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Abstract 

Fracture and fragmentation in three dimensions are of great importance to understand the 

mechanical behaviour of quasi-brittle materials in failure stress states. In this paper, a generic 

computational model has been developed in an in-house C/C++ code using the combined 

finite-discrete element method, which is capable of modelling the entire three-dimensional 

fracturing process, including pre-peak hardening deformation, post-peak strain softening, 
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transition from continuum to discontinuum, and explicit interaction between discrete 

fragments. The computational model is validated by Brazilian tests and polyaxial 

compression tests, and a realistic multi-layer rock model in an in situ stress condition is 

presented as an application example. The results show that the computational model can 

capture both continuum and discontinuum behaviour and therefore it provides an ideal 

numerical tool for fracture and fragmentation problems. 

Keywords: computational model, finite element method, discrete element method, fracture, 

fragmentation, 3D, quasi-brittle material, Mohr-Coulomb criterion 

 

1 Introduction 

The mechanical behaviour of quasi-brittle materials, such as rock, concrete and ceramics, is 

frequently concerned with fracture and fragmentation when they reach their strengths under 

failure conditions. In the analyses of these problems, although several special geometries and 

loading conditions can be simplified into two-dimensional problems, when complex geometry 

and loading conditions are considered, three-dimensional analysis tools are essential to 

accurately characterise the stress field and material failure in realistic scenarios. With the 

prolific development of computer technology in recent decades, an increasing amount of 

research has been devoted to the development of numerical codes for the understanding of 

fracture and fragmentation problems of practical interest. However, three-dimensional 

fracture and fragmentation simulations still pose a major challenge in terms of modelling both 

continuum and discontinuum behaviour in complex three-dimensional stress fields. 

One group of methods traditionally used in this area is the finite element method (FEM) 

and the extended finite element method (XFEM). Original FEM methods are mainly applied 

for modelling continuum media. By introducing material damage models into the FEM 

formulations, however, they are capable of modelling strong discontinuities, e.g. fractures. 

Underpinning many popular FEM implementations of fracture models is the theory that 

inelastic deformation in solids is usually accompanied by the formation of localised bands of 
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intense straining, i.e. strain localisation. Once strain localisation happens, large strains can 

accumulate inside a narrow band and eventually lead to fracture (Ortiz et al., 1987; Oliver, 

1996; François and Keita, 2015; Tvergaard, 2015). Originated from the traditional FEM 

methods, the XFEM method is based on the partition of unity method that enriches the FEM 

shape functions to capture the discontinuities in materials (Belytschko and Black, 1999; 

Malekan et al, 2018; Jansari et al., 2019). The main advantages of FEM-based fracture models 

are their high accuracy compared with analytical solutions because the FEM formulation is 

very versatile in terms of accommodating the implementations of different theoretical models. 

However, the majority of FEM-based fracture models can only simulate the fracturing process 

up and until fracture formation, whereas the stage after that when discrete fracture surfaces 

interact with each other, e.g. frictional sliding, and interaction between fragments generated in 

multi-body collision problems, are often outside the scope of these models. 

By contrast, another group of methods, also widely used for fracture modelling, originates 

from the simulation of discontinuous media, e.g. granular materials. One typical method in 

this category is the discrete element method (DEM), which solves the equations of motion of 

discrete bodies. Each discrete body in the DEM domain is considered as a unique free body 

that can interact when it makes contact with its surrounding bodies, so contact detection and 

interaction are two important aspects in the DEM formulation. Due to the intrinsic 

characteristic of the DEM method to be able to simulate discrete bounded bodies in contact 

and separated by discontinuities, various fracture modelling approaches have been developed 

based on the DEM formulation (Cundall and Strack, 1979; Shi and Goodman, 1985; Martin et 

al., 2003; Morris et al., 2004; Calvetti, 2008; Baraldi et al., 2015; Radi et al., 2019). These 

methods normally discretise the domain as a granular system of discrete bodies (blocks or 

particles) and fractures are explicitly represented by the debonding of elements. The main 

advantage is that actual materials can be represented by assembling discrete particles (e.g. 

bonded together to represent rock or unboned for soil), the mechanical behaviour at the 

macroscale can be captured as an emergent property of the assembly using simpler 

assumptions and fewer parameters at the microscale (Cundall, 2001). 
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For example, the DEM has been extensively used in the field of failure modelling of 

granular soils. Darve et al. (2004) analysed grain avalanches, where local failures are 

characterised by bursts of kinetic energy; similar simulations of such diffuse failure modes 

were also conducted by others (Nicot et al., 2007; Sibille et al., 2007; Sibille et al., 2008; 

Nicot et al., 2011). Delenne et al. (2004) simulated compression tests on large samples of a 

cohesive granular material. Li et al. (2005) developed a new discrete particle model in the 

framework of dynamics model for failure modelling of granular materials. Lobo-Guerrero and 

Vallejo (2005) modelled granular materials in direct shear tests, where particle breakage is 

realised by replacing one particle with multiple particles of different sizes. Peron et al. (2009) 

included cohesive forces between grains in the DEM formulation to simulate drying 

shrinkage and cracking of fine-grained soils. Yan et al. (2010) developed ellipsoidal DEM to 

represent more realistic particle shapes in granular media and a multiscale modelling 

methodology for the contact with solid deformable bodies. Wang and Yan (2013) simulated 

granular soils and showed the shear failure modes varied as a function of particle breakage. 

Obermayr et al. (2013) developed a bonded-particle model for cemented sand and obtained 

realistic macroscopic behaviour in triaxial compression tests. Ciantia et al. (2016) used a 

crushing model (Ciantia et al., 2015) to simulate incremental responses of granular soils, in 

which grain crushing contributes to the incremental irreversible strain. Cil et al. (2020) 

proposed a three-dimensional DEM model to reproduce the size-dependent particle strength 

in brittle granular materials using a bonded particle framework.  

One problem with pure DEM is the characterisation of complex shaped bodies, i.e. 

complex boundary geometry, and complicated internal stress fields are not as accurate as the 

FEM-based models. Therefore, a new strategy in the numerical modelling of fracture and 

fragmentation problems is to combine different methods so that the limitations of each 

individual method can be reduced or overcome by other methods to achieve synergy. For 

example, the combination of the FEM formulation and the DEM formulation can simulate 

both continuum behaviour, e.g. the accurate calculation of strain and stress, and the 

discontinuum behaviour caused by fracturing and multi-body contact, e.g. the interaction 

across discontinuities, which is not possible to achieve in either single formulation. 
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In the category of combined FEM and DEM formulations, different research groups have 

proposed various strategies. For example, Oñate and Rojek (2004) combined the DEM for 

granular soil/rock materials and the FEM for other parts in the system. Monteiro Azevedo and 

Lemos (2006) proposed a hybrid method that uses the DEM in the discretisation of the 

fracture zone and the FEM for the surrounding area. Morris et al. (2006) discretised the 

discrete blocks internally with tetrahedral elements and implemented Cosserat point theory 

and cohesive elements to simulate fractures. Kh. et al. (2008, 2011) developed a two-

dimensional model to simulate breakage of angular particles in granular systems, where 

particles are simulated by the DEM, and after each step of DEM analysis every particle is 

individually modelled by the FEM to determine if it will break. Paavilainen et al. (2009) used 

the nonlinear Timoshenko beam element and the cohesive crack model for the FEM part, 

whereas the contact forces between colliding beams are calculated by the DEM. Elmekati and 

El Shamy (2010) combined the DEM for near-structure zone and the FEM for far-field that is 

not affected by the structure. Ma et al. (2016) used breakable cohesive interface elements in 

the FEM discretisation of individual particles and concluded granular soils may reach a steady 

state under high compressive stresses or shear strains (Ma et al., 2019). Tu et al. (2017) 

developed a separate edge coupling method to capture the soil failure process by modelling 

the local granular behaviour and reducing the computational cost in the remaining domain. 

Gui et al., (2018) simulated a field soil desiccation test using a hybrid continuum-discrete 

element method, which can model multiple fractures and grain deformation. Nadimi and 

Fonseca (2018) modelled grain-to-grain interactions in a combined framework so as to link 

grain scale parameters with the macroscale response of soils. 

Particularly, many combined FEM and DEM models for granular materials use a two-

scale strategy to integrate both the macroscale (continuum) and the microscale (particle) into 

one framework. Kaneko et al. (2003) developed a two-scale model based on the 

homogenisation theory, using the DEM at the microscale and the FEM at the macroscale. 

Miehe et al. (2010) proposed a two-scale discrete-to-finite element model, where a 

homogenised standard continuum is considered at the coarse scale and the granular 

microstructures, represented by aggregates of particles, are attached to each material point. 
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Andrade et al. (2011) proposed a model to simulate complex behaviour of granular materials 

by extracting key continuum properties directly from the grain-scale mechanics. Li et al. 

(2014) developed a mixed FEM procedure of the gradient Cosserat continuum, without the 

need to specify the macroscopic properties, such as the constitutive relationship and the 

failure model. Nguyen et al. (2014) used DEM simulations to calculate the average stress and 

the consistent tangent operators at each macroscopic integration point. Guo and Zhao (2016a, 

2016b) presented a multiscale modelling approach, in which DEM assemblies are attached to 

the Gauss points in the FEM mesh to derive the required constitutive relations for granular 

soils (Zhao and Guo, 2015). 

The computational model introduced in this paper has been developed using one of the 

combined methods, which is called the combined finite-discrete element method (FEMDEM). 

In the FEMDEM simulations, the entire domain is treated as a multi-body system and each 

discrete element is further discretized into a mesh of finite elements. Therefore, discontinuum 

behaviour is analysed by the DEM while the continuum behaviour is analysed by the FEM. 

Here the discontinuum behaviour means multi-body interactions and contacts at 

discontinuous interfaces, e.g. fracture surfaces. The continuum behaviour means the 

deformation and stress may vary from place to place inside the discrete elements, i.e. on finite 

element meshes. The FEMDEM method has been widely applied in a variety of engineering 

problems (Xiang et al., 2009; Mahabadi et al., 2012; Guo et al., 2015). However, the three-

dimensional FEMDEM codes that have been reported for almost as long have not until 

recently included a fracture model for specific scenarios (Klerck et al., 2004; Rougier et al., 

2014).  

The objective of this paper is to develop a generic computational model for simulations of 

three-dimensional discrete tensile and shear fracture initiation and propagation for quasi-

brittle materials. The novelty of this model is that it combines both the finite element method 

(FEM) and the discrete element method (DEM) with smooth transition. More specifically, the 

intact material before fracture initiation is modelled as a continuum domain using the FEM 

formulation. After fracture initiation the domain is mixed with continua and fractures, where 

the FEM formulation remains in the continua whereas the contact algorithms in the DEM 
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formulation is switched on for the interaction between discrete fracture surfaces. A Mohr-

Coulomb criterion with a tension cut-off is used to determine the shear strength based on the 

normal stress acting perpendicular to the shear direction in complex stress fields. Moreover, 

the DEM formulation enables the computational model to use its advantage of dealing with 

large displacement problems. 

In this paper, first the formulations of the computational model are introduced. The new 

algorithms, such as the space discretisation scheme and the transition from continuum to 

discontinuum are described in detail. Next, three numerical examples are presented, including 

Brazilian tests, polyaxial compression tests and the simulation of a realistic three-dimensional 

multi-layer rock model in an in situ stress condition. The first two tests are chosen to validate 

the capability of the computational model to simulate both tensile and shear fractures. In the 

third example, the three-dimensional multi-layer rock model is created from a fracture pattern 

map and simulated to investigate stress heterogeneity and fracture pattern formation in a 

realistic geological setting. Last, the numerical results are discussed, and some conclusions 

are drawn from this work. 

2 Computational model 

From a physical point of view, a fracture model should characterise the stress state for 

fracture initiation and the orientation and speed for fracture propagation. In order to simulate 

this transition from continuum to discontinuum numerically, the computational model 

developed in this paper uses both the finite element method (FEM) and the discrete element 

method (DEM). The novelty of this new development is that the two formulations are used in 

separate time domains and space domains and are linked by smooth transition. More 

specifically, in the time domain, the FEM formulation is used before fracture formation and 

after material failure the DEM formulation is activated; in the space domain, the deformation 

and stresses in the continuum are calculated by the FEM formulation and the interaction 

forces between physically discrete fracture surfaces are calculated by the contact algorithms 
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in the DEM formulation. The overall algorithm for three-dimensional fracturing simulations 

is shown in Figure 1. 

 

Figure 1: Flowchart of three-dimensional fracturing simulations. 

2.1 Space discretisation and joint element 

The computational model works in a domain discretised by 4-node tetrahedral elements and 

special 6-node joint elements. In order to simulate the fracturing process explicitly, the 

tetrahedral elements are allowed to separate according to a failure criterion so that fracture 

surfaces can be represented by the faces of tetrahedral elements. There are two main 

advantages of physically separating tetrahedral elements. First, the interaction between 

fracture surfaces (Salehani et al., 2019), e.g. stick-slip frictional events, can be captured 
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realistically by modelling the contact between separated tetrahedral elements (Guo et al., 

2017). Second, other media, such as fluids, can be introduced between discrete fracture 

surfaces for coupling simulations. To achieve the objective of separating tetrahedral elements, 

6-node joint elements are inserted between 4-node tetrahedral elements (Figure 2) so the 

failure criterion can be applied to the joint elements. 

2.2 Stress calculation and failure criterion 

Deformation in three-dimensional domain generates stresses both in the 4-node tetrahedral 

elements and 6-node joint elements. The fracture model in this paper is similar to the concept 

proposed by Hillerborg et al. (1976), which assumes that the material is softened but still 

continuous by the constraint of bonding stresses σb in the plastic zone ahead of the real 

fracture. The bonding stress σb inside the plastic zone decreases from material strength σs at 

the end of the plastic zone to zero at the real fracture tip. In reality, the plastic zone 

corresponds to a micro-fractured region with some remaining ligaments for stress transfer 

(Meng et al., 2019). In this paper, the Hillerborg model is extended into three dimensions and 

considers bonding stresses both in the normal and shear directions. The shear strength is 

dependent on the normal stress by the Mohr-Coulomb criterion. The formation and 

propagation of discreet fractures are implemented by breaking joint elements and 

subsequently separating tetrahedral elements. 

The Cauchy stress tensor T in tetrahedral elements is calculated by a neo-Hookean 

viscoelastic constitutive model (Bonet and Wood, 1997), 

 𝐓 =
𝜇

𝐽
(𝐁 − 𝐈) +

𝜆

𝐽
(ln𝐽)𝐈 + 𝜂𝐃 (1) 

where μ and λ are Lamé constants; B is the Left Cauchy-Green strain tensor; J is the 

determinant of the deformation gradient matrix F; η is the viscous damping parameter; and D 

is the rate of deformation, which is calculated from the symmetric velocity gradient L 

(Munjiza, 2004). 

 𝐃 =
1

2
(𝐋 + 𝐋T) (2) 



 10 

The stresses in joint elements are calculated from the relative displacements between 

adjacent tetrahedral elements. In Figure 2 the deformation in joint element N1N2N3-N4N5N6 is 

characterised by the displacement between the two triangular faces N1N2N3 and N4N5N6. The 

displacement vector δ of a joint element is defined as 

 𝛅 = (𝛿𝑛, 𝛿𝑠)
T (3) 

where δn is the normal displacement; and δs is the shear displacement. Each joint element 

has three integration points, such as A, B and C for joint element N1N2N3-N4N5N6 in Figure 2. 

The displacement vector δ is calculated at each integration point in a local coordinate system 

x’y’z’; the x’y’-plane passes through three points N16, N25 and N34, which are midpoints 

between N1 and N6, N2 and N5, and N3 and N4, respectively. The normal displacement δn is 

defined in the z’-direction, and the shear displacement δs is defined in the x’y’-plane, which 

has two components in the x’ and y’ directions, respectively. 

 

Figure 2: Local coordinate system of a joint element. N16, N25 and N34 are midpoints between 

N1 and N6, N2 and N5, and N3 and N4, respectively. A, B and C are integration points of this 

joint element N1N2N3-N4N5N6. N12 and N56 are midpoints between N1 and N2, and N5 and N6, 

respectively. 
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Correspondingly, the stress vector σ in a joint element is defined in the normal and shear 

directions as 

 𝛔 = (𝜎, 𝜏)T (4) 

where σ is the normal stress, corresponding to the normal displacement δn; and τ is the 

shear stress, corresponding to the shear displacement δs. It should be noted that the term stress 

vector is specially used for the joint elements because the three-dimensional stress tensor is 

reduced to only two components, so the term vector is used. The stress vector in joint 

elements is calculated based on a stress-displacement relation (Figure 3) similar to the 

combined single and smeared crack model proposed by Munjiza et al. (1999). The normal 

stress σ and shear stress τ are calculated following different values of parameters on the curve. 

 

Figure 3: The stress-displacement relation for joint elements. 

The peak stress f represents the material strength, which means the tensile strength ft for 

the normal stress σn and the shear strength fs for the shear stress τ. The tensile strength ft is 

assumed to be a constant, whereas the shear strength fs is determined by the Mohr-Coulomb 

criterion with a tension cut-off, 

 𝑓𝑠 = 𝑐 − 𝜎𝑛 tan𝜙 (5) 

where c is the cohesion; ϕ is the internal friction angle; σn is the normal stress acting 

perpendicular to the shear direction. It should be noted that because the normal stress σn 

cannot exceed the tensile strength ft, the tension cut-off that happens when σn ≥ ft is 

automatically guaranteed in Equation 5. 
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δp is the maximum hardening displacement corresponding to the peak stress f. In the 

normal direction and shear directions, δnp and δsp can be calculated as follows, 

 𝛿𝑛𝑝 = 2
𝑓𝑡
𝑝0
ℎ (6) 

 𝛿𝑠𝑝 = 2
𝑓𝑠
𝑝0
ℎ (7) 

where ft is the tensile strength; fs is the shear strength defined in Equation 5; h is the mean 

length of the edges of the joint element; p0 is the penalty term characterising the stiffness of 

the joint element so in the limit, 

 lim
𝑝0→∞

𝛿𝑝 = 0 (8) 

In numerical simulations, ideally the value of the penalty term p0 should be large enough 

so that the extra elasticity introduced into the domain by the joint elements can be negligible 

(Klein et al., 2001; Turon et al., 2007). However, a larger penalty term may cause numerical 

stability problems (Schellekens and de Borst, 1993), which usually requires smaller time-

steps in the explicit time integration scheme. For the current serial numerical code, the 

computational time would be unbearably long if the time-step is too small. Therefore, to 

maintain a balance between accuracy and computational efficiency, the value of the penalty 

term p0 is usually chosen as 

 𝐸 ≤ 𝑝0 ≤ 10𝐸 (9) 

where E is the Young’s modulus assigned for the tetrahedral elements. 

In Figure 3, δc is the critical displacement at which the joint element fails. The definition 

of δc is based on the Griffith theory (Griffith, 1921), which assumes that a certain amount of 

energy is absorbed by the formation of a unit area of the fracture surface in a brittle medium. 

This absorbed energy is defined as the fracture energy Gf, which can be calculated as 

 𝐺𝑓 = ∫ 𝜎𝑑𝛿
𝛿𝑐

𝛿𝑝

≈
1

3
𝑓𝛿𝑐 (10) 

Equation 10 can be used for both tensile and shear fractures but with different values, e.g. 

Gft and Gfs. It should be noted that in Equation 10 the area under a parabola is used as an 

approximation to calculate the area under the exponential curve.  
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Next, the normal stress σ can be calculated from the normal displacement δn by Equation 

11, similar to the concept of calculating forces in an assembly of discrete particles connected 

by springs. 

 𝜎 =

{
 
 

 
 2

𝛿𝑛
𝛿𝑛𝑝

𝑓𝑡 , if 𝛿𝑛 < 0

[2
𝛿𝑛
𝛿𝑛𝑝

− (
𝛿𝑛
𝛿𝑛𝑝

)

2

] 𝑓𝑡, if 0 ≤ 𝛿𝑛 ≤ 𝛿𝑛𝑝

𝑧𝑓𝑡, if 𝛿𝑛𝑝 ≤ 𝛿𝑛 ≤ 𝛿𝑛𝑐

 (11) 

where δnp is the maximum hardening displacement in the normal direction (Equation 6); 

δnc is the critical displacement at failure in the normal direction (Equation 10); z is a heuristic 

softening parameter by curve fitting using experiment data (Xian et al., 1991; Munjiza et al., 

1999), 

 𝑧 = [1 −
𝑎 + 𝑏 − 1

𝑎 + 𝑏
exp (𝐷

𝑎 + 𝑏𝑐

(𝑎 + 𝑏)(1 − 𝑎 − 𝑏)
)] [𝑎(1 − 𝐷) + 𝑏(1 − 𝐷)𝑐] (12) 

where a = 0.63, b = 1.8 and c = 6.0 are material properties derived from experiment data. 

Although they were derived originally for concrete, the same values are adopted in this paper 

to represent typical quasi-brittle materials due to the lack of specific experimental data and the 

large overlap of material properties between different quasi-brittle materials. D is a parameter 

calculated considering both the normal displacement δn and the shear displacement δs, 

 𝐷 =

{
 
 
 
 

 
 
 
 

𝛿𝑛 − 𝛿𝑛𝑝

𝛿𝑛𝑐 − 𝛿𝑛𝑝
, if 𝛿𝑛𝑝 < 𝛿𝑛 < 𝛿𝑛𝑐 and 𝛿𝑠 < 𝛿𝑠𝑝

𝛿𝑠 − 𝛿𝑠𝑝

𝛿𝑠𝑐 − 𝛿𝑠𝑝
, if 𝛿𝑠𝑝 < 𝛿𝑠 < 𝛿𝑠𝑐 and 𝛿𝑛 < 𝛿𝑛𝑝

√(
𝛿𝑛 − 𝛿𝑛𝑝

𝛿𝑛𝑐 − 𝛿𝑛𝑝
)

2

+ (
𝛿𝑠 − 𝛿𝑠𝑝

𝛿𝑠𝑐 − 𝛿𝑠𝑝
)

2

, if 𝛿𝑛𝑝 < 𝛿𝑛 < 𝛿𝑛𝑐 and 𝛿𝑠𝑝 < 𝛿𝑠 < 𝛿𝑠𝑐

1, if 𝛿𝑛 ≥ 𝛿𝑛𝑐 or 𝛿𝑠 ≥ 𝛿𝑠𝑐
0, Otherwise

 (13) 

where δsp is the maximum hardening displacement in the shear direction (Equation 7); δsc 

is the critical displacement at failure in the shear direction (Equation 10). In a similar way, the 

shear stress τ can be calculated by substituting the normal displacement δn with the shear 

displacement δs, and other parameters in the normal direction (with subscript n) with the 

corresponding parameters in the shear direction (with subscript s) in Equation 11. 
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The stresses in joint elements change non-linearly along the edges of joint elements. A 

numerical integration scheme derived by Hammer et al. (1956) is used to calculate the nodal 

forces fjoint contributed by the stresses in joint elements. The stresses at the three integration 

points of a joint element (Figure 2) are checked to determine if that joint element fails. A joint 

element is labelled as failed when at least two integration points have zero stress components. 

The failure of a joint element causes physical separation of the two adjacent tetrahedral 

elements, so a discrete fracture will be formed. It should be noted that the computational 

model proposed in this paper is based on a fixed mesh, so fractures can only initiate and 

propagate along faces of tetrahedral elements. 

2.3 Transition from continuum to discontinuum 

The transition from continuum to discontinuum in the computational model can be explained 

from two perspectives: from a physical point of view, the original continuum domain (intact 

without fractures) becomes a domain mixed with strong discontinuities caused by fracturing; 

from a numerical point of view, the tetrahedral elements originally connected by joint 

elements are physically separated and the interaction between them is simulated by the 

contact algorithms in the DEM formulation, including contact detection and contact 

interaction. Because the entire domain is discretised by tetrahedral elements and joint 

elements, the contact means contact between tetrahedral elements. The contact detection 

algorithm finds couples of tetrahedral elements that are in contact, and the contact interaction 

algorithm calculates the forces between the tetrahedral elements. The contact detection is a 

key factor for the computational efficiency, and the contact interaction is important to achieve 

a smooth transition from continuum to discontinuum. 

The contact detection algorithm is called no binary search (NBS) algorithm (Munjiza and 

Andrews, 1998; Munjiza, 2004), which has two functions: collision between discrete bodies, 

and normal and tangential separation between discrete fracture surfaces (Tvergaard, 2003). To 

improve the computational efficiency, instead of finding contact couples everywhere in the 

domain, the contact detection in the continuum region (no fractures) is only activated after 

new factures are formed. More specifically, after fracture formation, new contact couples, 
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which are pairs of tetrahedral elements at both sides of the new fracture, should be added to 

the contact couple list. This procedure is described as follows. First, a contact couple Cff of 

the two tetrahedral elements tet+ and tet− at both sides of the failed joint element is added to 

the contact couple list, 

 𝐶𝑓𝑓 = {𝑡𝑒𝑡
+, 𝑡𝑒𝑡−} (14) 

Next, the other neighbouring tetrahedral elements of the failed joint element are selected 

to form six groups of tetrahedral elements as G1 ~ G6 because each joint element has six 

nodes. For example, the group G1 is defined as, 

 𝐺1 = {𝑡𝑒𝑡𝑖|𝑁1 ∈ 𝑡𝑒𝑡𝑖 , 𝑖 = 1~𝑛1} (15) 

where teti is the ith tetrahedral element in group G1, N1 is the first node of the failed joint 

element, and n1 is the total number of tetrahedral elements in group G1. It should be noted that 

here the tetrahedral elements in group G1 do not really share node N1 because the space 

discretisation scheme inserts joint elements between tetrahedral elements (Figure 2). 

Therefore, the definition of ‘sharing node’ in the mixed mesh of tetrahedral elements and joint 

elements is that the nodes have the same initial coordinates before loading starts.  

Last, the contact detection algorithm is used to detect contact couples that are in real 

contact state within and between these six groups of tetrahedral elements G1 ~ G6. It should 

be noted that contact couples that still have active joint elements between them are excluded 

from this detection process. The final detected contact couples can be described as 

 𝐶𝑖𝑗 = {(𝑡𝑒𝑡𝑖 , 𝑡𝑒𝑡𝑗)|𝑡𝑒𝑡𝑖 ∈ 𝐺𝑚, 𝑡𝑒𝑡𝑗 ∈ 𝐺𝑛, 𝑚 = 1~6, 𝑛 = 1~6} (16) 

The contact scenarios for detected contact couples due to fracturing can be various, e.g. 

node-node contact, edge-edge contact, edge-face contact, etc. It is worth pointing out that the 

contact couples listed in Equation 16 only represent the initial contact scenario after new 

fracture formation. The contact detection algorithm is capable of adaptively searching 

tetrahedral elements to form and update contact couples; therefore, it gives the computational 

model the advantage of normal DEM methods to deal with large displacement problems, e.g. 

sliding and fragmentation. 

Once the contact couples are detected, the contact interaction algorithm is used to 

calculate the contact forces, e.g. normal compression and friction, between fracture surfaces, 
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and then the contact forces are distributed to the nodes of tetrahedral elements at both sides of 

the discrete fracture. The contact interaction algorithm used to handle the mechanical contact 

is based on the penalty function method (Munjiza and Andrews, 2000; Munjiza, 2004). In this 

algorithm, penetration between discrete elements will generate a pair of contact forces, which 

are equal in magnitude and opposite in directions, acting on the two elements of a contact 

couple. The two discrete elements of a contact couple are named contactor and target, 

respectively (Figure 4). 

 

Figure 4: Contact force due to an infinitesimal overlap between a contactor element and a 

target element. 

The contact force fcontact generated due to penetration is then calculated as 

 𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =∑∑∫ (𝑔𝑟𝑎𝑑𝜑𝑐𝑖 − 𝑔𝑟𝑎𝑑𝜑𝑡𝑗) 𝑑𝑉𝑖𝑗
𝑉𝑖𝑗=𝛽𝑐𝑖∩𝛽𝑡𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (17) 

where dVij is an infinitesimal overlap between contactor element 𝛽𝑐𝑖 and target element 

𝛽𝑡𝑗 ; m and n are the total numbers of tetrahedral elements of the contactor and target, 

respectively; 𝜑𝑐𝑖  and 𝜑𝑡𝑗  are potential functions for the contactor 𝛽𝑐𝑖  and target 𝛽𝑡𝑗 , 

respectively. Sliding friction is also considered as a type of contact by the Coulomb friction 

law. Sliding in the tangential direction at the contact interface will occur when the tangential 

contact force is greater than μN, where μ is the friction coefficient, and N is the normal 

pressure at the contact interface. 

It should be noted that the contact forces are only calculated between tetrahedral elements 

when they are found as a contact couple by the contact detection algorithm. More specifically, 

before fracture formation the tetrahedral elements are purely connected by joint elements, 
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which contribute to the nodal forces fjoint. After fracture formation, fjoint becomes zero as the 

formation of fractures is determined upon the failure of joint elements; instead, a contact force 

fcontact will be calculated between tetrahedral elements at both sides of the failed joint element. 

The smooth transition from continuum to discontinuum therefore relies on the switch from 

fjoint to fcontact. When a tensile fracture is formed, fjoint has already diminished to zero and the 

initial fcontact equals zero as well due to zero overlap between tetrahedral elements – as they 

moved apart in tension, so a smooth transition is guaranteed. However, when a shear fracture 

under normal compression is formed, the overlap between tetrahedral elements due to 

compression will generate an initial non-zero contact force 𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , which can cause 

instability problems because a zero fjoint is suddenly replaced by a non-zero 𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . In order 

to achieve a smooth transition, a ramping function is applied to gradually increase the contact 

force to its initial value, 

 𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝑛𝑐

𝑛𝑡𝑜𝑡𝑎𝑙
𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (18) 

where nc is the current time-step, which is locally defined only for the calculation of 

contact forces and starts from zero when a shear fracture is formed; ntotal is the total time-steps 

for nc (usually 10). Once the initial value is reached, the contact force will be calculated as 

normal using Equation 17. 

2.4 Discretised equilibrium equations 

In the three-dimensional fracturing simulations, the domain is discretised by 4-node 

tetrahedral elements and 6-node joint elements. The motions of element nodes are governed 

by internal forces and external forces acting on them. The governing equation for each 

individual node is given as 

 𝑚𝑖�̇�𝑖 + 𝐟𝑖𝑛𝑡 = 𝐟𝑒𝑥𝑡 (19) 

where mi is the mass of node i;  is the acceleration vector of node i; fint is the internal 

force vector of node i; fext is the external force vector of node i. The internal force fint is 

calculated from stresses in tetrahedral elements and the external force fext includes three parts, 

 𝐟𝑒𝑥𝑡 = 𝐟𝑗𝑜𝑖𝑛𝑡 + 𝐟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + 𝐟𝑙𝑜𝑎𝑑 (20) 
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where fjoint is the external force vector contributed by the stresses in joint elements; fcontact 

is contributed by the contact interaction in the DEM formulation; fload is contributed by 

external loading, such as body force and surface traction. A Forward Euler method (FE) is 

used for explicit time integration. 

3 Numerical examples 

In this section, the computational model is applied to three numerical tests. First, the Brazilian 

test, i.e. diametral compression of a disc specimen, is chosen to examine the capability of the 

three-dimensional fracture model to simulate tensile fractures with minor shear fractures in 

indirect tensile stress fields. Second, the polyaxial or true-triaxial compression test, in which a 

cube specimen is compressed in orthogonal three-dimensional stress conditions, is simulated 

to investigate shear fracturing behaviour. Third, a realistic three-dimensional multi-layer rock 

model is simulated under an in situ stress condition as an example of applying the 

computational model for engineering problems. It should be noted that the materials of all the 

models presented in this section are assumed to be isotropic and homogeneous. 

3.1 Brazilian test 

3.1.1 Test setup 

The setup for the Brazilian tests is shown in Figure 5. A vertically placed disc specimen 

perpendicular to the z-direction is compressed diametrally between two platens placed 

horizontally. The diameter of the disc specimen is 40 mm and the thickness in the z-direction 

is 15 mm (Figure 5a). Loading velocities Vy in the vertical y-direction are applied to the two 

platens to generate an indirect tensile stress field in the disc specimen. The upper platen 

moves downwards and the lower platen moves upwards at the same velocity. The value of 

loading velocity Vy is defined by a ramping curve, which means the velocity first increases 

linearly from zero to a constant value Vy, and then keeps constant for the rest of the simulation 

time. This ramping function is mainly designed to reduce the impact effect when the loading 

starts. It should be noted that there are no pre-existing flaws in the disc specimen (Figure 5b). 
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a. Dimensions, mesh and loading condition of 

the model. 

b. Inside of the disc specimen. Note that there 

are no pre-existing flaws. 

Figure 5: Test setup of Brazilian tests. 

The material used for the disc specimen (Table 1) is assumed to represent typical rock 

(Lama and Vutukuri, 1978; Atkinson, 1987; Zoback, 2010) or fine concrete mortar properties 

(Popovics, 1998) and the platens are assumed to be made of steel. It should be noted that the 

fracture model is only applied to the disc specimen, and the steel platens are assumed to be 

rigid, which means there is no deformation in the platens, so material properties are not 

needed for them. The platens are only meshed for convenience reasons in the mesh creation; 

the actual mesh is not involved in the stress calculations (Mahabadi et al., 2010). The friction 

coefficient is set to be 0.6 between fracture surfaces, and 0.1 between the disc specimen and 

platens. The domain is meshed using unstructured 4-node tetrahedral elements and the mean 

mesh size is ~ 1.2 mm, which satisfies mesh convergence criteria (Guo et al., 2016). A total 

number of 51690 elements are generated for the disc specimen and 2854 elements for the 

platens. The time-step used in the simulations is Δt = 2 × 10−9 s. 
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Table 1: Material properties in the Brazilian tests. 

Material properties Values 

Density ρ (kgm-3) 2340 

Young’s modulus E (GPa) 26 

Poisson’s ratio υ 0.2 

Tensile strength ft (MPa) 3 

Cohesion c (MPa) 15 

Internal friction angle ϕ (°) 30 

Fracture energy Gf (Jm
-2) 50 

 

3.1.2 Numerical results 

Four loading velocities are tested for the same disc specimen in the Brazilian tests. The aim is 

to investigate the dynamic effect of different loading rates on the indirect tensile strength. The 

load F and vertical strain εyy obtained from numerical simulations are plotted in Figure 6 for 

loading velocities Vy = 0.1, 0.05, 0.02 and 0.01 m/s. Since the upper and lower platens both 

move at the same velocity but in opposite directions, the load F is calculated as 

 𝐹 =
1

2
(𝐹𝑢𝑝𝑝𝑒𝑟 + 𝐹𝑙𝑜𝑤𝑒𝑟) (21) 

where Fupper is the contact force between the upper platen and the disc specimen; and 

Flower is the contact force between the lower platen and the disc specimen. The vertical strain 

εyy of the disc specimen is defined by 

 𝜀𝑦𝑦 =
∆𝑎

𝑑
 (22) 

where d is the diameter of the disc specimen. 
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Figure 6: Plots of load F versus vertical strain εyy of the disc specimen in Brazilian tests. 

It can be seen from Figure 6 that the peak load of the disc specimen drops as the loading 

velocity decreases. However, it is found that the peak loads obtained from loading velocities 

Vy = 0.02 and 0.01 m/s are almost the same, which indicates these velocities can represent 

quasi-static loading conditions. It is known from Figure 6 that the peak load corresponding to 

loading velocity Vy = 0.01 m/s is F = 1844.76 N, so the indirect tensile strength fbt can be 

calculated by Equation 23. 

 𝑓𝑏𝑡 =
2𝐹

𝜋𝑑𝑡
 (23) 

where d is the diameter of the disc specimen, d = 0.04 m; and t is the thickness, t = 0.015 

m (Figure 5a), so the calculated indirect tensile strength is fbt = 1.96 MPa. It is worth noting 

that the indirect tensile strength obtained from the numerical simulation is smaller than the 

input value of tensile strength ft = 3 MPa (Table 1). This discrepancy might be explained by 

the difference between the direct tensile strength and the indirect tensile strength. The input 

tensile strength as a material property is used in the fracture model as a concept of direct 

tensile strength, which is different from the indirect tensile strength in terms of the definitions 

and the experiment methods used to obtain them. More specifically, the direct tensile strength 
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is obtained from direct tension tests, i.e. pulling a bar specimen, which are normally difficult 

for quasi-brittle materials, as they break without significant deformation and the two ends 

clamped by experimental equipment can easily crush. The indirect tensile strength is obtained 

typically from Brazilian tests, which are better controlled for quasi-brittle materials. Fairhurst 

(Fairhurst, 1964) concluded that a Brazilian test would underestimate tensile strength for a 

rock with a low ratio of compressive to tensile strength when the contact areas between the 

loading platens and the specimen are small. In the numerical tests presented here, the two 

loading platens both have planar surfaces in contact with the disc specimen, which results in 

narrow strips of contact areas and localised contact forces. Because the material shear strength 

is not sufficiently high to resist the localised and concentrated contact forces at the two ends 

of the disc specimen, the disc fails in both tensile mode (centre of the disc specimen) and 

shear mode (two ends in contact with the platens). Therefore, the structure resistance to the 

loading is underestimated. 

The numerical results of loading velocity Vy = 0.01 m/s are presented in Figure 7. It can be 

seen that the simulation obtains correct stress fields and fracture patterns that match 

theoretical predictions (Fairhurst, 1964). Before fracture initiation, tensile stresses are 

distributed along the vertical diameter of the disc specimen and also there are small areas of 

compressive stresses distributed near the loading platens (Figure 7a). Due to the high contact 

forces, shear fractures first initiate at the two ends of the disc specimen that are in contact 

with the loading platens (Figure 7b). Then the central fracture propagates upwards until it 

penetrates through the whole disc specimen (Figure 7c – f). It is worth pointing out that in an 

ideal Brazilian test, the fracture should first initiate at the centre and then propagate outwards. 

In the future, several improvements can be introduced to achieve more realistic sequence of 

fracture development, such as material heterogeneity when experimental data is available 

(Mahabadi et al., 2012, 2014) and plasticity deformation for more accurate energy dissipation. 
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a. Vertical strain εyy = 1.03%. 

 

  

b. Vertical strain εyy = 1.59%. 

 

  

c. Vertical strain εyy = 3.11%. 
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d. Vertical strain εyy = 3.15%. 

 

  

e. Vertical strain εyy = 4.01%. 

 

  

f. Vertical strain εyy = 4.15%. 

Figure 7: Numerical results of Brazilian tests at loading velocity Vy = 0.01 m/s. The left-hand 

column shows the horizontal stress components (tensile direction). The fracture patterns are 

viewed from the positive z-direction (the middle column) and in three-dimensional views (the 

right-hand column). 
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Final fracture patterns of loading velocities Vy = 0.01 and 0.05 m/s are compared in Figure 

8. They both have major tensile splitting fractures in the middle of the disc specimen and 

minor crushing zones (shear fractures) near the two ends that are in contact with the loading 

platens, which are similar to fractures obtained from laboratory experiments (Guo et al., 

1993). 

  
a. Vy = 0.01 m/s. b. Vy = 0.05 m/s. 

Figure 8: Comparison of final fracture patterns in Brazilian tests obtained from two loading 

velocities Vy = 0.01 and 0.05 m/s. 

3.2 Polyaxial compression test 

3.2.1 Test setup 

The test setup for the polyaxial compression tests is shown in Figure 9. A cube specimen is 

used as a representation of a homogeneous and isotropic geological unit. The edge length of 

the cube specimen is 500 mm (Figure 9a) and there are no pre-existing flaws (Figure 9b). 

Three orthogonal pressure boundary conditions, which represent three principal stresses, are 

applied to the surfaces of the cube specimen using a ramping function – first increase linearly 

from zero to a constant pressure, and then remain constant. It is worth noting that this is 

different from conventional laboratory testing, where the all-round confining pressure is 

normally applied first so as to allow consolidation, if appropriate, and then the axial pressure 

is gradually increased until failure happens (Knappett and Craig, 2012). In the numerical tests, 

the specimen is not assumed to be a porous medium; thus, all of the three orthogonal 

pressures reach the final constant values simultaneously, but the values are different. As a 

result, the slopes of linear increases (incremental stresses) are not the same. Different slopes 
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have been tested to make sure the final stresses can represent a quasi-static failure state. It 

should be noted that here the engineering mechanics sign convention is used, so tensile stress 

is positive and compressive stress is negative, and the three principal stress components are in 

the order of 𝜎1 ≥ 𝜎2 ≥ 𝜎3. 

 
 

a. Dimensions, mesh and loading condition of 

the model. 

b. Inside of the cube specimen. Note that 

there are no pre-existing flaws. 

Figure 9: Test setup of polyaxial compression tests. 

The material of the cube specimen in the polyaxial compression tests (Table 2) is assumed 

to represent typical limestone (Engelder and Peacock, 2001; Zoback, 2010). A friction 

coefficient equal to 0.6 is assigned on fracture surfaces. The whole cube domain is meshed by 

unstructured 4-node tetrahedral elements. The mean mesh size is ~ 27 mm (smallest mesh 

element size ~ 17 mm) and a total number of 55435 elements are generated. The time-step in 

the numerical simulations is Δt = 5 × 10-8 s. 

Table 2: Material properties in the polyaxial compression test. 

Material properties Test 1 Test 2 Test 3 

Density ρ (kgm-3) 2700 2700 2700 

Young’s modulus E (GPa) 30 30 30 

Poisson’s ratio υ 0.27 0.27 0.27 

Tensile strength ft (MPa) 1.0 1.0 1.0 

Cohesion c (MPa) 0.5 2.0 3.8 

Internal friction angle ϕ (°) 33.4 23.8 12.4 

Fracture energy Gf (Jm
-2) 60 60 60 
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3.2.2 Numerical results 

Three sets of material properties are tested in the polyaxial compression tests. The aim is to 

compare three different materials in identical stress states but have inherently different 

strength related properties. Therefore, the only difference between the three materials is the 

cohesion c and the internal friction angle ϕ, which are listed as follows: 

Test 1: c = 0.5 MPa, ϕ = 33.4° (tanϕ = 0.66); 

Test 2: c = 2.0 MPa, ϕ = 23.8° (tanϕ = 0.44); 

Test 3: c = 3.8 MPa, ϕ = 12.4° (tanϕ = 0.22). 

It should be noted that the internal friction angle in the third test (ϕ = 12.4°, tanϕ = 0.22) is 

not a very realistic value for rock material (Zoback, 2010). The main reason for choosing this 

value is to investigate the shear fracturing behaviour at three consecutively halving tangents 

of the internal friction angles (0.66, 0.44 and 0.22). For the purpose of testing different 

materials in the same stress state, the pressure boundary conditions are the same for all of the 

three tests. 

   
a. Initial shearing. b. Conjugate shearing. c. Final pattern. 

Figure 10: Shear fracture formation in the polyaxial compression test with material properties 

of c = 0.5 MPa and ϕ = 33.4° (tanϕ = 0.66). Note that the orange dashed lines show the main 

shear direction and the blue dashed lines show the symmetric complementary conjugate 

direction. 
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a. Initial shearing. b. Conjugate shearing. c. Final pattern. 

Figure 11: Shear fracture formation in the polyaxial compression test with material properties 

of c = 2.0 MPa and ϕ = 23.8° (tanϕ = 0.44). 

   
a. Initial shearing. b. Conjugate shearing. c. Final pattern. 

Figure 12: Shear fracture formation in the polyaxial compression test with material properties 

of c = 3.8 MPa and ϕ = 12.4° (tanϕ = 0.22). 

The shear fracture development obtained from numerical simulations is shown in Figure 

10, Figure 11 and Figure 12. It should be noted that the orange and blue dashed lines in these 

figures represent the symmetric conjugate shearing directions, which have an angle of ± 45° ± 

ϕ/2 with the direction of the minimum compressive stress (horizontal direction) according to 

the Mohr-Coulomb theory. For example, for the first test of c = 0.5 MPa and ϕ = 33.4° 

(Figure 10), one of the theoretical shear directions (orange dashed line) is 

 −45° −
𝜙

2
= −61.7° (24) 

It can be seen from Figure 10, Figure 11 and Figure 12 that the shear directions obtained 

from numerical simulations are in good agreement with the theoretical directions. It should be 



 29 

noted that non-associated flow rules are normally used for soil, rock and concrete, etc., in 

which the inclination of the shear bands should consider the dilatancy angle  as well (Arthur 

et al., 1977; Vardoulakis, 1980), therefore, 

 𝛼 = 45° + (𝜙 + 𝜓) 4⁄  (25) 

The dilatancy angle  is at least 20 less than the friction angle ϕ (Vermeer and de Borst, 

1984). However, previous research found that the shear bands in fine sands tended to develop 

at the Coulomb direction (Vermeer, 1990). Lade and Wang (2001) also found that in dense 

sands the shear band inclinations compared more favorably with the Coulomb direction. The 

material for the numerical tests here is assumed to be rock or concrete without 

microstructures, which can be assumed to be equivalent to a specimen of densely packed fine 

granular material; therefore, the shear band inclination angle is estimated purely based on the 

Mohr-Coulomb criterion. 

At the initial stages (Figure 10a, Figure 11a and Figure 12a), shear fractures initiate and 

propagate to make a macroscopic shear fracture (orange dashed lines) at an angle as predicted 

by the Mohr-Coulomb theory and in accordance with the element scale criteria implemented 

for failure on joint elements. Then several sets of small shear fractures develop in the 

complementary conjugate directions (blue dashed lines) to the first set of shear fractures 

(Figure 10b, Figure 11b and Figure 12b), and these first three or four significant conjugate 

shears grow to compensate for the strain caused by the sliding on the first macroscopic shear. 

The final shear fracture patterns in Figure 10c, Figure 11c and Figure 12c show a main set of 

continuous shear fractures through the entire cube specimen and several sets of small shear 

fractures orientated in the conjugate directions to the main originally formed set. 

In our simulations, the specimen can be assumed to be equivalent to a very densely 

packed specimen of granular material, in which the failure is normally observed as localised 

shear bands (Wang and Lade, 2001; Guo and Zhao, 2016a). It is worth pointing out that if the 

specimen is loosely packed, the failure mode is more like a diffused pattern (di Prisco et al., 

1997; Chu and Leong, 2002; Lade, 2002; Khoa et al., 2006; Daouadji et al., 2010). Generally 

speaking, in granular materials failure may occur in a localised pattern (shear band) or a 

diffused pattern (uniform peak) (Wang and Lade, 2001; Huang et al., 2007). The final failure 
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pattern can be explained as the result of self-organisation of multiple fractures – a balance 

between competing processes, such as a reaction process to localise fractures and a diffusion 

process to homogenise fractures (Ord and Hobbs, 2010). 

The material properties and loading pressures in the polyaxial compression tests are 

specially chosen to make sure the cube specimen breaks in a manner predicted by the Mohr-

Coulomb theory. The Mohr circle representing the applied principal stresses and three Mohr-

Coulomb failure envelopes corresponding to three sets of material properties are plotted in 

Figure 13. It can be seen that the Mohr circle just touches all the three failure envelopes, 

which means the applied principal stresses are just sufficient to cause the cube specimen to 

fail according to the Mohr-Coulomb theory. The numerical results match these theoretical 

predictions very well. 

 

Figure 13: Mohr circle and Mohr-Coulomb failure envelopes in the polyaxial compression 

tests. Note that the Mohr circle reprents the principal stresses (σ1 = − 3.75 MPa, σ2 = − 9.375 

MPa, σ3 = − 15 MPa) applied to the cube specimen. The three Mohr-Coulomb failure 

envelopes correspond to three sets of material properties: c = 0.5 MPa and ϕ = 33.4°, c = 2.0 

MPa and ϕ = 23.8°, c = 3.8 MPa and ϕ = 12.4°, respectively. 

It is worth mentioning that the shear-failure-dominated fracture patterns obtained using 

the computational model in the polyaxial compression tests are not as clean as the tensile-

failure-dominated fracture patterns obtained in the Brazilian tests. In the tensile-failure-

dominated fracture patterns, the major tensile fractures usually propagate without many 
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branches, and therefore have continuous and clean fracture surfaces. In the shear-failure-

dominated fracture patterns, however, multiple small shear fractures form at the same time, 

and then these fractures propagate and coalesce to form shear bands, which have multiple 

shear fractures distributed in narrow strips. This difference between tensile and shear failure 

modes is more significant when shear failure happens in compressive stress fields (Lockner et 

al., 1991), like the polyaxial compression presented in this section. 

3.3 Three-dimensional multi-layer model 

In this section, an example is presented as an application of the computational model to 

reservoir modelling in petroleum engineering. Naturally fractured reservoirs are an important 

source of hydrocarbons. The difficulty in characterising such reservoirs is mainly attributed to 

the lack of sufficient sub-surface data to create realistic fracture network models (Nelson, 

2001). Understanding mechanisms and processes of fracture pattern formation can help 

predict fracture characteristics in different stress regimes. A considerable amount of research 

has been done on the tectonic setting and stress regimes that exist in the Earth’s crust, and the 

brittle and ductile structures that are produced in sedimentary rock as a consequence. A good 

discussion of the mechanical principles and concepts used to analyse geological structures can 

be found in the book by Price and Cosgrove (1990). 

One study area of great importance is the research of fracture development in relation to 

multi-layered rock to understand the role of fractures in vertical fluid migration across and 

within sedimentary rock layers. Sedimentary sequences in reservoir basins at different stages 

in their geological evolution to the present day may have been exposed to phases of 

deformation involving both layer extension and layer compression. Previous research on 

layered rock (Wu and Pollard, 1995) concluded that opening-mode tensile fractures are a 

common occurrence, and these are often confined and terminated by layer boundaries. 

However, sometimes through-going fractures are observed which penetrate many layer 

boundaries. The mechanisms allowing this significant pathway for fluids are not well 

understood and are the subject of great interest to structural geologists and reservoir engineers 

concerned with the integrity of cap rock. 
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The objective of the third numerical example is to apply the computational model to 

mechanically simulate the growth of realistic fracture patterns in three-dimensional layered 

rock. Some previous work by the authors looked at a similar problem in two dimensions (Guo 

et al., 2017). In this section, the multi-layer rock model and the in situ stress condition are 

simulated in a true three-dimensional scenario, and three-dimensional fracture pattern 

development, which is associated with stress heterogeneity and stress concentration, is 

investigated. 

3.3.1 Model setup 

The model simulated here is generated by extruding a two-dimensional fracture network, 

which is a section of 1.5 m × 1.5 m from a realistic two-dimensional fracture pattern map (see 

the green box in Figure 14). The extracted fracture pattern originally is a fracture map of one 

near horizontal limestone horizon exposed in a wave cut platform. In order to simulate 

interactions between fracture walls, a duplicate line is created along each fracture and the 

number of duplicate nodes at intersections depends on the local fracture patterns. To build a 

three-dimensional model, first it has been put vertical so gravity acts normal to one of the 

discontinuity sets – the most persistent set – that to aid interpretation may be viewed as if it 

was the bedding plane or sedimentary layering direction. This two-dimensional fracture 

pattern is then extruded in the out-of-plane direction (perpendicular to the original map) by 

0.5 m (Figure 15a). The fracture distribution inside the model can be seen by using a semi-

transparent colour scheme in Figure 15b. There are two major sets of fractures in this model, 

along the layering direction are persistent fractures, which may be viewed as if they are the 

layer interfaces separating beds of identical intact rock; the other set are non-persistent 

fractures, some of which terminate at layer interfaces and some are connected through several 

layers. 
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Figure 14: Fracture pattern mapped from the Bristol Channel Basin (after Belayneh and 

Cosgrove, 2004). The green box shows the extracted section of 1.5 m × 1.5 m. 

 
a. Dimensions of the three-dimensional 

multi-layer model. Different colours 

represent different units. 

b. Fracture distribution inside the three-

dimensional multi-layer model. The semi-

transparent grey colour represents the outer 

boundary of this model, and the purple colour 

represents original fracture surfaces. 

Figure 15: Dimensions and fracture distribution of the three-dimensional multi-layer model. 

Pressure boundary conditions are applied to all six boundary surfaces (Figure 16). The 

two surfaces perpendicular to the x-direction have traction Px = σ’1 = 2.5 MPa; the two 

surfaces perpendicular to the z-direction have pressure Pz = σ’2 = − 7.5 MPa; the two surfaces 

perpendicular to the y-direction have pressure Py = σ’3 = − 15 MPa. This set of effective 
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principal stress data has taken fluid pressure into account and is designed to represent an in 

situ effective stress condition. The acceleration of gravity g is set to be 9.8 m/s2, which acts in 

the negative y-direction. It is worth mentioning that the direction of gravity has no significant 

effect on the deformation that is modelled as the scale and rate of boundary condition does not 

permit body force at the top and the bottom of the model to be significantly different. 

 

Figure 16: Mesh and the in situ stress condition for the three-dimensional multi-layer model. 

The rock properties assigned to this model are assumed to be representative of typical 

limestone (Zoback, 2010; Engelder and Peacock, 2001). The material properties are listed in 

Table 3. The friction coefficient μ is set to be 0.6 at layer interfaces and fracture surfaces. 

Table 3: Material properties used in the three-dimensional multi-layer model. 

Rock properties Values 

Density ρ (kgm-3) 2700 

Young’s modulus E (GPa) 60 

Poisson’s ratio υ 0.35 

Tensile strength ft (MPa) 5.0 

Cohesion c (MPa) 12 

Internal friction angle ϕ (°) 30 

Fracture energy Gf (Jm
-2) 60 
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The entire domain is meshed by unstructured 4-node tetrahedral elements (Figure 16). The 

mean mesh size is approximately 2.4 cm. A total number of 486425 tetrahedral elements are 

generated. Here a time-step Δt = 5 × 10−8 s is used in the simulation. 

3.3.2 Numerical results 

It can be seen from Figure 17 that all new fractures propagate from existing fracture tips. As 

stresses build up and amplify at existing fracture tips, the heterogeneity of the stress field 

increases. When the amplified stresses increase to the material strength, fractures start to 

propagate from these stress concentrations, and the stress concentration zones spread with the 

propagation of discrete fractures. This fracturing process causes the stress heterogeneity in the 

model to change all the time, though the exact relation between degree of fracturing and stress 

heterogeneity is not clear yet. It can also be seen that this heterogeneous stress field mostly 

generates tensile fractures with a few minor shear fractures as well. For example, in the 

middle-right area, the upper end of an existing fracture first propagates into the neighbouring 

layer as a tensile fracture, and then bifurcates into two branches as shear fractures. 

The original fracture distribution has a significant effect on the formation of new factures 

since fractures in intact segments are always initiated by stress concentrations around the 

junctions of layer interfaces and existing fractures. Although this simulation is designed to 

represent a quasi-static state and the dynamic effects have significantly been reduced by 

applying the pressure boundary conditions at a very low loading rate, typical transient 

dynamic phenomena can still be seen from the results. Especially at the early stage of the 

simulation (Figure 17a-c), the stress contours clearly show the propagation of stress waves 

from boundaries to the inside and the interaction of stress waves from different directions. 

The final fracture pattern (Figure 17f), however, can be seen as a stable state because no more 

new fractures are developed afterwards, and the large stress amplitudes are gradually being 

reduced by viscous damping (parameter η in Equation 1). 
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a. 1800 time-steps. 

 

b. 2100 time-steps. 
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c. 2400 time-step. 

 

d. 2600 time-steps. 
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e. 2800 time-steps. 

 

f. 3000 time-steps. 

  

 

Figure 17: Stress and fracture evolution in the three-dimensional multi-layer model under an 

in situ stress condition. The figures on the left-hand side show colour contours of the 

magnitude of the maximum principal stress σ1 (𝜎1 ≥ 𝜎2 ≥ 𝜎3). The figures on the right-hand 

side show fracture development inside the model. Note that a semi-transparent colour scheme 

is used to differentiate discrete surfaces, where the grey colour represents model outer 
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boundaries; the purple colour represents original fracture sets; and the green colour represents 

newly developed fracture surfaces. 

4 Discussion 

The computational model described in this paper works on fixed meshes, which means it only 

allows fractures to propagate along tetrahedral element boundaries. This mesh dependency of 

fracture patterns is not significant if the element size is small enough compared with the scale 

of the domain (Guo et al., 2016). For example, in the Brazilian tests (Figure 8) although the 

fracture surfaces are not straight vertical planes, their roughness only deviates from the 

vertical direction by a small extent. Moreover, this mesh dependency provides convenience to 

realistically simulate fracturing behaviour along grain boundaries for some quasi-brittle low 

porosity igneous or sedimentary rocks, like granite and tight sandstone. It requires that the 

size of tetrahedral elements be of the same order of magnitude as the grain size. This 

condition can be satisfied for laboratory specimens, which can be meshed with a reasonable 

number of elements. Even when this condition is difficult to satisfy for large-scale 

engineering problems, which typically have scales of several orders of magnitude higher than 

the grain sizes of materials, acceptable macroscopic fracture patterns can still be obtained 

using large elements if their sizes are considerably smaller than the scale of the simulated 

domain. 

The fracture model described in this paper has the ability of simulating both fracture 

initiation from intact material and fracture growth from single or multiple fracture tips. The 

materials in the numerical examples of this paper are all assumed to be homogeneous and 

isotropic. This assumption is a simplification of real material properties, and all the 

imperfections, e.g. flaws, impurities, etc., are neglected. In physical experiments, this 

assumption is valid when the microstructures that cause heterogeneity are negligible in 

isotropic materials, which usually happens when the scales of microstructures are 

considerably smaller than the scale of the whole model. In this case, failure in the model 

usually starts from the highest stress concentration zones. For example, in the Brazilian test 

tensile stresses progressively approach the strength limit near the centre, so the tensile 
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splitting fracture develops along the loading diametral direction. In these kinds of 

heterogeneous stress fields, homogeneous and isotropic material can give ideal results 

because the locations of fracturing are controlled by the stress distributions. However, for a 

loading geometry that is supposed to generate homogeneous stress fields, such as direct 

tension tests and polyaxial compression tests, in physical experiments even if the material 

specimens can be justifiably considered as homogeneous and isotropic, fractures would still 

initiate from some pre-existing imperfections that exist in the model before loading starts. If 

these imperfections are not represented properly in the numerical model specimen, the 

location of the first numerically grown fracture can be governed by largely stochastic 

processes, which are mainly influenced by the peak amplitudes of stress waves in the model 

and numerical instabilities. Therefore, the homogeneous and isotropic assumption for the 

material is well suited (for un-laminated or un-foliated rock types) when the stress field before 

fracturing is heterogeneous, but that to model the response of a more homogeneous stress 

field it may be more appropriate to introduce pre-existing fractures or flaws, like the work of 

Mahabadi et al. (2014), who proposed a micromechanical approach for introducing the 

geometrical and material heterogeneity of geomaterials into two-dimensional models. 

Developed in the context of the combined finite-discrete element method, the 

computational model presented in this paper has the advantage of modelling tensile and shear 

fractures in complex stress domains. However, several limitations still exist. For example, a 

complete loading-unloading path is missing in the current model. After fracture formation, if 

unloading happens, the contact force (e.g. friction) between discrete fracture surfaces will be 

calculated by the DEM method; however, permanent fractures remain in the domain even 

when the external loading returns to zero. If the failed joint elements can be reconstructed, 

which means detached tetrahedral elements can be reconnected, it would greatly expand the 

area that this computational model can be applied, such as bone healing problems in the field 

of biomedical engineering. Another limitation is that the computational time can become 

unaffordable if the number of elements is significantly large, which is a common issue for 

fixed-mesh-based numerical models in serial codes. The small time-steps used in the 

simulations are mainly determined by the stability requirement. In the future, it is worth 
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exploring different numerical methods to ease the requirements on time-steps. In order to 

boost the simulation speed, one possible solution is parallel computing (Owen and Feng, 

2001; Frantík et al., 2013; Shterenlikht et al, 2018). Another possible solution is the 

multiscale method, which can reduce computational cost for large-scale problems (Beex et al., 

2014). Some examples of using different algorithms for the local domain around fractures 

include the SGBEM-FEM alternating method (Han and Atluri, 2002) and the substructuring 

FE-XFEM method (Wyart et al., 2008). These methods can expedite the simulation of large-

scale problems and maintain the same accuracy. Similar approaches can be developed for the 

FEMDEM method, in which the fracture model is only applied to the subdomain around 

existing fractures and stress concentration zones. 

5 Conclusions 

A computational model has been developed using the combined finite-discrete element 

method (FEMDEM). The finite element formulation and the discrete element formulation are 

combined both in the space domain and in the time domain. In the space domain, the finite 

element formulation is used for the continuum (no fractures), while the discrete element 

formulation is used for the interaction across discontinuities, including multi-body interaction 

and normal compression and sliding friction between fracture surfaces. In the time domain, 

the continuity between tetrahedral elements is constrained by joint elements before fracture 

formation, then after fracture formation, the interaction between separated tetrahedral 

elements on both sides of the fracture is simulated by contact algorithms. 

Brazilian tests and polyaxial compression tests were conducted to validate the 

computational model to simulate both tensile and shale failures. The Brazilian tests simulated 

the dynamic effect of different loading rates on the indirect tensile strength of the material. 

The polyaxial compression tests modelled the shear fracturing behaviour in compressive 

stress fields, such as shear directions and conjugate shearing, from different material 

properties. One multi-layer rock model extracted from a realistic fracture pattern was 

simulated in a true three-dimensional in situ stress condition as an example of applying the 
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computational model in engineering problems. The distribution of existing fractures had a 

significant effect on the formation of the fracture pattern because new fractures grew from 

stress concentrations caused by existing fractures. Three-dimensional stress heterogeneity 

caused by fracturing was accurately captured in this example. 

The proposed three-dimensional fracture model is capable of simulating the entire 

fracturing process, including pre-peak hardening deformation, post-peak strain softening, 

transition from continuum to discontinuum, and the explicit interaction between discrete 

fracture surfaces for both tensile and shear fracture initiation and propagation. The numerical 

results show that the fracture model is able to generate fracture patterns according to 

mechanical principles of material failure. Both tensile and shear fractures can either initiate 

from stress concentrations in an intact domain or grow from existing fracture tips in 

complicated stress regimes. The computational model has been implemented into an in-house 

numerical code written in C and C++, and will later be released as open source so researchers 

have full flexibility to further develop the model for their customised use. It provides an ideal 

tool to examine in detail the three-dimensional fracture and fragmentation problems in quasi-

brittle materials. 
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