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Abstract—We consider the multi-agent collision avoidance prob-
lem for a team of wheeled mobile robots. Recently, a local solution
to this problem, based on a game theoretic formulation, has been
provided and validated via numerical simulations. Due to its
local nature the result is not well-suited for online application.
In this paper we propose a novel hybrid implementation of the
control inputs that yields a control strategy suited for the online
navigation of mobile robots. Moreover, subject to a certain dwell
time condition, the resulting trajectories are globally convergent.
The control design is demonstrated both via simulations and
experiments.

Index Terms—Collision avoidance, multi-robot systems, path
planning for multiple robots, nonlinear control, hybrid systems.

I. INTRODUCTION

Systems consisting of several robots, which can be consid-
ered as agents, have gained interest in recent years, in part
due to their numerous applications, including e.g. exploration
[1] and autonomous monitoring [2], [3]. Several approaches to
solve control problems related to multi-agent systems involve
concepts borrowed from game theory, for instance, in the
context of motion planning, pursuit-evasion problems and
formation control (see, e.g., [4], [5], [6], [7], [8]). However,
differential games are, in general, difficult to solve. This
difficulty is circumvented in [9], [10], where a systematic
method for constructing approximate solutions to differential
games is provided. The method has proved useful for control
of multi-agent systems (see, e.g., [11]).

We consider the so-called multi-agent collision avoidance
problem: given a system of robots, each robot should (au-
tonomously) manoeuvre itself from its initial position to a
predefined target while avoiding collisions with obstacles and
other agents. The problem is formulated, studied and solved
in a centralized setting, i.e. when the agents are not subject to
any communication and/or information constraints. Different
approaches to this problem are available in the literature.
One approach is based on navigation functions [12], [13],
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[14], [15], and ensures that the robots reach their targets
(while avoiding collisions) for almost any initial condition.
Yet, deadlocks may occur as observed, for instance, in [14].
In [16] decentralized, velocity-based strategies are used to
guarantee multi-agent collision avoidance for a fixed amount
of time in the future, however, no proof of convergence
towards the target positions has been provided nor has the
possibility of deadlocks been ruled out. In [17] (decentralised)
control laws which ensure collision avoidance are designed
using safety barrier certificates. Therein a “collision avoidance
strategy” is combined with a generic “nominal controller” and
at each time instant a static quadratic optimisation problem
is solved to achieve collision avoidance. An alternative ap-
proach based on a Lyapunov-type test function is provided
in [18], [19], where it is noted that a major drawback with
this approach is that the systematic construction of such
test function is an open problem. The multi-agent collision
avoidance problem has been considered in [11], [20] wherein
locally asymptotically stabilising control laws are proposed.
The control laws are such that the trajectories of the robots
are collision- and deadlock-free in a non-empty region of the
state-space describing the overall system. The result hinges
upon a differential game formulation of the problem, which
enables the systematic construction of a Lyapunov function,
thus addressing the challenge identified in [18], [19].

We propose novel hybrid controllers with improved per-
formance with respect to the main results in [11], [20]. The
improved performance of the novel approach lies in that the
basin of attraction of the zero equilibrium of the resulting
closed-loop system is enlarged and, under a certain dwell
time condition, the equilibrium is provably globally asymp-
totically stable. Moreover, we propose an algorithm for online
implementation which is demonstrated on an experiment using
two Khepera IV mobile robots developed by K-team. The
overall control scheme consists of two parts: the path planner
(based on virtual agents, the formulation of a differential game
and a hybrid controller) and the path tracking controllers for
each individual wheeled mobile robot (WMR), as depicted
in Figure 1. Under the aforementioned dwell time condition
(which is easily checked online) the resulting control laws
are such that the trajectories of the robots are collision-
free and globally convergent to their target positions. The
remainder of the paper is organised as follows. The multi-agent
collision avoidance problem is defined in Section II before
some preliminaries, concerning its solution and the underlying
game theoretic formulation, are provided in Section III. The
novel contributions of this paper are presented in the following
three sections: an improved (with respect to [11], [20]) path
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Fig. 1: Block diagram representation of the control scheme.

planning scheme, based on a hybrid controller, is provided in
Section IV; an algorithm suitable for online implementation
is provided in Section V; the combined performance of the
two components of the overall control architecture is then
demonstrated by means of a numerical simulation and an
experiment presented in Section VI. Finally, some concluding
remarks are provided in Section VII.
Notation: The set of real numbers and the set of non-negative
integers are denoted by R and Z≥0, respectively. The open
left-half complex plane is denoted by C− and the empty set is
denoted by ∅. Given a vector x ∈ Rn, the gradient of a function
V : Rn → R is denoted by ∂V

∂x . The weighted Euclidean norm
of a vector is denoted by ‖x‖A =

√
x>Ax, where A> = A >

0. The spectrum of a matrix M ∈ Rn×n is denoted by σ(M).
A block matrix M is denoted by [Mij ], where Mij is the ith-
row, jth-column block. In denotes the n-dimensional identity
matrix. δ−1 : R → R denotes the Heaviside step function,
and sata : R → R denotes the saturation function defined as
sata(x) , min(a,max(−a, x)), with a > 0.

II. PROBLEM FORMULATION

Consider a team of N WMRs moving on the Euclidean
plane, possibly in the presence of (static) obstacles, which
must be collectively steered from their initial configurations to
desired target locations. Each WMR is described by unicycle-
like dynamics, i.e. each WMR satisfies the dynamics

Ẋi = cos(θi)vi , Ẏi = sin(θi)vi , θ̇i = ωi , (1)

where the subscript i = 1, ..., N indicates a particular
WMR/agent, (Xi, Yi) ∈ R2 is the position of the middle point
between the two actuated wheels along the direction of the axle
connecting the wheels, θi is the orientation of the i-th robot
and vi and ωi are the longitudinal and the angular velocity
controls, respectively. The constant ai describes the distance
between the point (Xi, Yi) and the centre of mass of the i-th
robot (xc,i, yc,i) ∈ R2, along the segment connecting (Xi, Yi)
and the (forward) passive wheel.

Consider the case in which there are m ≥ 0 static obstacles,
each represented by its center of mass pcj ∈ R2 and the region
of the Euclidean plane that it occupies Pj ⊂ R2, j = 1, ...,m.
We assume obstacles are elliptical, i.e. the boundary of the
region Pj satisfies ∂Pj = {x ∈ R2 : ‖x− pj‖2Ej

− ρ2
j = 0} ,

where ρj > 0 and Ej = E>j > 0, for j = 1, . . . ,m.
Problem 1 (Multi-agent collision avoidance): Consider a

multi-agent system consisting of N WMRs with dynamics (1),
for i = 1, . . . N . The multi-agent collision avoidance prob-
lem consists in determining feedback control laws vi, ωi,
i = 1, ..., N , that steer each agent i from its initial position to a
predefined target x?i ∈ R2, i = 1, . . . , N , while avoiding inter-
agent collisions as well as collisions with static obstacles. �

III. BACKGROUND AND PRELIMINARIES

As demonstrated in [20], the collision avoidance problem
can be solved (locally) in two steps. First, N virtual agents sat-
isfying single-integrator dynamics are introduced and efficient,
collision-free trajectories for the virtual agents are determined
through the formulation and solution of a differential game.
The trajectories of the virtual agents are then interpreted as
a path plan for the WMRs and the control laws vi, ωi,
i = 1, . . . , N , are designed such that the WMRs track the
path plan with zero error. An overview of this approach is
presented in this section (see [11], [20] for additional details).

A. Collision-free path planning

Consider N virtual agents - one per WMR - described by
a pair of single-integrator dynamics, namely

ẋi = ui , (2)

where xi(t) ∈ R2 denotes the position and ui(t) ∈ R2 denotes
the control input of the i-th virtual agent, for i = 1, ...N . Let
x̃i = xi − x?i , for i = 1, . . . , N , and let each agent i be
associated with a safety radius ri > 0, i = 1, . . . , N .

The obstacle avoidance region and the agent avoidance
region are defined as follows.

Definition 1:

i) Obstacle avoidance region : Consider the open sets Sj ={
x ∈ R2 : ‖x− pj‖2Ej

< ρ2
j

}
. The obstacle avoidance

region, denoted by S, is defined as S =
m
∪
j=1
Sj .

ii) Agent avoidance region: Given a time instant
t̄ ≥ 0, consider the open sets Dt̄ij ={
x ∈ R2 : ‖x− xj(t̄)‖2 ≤ (ri + rj)

2
}

, j = 1, ..., N ,
j 6= i. The agent avoidance region of the i-th virtual

agent at t̄, denoted Dt̄i , is defined as Dt̄i =
N
∪

j=1,j 6=i
Dt̄ij . �

Collision-free trajectories for the i-th virtual agent (and there-
fore also the i-th WMR) and feasible paths are classified in the
following statements, where D̄t̄i and S̄ denote the complement
of the sets Dt̄i and S, respectively.

Definition 2 (Collision-free trajectory): The trajectory of the
i-th virtual agent is said to be collision-free if xi(t̄) 6∈ Dt̄i ∪S
for all t̄ ≥ 0, or equivalently xi(t̄) ∈ D̄t̄i ∩ S̄ , for all t̄ ≥ 0. �

Definition 3 (Feasible path): A path1 is said to be feasible if
its associated trajectories xi(t), or time-scaled versions thereof
xi(ηt), with η > 0, are collision-free for any i = 1, ..., N . �
The problem of generating collision-free paths for each of the
WMRs can be formulated as a differential game wherein the
virtual agents are considered as the players.

Problem 2 (Collision-free path generation): Consider the
system of N (virtual) agents with dynamics (2), for i =

1, . . . N , let x̃ =
[
x̃>1 , . . . , x̃

>
N

]>
, such that

˙̃x = B1u1 + · · ·+BNuN , (3)

1A path is defined as a continuous curve connecting two points on R2. A
trajectory associated to the path is a time parameterisation of the points on
the curve.
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where B1 = [I2, 0, . . . 0]
>
, . . . , BN = [0, . . . 0, I2]

>, and
consider the individual cost functionals

Ji(x̃(0), u1, . . . , uN ) =
1

2

∫ ∞
0

(
qi(x̃(t)) + ‖ui(t)‖2

)
dt , (4)

i = 1, ..., N , where qi : R2N → R, qi(x̃) > 0, qi(0) = 0, are
running costs given by

qi(x̃) =
(
αi + βsi g

s
i (x̃) + βdi g

d
i (x̃)

)
x̃>i x̃i , (5)

with constants αi > 0, βsi > 0, βdi > 0 and where
gsi (x̃) ≥ 0 and gdi (x̃) ≥ 0 are continuously differentiable
mappings, referred to as collision avoidance functions, such
that lim

x̃+x?→∂S
gsi (x̃) = +∞ and lim

x̃+x?→∂Dt
i

gdi (x̃) = +∞,

respectively. Determine a set of (possibly dynamic) strategies
(u?1, . . . , u

?
N ) satisfying the following conditions:

i) The origin of the system (3) in closed-loop with the
strategies (u?1, . . . , u

?
N ) is (locally) asymptotically stable.

ii) The inequalities

Ji(x̃(0), u?1, . . . , u
?
i−1, u

?
i , u

?
i+1, . . . , u

?
N )

≤ Ji(x̃(0), u?1, . . . , u
?
i−1, ui, u

?
i+1, . . . , u

?
N ) + εα ,

(6)

i = 1, . . . , N , where εα > 0, are satisfied for all
ui 6= u?i such that σ(Acl + αI) ∈ C−, where Acl is the
matrix describing the linearisation of the system (3) in
closed-loop with (u?1, . . . , u

?
i−1, ui, u

?
i+1, . . . , u

?
N ) about

the origin. �
Consider the following standing assumptions, formulated in

terms of the virtual agents, which ensure the feasibility of
Problem 2 (and of Problem 1).

Assumption 1:
i) Obstacle collision-free initial deployment: the initial po-

sitions of the agents satisfy {xi(0)} ∩ S = ∅ , for all
i = 1, . . . , N , j = 1, . . . ,m.

ii) Agent collision-free initial deployment: the initial posi-
tions of the agents satisfy ‖xi(0)−xj(0)‖ > ri+ rj , for
all i = 1, . . . , N and j = 1, . . . , N , j 6= i.

iii) Obstacle collision-free desired deployment: the target
positions of the agents satisfy {x?i } ∩ S = ∅ , for all
i = 1, . . . , N , j = 1, . . . ,m.

iv) Agent collision-free desired deployment: the target posi-
tions for each agent satisfy ‖x?i − x?j‖ > ri + rj , for all
i = 1, . . . , N and j = 1, . . . , N , j 6= i.

v) Configuration feasibility: the static obstacles do not form
an impermeable boundary about targets of one or more
of the agents. Namely, there exists a continuous path li
connecting the initial condition xi(0) and the target x?i
satisfying li ∩

(
∪

j=1,...,m
∂Pj

)
= ∅ , for i = 1, . . . , N .

The main result of [11], recalled in the following state-
ment, yields a closed-form solution of Problem 2. Let ξ =[
ξ>1 , . . . , ξ

>
N

]> ∈ R2N , where ξi ∈ R2, represents the state of
a dynamic controller, i = 1, . . . , N , and consider the matrix-
valued mappings P1(x̃), . . . , PN (x̃), where Pi : R2N →
R2N×2N , i = 1, . . . , N , are given by Pi(x̃) =

[
P ikj(x̃)

]>
+

γiI2N , where P ikj ∈ R2×2, k = 1, . . . N , j = 1, . . . , N and
γi > 0 is a constant parameter, P ikj = 0 for all k 6= i and

for all j 6= i, and P iii(x̃) =
[√

αi + βsi g
s
i (x̃) + βdi g

d
i (x̃)I2

]
.

Consider the functions Vi : Rn × Rn → R defined by

Vi(x̃, ξ) =
1

2
x̃>Pi(ξ)x̃+

1

2
(x̃− ξ)>Ri(x̃− ξ) , (7)

where Ri = R>i > 0 and consider the set M = {ξ ∈ R2N :
gsi (ξ) + gdi (ξ) <∞}.

Lemma 1 ([11, Theorems 1,2]): Consider the system (3) and
the matrix-valued mappings Pi(x̃), i = 1, . . . , N . Let ξ(0) ∈
M and suppose that Assumption 1 holds. Then there exist k̄ ≥
0, Ri, i = 1, . . . , N , and a neighbourhood Ω ⊆ R2N × R2N

containing the origin of the extended state-space (x, ξ) such
that the inequalities

HJ i(x̃, ξ) = −1

2

∂Vi
∂x̃

BiB
>
i

∂Vi
∂x̃

>
+

1

2
qi(x̃)

−
N∑

j=1,j 6=i

∂Vi
∂x̃

BjB
>
j

∂Vj
∂x̃

>
− k

N∑
j=1

∂Vi
ξ

(∂Vj
∂ξ

)>
≤ 0 ,

(8)

i = 1, . . . , N , are satisfied by construction and the dynamic
strategies

ui = −B>i ∂Vi

∂x̃

>
, ξ̇ = −k

N∑
j=1

(∂Vj
∂ξ

)>
, (9)

i = 1, . . . , N , constitute a solution for Problem 2 in the
neighbourhood Ω, for all k ≥ k̄. Consequently, all trajectories
which do not leave the set Ω are such that lim

t→∞
ξ(t) = 0,

lim
t→∞

x̃i(t) = 0 and xi(t̄) ∈ D̄t̄i∩S̄, for all t̄ ≥ 0, i = 1, . . . , N .

Lemma 1 implies that the dynamic control laws (9), i =
1, . . . , N , are such that the trajectories xi(t), i = 1, . . . , N ,
are collision-free an deadlock-free locally.

The solution of Problem 2 given in Lemma 1 is such that the
resulting path is feasible and the requirements of Definition 3
hold for any η > 0, namely any time-scaled trajectories xi(ηt),
i = 1, . . . , N , with η > 0 common to all virtual agents, are
collision-free.

B. Path tracking

The differential game in Problem 2 is essentially a tool used
to generate feasible paths and the result in Lemma 1 can be
used to solve Problem 1 as summarized here [20]. Let pi =
(xc,i, yc,i) denote the centre of mass of the i-th WMR, recall
that xi denotes the position of the i − th virtual agent and
consider the notation xi = (x1

i , x
2
i ), i = 1, . . . , N .

Lemma 2 ([20, Theorem 2]): Consider a team of N WMRs
described by the dynamics (1) and a set of desired target
locations x?i = (x?c,i, y

?
c,i) ∈ R2, i = 1, ..., N . Suppose

pi(0) = xi(0), for all i = 1, . . . , N , and suppose Assump-
tion 1 holds. Then, the dynamic control law (10) (see top of
next page) with κ > 0, solves the multi-agent collision avoid-
ance problem for the WMRs locally, i.e. for all trajectories
such that (x̃(t), ξ(t)) ∈ Ω for all t ≥ 0. �

While the result of Lemma 1 is well-suited for planning
collision-free paths offline, it is not suitable for an online im-
plementation. The main drawbacks towards such an extension
are related to the local nature of the result: the initial conditions
must be such that (x̃(0), ξ(0)) ∈ Ω, where the neighbourhood
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ξ̇ = −k
N∑
j=1

(∂Vj
∂ξ

)>
,

[
ẋ1
i

ẋ2
i

]
= −B>i

∂Vi
∂x̃

>
, (10a)[

vi
ωi

]
=

[
cos(θi) sin(θi)
− 1
a sin(θi)

1
a cos(θi)

] [
κ(x1

i −Xi − ai cos(θi)) + ẋ1
i

κ(x2
i − Yi − ai sin(θi)) + ẋ2

i

]
(10b)

Ω is not known a priori; and even provided (x̃(0), ξ(0)) ∈ Ω, it
should be additionally ensured that the trajectory of the system
remains in Ω at all times, i.e. that (x̃(t), ξ(t)) ∈ Ω, for any
t ≥ 0. These drawbacks are addressed in the following section.

IV. PATH PLANNING: A HYBRID IMPLEMENTATION

We propose a novel control design methodology for the
virtual agents (in place of (9), for i = 1, . . . , N ), yielding
a closed-loop system that can be interpreted as a hybrid
system with state-driven jumps. The new control architecture
allows us to overcome the main issues preventing online
implementation of the strategy in [11]. The design approach,
similar in spirit to the hybrid control proposed in [21], is aimed
at expanding the neighbourhood Ω in which the results of
Lemma 1 holds.

Lemmas 1 and 2 imply that the paths of the WMRs are
feasible according to Definition 3 and such that the robots
reach their targets provided the trajectory (x̃(t), ξ(t)) is such
that the inequalities (8), i = 1, . . . , N , are satisfied for all
t ≥ 0. Moreover, the state ξ(t) used in the dynamic control
laws (9) and (10), i = 1, . . . , N , is a variable which has been
artificially introduced as the internal state of the controller
and which does not correspond directly to any physical aspect
(such as position, velocity, etc.) of the WMRs. Exploiting
these observations we propose a hybrid implementation of the
control strategies (9), i = 1, . . . , N , wherein ξ is allowed to
jump, i.e. to be suitably reset. To this end, consider the sets

C = {(x̃, ξ) : max
i
{HJ i(x̃, ξ)} < −ρ(x̃, ξ)} ,

D = {(x̃, ξ) : max
i
{HJ i(x̃, ξ)} ≥ −ρ(x̃, ξ)} , (11)

for i = 1, . . . , N , where ρ is continuously differentiable and
such that ρ(x̃, ξ) > 0 for all (x̃, ξ) 6= 0, ρ(0, 0) = 0 and
ρ(x̃, ξ) ≤ c, for any x̃ and ξ, for some c > 0 . The set C (the
“flow set”) is the subset of R2N×R2N in which the inequalities
(8), i = 1, . . . , N , are satisfied with some negativity margin ρ,
whereas D (the “jump set”) is the closure of the complement
of this set. Consider, in place of (9), the hybrid control laws

ui =−B>i
∂Vi
∂x̃

>
, (12a)

ξ̇ =−k
N∑
j=1

(∂Vj
∂ξ

)>
, (x̃, ξ) ∈ C, (12b)

ξ+= ζ? , (x̃, ξ) ∈ D, (12c)

for i = 1, . . . , N , where ζ? is a solution of

ζ? =argminζΠ(x̃, ζ) , (13a)
s.t. max

i
{HJ i(x̃, ζ)} ≤ −µρ(x̃, ζ) , (13b)

W (x̃, ζ) ≤W (x̃, ξ) , (13c)

where W (x̃, ξ) =
∑N
i=1 Vi(x̃, ξ), Π : R2N × R2N → R is

a lower semicontinuous function such that Π(x̃, ξ) is level-
bounded in ξ, locally uniformly in x̃ and µ > 0 is a design
parameter. The main result of [21] states that, provided there
exists ζ satisfying the constraints (13b) and (13c) for all
(x̃, ξ) ∈ R2N ×R2N , the origin of the closed-loop system (2)-
(12) is globally asymptotically stable. However, in the setting
considered herein it is not possible - in general - to ensure that
both conditions (13b) and (13c) are satisfied simultaneously.
Thus, we propose an alternative hybrid controller in which
the (hard) constraint (13c) in the optimisation problem (13)
is replaced by a soft constraint along with a dwell time
requirement. In the following statement, [tk, tk+1] denotes
the (continuous) time interval between the two successive
discontinuous jumps indexed as k and k + 1, k ∈ Z≥0, and
t−k and t+k denote the time instants “right before” and “right
after” the k-th jump, respectively.

Theorem 1: Consider the N virtual agents and the corre-
sponding system (3), i = 1, . . . , N . Let ζ? be a solution of
the (static) optimisation problem

ζ? =argminζW (x̃, ζ) , (14a)
s.t. max

i
{HJ i(x̃, ζ)} ≤ −µρ(x̃, ζ) , (14b)

for some µ > 1 and for any x̃ 6= 0. Consider the closed-loop
system (3)-(12), with ζ? as in (14a), and suppose that the flow
of (3)-(12) in [tk, tk+1] is such that

N

∫ tk+1

tk

ρ(x̃(t), ξ(t))dt >

W (x̃(t+k ), ξ(t+k ))−W (x̃(t−k ), ξ(t−k )) .
(15)

Then the zero equilibrium of the closed-loop system is globally
asymptotically stable, x(t) is collision-free and such that
lim
t→∞

x̃(t) = 0. �
Proof: First, note that if there are no jumps, i.e. if

HJ i ≤ −ρ(x̃, ξ), i = 1, . . . , N , along the closed-loop
trajectories of the system, asymptotic stability follows directly
from Lemma 1. Consider now the case in which jumps do
occur. The left-hand sides of (8) can be written as quadratic
forms in [x̃>, (x̃− ξ)>] ([9], proof of Theorem 3), where, for
fixed x̃, the quadratic terms in ξ are of the form −ξΛiξ, with
Λi > 0, i = 1, . . . , N . Thus, for any fixed x̃, the constraint
(14b) can be satisfied by a sufficiently large ζ, i.e. a solution ζ?

exists. Then, by continuity of ρ, it follows from (14b) and the
definition of the flow set C in (11) that there is a certain dwell
time between any two consecutive jumps. However, since the
hard constraint (13c) is replaced with the soft constraint (14a),
the hybrid control law (12)-(14) is such that the candidate
Lyapunov function W (x, ξ) may increase at jumps, i.e.
considering the k-th jump, occurring at time tk, the update
in ξ may be such that W (x̃(t+k ), ξ(t+k )) > W (x̃(t−k ), ξ(t−k )) .
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Recalling that W (x̃(t−k+1), ξ(t−k+1)) − W (x̃(t+k ), ξ(t+k )) =∫ tk+1

tk
Ẇ (x̃(t), ξ(t))dt , and Ẇ =

∑N
i=1 V̇i ≤ −Nρ(x̃, ξ) ≤ 0

during flows, clearly W (x̃(t−k+1), ξ(t−k+1)) −
W (x̃(t+k ), ξ(t+k )) ≤ −N

∫ tk+1

tk
ρ(x̃(t), ξ(t))dt . Then, by

(15), W (x̃(t−k+1), ξ(t−k+1)) < W (x̃(t−k ), ξ(t−k )) follows, i.e.
any increase in W due to a jump is recovered during the
following flow, hence implying global asymptotic stability
of the origin for the closed-loop hybrid system (3)-(12).
Moreover, the dwell time condition (15) rules out the
possibility of Zeno behaviour, thus guaranteeing that each
agent will asymptotically converge to its desired position. �
The combination of global asymptotic stability and the ex-
clusion of Zeno behaviour, established in Theorem 1, ensures
that the paths of each virtual agent are free of collisions and
deadlocks and are such that each agent reaches its target.

Remark 1: The condition (15) ensures that the time between
any two consecutive jumps is sufficiently large, such that any
potential increase in W due to a jump is recovered during the
flow immediately following such jump. This condition can be
further relaxed by requiring that the overall increase in W due
to jumps is recovered by the overall decrease in W during
flows. Namely, (15) may be replaced by the requirement that
there exists an unbounded sub-sequence of jump times indexed
by n1 < n2 < ... as {tnj

}∞j=1, such that lim
j→∞

tnj
=∞ and

N

∫ tnj+1

tnj

ρ(x̃(t), ξ(t))dt >

W (x̃(t+nj
), ξ(t+nj

))−W (x̃(t−nj
), ξ(t−nj

)) .
(16)

In practice it may be of interest to define a finite window, i.e.
a certain number of jumps or a certain time interval, in which
any increase due to jumps is required to be compensated by the
decrease during flows. Such condition can be easily checked
online to indicate desired or undesired behaviours. Moreover,
if undesired behaviours are suspected, actions can be taken
to drive the system away from a potential deadlock, e.g. by
perturbing elements of ξ(t). N

Theorem 1 represents a generalisation of [11]. By allowing
the dynamic variable ξ to reset when the quantities HJ i are
not sufficiently negative, the hybrid control laws allow for the
expansion of the region Ω in which Problem 1 is solved.

V. A DIGITAL CONTROL ALGORITHM FOR ONLINE
COLLISION AVOIDANCE

A heuristic algorithm, in which the dwell time requirement
(15) of Theorem 1 is further relaxed, suitable for online imple-
mentation, is presented in this section. The overall algorithm
consists of two main ingredients corresponding to the path
planning and path tracking blocks in Figure 1.

A. Algorithm 1: Online Path planning
The path planning algorithm, based on the main result of

Theorem 1, is a hybrid system in which the state of the
controller ξ is updated according to

ζ? =argminζW (x̃, ζ) , (17a)
s.t. max

i
{HJ i(x̃, ζ)} ≤ −µρ(x̃, ζ) , (17b)

‖ui(x̃, ζ)‖ ≤ ū , (17c)

Cξ ẋ  =  u

EVENT
DETOPT

ξ

u

x* x̄ x
ξ

+

-

Fig. 2: Block diagram representation of Algorithm 1.

Algorithm 1: Online Path planning
Input : Set points x?i , for i = 1, . . . , N
Input : Initial conditions ξ(t0), µ(t0), xi(t0), for

i = 1, . . . , N
Input : Control and optimisation parameters, ρ(·, ·), µ
Input : Sampling time ∆t
Output: Collision free trajectories

xi : [t0, t0 + ∆t]→ R2

Init : t1 ← t0
1 loop:
2 try:
3 Calculate xi(τ) = xi(t1)+

∫ τ
t1
ui(t)dt and

ξ(τ) = ξ(t1)+
∫ τ
t1
ξ̇(t)dt, with ui and ξ̇

defined in (12a) and (12b), for i = 1, . . . , N ,
for τ ∈ [t1, t0 + ∆t]

4 catch maxi{HJ i(x− x∗, ξ)} ≥ −ρ(x− x∗, ξ):
5 t1 ← τ
6 ζ? ← (17)
7 µ(t1)← (18)
8 ξ(t1)← ζ?

goto : loop
9 end

10 end
11 return xi : [t0, t0 + ∆t]→ R2, for i = 1, . . . , N .

whenever (x̃, ξ) ∈ D, defined in (11), where ū > 0. An
event detector, used to indicate whether the state is in the
jump set, triggers a reset signal which enables the jump. A
block diagram representation of the path planning architecture
is depicted in Figure 2. The hybrid controller Cξ is driven by
the error between the (online) generated path and the desired
position and contributes, together with virtual single integrator
dynamics, to the collision-free path planning. Discrete-time
events of the controller are induced by specific values of the
state of the controller and the computed path via an online
optimisation strategy.

The constraint (17c) is introduced to avoid overly sharp
turns in the generated path. While, in principle the addition of
the constraint (17c) may influence the existence of solutions
of the optimisation problem (17), in practice any bound ū
(even arbitrarily large) will generate a feasible path, since the
unicycle can track any arbitrary “turn” by rotating about itself.
For ū sufficiently large a solution of the optimisation problem
exists (as demonstrated in Theorem 1).

While in Theorem 1 any value of µ > 1 is acceptable, in
practice the magnitude of this parameter has a direct influence
on the behaviour of the robots: a small µ will generally
result in more resets than a large µ which, in contrast, could
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Algorithm 2: Path tracking

Input : Target trajectory xi : [t0, t0 + ∆t]→ R2

Input : Sampling time ∆t
Output: Right and left velocity references ωiR and ωiL

1 xk−1 ← xi(t0)
2 xk ← xi(t0 + ∆t)

3 ∆xk ← (xk−xk−1)
∆t

4 Read robot current position p and orientation θ
5 Compute ωiR and ωiL as in (19)
6 return ωiR, ωiL

result in an empty admissible solution set of (17) for some
states of the system. To strike a good balance between these
two behaviours, we allow for µ to change dynamically. In
particular, µ is updated according to the switching dynamics

µ+ =

{
α+µ, if ∃ a solution to (17)
α−µ, otherwise,

(18)

where α+ > 1 and α− < 1. The trajectory planning block,
i.e. the closed-loop system (3)-(12) (with ξ+ and µ+ updated
according to (17) and (18), respectively), is implemented
online according to Algorithm 1.

B. Algorithm 2: Path Tracking
The path tracking controllers use the output of Algorithm 1

to generate digital controllers based on a discretisation of
(10b), in which ẋi =

[
ẋ1
i ẋ2

i

]>
is replaced by the approx-

imation ∆xi =
(xi(t0 + ∆t)− xi(t0))

∆t
, for i = 1, . . . , N ,

where t0 denotes the previous time step and ∆t denotes the
sampling time. The resulting control inputs are then mapped to
the speeds of the left and right wheels of each WMR (denoted
by ωiL and ωiR, respectively, for i = 1, . . . , N ) according to[
ṽi
ω̃i

]
=

[
sata(vi)
satb(ωi)

]
,

[
ωiL
ωiR

]
=

 2ṽi − Lω̃i
2r

2ṽi + Lω̃i
2r

 , (19)

i = 1, . . . , N , where r denotes the radius of each wheel and
L is the distance between the wheels, for i = 1, . . . , N . A
saturation has been applied in (19) to reflect the physical
constraints on the inputs of each WMR. Due to the saturation
these control laws deviate from the result of Theorem 1.
Nonetheless, it can be seen that there exists η? ∈ (0, 1], such
that by time-scaling (10) by a factor η, common to all the
agents, the inputs (19) with vi and ωi replaced by the time-
scaled output of (10) ensures path tracking regardless of the
presence of the saturation in ṽi and ω̃i, for all η ≤ η∗. In a real-
time implementation such value can be computed online once
any robot is close to saturation and broadcast to the entire team
of WMRs. A block diagram representation of a path tracking
controller is shown in Figure 3, where CFL represents the
digital control law (10b)-(19). The path tracking controllers for
each WMR are implemented online according to Algorithm 2.

C. Function and parameter selections
The functions and parameters associated with Algorithms 1

and 2 used in the the remainder of this paper are specified

here. The collision avoidance functions are set as gsi (x̃) ,∑m
j=1 δ−1(Gsi (x̃, pj))G

s
i (x̃, pj)+δ−1(−Gsi (x̃, pj))M , where

Gsi (x̃, pj) , (‖x̃i + x?i − pj‖2Ej
− ρ2

j )
−3 , and gdi (x̃) ,∑N

j=1,j 6=i δ−1(Gdij(x̃))Gdij(x̃) + δ−1(−Gdij(x̃))M , where
Gdij(x̃) , (‖x̃i + x?i − (x̃j + x?j )‖2 − (ri + rj)

2)−3, with
M = 105. This particular selection, where the first terms of gsi
and gdi provide barriers and the second terms associate a high
cost to regions inside the barriers, is made to avoid numerical
issues associated with step 3 of Algorithm 1 due to overly
steep barriers. Note that in the flow set C, both gsi and gdi
are continuous. The function ρ represents a trade-off between
the number of jumps in the path generation and the allowed
flowing time. Noting that HJ i, i = 1, . . . , N , have a quadratic
rate of convergence close to the origin of [x̃, (x̃−ξ)], to avoid
excessive reset signals from the event detector in Algorithm 1
when the robots are close to their targets, we design ρ to
converge faster than HJ i, i = 1, . . . , N , close to the origin.
Namely, we consider ρ given by

ρ(x̃, ξ) =

exp

(
−2

‖(x̃, x̃− ξ)‖2

)
, (x̃, x̃− ξ) 6= 0

0 , (x̃, x̃− ξ) = 0 .
(20)

Note that this selection is such that far from the origin ρ is
bounded and converges to a fixed value, i.e. 1.

The parameters for the hybrid control law given by (12),
the optimisation problem (17) and the discrete update equation
(18), as well as the parameters for the control law (10), i =
1, . . . , N , used in the remainder of this paper are shown in
Table I below.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

The efficacy of Algorithms 1 and 2 is demonstrated via
a simulation and an experiment presented in the following
subsections (see supplementary material for videos of these
and additional simulations and experiments).

A. Path planning: an example involving 10 agents

Consider 10 virtual agents with initial positions, targets and
ξ(0) = [ξ1(0), . . . , ξ10(0)]

> specified in Table II overleaf,
µ(0) = 1000, and the remaining parameters of Algorithm 1
given in Table I.To demonstrate the improved performance of
the proposed hybrid scheme with respect to the result recalled
in Lemma 1, simulations have been run using both the hybrid
controller, i.e. Algorihm 1, and the continuous controller (9),
with the same parameters. The trajectories corresponding to
the hybrid controller are given by the solid lines in Figure 4,
where crosses indicate the targets and the large circles are cen-
tred at the agents’ final positions. While the hybrid controller
yields collision-free paths, in this scenario the initial conditions
are such that the continuous-time controller (9) results in
collisions, with the first collision occurring between agents 3

α+ α− Ri ki βsi βdi αi γi κ ū
1.1 0.7 1.5I2 1 20 20 0.5 0.3 15 30

TABLE I: Parameters defining the path planning controller and
the path tracking controllers.
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CFL
PID
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PID1/dt

xk-1
x̄

Δxk

ωL

ωR
ω̅R

ω̅L

p
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-
+

-
+

-

+
-

ROBOT
ZOH

ZOH
xi

ZOH

ZOH

KHEPERA IV

T = 100ms
T = 10ms

T = 10ms

T = 100msUNIT
DELAY

Fig. 3: Block diagram representation of Algorithm 2 for one WMR.

i 1 2 3 4 5 6 7 8 9 10

xi(0)
> [0,−80] [40, 30] [−50, 50] [50,−50] [−20, 80] [−60,−60] [100,−100] [−100, 100] [100, 100] [−100,−100]

x∗i
> [40, 30] [50,−50] [0,−80] [−50, 50] [−60,−60] [−20, 80] [−100, 100] [100,−100] [20, 70] [−30,−70]

ξi(0)
> [100,−50] [310, 22] [250,−20] [22, 0] [−300, 250] [50, 50] [−1300,−500] [1300, 500] [0, 0] [0, 0]

TABLE II: Initial conditions and targets corresponding to the simulation described in Section VI-A.

and 4. The paths of agents 3 and 4 up to the first collision
are indicated by the dotted, black lines in Figure 4, where it
can be clearly appreciated that the hybrid trajectories (shown
in green and magenta) instead maneuver in such a way that
avoids collision. The time histories of W (top) and maxiHJ i
(bottom) corresponding to the hybrid (solid, black line) and
the continuous (dashed, orange line) controllers are shown in
Figure 5. The time history of −ρ (red, solid line) is shown
in the bottom plot of Figure 5. Considering the continuous
controller, (8) are clearly violated – resulting in collisions.
Considering the hybrid controller, on the other hand, it is clear
that the state-driven jumps result in that maxiHJ i decreases
at jumps such that maxiHJ i ≤ −ρ at all times and, while
W increases at some jumps, it experiences an overall decrease
over time in accordance with Remark 1.

-100 -50 0 50 100

-150

-100

-50

0

50

100

150

-20 -10 0 10

-20

-10

0

10

20

Fig. 4: Collision free paths for 10 virtual agents.

B. Experimental results: two agents exchanging positions

An experiment has been carried out using two Khepera IV
mobile robots. The core code is implemented in Matlab 2018b,
running on a laptop with an Intel i3-6100U processor, 8GB
RAM and on Microsoft Windows 10 Pro (x64). The positions
of the robots are measured using OptiTack V120: Trio, con-
nected via USB to the laptop where the proprietary software
Motive (v.1.10.3) isused to compute both the position and the
orientation of the robots with respect to an inertial frame of
reference. The position and orientation of every robot are then
recovered from Motive by a dedicated Matlab script through
a custom interface based on the NatNet SDK (provided by

0 1 2 3 4 5 6 7 8

0

5

10
5

0 1 2 3 4 5 6 7 8

-15

-10

-5

0

5
10

7

0.5 1 1.5

-20000

-10000

0

0.5 1 1.5 0.5

-20000

-10000

0

-20000

Fig. 5: The time histories of W (top) and maxiHJ i (bot-
tom) with the continuous (orange, dashed line) and hybrid
controllers (black, solid line) and −ρ (bottom: red, solid line).

OptiTrack). Steps 3 and 4 of Algorithm 1, and in particular
the solution to the underlying hybrid dynamical systems, are
implemented using “ode45” together with its event detection
mechanism. The optimisation in step 6 of Algorithm 1 has
been implemented using the “sqp” optimisation algorithm
provided by the “fmincon” solver. These particularly time-
consuming tasks were usually finished before the end of the
sampling time ∆t = 100ms. Whenever these tasks lasted
longer than ∆t, the last available output of Algorithm 1 - i.e.
the current points to be tracked by the robots - were provided
to the path tracking module, namely Algorithm 2. Algorithm
2 consists of a Matlab routine scheduled to be executed every
∆t = 100ms. First the navigation data, i.e. the position and
orientation of each robot, is fetched by Motive, then the speed
references for the right and left wheels of every robot are
calculated as in (19), with a = 25, b = 5, L = 10.54cm and
r = 2.1cm (in accordance with the Kepera IV User Manual),
using the output of the trajectory planning module. The
reference velocities are then sent through a serial bluetooth
communication to the robots, where the proprietary program
kh4server implements a PID controller (with sampling time
10ms) to track the velocity reference of each wheel.

Consider the scenario in which two WMR are to exchange
positions - a highly symmetric situation which can easily lead
to deadlock. The virtual agents’ initial conditions are x1(0) =
[−27,−27]>, x2(0) = [27, 27]>. The initial positions and ori-
entations of the WMRs are p1(0) = [−29.3642,−26.7597]>,
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p2(0) = [29.3461, 26.6896]>, θ1(0) = −164.8◦ and θ2(0) =
15.3◦. The parameters defining Algorithms 1 and 2 are
as defined in Table I and µ(0) = 200 and ξ(0) =
[−98.1276,−88.3148, 98.1276, 88.3148]> (which is the solu-
tion of the optimisation problem (17) with x̃ = x̃(0)). The
planned paths for the first (solid, black line) and second (solid,
grey line) WMRs as well as the actual trajectories of the first
(dotted, teal line) and second (dotted, orange line) WMRs are
shown in Figure 6. The large circles are centred at the final
positions of the first (teal) and second (orange) virtual agent
and indicate their safety radii, whereas the smaller circles and
triangles indicate the final positions and orientations of the first
(teal) and second (orange) WMRs, respectively. The arrows
indicate the directions of travel and the crosses indicate the
targets. The time histories of the control inputs of the first
WMR, i.e. ω1

R (solid, blue line) and ω1
L (dotted, red line), and

of the second WMR, i.e. ω2
R (solid, blue line), ω2

L (dotted,
red line), are shown in the top and bottom graphs of Figure 7,
respectively. No time-scaling is applied in the experiments. On
certain occasions saturation does occur (according to (19));
the successful experiments demonstrate the benefits of the
intrinsic robustness properties coming from the Lyapunov-
based arguments in Theorem 1.
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Fig. 6: The paths of x1 (solid, black line) and x2 (solid, grey
line), and the corresponding trajectories p1 (dotted, teal line)
and p2 (dotted, orange line).

0 5 10 15 20 25 30

-200

0

200

0 5 10 15 20 25 30

-200

0

200

20 20.5 21

10

15

20

10 10.5 11

50

100

10 10.5 11

50

100

20 20.5 21

10

15

20

Fig. 7: The time histories of ωiR (solid, blue line) and ωiR
(dotted, red line) for i = 1 (top) and i = 2 (bottom).

VII. CONCLUSION

In this paper we propose a novel approach, based on a
differential game formulation and a hybrid controller, for

solving the multi-agent collision avoidance problem online.
The resulting control scheme ensures, subject to a certain con-
dition, that the robots globally converge to their desired targets.
Moreover, when this condition is not satisfied, it provides a
measure to indicate any potential undesired behaviour (such as
deadlocks). Based on the developed control scheme we provide
an algorithm whose efficacy is demonstrated both through
simulations and experimentally. Directions for future work
include considerations of distributed settings, which will lead
to improvements in terms of the scalability of the approach.
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