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Abstract  9 

This study investigates the transient loading exerted on rigid circular cylinders by impinging 10 

pressure waves of arbitrary shape, amplitude, and time duration. Numerical calculations are 11 

used to predict the transient flow around the cylinder for wide ranges of geometric and loading 12 

parameters. An analytical model is developed to predict the transient loading history on the 13 

cylinder and this is found in good agreement with the results of the numerical calculations. Both 14 

models are used to identify and explore the different loading regimes, and to construct non-15 

dimensional maps to allow direct application of the findings of this study to the design of 16 

structures exposed to the threat of pressure wave loading. 17 
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1. INTRODUCTION 22 

Understanding the nature and severity of transient loads exerted on objects by a surrounding 23 

fluid has been a concern for researchers over the past decades, due to the numerous safety-24 

relevant applications of such knowledge in the defence, transport, energy, and processing 25 

industries. Compared to loads resulting from steady-state flows of similar particle velocity, the 26 

loads exerted by a shock wave sweeping over a body can be up to one order of magnitude 27 

greater in amplitude (Sun et al., 2005; Tanno et al., 2003). When a shock wave encounters a 28 

solid body, high pressure gradients are caused around the body due to the finite speed of wave 29 
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propagation and due to the reflection of the wave from the forward facing surfaces of the body. 30 

Transient loads due to shock waves passing over cylinders and spheres have been previously 31 

measured experimentally (Sun et al., 2005; Takayama & Itoh, 1985; Tanno et al., 2003), 32 

computed numerically (Drikakis et al., 1997; Luo et al., 2017a, 2017b; Ofengeim & Drikakis, 33 

1997; Sun et al., 2005; Zółtak & Drikakis, 1998) and modelled analytically (Friedman & Shaw, 34 

1960; Parmar et al., 2009; Shaw, 1975). 35 

Most existing studies were motivated by defence applications and focused on shock 36 

waves; at the other end of the spectrum, extensive literature exists on the propagation of sound 37 

waves and their interactions with solid bodies. The intermediate regime has received very little 38 

attention and will be the focus of this study, which is motivated by the growing need for 39 

predictive approaches to determine the forces exerted in deflagrations of mixtures of air and 40 

gas. In accidental deflagration events in congested environments, such as hydrocarbon 41 

processing plants, which are the focus of this investigation, pressure waves of considerable 42 

duration and rise time (of the order of 0.1s ) can be emanated (American Petroleum Institute, 43 

2006; Det Norske Veritas, 2010) and impinge on surrounding structures. Some of these 44 

structures can be assimilated to cylinders, for instance piping racks, pressure vessels or 45 

centrifugal compressor casings. At the moment, no accurate analytical methods exist to predict 46 

loads on structures by deflagration events (The Steel Construction Institute, 2018). Here we aim 47 

at filling this gap. 48 

The physical process of shock wave interaction with circular cylinders has been 49 

thoroughly investigated by other researchers. Due to the change in incidence angle, the initially 50 

regular reflection transforms into a Mach reflection during the progression of the shock front 51 

over the cylinder surface. The transition angle between regular and irregular reflection was 52 

shown to depend on the incident Mach number (Ben-Dor et al., 1980) as well as on the Reynolds 53 

number (Takayama & Sasaki, 1983). In a combined experimental and numerical investigation 54 

Tanno et al. (2003) and Sun et al. (2005) determined the transient forces on spheres of different 55 

diameters by sustained shock waves, i.e. waves of rectangular evolution in pressure. After an 56 

initial peak of high amplitude, which the authors attributed to the initial reflection of the shock 57 

wave, the drag was shown to rapidly decrease with time due to the equilibration of the pressure 58 

around the cylinder. After approximately 10-15 non-dimensional units of time (defined as 59 

sphere radius divided by the ambient speed of sound) the drag loads were found to agree well 60 

with reference values for the same particle velocity and Reynolds number in steady-state flow 61 

(Sun et al., 2005). 62 
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For the case of arbitrary incident wave shapes and wavelengths, the evolution of 63 

overpressure and incident particle velocity can be of highly unsteady nature. In addition to the 64 

reflection and diffraction of the incident wave and the establishment of an inertial flow field 65 

over time, the fluid experiences acceleration relative to the solid body. This acceleration is 66 

known to cause a significant contribution to the load in some cases, and is termed added-mass 67 

force in the case of incompressible flow. In this case the force on an object is linearly related to 68 

the relative acceleration between flow and solid, which was demonstrated to hold for a wide 69 

range of Reynolds numbers (Chang & Maxey, 1995; Magnaudet & Eames, 2000; Wakaba & 70 

Balachandar, 2007). In compressible flow this simple relation was shown to be inapplicable 71 

due to the finite speed of wave propagation (Longhorn, 1952; Miles, 1951) and the resulting 72 

force amplitudes were found to be significantly higher for finite Mach numbers (Parmar et al., 73 

2008). 74 

It can thus be inferred from previous research that multiple physical phenomena cause 75 

force contributions to the loading of cylinders by arbitrary pressure waves. Magnaudet and 76 

Eames (2000) suggested that the force on a particle immersed in unsteady flow can be 77 

categorised into five contributions, namely: quasi-steady, inviscid unsteady, viscous unsteady, 78 

lift and buoyancy-gravity, i.e. 79 

 
qs iu vu l bg( ) ( ) )( ) )( () (t tt t t t    F F F F FF .  (1) 80 

It seems obvious to neglect the viscous unsteady and buoyancy-gravity driven forces in 81 

unsteady, high Reynolds number, high speed flow. However, simplified modelling techniques 82 

will need to consider at least quasi-steady and inviscid unsteady contributions. Parmar et al. 83 

(2009) presented a simple model for spheres, including pressure gradient, acceleration reaction 84 

and quasi-steady contributions, but neglected the reflection and diffraction of the wave and the 85 

effects of changing Mach numbers. Other simple methods, for example those widely used in 86 

industrial design guidelines (The Steel Construction Institute, 2018), make first order estimates 87 

of the individual force contributions and identify the dominant one as a function of the object’s 88 

size. These methods are however extrapolated from simplified methods used in defence 89 

applications and yield inaccurate results in many cases, as we have recently shown elsewhere 90 

(Gauch et al., 2019b). 91 

In a parallel paper (Gauch et al., 2019a) we focused on the transient loading of two-dimensional 92 

box-like objects loaded by the passage of pressure waves of arbitrary shape, amplitude and time 93 

duration. Here we aim at extending this investigation to the case of two-dimensional circular 94 

cylinders. We will develop analytical predictions, validate them by numerical calculations and 95 
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present the results in the form of non-dimensional design maps of immediate use to design 96 

engineers. 97 

   98 

2. PROBLEM DEFINITION 99 

A planar pressure wave of length i  in space, rise coefficient r , and maximum overpressure100 

ip  is incident upon a rigid, fixed circular cylinder of diameter D , as in Fig. 1. The initial 101 

overpressure distribution along the wave is assumed to be defined piecewise linear, to give a 102 

triangular wave profile. The triangular shape is chosen for its capability of approximating both 103 

shock waves and pressure waves originated by deflagration events, but the models developed 104 

in this study are applicable to pressure wave or arbitrary shape. The surrounding medium, air, 105 

is characterised by the heat capacity ratio 1.4  , the specific gas constant 
-1 -1287 Jkg K ,R   106 

and the ambient pressure and temperature 0p  and 0T , respectively. The objective of this study 107 

is to determine the transient load on the cylinder. As the tail of the incoming wave travels at the 108 

ambient speed of sound, 0c , a loading duration can be quantified as  109 
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Dimensional analysis dictates that the problem at hand depends on the following non-111 
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  (3) 113 

where i , iv , and i  denote the maximum density, particle velocity, and dynamic viscosity of 114 

the fluid within the incident wave, respectively. Functional relationships between i , iv  and the 115 

pressure wave coefficients i r,p   are given in Appendix A. 116 

With reference to the non-dimensional groups defined in Eq. (3) we can visualise the 117 

wide range of problem parameters we aim to analyse in this study and mark domains covered 118 

by existing studies. Figure 2a depicts the range of possible shock wave cases and the domains 119 

covered by existing studies as well as by the models presented in this paper. It can be seen that 120 

most studies on shock waves correspond to very large wavelengths i( )  , as the waves in 121 



5 

those studies were defined as rectangular. Analytical models for the interaction of a pressure 122 

wave with a cylinder were proposed by Friedman and Shaw (1960) and Shaw (1975). These 123 

models are limited to the acoustic region i 0( 0)/ pp  . In comparison, the models proposed 124 

here cover the whole range of wavelengths and we will prove their validity from the acoustic 125 

region to significant overpressures i 0/ 3)(0 p p  .  126 

Similarly, in Fig. 2b we compare ranges of applicability of results available in literature 127 

to the domain of validity of models developed in this study, for pressure waves of non-zero 128 

risetime. For very large non-dimensional rise times r i( )    abundant literature is available, 129 

as this corresponds to the case of steady-state flow around a cylinder. The previously introduced 130 

models by Friedman and Shaw (1960) and Shaw (1975) are, again, only applicable for very low 131 

overpressure ratios. Additionally, the range of validity of these models narrows for longer non-132 

dimensional rise times, as the contribution of the wave diffraction to the maximum drag on the 133 

cylinder decreases, as it will be discussed in detail below. 134 

In Figs. 2a and 2b ranges of Reynolds number have not been included for simplicity. As 135 

for overpressure ratio, non-dimensional wavelength and risetime, to our knowledge there is no 136 

model available in literature that covers wide ranges of Reynolds numbers. Developing such 137 

models is therefore the main objective of this study. 138 

 139 

3. NUMERICAL AND ANALYTICAL MODELS 140 

In this section we present both the numerical and the analytical modelling approaches 141 

developed in this study. Firstly, the numerical methodology and a mesh convergence study are 142 

presented; then, the new analytical model is described in detail and validated against the 143 

numerical predictions. 144 

3.1 Numerical model 145 

3.1.1 Modelling assumptions and simulation setup 146 

The gas surrounding the cylinder is modelled as a perfect gas with heat capacity ratio 1.4  , 147 

so that the compressible, unsteady Navier-Stokes equations govern the behaviour of the flow. 148 

These were solved in their Reynolds-averaged form (URANS) using the solver 149 

rhoCentralFoam  (Greenshields et al., 2010), which is part of the Open Source CFD software 150 

package OpenFoam (Weller et al., 1998), version 5.x. The choice of this numerical approach is 151 

driven by its simplicity and the ready availability of open-source code. The viscosity of the gas 152 



6 

was determined using Sutherland’s law, with coefficients changed from case to case to achieve 153 

flow situations of different Reynolds numbers, whilst keeping the cylinder diameter D  constant 154 

for all simulations to facilitate mesh generation. The SSTk   turbulence model (Menter, 155 

1994) was used as closure for the URANS equations in all conducted simulations in this study. 156 

This model has been used by other authors to investigate similar flow scenarios (Benim et al., 157 

2008; Catalano & Amato, 2003; Rosetti et al., 2012; Stringer et al., 2014). While the inherent 158 

drawbacks of URANS modelling became apparent mostly in the critical flow regime (Stringer 159 

et al., 2014), the SSTk    model was found to outperform other two-equation models for 160 

this type of flow situation (Benim et al., 2008; Catalano & Amato, 2003). 161 

The boundary conditions were assigned to be of the symmetry type for the top and 162 

bottom boundaries; zero-gradient boundaries were assigned at the left and right end of the 163 

domain and a no-slip condition was enforced on the velocity field on the cylinder surface. Non-164 

physical wave reflections from the boundaries were precluded by choosing a sufficiently large 165 

domain size. In order to decrease the computational effort, the assumption of two-dimensional 166 

flow was employed. Whereas the assumption of two-dimensionality is accurate for the initial 167 

wave reflection and diffraction (Sun et al., 2005), resolving the flow structures in the wake of 168 

an object would necessitate a three-dimensional approach. The computational effort to conduct 169 

a three-dimensional parametric study was however deemed prohibitively expensive, in 170 

consideration of the objectives of the study and of the fact that other researchers have found 171 

reasonable agreement, in terms of drag, comparing two-dimensional URANS simulations to 172 

experiments, 3D URANS and large eddy simulations for high-Reynolds-number flows past 173 

bluff bodies (Iaccarino et al., 2003; Meliga et al., 2012; Rodi, 1997; Stringer et al., 2014). It is 174 

clear, however, that limitations arise from employing a two-dimensional URANS approach. 175 

The fidelity of predicting turbulent transition, flow detachment, and vortices is not comparable 176 

to more detailed approaches such as large eddy simulations or direct numerical simulations. 177 

The implications on the predictions will be discussed later. 178 

The pressure wave or shock wave was modelled as an initial field of pressure, particle 179 

velocity, and temperature immediately adjacent to the object. The equations defining the spatial 180 

distribution of these quantities as a function of the wave parameters i r i, ,p    are given in 181 

Appendix A. The rest of the fluid domain was assigned homogeneous initial conditions of 182 

-1

0 0, m s,  0 p p vT T  . Fig. 3 shows the computational domain and the initial pressure 183 

contours for the case r i i 00.5,  30,  / 1p p    . It can be seen that the front of the pressure 184 
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wave is initially placed almost in contact with the cylinder, such that the wave distortion before 185 

arrival at the object is minimised. 186 

The chosen integration schemes were of first order in time and second order in space. 187 

Due to the explicit prediction of the fluxes in rhoCentralFoam (Greenshields et al., 2010), the 188 

maximum time step was determined by enforcing a Courant-Friedrichs-Lewy (CFL) number 189 

less than 0.2. Interpolation of the convective terms was accomplished with the scheme by 190 

Kurganov and Tadmor (2000), employing flux limiters after van Leer (1974), as recommended 191 

by Greenshields et al. (2010). Zółtak and Drikakis (1998) have compared various computational 192 

schemes as well as static and adaptive meshing techniques for the simulation of the interaction 193 

of a shock wave with a cylinder. It was concluded that, whereas small differences between the 194 

results obtained with different computational schemes exist, very good agreement between 195 

static and adaptive mesh techniques was observed.  196 

Due to the wide range of cases to be examined and the analysis of non-shock waves with 197 

the same computational scheme, a static meshing approach is employed here. In order to 198 

efficiently simulate cases for a wide range of wave lengths, i.e. i [1, 200],   the domain size 199 

and cell distribution need to adapt, however, to the individual cases. Due to the high local 200 

gradients of the flow, the mesh was successively refined towards the region closest to the 201 

cylinder to a side length of 
cyl/ 200D x  . To fully resolve the boundary layer, the mesh was 202 

further refined in the direction normal to the cylinder surface to guarantee 1y   in the first 203 

cell, in line with recommendations by Menter (1994) and findings by Benim et. al (2008) for 204 

turbulent flow past circular cylinders. In order to ensure sufficient resolution of the wave, the 205 

maximum cell size in the whole domain was limited to 206 

 i
max .

200
x


   (4) 207 

In Fig. 4 an example of the mesh for the case r i i 00.5,  30,  / 1p p     is depicted. 208 

The successive refinement of the cells towards the object surface leads to a sufficient resolution 209 

of the zones with the highest gradients due to wave diffraction, the influence of the boundary 210 

layer, flow separation, and vortex shedding. We note that a coarsened mesh is depicted in Fig. 4 211 

for visualisation purposes. 212 

 213 

 214 

 215 

 216 
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3.1.2 Mesh convergence study 217 

An extensive mesh convergence study was conducted to estimate the spatial and temporal 218 

discretisation errors of the CFD simulations. As wide ranges of the non-dimensional parameters 219 

i 0 r i i,  ,/ ,  p p Re   are of interest in this study, numerous cases with different parameter 220 

combinations needed to be examined. The following parameter combinations were considered  221 

 
   

 
r i 0

2 4 6

i

0,0.5 ,

,10 ,10 ,

/ 0.1,1,3 ,

1,10,50 , Re {10 }

pp











  (5) 222 

where the highest pressure ratio was omitted for the finite rise time case, r 0.5  , as pressure 223 

waves of this amplitude turn into shock waves almost immediately. Therefore, spatial and 224 

temporal convergence were investigated for a total of 45 cases following the widely used 225 

methodology by Roache (1994). We quantify convergence using the grid convergence index 226 

(GCI) of the form (Roache, 1994) 227 

 s 2 1
12 ˆ

1

GCI ,
1p

fF f

r f





  (6) 228 

where sF  denotes a factor of safety, p̂  the observed order of convergence and 1 2,f f  denote 229 

scalar solution values obtained on the finest and second finest grid, r is the refinement factor. 230 

The observed order of convergence can be computed as  231 

 

3 2
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l
f

f f

p
r

f

 
 

 



    (7) 232 

Typically, values for p̂  between one and two were obtained, which is to be expected as 233 

the spatial discretisation scheme reduces to first order in the vicinity of shocks (Banks et al., 234 

2008). Three meshes were used for each case, with an isotropic refinement factor of 1.5r  . 235 

Applying the recommendations proposed by Roy (2010) for the factor of safety and the limits 236 

of p̂ , we obtained the maximum and mean GCI values across all investigated cases listed in 237 

Table 1. The chosen solution variables were the maximum drag force on the cylinder, maxF , the 238 

maximum imparted impulse on the cylinder, maxI ,  and the time at which the maximum drag 239 

value is reached, maxt . It can be seen that the maximum GCI values in both force and time are 240 

found to be around 10%, these were found for the cases employing the lowest pressure ratio of 241 
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i 0/ 0.1p p  , whereas the mean GCI value in terms of maximum impulse were slightly lower. 242 

The mean values across all 45 cases were significantly smaller and were deemed satisfactory.  243 

 244 

3.1.3 Validation of numerical model with results from literature  245 

We now compare results obtained with the proposed numerical model to results available in 246 

literature (see Fig. 2). As can be seen in Fig. 5 the results of the present numerical model are in 247 

very good agreement with those obtained by Drikakis et al. (1997). Experimentally obtained 248 

results published by (Takayama & Itoh, 1985) are also included which are in broad agreement 249 

with the two sets of numerical results. 250 

By means of Fig. 5 we introduce a scaling of the force on the cylinder different to most studies 251 

in literature. Whereas most existing studies use the classic drag coefficient of the form 252 

2

i i/ (0.5 )F v D  (left ordinate) we choose to employ a scaling of the form i/ ( )F p D  (right 253 

ordinate). This is due to the fact that drag coefficients for pressure waves with small 254 

overpressures i( 0)p   tend to infinity, whereas i/ ( )F p D  allows compact representation of 255 

results for wide ranges of overpressure. 256 

 257 

3.1.4 Parametric study 258 

An extensive parametric study was conducted exploring the following parameter combinations 259 
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  (8) 260 

It was deemed unrealistic to encounter finite rise time pressure waves of amplitude i 0/ 2p p 261 

in practice, as these evolve rapidly into shock waves. The highest pressure ratio was therefore 262 

only used for r 0  , whereas the two longest wavelengths were only combined with r 0.5,   263 

leading to a total of 414 cases. The simulations were run on a high performance computing 264 

cluster, using 32 processors. A significant amount of explicit time steps was necessary due to 265 

the locally refined mesh and long simulation times, leading to run times for the individual cases 266 

of up to six days. 267 

 268 

3.2 Analytical model 269 

As a complement to the detailed numerical model we now present a semi-analytical model 270 

which is able to capture the most important physics without the significant computational effort 271 
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of the CFD model and fosters understanding of the nature of the loading in a wide range of 272 

scenarios. 273 

The outset of the new model is the force superposition after Magnaudet and Eames 274 

(2000), given in Eq. (1). Along the lines of a drag model for spheres, proposed by Parmar et al. 275 

(2009), the viscous unsteady, lift, and buoyancy-gravity force contributions are neglected. The 276 

inviscid unsteady force iuF  consists of two parts, namely a pressure gradient and a history term. 277 

Parmar et al. (2009) define the former to be due to pressure gradients in the flow which exist 278 

neglecting the presence of the object, and the latter to be due to the acceleration of the ambient 279 

fluid. We argue however that, in the present case, the pressure gradient force is more accurately 280 

described as force resulting from the reflection and diffraction of the incoming pressure wave. 281 

The force parametrisation therefore reads 282 

 
diff

u

h s

q

i t

s i

qs

( ) ( )

( ) ( ) ( ).

( ) t t

t t

t

t

 
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F F

F F F

F
  (9) 283 

In Fig. 6 we provide an overview of the different parts of the analytical model and the flow of 284 

the overall calculation. From a set of chosen input parameters, the propagation of the wave 285 

under the influence of compressibility is predicted, yielding temporal and spatial evolution of 286 

the relevant flow quantities. These are used as input for the three separate models for the three 287 

force contributions defined in Eq. (9). Finally, the overall force on the cylinder is obtained by 288 

superposing these three force contributions. 289 

We will proceed by introducing individual modelling approaches for each of the parts depicted 290 

in Fig. 6. 291 

 292 

3.2.1 Propagation of a finite amplitude wave 293 

The analytically formulated models described in the following make use of time-dependent 294 

values of the flow variables pressure, particle velocity, density, Reynolds number, and Mach 295 

number. As defined in Section 2, we assume an incoming wave of triangular overpressure 296 

evolution. At 0t  , the front of the wave has reached the front surface of the structure. 297 

Subsequently, the wave propagates along the object, inducing diffraction and a transient flow 298 

field. As the pressure waves of interest in this study are of significant amplitude, the wave shape 299 

distorts during propagation due to the local differences in speed of sound and particle velocity, 300 

see e.g. Liepmann (1957). This effect is further intensified by the wave diffraction and 301 

reflection, which increase the differences in the local properties across the wave.  302 
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A semi-analytical approach, based on the method of characteristics, is used to compute 303 

the time-dependent flow variables around the structure: The given wave is split into 100 304 

individual wavelets, each possessing an individual particle velocity and local speed of sound 305 

(see Appendix A). After a time step, the j-th wavelet has advanced by the distance, 306 

( )j j jx tc v   , leading to a distortion of the initial wave shape. The cases of a shock wave 307 

and of a pressure wave that develops into a shock wave need special treatment, as the velocity 308 

of a shock front is not equal that of a simple (non-shock) wave of same amplitude. In first order 309 

approximation, the shock front propagates at the mean value of the velocities of the simple 310 

waves in front and behind the shock front (Courant, 1948). The wavelets behind the shock front 311 

therefore propagate faster and, by catching up with the wave front, continuously change the 312 

pressure and velocity of the shock front. 313 

The procedure is illustrated in Fig. 7, which shows the distortion of a finite amplitude 314 

wave, the transition to a shock wave once the wave front is overtaken by the wavelets behind 315 

it, and the decay of the maximum pressure after the peak of the wave has overtaken the front. 316 

At every point in space or time, the arrival of the individual wavelets yields a discrete 317 

distributions of pressure, which was interpolated linearly to approximate the distorted wave 318 

shape. This simple procedure yields time-dependent flow properties of good accuracy at 319 

different positions (e.g. front ( 0x  ) and back edge ( x D )) around the cylinder. Average or 320 

“effective“ quantities are then calculated by averaging the flow variables over a number of 321 

points on the cylinder surface with uniform angular spacing of 5°. These are denoted in the 322 

following with an overbar and the index “cyl”. 323 

 324 

3.2.2 Diffraction model 325 

When a pressure wave encounters an impermeable solid object, the wave is subject to reflection 326 

and diffraction which cause a highly transient pressure distribution on the object surface. With 327 

the assumption of small disturbances, the well-known linearized equations of motion of 328 

acoustics can be deduced. The procedure outlined in Friedman and Shaw (1960) and Shaw 329 

(1975) is followed, but amended by the introduction of the reflection coefficient  330 
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which permits an approximation of the effect of wave reflection from the cylinder surface under 332 

the influence of compressibility. The definition of the reflection coefficient in Eq. (10)333 

corresponds to the normal reflection of a shock wave from a rigid surface (see e.g. Courant 334 
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(1948)). While the reflection coefficient for an isentropic wave r( 0)   is higher for large 335 

pressure ratios (Gauch et al., 2018), this difference is negligible for the isentropic waves treated 336 

in this study i 0 )( / 2p p  . In Eq. (10), in ,( )p t  denotes the incident pressure at time t  and 337 

angular position  , with 0   at the point that the wave encounters first. The time retarded 338 

integral equation for the pressure on the cylinder surface  339 
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is solved at points with equal angular spacing of 10° over the cylinder surface at every time 341 

step. The time step has to be chosen such that points influence neighbouring points only with 342 

their past values, i.e. 0/ 2t D c    (Shaw, 1975). In Eq. (11), 0S  denotes the cylinder surface 343 

and R  the distance between a point on the cylinder surface , )( , Tr zr and the source point 344 

(i.e. integration variable) 0r , whereas 0n  denotes the inward surface normal direction at 0r . The 345 

last term in Eq. (11) is due to the pressure directly behind a possible shock front, and ouz  thus 346 

denotes the axial distance to a source point at which the shock front arrives at the delayed time 347 

0 /t t R c  . Finally, rp  models the effect of the reflected incoming pressure, which is 348 

approximated as 349 
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  (12) 350 

It can be seen in Eq. (12) that a linear “fade-out” function was applied to the reflection 351 

coefficient RC  to account for the setup of an inertial flow over time. A linear form was chosen 352 

for the sake of simplicity. 353 

Equation (11) can be solved with little computational effort by direct numerical approximation 354 

(Shaw, 1975), yielding a value for the pressure at discrete points on the cylinder surface at every 355 

time step and thus direct information about the force due to diffraction and reflection.  356 

 357 

3.2.3 History force model 358 

In this section we will adapt the results published by Parmar et al. (2008) to yield an estimate 359 

for the force contribution on a circular cylinder due to flow acceleration. Parmar et al. (2008) 360 

computed the time-dependent history forces on cylinders and spheres at finite Mach numbers 361 

numerically, and provided a functional relationship using a convolution integral 362 
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Here 0 ) / ( / 2); )( (K K c Dt M   denotes Mach number dependent kernel functions which 364 

were published in graphic form by Parmar et al. (2008). The quantities dfm  and v  denote the 365 

time dependent mass of the displaced fluid and the particle velocity of the incident flow, 366 

respectively. As the forces in Parmar et al. (2008) were computed for a previously fully 367 

developed flow and constant Mach numbers, several changes are necessary in order to predict 368 

forces during the highly transient scenario of a passing pressure wave. 369 

 Firstly, the force kernel K  changes with Mach number, and thus, to account for this 370 

fact, the convolution integral is evaluated multiple times at different Mach numbers (e.g. for 20 371 

time intervals) to account for the change of the incident flow conditions. Secondly, as the flow 372 

does not start from a fully developed state, the forces are multiplied by a “fade-in” function ,  373 

defined, in linear form for the sake of simplicity, as 374 
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  (14) 375 

Finally, the resulting forces are averaged over a small timespan 
avg,hist ,t  to account for the 376 

inertia of the flow field for changing incident conditions. The history force is thus defined as 377 

  
avg,hist

df,cyl cyl 0
hist cyl

avg,hist

, 
d( )

( )  d
/d

d
2

tt

t t

m v c
F

t
tt

t
K M

D



  

 
  


    (15) 378 

with 379 

 

2

cyl

df,cyl .
4

m
D

   (16) 380 

Equation (15) can readily be integrated numerically with time steps small enough to sample 381 

the force kernel with sufficient accuracy. This was assured by limiting the time step to a one-382 

hundredth of the wave duration and by sampling the non-zero portion of the force kernel with 383 

at least 150 points. The flow quantities ,,v M  are “effective” flow quantities averaged over 384 

the whole cylinder surface, as explained in Section 3.2.1. 385 

 386 



14 

3.2.4 Quasi-steady force model 387 

The drag force on a circular cylinder due to a steady-state flow depends on both the governing 388 

Reynolds number and Mach number, such that  389 

   2

qs D

1
( ) , .

2
F t c e M DvR    (17) 390 

Ample literature exists on Reynolds and Mach number dependent drag coefficients 391 

(summarised in e.g. (Blevins, 1984; Hoerner, 1965)). In this context, a simplified representation 392 

of the drag coefficient is used, as given in Blevins (1984). Figure 8 depicts the assumed 393 

dependency of the drag coefficient on the governing Reynolds and Mach number. In this 394 

context, the drag forces are averaged over a short period of time, 
avg,qst , to account for the non-395 

instantaneous change of the flow field with changing incoming particle velocity. The forces due 396 

to quasi-steady flow thus read 397 
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2
cylqs D cyl cyl cyl
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1 1
( ) ,  d .

2
t t

t

F t c vRe M D
t

t



    (18)  398 

The averaging employed in Eq. (18) is executed numerically and the used flow quantities 399 

cylcyl cyl cyl, ,, Re Mv   are once again to be interpreted as “effective” averaged flow quantities, as 400 

described in Section 3.2.1. 401 

  402 

3.2.5 Choice of parameters  403 

The previously introduced parameters 
avg,hist avg,qs, ,t t   and fadet  are meant to account for the 404 

inertia of the transient flow field with respect to the incident flow. Both the quasi-steady and 405 

history force models were initially developed for fully developed flow, and are rendered more 406 

flexible using the time averaging and fade-in functions. 407 

Similarly, the reflection coefficient RC  only holds for the reflection of a shock wave 408 

before an inertial flow has developed. Once the particles navigate along the object instead of 409 

being brought to an abrupt halt, this coefficient quickly diminishes before attaining the acoustic 410 

value of 2.  In a preliminar parametric study it was found that  411 

 
avg,hist avg,qs fade

0

t tt
c

D
      (19) 412 

gives good agreement between the analytically and numerically obtained force histories. We 413 

note that 0/D c   equals the time a sound wave takes to orbit the cylinder once. 414 

 415 
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3.2.6 Validation of the analytical model 416 

Results obtained using the new analytical modelling technique are now compared to results 417 

obtained with the numerical model. In Fig. 9 we present non-dimensional force histories 418 

predicted by numerical simulations and analytical calculations, as well as pressure contours at 419 

the moment of maximum drag load (as predicted by CFD).   420 

Figure 9a and b illustrate the loading of a circular cylinder by a shock wave of small 421 

overpressure. It can be seen that the maximum load occurs before the wave front has reached 422 

the midplane of the cylinder. The load amplitude is therefore mostly determined by the 423 

reflection and diffraction of the wave. We observe very good agreement between the analytical 424 

and the numerical model in terms of total drag load on the cylinder. Figure 9a also shows the 425 

contributions of the three force terms defined in Eq. (9), which confirms the dominance of the 426 

reflection-diffraction term. Fig. 9a further shows the evolution of the impulse imparted on the 427 

cylinder 428 

 
0

d

t

I F t    (20) 429 

normalised by the incident impulse on the cross-section area of the cylinder  430 

 
i

0

i .( ) ( )di D D v



       (21) 431 

The initial distributions of density and particle velocity over the wave length are given 432 

in Appendix A. It can be seen that the maximum impulse imparted on the cylinder is only about 433 

1/10 of the incident impulse. Further we note that the analytical model predicts a slightly higher 434 

impulse compared to the numerical model. 435 

Figures 9c and d show a case that differs from the previous case only in the rise 436 

coefficient r ,  which is now 0.5, representing a pressure profile in the form of an isosceles 437 

triangle; this causes a reduction in maximum drag by approximately one order of magnitude. 438 

As can be seen in Fig. 9d, the pressure gradients are much milder for this case, corresponding 439 

to a long non-dimensional rise time r i  . We note again good agreement between analytical 440 

and numerical model, although the peak force is overestimated by the analytical model in this 441 

case. 442 

In Figs. 9e-h we present results for two cases that differ from the previous two cases in 443 

the pressure amplitude of the incoming wave. First, we note very good agreement in both cases 444 

between analytical and numerical model. Comparing the individual force contributions in 445 

Figs. 9e and 9g, we find that while the shock wave case is again dominated by wave diffraction 446 
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and reflection, in the finite rise time case all three force contributions have significant influence 447 

on the load amplitude. This can also be seen comparing Figs. 9f and 9h, with the latter showing 448 

pressure contours similar to those encountered in steady-state flow, with vortex structures in 449 

the cylinder wake. 450 

We proceed by assessing the loading intensity, in terms of force and impulse, obtained 451 

with the analytical and numerical models for the large data set defined in (8). It can be seen in 452 

Fig. 10a that the analytical model is in good agreement with the numerical model in terms of 453 

maximum drag load for the whole range of parameters explored, with predicted normalised 454 

peak loads spanning two orders of magnitude. Similarly, in Fig. 10b we observe broad 455 

agreement between the two approaches in terms of peak imparted impulse, with a slightly larger 456 

scatter. In both Figs 10a and 10b the analytical model tends to overpredict the load amplitudes, 457 

such that our analytical estimate can be considered slightly conservative.  458 

We note that the proposed analytical model also needs a discretization in space and time, 459 

as equations are not obtained in closed form. A comparison of the computational times using 460 

the set of simulations presented in Fig. 10 showed that the analytical calculation is much faster 461 

than the CFD simulations, with savings in computation time of several orders of magnitude. 462 

Solution times on a commercial workstation were of a few seconds in the case of the analytical 463 

model, while they were of several hours, or of a few days in the most demanding cases, for the 464 

CFD simulations. 465 

466 

4. RESULTS AND DISCUSSION 467 

In the following we construct non-dimensional maps from the results of numerical simulations. 468 

Subsequently, the analytical predictions are used to analyse the influence of the three force 469 

contributions (9) on the overall load, to shed light on the nature of the loading in different 470 

regimes of response (compare Fig. 2). 471 

 472 

 473 

4.1 Numerical predictions 474 

We start by analysing shock wave cases at various wave lengths, i , pressure ratios, i 0/p p , and 475 

maximum Reynolds numbers, iRe . In Fig. 11a we present the maximum non-dimensional force 476 

on a cylinder at 6

i 10Re   for a range of incident wave lengths. It can be seen that after a rapid 477 

increase in the range i 10,   the maximum force values approach a pressure ratio dependent 478 
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asymptote at about i 40  . These values can therefore be seen as representative for triangular 479 

shock waves of very long wavelength, corresponding to rectangular waves. It is evident that the 480 

average pressure on the cylinder front max i/ ( )F p D  increases with increasing overpressure ratio 481 

due to the effects of compressibility (compare with Eq. (10)). 482 

 Figure 11b illustrates the dependency of the maximum drag force on the maximum 483 

incident Reynolds number. It can be seen that for small Reynolds numbers the maximum force 484 

is greater than for higher Reynolds numbers, which has previously been shown experimentally 485 

(Takayama & Sasaki, 1983) and can be attributed to an influence of viscous effects on the shock 486 

reflection pattern (Kleine et al., 2014). On the other hand, in the regime 4

i 10Re  , the Reynolds 487 

number can be seen to have only a small influence on the load, in accordance with findings by 488 

Kleine et al. (2014). 489 

Next, in Fig. 12 we analyse the influence of the non-dimensional rise time r i   on the 490 

maximum load for various overpressure ratios and Reynolds numbers. In the range r i 1    the 491 

contours can be seen to approach horizontal asymptotes corresponding to the maximum loads 492 

for a shock wave (dependent on pressure ratio and Reynolds number), which were given in 493 

Fig. 11. For intermediate rise times, r i1 10,    the maximum load is found to be strongly 494 

dependent on the rise time. As the pressure gradient in the incoming wave becomes less severe, 495 

the maximum drag load diminishes. It can be seen that for most of the values of overpressure 496 

ratio and non-dimensional rise time shown, the lowest Reynolds number yields the highest drag 497 

loads on the cylinder, whereas the contours for 4

i 10Re   and 6

i 10Re   correspond closely. The 498 

contours can be seen to flatten out again for r i 10   . However, for the two higher Reynolds 499 

numbers the general trend of decreasing maximum load with increasing non-dimensional rise 500 

time can be observed to reverse. This can be explained by the development of a quasi-steady 501 

flow field around the cylinder for long non-dimensional wave lengths. Periodic vortex shedding 502 

is triggered after a while, which leads to increased maximum drag loads, especially for higher 503 

Mach numbers (Rodriguez, 1984; Xia et al., 2016; Xu et al., 2009). 504 

In Figs. 13-15 the same data as in Fig. 12 is presented in alternative form, for closer 505 

examination. Figure 13 depicts the normalised maximum force on a cylinder for a maximum 506 

Reynolds number of 210 . It can be seen that up until r i 100    the force amplitudes are 507 

decreasing monotonically for all investigated pressure ratios. Interestingly, the maximum force 508 

changes by a factor of more than 10 in the investigated range of rise times for the lower pressure 509 

ratios, whereas for the highest pressure ratio this factor is up to two. As a reference the mean 510 
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steady state drag value is given for every overpressure ratio as 2

D i i0.5c v D  with drag 511 

coefficients Dc   as defined in Fig. 8. The maximum forces seem to approach these values 512 

asymptotically. It is to be expected that for higher wavelengths, the above described vortex 513 

shedding will develop and that higher maximum force values would therefore be recorded. 514 

Figure 14 shows similar information but for a maximum Reynolds number of 4

i 0 .1Re   515 

The higher Reynolds number gives rise to the earlier mentioned reversal of the downward trend 516 

of the maximum forces. This effect can only be observed here for i 0/ 1p p  , which can be 517 

explained by the higher shedding frequencies due to higher incident particle velocities and the 518 

shock waves triggered by an oscillating wake for higher Mach numbers (Xu et al., 2009). 519 

Finally, in Fig. 15 we present the results for the highest investigated Reynolds number,520 

6

i 10Re  . Comparing Figs. 14 and 15, it can be seen that the increase of the maximum force is 521 

triggered even earlier than for the case of 4

i 10Re  , whereas similar values for the maximum 522 

force are obtained for low non-dimensional rise times.  523 

We proceed by comparing the maximum impulse imparted on a cylinder to the incoming 524 

impulse for a wide range of wavelengths. Figure 16a illustrates the peak imparted impulse on a 525 

cylinder by shock wave loading. It can be seen that relative to the incident impulse the highest 526 

impulses are recorded for the shortest wavelengths. This can be explained by higher gradients 527 

in the incoming wave and a more prominent diffraction of waves of short wavelengths. For 528 

increasing wavelengths the impulse can be seen to decrease in amplitude and only small 529 

changes are observed in the range i 20  .  530 

In Fig. 16b the same information is shown for a rise coefficient of r 0.5   and a wider range 531 

of wavelengths. It can be see that for i 0   the normalised imparted impulse attains values 532 

slightly above unity, whereas for large wavelengths, values one order of magnitude smaller are 533 

predicted. In contrast to the shock wave case, given in Fig. 16a, the normalised impulses 534 

decrease until i 50   or longer, before approaching a steady value. This steady value can be 535 

approximated by calculating the imparted impulse on a cylinder due to purely quasi-steady drag. 536 

In first approximation, neglecting wave distortion, the impulse on a cylinder due to the quasi-537 

steady flow caused by a pressure wave is  538 
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  (22) 539 

In Eq. (22), D )(c   denotes the drag coefficient as in Fig. 8, with )(M   and540 

i i( ( / ,) )R Re ve v   which can be evaluated using the equations given in Appendix A. In 541 

contrast to the maximum forces, given in Figs. 13-15, the quasi-steady impulse can be seen to 542 

be a mostly conservative estimate of the imparted impulse predicted numerically for long 543 

wavelengths. This can be explained by the periodicity of the wake oscillations described earlier, 544 

which tend to balance out when integrated over time. 545 

 546 

4.2 Analytical predictions 547 

We now use the results obtained with the analytical model to draw conclusions on the 548 

importance of the individual force contributions (9) in different regimes of input parameters.  549 

In Fig. 17 we present a contour map of the relative importance of the three contributions for a 550 

Reynolds number of 610  and the whole examined ranges of non-dimensional rise time and 551 

pressure ratio. It is evident that for all pressure ratios the contribution from diffraction and 552 

reflection is dominant for r i 0    and accounts for more than 60% of the peak load, up until 553 

r i 10.    In this regime the contribution of the history force can be seen to reach a peak of 554 

over 25% for the higher pressure ratios.  For increasing wavelengths the quasi-steady 555 

contribution is found to gain more and more importance and accounts for over 75% of the peak 556 

load at r i i 0100, 1/p p    . For lower pressure ratios the quasi-steady force is found to be less 557 

dominant. 558 

 In order to examine the influence of the Reynolds number, Fig. 18 depicts a slice through 559 

Fig. 14 with an added line for 2 4

i 10 ,10Re  . The same trends as in Fig. 17 can be observed, 560 

with the diffraction contribution dominating for r i 0    and the quasi-steady contribution 561 

gaining more and more significance for rising non-dimensional rise times. Due to the higher 562 

drag coefficients for lower Reynolds numbers (compare to Fig. 8), the quasi-steady contribution 563 

is stronger for the lower Reynolds numbers. 564 

  565 

 566 
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4.3 Discussion 567 

The results presented in this section can directly be used in industrial design for arbitrary 568 

pressure wave loading, for example for cylindrical structures common in hydrocarbon 569 

processing plants, opening new opportunities for structural optimization. Figures 11-16 give 570 

access to peak loads for a wide range of input parameters without any further calculation. This 571 

constitutes a substantial improvement over the current industrial design practice, where 572 

methods and charts developed for shock waves are used (The Steel Construction Institute, 573 

2018), giving high levels of uncertainty and, in general, unnecessarily conservative predictions. 574 

An increase in maximum drag load has been found for the higher examined Reynolds numbers 575 

at large non-dimensional rise times, which can be explained by the unsteady vortex shedding 576 

from the cylinder. It depends on the structural design case under assessment if these higher load 577 

frequencies need to be considered. Furthermore, it can be expected that the assumption of two 578 

dimensionality of the flow and the use of the URANS equations in the numerical solver have a 579 

detrimental effect on the solution accuracy in these regimes. At high Reynolds numbers the 580 

cylinder wake becomes turbulent and transitions from laminar to turbulent flow appear around 581 

the cylinder. These can only be captured coarsely by the approach employed here. 582 

A further investigation of this effect lies yet outside the scope of this work and studies 583 

have been published by other authors (e.g. Rodriguez, 1984; Xia et al., 2016; Xu et al., 2009).  584 

The newly proposed analytical model provides transient load histories with little 585 

computational effort and has been shown to agree well with the more detailed numerical model. 586 

As the load histories caused by a triangular wave can take complex evolutions in time, as can 587 

be seen in Fig. 9, this model can contribute valuable additional information in a design process, 588 

and costly numerical computations can be avoided. 589 

It has to be borne in mind that the assumption of two-dimensionality was made 590 

throughout this study. Cylinders of finite width experience yet, in general, lower drag loads 591 

than cylinder of infinite width (2D assumption). The results presented here can therefore be 592 

seen as upper bounds to the loads experienced by structures of finite width. 593 

Finally, we note that models similar to the analytical model proposed here can be 594 

developed for other simple geometrical shapes, as we have already shown for a two-595 

dimensional box-like structure in a companion study (Gauch et al., 2019a). 596 

 597 

5. CONCLUSIONS 598 

We have developed a numerical and an analytical modelling approach to predict the transient 599 

loading on circular cylinders by pressure waves of arbitrary shape, amplitude, and time 600 
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duration. The analytical modelling approach was validated using the more detailed numerical 601 

approach, and its asymptotic behaviour was explored. The main conclusions of this study are 602 

as follows: 603 

 A predictive tool was developed to allow estimates of the transient loading histories 604 

induced on circular cylinders by arbitrary pressure waves. 605 

 Using the numerical model a large parametric study was conducted and the results were 606 

synthesized in the form of non-dimensional design charts of immediate application. 607 

 The maximum drag loads exerted on cylinders by pressure waves of finite rise time were 608 

shown to depend primarily on the non-dimensional rise time r i   and the overpressure 609 

ratio i 0/p p . 610 

 It was shown that for short non-dimensional rise times, the loads are most severe and 611 

mainly governed by reflection and diffraction, whereas for large non-dimensional rise 612 

times the loads approach quasi-steady nature. In between these two extremes, all three 613 

force contributions (9) were shown to be significant. 614 
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APPENDIX A 750 

At 0t  , the given triangular pressure wave implies a distribution in terms of  overpressure 751 

abs 0p p p   is 752 
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where   is a spatial coordinate pointing from the wave front to the wave tail, with 0   at the 754 

wave front. For the case of a negligible rise time coefficient r 0  , the pressure wave is a 755 

shock wave and the properties behind the shock front are determined by the Rankine-Huguinot 756 

equations for a perfect gas (e.g.(Liepmann, 1957)) 757 
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Further behind the shock front it can be assumed that the gas undergoes isentropic expansion 759 

 const.
p

   (25) 760 

Therefore, the density, temperature and velocity fields can be calculated as 761 
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Similarly, for the case of a non-negligible rise time coefficient r , the density, temperature and 763 

velocity fields can be calculated as 764 
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FIGURES AND CAPTIONS 776 

 777 

Figure 1. Definition of the pressure profile impinging on a circular cylinder. 778 

 779 

  

Figure 2. Domain of validity of proposed model in comparison to existing studies for a) shock waves r( 0)  and b) 780 

pressure waves of finite rise time r( 0)   781 

 782 

Figure 3. Initial field of pressure for the case r i i 00.5, 10, / 1.p p     783 

 784 

a) b) 
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 785 

Figure 4. Detail of the mesh for cases with 
i 10,  displayed with fourfold coarsened grid. 786 

 787 

Figure 5. Comparison of simulation results with numerical model to results from literature for an example case with 788 
5

i 0 r i i0.805,  7/ 0,  10 ,  p p Re     . 789 

 790 

solution 

variable 
maxGCI [%]  meanGCI [%]  

maxF  10.7 1.70 

maxt  10.4 2.98 

maxI  7.36 1.18 

Table 1. Results of the mesh convergence study in terms of the Grid Convergence Index (GCI). 791 

 792 

 793 
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 794 

Figure 6. Flowchart of calculations for the proposed analytical model. 795 

 796 

 797 

Figure 7. Prediction of the distortion of a finite amplitude wave via the method of characteristics. 798 

 799 



30 

 800 

Figure 8. Definition of steady-state  drag coefficient for a circular cylinder for varying Mach and Reynolds numbers 801 
(Blevins, 1984).  802 
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 808 

a) 

c) 

b) 

d) 

e) f) 

g) h) 

Figure 9. Comparison of the numerical and analytical force histories (a,b,c,d) and numerically obtained pressure contours at maximum load 

(b,d,f,h). Input parameters: 
4

i i3 00, 1Re   : a,b: r i 00.0, p /p 0.1   ; c,d:  . r i 00.5, p /p 0.1   .; e,f: 

r i 00.0, p /p 1.0   ; g,h: r i 00.5, p /p 1.0   .  
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 818 

 819 

 820 

 821 

Figure 10. Correlation between numerical and analytical predictions of (a) the maximum force on the cylinder  and 

(b) the maximum transmitted impulse.  

Figure 11. Maximum load on the cylinder for the shock wave cases ( r 0  ). a) dependency of maximum load on the load 

duration
i  for 

i

610Re  . b) Dependency of maximum load on Reynolds number for 
i 60  .    
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 822 

 823 

 824 

 825 

 826 

 827 

 828 

  829 

 830 

Figure 12. Contours of the maximum force on the cylinder as a function of the rise time, pressure ratio and 

Reynolds number.  

Figure 13. Variation of the maximum force on the cylinder with rise time, for 
i

210Re  . Values at infinity are steady state 

drag values. 
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 831 

Figure 14. Variation of the maximum force on the cylinder with rise time for 
4

i 10 .Re   Values at infinity are steady state 832 
drag values. 833 

 834 

 835 

Figure 15. Variation of the maximum force on the cylinder with rise time for i

610 .Re   Values at infinity are steady state 836 
drag values. 837 
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 847 

 848 

Figure 17. Contours of the force contributions to the maximum force according to the analytical model, for 
i

610Re  .  849 

 850 

 851 

Figure 18. Variation of the force contributions with rise time for i 0/ 1.0p p  . 852 

Figure 16. Variation of the maximum impulse exerted on the cylinder with wavelength. 


