) is transformed into a ten-vortex equilibrium (T) in (5.8).
This is part of a family parametrized by the integration constant C, which is set equal to 0 in (T). As C approaches three

particular values C =Ccol
1 , C

col
2 , C

col
3 given in (5.9), (T) collapses into the five-, seven- and eight-vortex equilibria (M1),

(M2) and (M3) respectively.

scaling, these vortex locations agree with the general formula for four-vortex equilibria given in
§8 of [20].

For the second collapse we get Ccol
2 = −h(z2) = −10467/56. As C→Ccol

2 , 2Γ2 + 1 = 4 of the
vortices of circulation −1 each collapse onto the vortex at z2, combining to form a new vortex
of circulation −(Γ2 + 1) = − 5

2 when C =Ccol
2 . The corresponding rational function ĥ′(z) is

ĥ′(z) =
(z + 2)6

(z − 1)5(z5 + 100
7 z4 + 610

7 z3 + 2036
7 z2 + 3869

7 z + 512)2
, (5.5)

with one vortex of circulation Γ1 at z1, one vortex of circulation −5/2 at z2, and five vortices of
circulation −1 each located at the roots of the degree-five polynomial in (5.5); see figure 1(M2).
Since all the coefficients in this polynomial are real, the five vortices are symmetrically located
about the x-axis. Although it might appear at first sight from figure 1(M2) that the five vortices
are arranged on a circle centred at z2, an inspection of the roots reveals that this is not the case.

(ii) From four to ten vortices

Next consider four vortices with circulations Γ1 = 2, Γ2 = 1, Γ3 = 1/2, Γ4 = −1 located at
z1 = −

√
3 − 3i, z2 = 2i, z3 =

√
3, z4 = 0 respectively, as shown in figure 2(I). They form an

equilibrium [32] with

h′(z) =
(z +

√
3 + 3i)4(z − 2i)2(z −

√
3)

z2
. (5.6)

Since the vortex strengths satisfy the constraints (3.1), h(z) is a rational function, given by

h(z) =
z6

6
+
1

5
(3

√
3 + 8i)z5 − (1 − 3

√
3i)z4 + 4(2

√
3 + 3i)z3

− 12(1 − 3
√
3i)z2 + 24(

√
3 − 9i)z +

288(
√
3 + 3i)

z
. (5.7)

The equilibrium (5.6) is transformed by (3.5), with α = 1 and Â = −1/36, into the ten-vortex
equilibrium shown in figure 2(T), with

ĥ′(z) =
(z +

√
3 + 3i)4(z − 2i)2(z −

√
3)

(6z(h(z) +C))2
, (5.8)
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where C is a constant and the denominator is a monic polynomial.

Collapse configurations. As in the previous example, we can completely characterise the
collapse configurations using the method of §3(c). There are three special values

Ccol
1 =

144

5
(33 −

√
3i), Ccol

2 =
32

15
(−436 + 111

√
3i), Ccol

3 =
9

10
(−453 − 286

√
3i) (5.9)

of the integration constant C, at which negative point vortices collapse onto each of the three
positive point vortices at z1, z2, z3 forming five-, seven- and eight-vortex equilibria, respectively.
These collapsed equilibria are displayed in figure 2(M1) – (M3). The corresponding rational
functions ĥ′(z) are respectively

(z − 2i)2(z −
√
3)

(z +
√
3 + 3i)6(p1(z))2

,
(z +

√
3 + 3i)4(z −

√
3)

(z − 2i)4(p2(z))2
,

(z +
√
3 + 3i)4(z − 2i)2

(z −
√
3)3(p3(z))2

, (5.10a)

where the polynomials p1(z), p2(z), p3(z) are

p1(z) = z
2
−
7
√
3

5
z −

27i

5
z − 6(1 −

√
3i), (5.10b)

p2(z) = z
4
+
6

5
(3

√
3 + 13i)z3 +

6

5
(−73 + 33

√
3i)z2 −

4

5
(183

√
3 + 343i)z + 216(3 −

√
3i), (5.10c)

p3(z) = z
5
+
4

5
(7

√
3 + 12i)z4 +

3

5
(41 + 62

√
3i)z3 +

6

5
(67

√
3 + 222i)z2

+
9

5
(187 + 354

√
3i)z + 576(

√
3 + 3i).

(5.10d)

(b) The Adler–Moser polynomials
Consider the sequence of transformations (4.3) with the seed equilibrium

h ′0(z) = z
2 and αn = −1 for n ≥ 0. (5.11)

With the conventions in §4(a), the first few rational functions in this sequence are

h′1(z) =
(z3 + 3C0)

2

z2
, (5.12a)

h′2(z) =
(z6 + 15C0z

3
+ 5C1z − 45C2

0)
2

(z3 + 3C0)
2

, (5.12b)

h′3(z) =
(z10 + 45C0z

7
+ 35C1z

5
+ 7C2z

3
− 525C0C1z

2
+ 4725C3

0z + 21C0C2 −
175
3 C2

1)
2

(z6 + 15C0z3 + 5C1z − 45C2
0)

2
. (5.12c)

The polynomials in (5.12) are the Adler–Moser polynomials constructed by Adler and Moser
in [24] utilising Darboux–Crum transformations. The two can be compared by identifying the
constants in the Adler–Moser polynomials with the constants in (5.12) as τ2 = 3C0, τ3 = 5C1 and
τ4 = 7C2.

For generic values of the integration constants, the polynomials in (5.12) have only simple
roots, and hence the rational functions correspond to equilibria of point vortices of the same
circulation but opposite signs. The equilibria corresponding to h ′1(z), . . . , h

′

4(z) are shown in
figure 3. The constants C0, . . . ,C3 are chosen to be real in panels (S1) – (S4) so that the
equilibria are symmetric with respect to the real axis. By choosing these constants to be complex,
we can obtain asymmetric equilibria as shown in panels (A1) – (A4). As in the single-stage
examples, there are special values of the constants for which some of the vortices collapse into
a single vortex. However, since there are now multiple integration constants which can be varied
simultaneously, the collapse scenarios are more complicated. We show some examples in (M1) –
(M5); see table 3 for the exact values of the constants used in producing these panels. The locations
of the point vortices in the simple collapse configuration (M1) is given in table 2.
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(S1) (S2) (S3) (S4)

(A1) (A2) (A3) (A4)

(M1) (M2) (M3) (M4)

Figure 3. Point vortex equilibria at the roots of the Adler–Moser polynomials [24], obtained via the transformation (4.3)
from the seed (5.11) and given by the rational functions (5.12). Panels (S1) – (S4) show symmetric equilibria, (A1) – (A4)

show asymmetric equilibria, (M1) – (M5) show various collapsed equilibria. The values of all constants in the figures are

given in table 3.

(c) The polynomials due to Loutsenko [26]
First hierarchy. Consider the sequence of transformations (4.3) for n ≥ 0 with the seed
equilibrium

h ′0(z) = z and αn =

⎧⎪⎪
⎨
⎪⎪⎩

−2 for n even,

−1/2 for n odd.
(5.13)

With the conventions in §4(a), the first few rational functions in this sequence are

h′1(z) =
(z2 + 2C0)

4

z2
, (5.14a)

h′2(z) =
z8 + 56

5 C0z
6
+ 56C2

0z
4
+ 224C3

0z
2
+ 7C1z − 112C4

0

(z2 + 2C0)
2

, (5.14b)

h′3(z) =
(z7 + 14C0z

5
+ 140C2

0z
3
+ 5C2z

2
− 280C3

0z + 10C0C2 −
35
2 C1)

4

(z8 + 56
5 C0z6 + 56C2

0z
4 + 224C3

0z
2 + 7C1z − 112C4

0)
2

. (5.14c)

The polynomials in (5.14) are the polynomials studied by Loutsenko in [26], in particular the
branch described in his notation by i ≤ 0. Loutsenko’s constants are labelled τi, ti and they are
identified with our constants as τ−1 = 2C0, t−2 = 7C1, τ−2 = 5C2 and so on. We see from (5.14) that
h ′1(z) is an equilibrium of two vortices of circulations +2 each and one vortex of circulation −1;
h ′2(z) is an equilibrium of eight vortices of circulations +1/2 each and two vortices of circulations
−1 each; and so on. The choice of αn in (5.13) is made to ensure that the negative vortices at each
step have circulations −1. The circulations of the positive vortices oscillate between +2 and +1/2,
in contrast to the Adler–Moser polynomials where the positive vortices always have circulation
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(S1) (S2) (S3) (S4)

(A1) (A2) (A3) (A4)

(M1) (M2) (M3) (M4)

Figure 4. Point vortex equilibria at the roots of the Loutsenko (i ≤ 0) polynomials, produced by the iterated transformations

(4.3) with the seed equilibrium (5.13), and given by the rational functions (5.14). The panels are analogous to those in

figure 3, and vortex locations and circulations for the collapsed configurations (M1) and (M3) are provided in table 2. See

table 3 for the values of the integration constants.

+1. Then from §3 we have that the hn(z) are rational functions and h ′n(z) are stationary equilibria
for all n.

Examples of the equilibria h ′1(z), . . . , h
′

4(z) are shown in figure 4. Point vortex locations
and circulations for the—particularly simple—five-vortex equilibrium (M1) and six-vortex
equilibrium (M3) are given in table 2. The constants Cn for all the equilibria are given in
table 3. The equilibria in panels (S2) and (A2) can be recognised as figure 3 of [38], where these
configurations are obtained as limits of hybrid smooth Stuart vortex and point vortex equilibria.
The function h ′0(z) can be identified with the function h′(z) defined in (3.8) of [38] with the choice
C0 = −1/2.

Second hierarchy. Now consider the sequence of transformations (4.3) with the seed
equilibrium

h ′0(z) = z
4 and αn =

⎧⎪⎪
⎨
⎪⎪⎩

−1/2 for n even

−2 for n odd.
(5.15)

With the conventions in §4(a), the first few rational functions in this sequence are

h′1(z) =
z5 + 5C0

z2
, h′2(z) =

(z5 + 4C1z − 20C0)
4

(z5 + 5C0)
2

, h′3(z) =
p(z)

(z5 + 4C1z − 20C0)
2
, (5.16a)

where the numerator p(z) is

p(z) = z16 +
176

7
C1z

12
− 160C0z

11
+ 352C2

1z
8
−
42240

7
C0C1z

7
+ 35200C2

0z
6
+ 11C2z

5

− 2816C3
1z

4
+ 28160C0C

2
1z

3
− 140800C2

0C1z
2
+ 352000C3

0z −
2816

5
C4
1 + 55C0C2. (5.16b)
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(S1) (S2) (S3) (S4)

(A1) (A2) (A3) (A4)

(M1) (M2) (M3) (M4)

Figure 5. Point vortex equilibria at the roots of the Loutsenko (i ≥ 0) polynomials, produced by the iterated transformations

(4.3) with the seed equilibrium (5.15), and given by the rational functions (5.16). The vortex circulations and locations

for the collapsed configuration (M1) are given in table 2. Table 3 gives the values of all the integration constants.

The polynomials in (5.16) are the second hierarchy found by Loutsenko [26] (i ≥ 0 in his notation),
the constants can be compared by setting his t1 = 5C0 and τ2 = 4C1. We see from (5.16) that the
negative vortices all have circulation −1 and the theory in §3 applies. The positive vortices oscillate
between circulations +1/2 and +2 just as in the Loutsenko (i ≤ 0) hierarchy, but in this case they
begin in the hierarchy at +1/2 instead of +2. The choice of αn in (5.15) is once again made so
that the negative vortices always have circulations −1. Examples of the equilibria in the second
Loutsenko hierarchy are shown in figure 5. Also see tables 2 and 3.

Figure 3(M1) Circulations 2 −1 1

Locations 1 −1/2 ±
√
3i/2 roots of z3 + 3z2 + 6z + 5

Figure 4(M1) Circulations 3/2 −1 1/2

Locations 1 −1 roots of z3 + 5z2 + 47
5 z + 7

Figure 4(M3) Circulations 5 2 −2

Locations 1 −5/2 ±
√
7i/2 roots of z3 + 5z2 + 47

5 z + 7

Figure 5(M1) Circulations 3 −1 2

Locations 1 roots ≠ 1 of z5 − 1 roots of z3 + 2z2 + 3z + 4

Table 2. Vortex circulations and locations for selected simple equilibria in figures 3–5; see §§5(b)–(c) for details.
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(S1)

(S2)

(S3)

(A2)

(A3)

(M1) (M2) (M3)

Figure 6. Terminating sequences of point vortex equilibria produced by the iterated transformations (4.3) with the seed

(5.17), given by the rational functions (5.18). Symmetric equilibria for Γ = 1/2, 3/2, 5/2 are shown in (S1) – (S3), and

asymmetric equilibria for Γ = 3/2, 5/2 in (A2), (A3). Panel (M1) is a collapsed version of the second column of (S2), while

(M2) and (M3) are collapsed versions of the last two columns of (S3). See table 3 for the values of the Cn.

(d) Terminating sequences of stationary equilibria
Consider the seed equilibrium h′0(z) = z

2Γ for half-integer Γ ,

h ′0(z) = z, z
3, z5, . . . and αn = −1. (5.17)

With this seed we find that the transformation (4.3) produces sequences of equilibria which
terminate after a finite number of steps. If Γ = 1/2, then the equilibria terminate after one stage,
after two stages if Γ = 3/2, after three stages if Γ = 5/2, and so on. The iteration terminates due
to a simple pole term that appears in h ′n(z), which leads to a logarithmic term in hn(z). At the
first stage, the circulation of the point vortex at the origin switches sign to become −Γ . At each
subsequent stage, it increases by 1 until it becomes −1/2 and the iteration terminates. Examples
of terminating equilibria are shown in figure 6. The rational functions for Γ = 1/2 are

h′0(z) = z, h′1(z) =
(z2 + 2C0)

2

z
. (5.18a)

The rational functions for Γ = 3/2 are

h′0(z) = z
3, h′1(z) =

(z4 + 4C0)
2

z3
, h′2(z) =

(z8 + 24C0z
4
+ 6C1z

2
− 48C2

0)
2

z (z4 + 4C0)
2

. (5.18b)

The rational functions for Γ = 5/2 are

h′0(z) = z
5, h′2(z) =

(z12 + 48C0z
6
+ 8C1z

4
− 72C2

0)
2

z3 (z6 + 6C0)
2

,

h′1(z) =
(z6 + 6C0)

2

z5
, h′3(z) =

(p(z))2

z (z12 + 48C0z6 + 8C1z4 − 72C2
0)

2
,

(5.18c)
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C0 C1 C2 C3

Figure 3 S1–S4 −1/3 −1 20 80

A1–A4 −1/3 2 − i 8 − 8i 40 + 120i

M1 −1/3 9/5

M2 −1/3 −1 63.8065

M3 −1/3 9/5 −225/7 9800/9

M4 −1/3 9/5 −225/7 −574.64 + 6344.3i

Figure 4 S1–S4 −1/2 0 6 40

A1–A4 −1/2 3 + 3i 6 − 12i 20 + 20i

M1 −1/2 128/35

M2 −1/2 0 −11.350 + 6.3767i

M3 −1/2 128/35 −56/5

M4 −1/2 128/35 −56/5 (−2.959 + 7.618i) × 105

Figure 5 S1–S4 −1/5 0 0 0

A1–A4 −1/5 (3 + i)/2 1000 − 2000i 100 + 100i

M1 −1/5 −5/4

M2 −1/5 0 (1600/11) × 22/5

M3 −1/5 −5/4 −12800/77 440/7

M4 −1/5 −5/4 −12800/77 −385.79 − 120.55i

Figure 6 S1–S3 1 0 0

A2–A3 1 + i 10i −8

M1 1 32i/3

M2 1 27 3
√
6/4

M3 1 0 193.30 − 334.81i

Table 3. Values of the constants C0, . . . , C3 in figures 3–6. The constants are calculated according to the method in

§3(c) and §4. Figure panels (S1)–(S4) and (A1)–(A4) which share the same values of the constants are grouped together.

For example in the first row corresponding to figure 3, (S1) has C0 = −1/3, (S2) has C0 = −1/3, C1 = −1 and so on. All

decimal values given are numerical approximations.

where the numerator p(z) of h′3(z) is

p(z) = z18 + 216C0z
12
+ 80C1z

10
+ 10C2z

8
− 4320C2

0z
6
− 960C0C1z

4

+ z2 (60C0C2 −
320

3
C2
1) − 4320C3

0 . (5.18d)

Here, as always, we observe the conventions in §4(a) for the constants An and Cn. We note that a
similar, finite, sequence of polynomials are discussed in a different context in [39].

6. Summary and future directions
We have presented a general transformation linking two distinct stationary point vortex
equilibria. It allows us to find a new equilibrium from any given equilibrium, as long as all the
negative vortex circulations in the given equilibrium are −1 and the positive circulations are all
integers or half-integers. If some of the negative vortex circulations are different, then the theory
presented in §3 needs to be modified. We have shown that the transformation can be iterated
to reproduce the Adler–Moser hierarchy and the hierarchies due to Loutsenko, along with finite
length sequences of equilibria that appear to be new. All of these equilibria can be produced from
a simple seed equilibrium by changing a couple of parameters; see table 1.
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Our transformation (4.3) can be viewed as a generalisation of the Darboux–Crum
transformation [25]. Given a seed h ′0(z), if we pick αn = −1 for n ≥ 0 and define functions φn(z)
via h ′n(z) = (φn(z))

2 for n ≥ 0 , then (4.3) reduces to the iterated Darboux-Crum transformation.
A deeper investigation of this topic takes us into the theory of Schrödinger potentials; this is a
separate topic that we intend to take up in another paper. For further discussion of this in the
context of vortex dynamics, see [19] and the references therein. We also note that [19] lists finding
polynomial solutions to several differential equations arising in the context of vortex equilibria
as open problems. In particular, for m = 2 the equation P ′′Q − 2mP ′Q′

+m2PQ′′
= 0 leads to the

polynomials found by Loutsenko, but it is not known whether it possesses polynomial solutions
for m > 2.

As remarked in the introduction, it is known from numerical exploration that families of
rotating equilibria exist which do not appear to have been captured analytically so far [37].
The type of analysis used in the present paper might be of some applicability here, particularly
since it captures both symmetric and asymmetric configurations. Similar in spirit to growing new
point vortex equilibria from existing equilibria [37], exact solutions have been constructed in [40]
with two vortex patches grown at the co-rotating stagnation points of a rotating point vortex
pair equilibrium. The latter solution of point vortex and vortex patch equilibria builds on the
mathematical ideas in [41], in which a multipolar stationary equilibrium of point vortices and
vortex patches is constructed.

Finally, the authors have recently constructed stationary equilibrium solutions of the steady
Euler equation which they refer to as hybrid equilibria comprising a combination of Stuart-type
vorticity with superposed point vortices [38]. There is a close relationship between generalizations
of those solutions and the stationary point vortex equilibria presented here: hybrid solutions of
this kind turn out to continuously interpolate and extrapolate between the various stationary
point vortex equilibria exhibited in this paper. A detailed description of all these matters is in
preparation and will be published elsewhere.
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